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Abstract Agents are an important technology that have the potential to take over contem-
porary methods for analysing, designing, and implementing complex software. The Belief-
Desire-Intention (BDI) agent paradigm has proven to be one of the major approaches to
intelligent agent systems, both in academia and in industry. Typical BDI agent-oriented pro-
gramming languages rely on user-provided “plan libraries” to achieve goals, and online con-
text sensitive subgoal selection and expansion. These allow for the development of systems
that are extremely flexible and responsive to the environment, and as a result, well suited
for complex applications with (soft) real-time reasoning and control requirements. Nonethe-
less, complex decision making that goes beyond, but is compatible with, run-time context-
dependent plan selection is one of the most natural and important next steps within this tech-
nology. In this paper we develop a typical BDI-style agent-oriented programming language
that enhances usual BDI programming style with three distinguished features: declarative
goals, look-ahead planning, and failure handling. First, an account that mixes both proce-
dural and declarative aspects of goals is necessary in order to reason about important prop-
erties of goals and to decouple plans from what these plans are meant to achieve. Second,
lookahead deliberation about the effects of one choice of expansion over another is clearly
desirable or even mandatory in many circumstances so as to guarantee goal achievability
and to avoid undesired situations. Finally, a failure handling mechanism, suitably integrated
with both declarative goals and planning, is required in order to model an adequate level of
commitment to goals, as well as to be consistent with most real BDI implemented systems.
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1 Introduction

Agents are an important technology that have the potential to take over contemporary meth-
ods for analysing, designing, and implementing complex software systems suitable for do-
mains such as telecommunications, industrial control, business process management, trans-
portation, logistics, and aeronautics [3, 34]. A recent industry study [4] analysing several
applications claimed that the use of BDI (Belief-Desire-Intention) agent technology in com-
plex business settings can improve overall project productivity by an average 350% to 500%.

This paper reports, in detail, on the current state of the CANPlan BDI agent-oriented pro-
gramming language. CANPlan has been developed both to provide a formal specification that
more closely matches powerful implemented BDI systems than existing formal specifica-
tions, and to extend the reasoning capabilities of current BDI languages in a way that can be
readily incorporated into implemented systems. We focus primarily on goal-based reasoning
and on integrating lookahead planning into BDI languages and systems.

Generally speaking, BDI agent-oriented programming languages are built around an ex-
plicit representation of beliefs, desires, and intentions. A BDI architecture addresses how
these components are represented, updated, and processed to determine the agent’s actions.
There are a number of agent programming languages and development platforms in the BDI
tradition, such as PRS [33] and dMARS [23], AgentSpeak and Jason [6, 53], JADEX [52],
3APL [14, 30] and 2APL [12], GOAL [16], Jack [9], SRI’s SPARK [45], and JAM [31].

The concept of a goal is central to both agent theory and agent-oriented programming.
Rational agents behave because they try to satisfy and bring about their goals—goals ex-
plain and specify the agent’s proactive behaviour. In agent theory [11, 54] and planning [28],
goals are interpreted in a declarative “goal-to-be” manner, as states of affairs to bring about
(e.g., not being thirsty). In contrast, mainly due to practical concerns, agent programming
languages have taken a procedural “goal-to-do” perspective, by seeing goals as tasks or pro-
cesses that are to be completely carried out (e.g., quench thirst). As a consequence, the level
of support for representing and reasoning about goals has not been commensurate with their
importance in these languages. Said so, the need to conveniently accommodate declarative
aspects of goals in these languages has recently attracted much attention. As argued by van
Riemsdijk et al. [68], even a limited account of declarative goals can help decouple plan exe-
cution and goal achievement [16, 57, 73], facilitate goal dynamics [60, 67] and sophisticated
plan failure handling [32, 73], enable reasoning about goal and plan interaction [62], and
enhance goal and plan communication [44].

In this paper, we show how to provide an account of goals that goes beyond the purely
procedural view by accommodating some declarative aspects of goals, without compromis-
ing the effectiveness of the overall BDI system. In addition, we describe a built-in goal-failure
recovery mechanism that (i) captures the failure handling typical of most implemented BDI
systems; (ii) is compatible with our account of declarative goals; and (iii) provides a com-
mitment to goals, which we call a “flexible” strategy, that is conceptually between Rao and
Georgeff [54]’s well-known single-minded and open-minded strategies.

When it comes to means-end analysis, that is how goals are achieved, BDI frameworks
rely entirely on online context sensitive subgoal expansion, acting as they go. In fact, BDI
systems execute by incrementally “expanding” goals, by using libraries of hierarchical and
predefined plans indexed by goals that are meant to encode the typical tasks within the do-
main. While this execution mechanism facilitates the development of systems that are reac-
tive and responsive to (changes in) the environment, there are times when lookahead deliber-
ation (i.e., hypothetical reasoning) about the effects of one choice of expansion over another
is clearly desirable, or even mandatory in order to guarantee goal achievability (e.g., when
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important resources may be used). Currently, applications requiring this kind of lookahead
explicitly encode the necessary reasoning, prior to actually acting, in an ad-hoc manner. A
built-in planning mechanism, usable by the agent programmer and fully integrated within
the BDI architecture, would provide such functionality in a generic and principled manner.
Based on the recent advances in the field of automated planning [27, 28, 42, 46], judicious
use of planning within a BDI language could be expected to improve the usefulness of the
language for developing complex systems, as recently argued by Nau [46].

Considering the many similarities between BDI programming languages and Hierarchi-
cal Task Network (HTN) planning [19, 24, 71], we formally define how HTN planners can
be integrated into a BDI architecture. Specifically, we show that the HTN process of system-
atically substituting higher-level tasks until concrete actions are derived is analogous to the
way in which a BDI-based interpreter pushes new plans onto an intention structure, replac-
ing an achievement goal with an instantiated plan. By providing a built-in HTN lookahead
mechanism, an agent can thus verify, in advance, a series of plan selections which can rea-
sonably be expected to succeed in achieving the (sub)goal. In this way, the CANPlan language
seamlessly combines the BDI online execution cycle and the HTN offline mechanism into
a single uniform and formal framework. The HTN-style approach to planning is appealing
in our context because of its solid formal foundations [26], its several competitive imple-
mentations (e.g., SHOP2, JSHOP, UMCP, SIPE-2, etc.), and its well-known similarities with
reactive-type execution systems [71]. Furthermore, the formal specification of HTN plan-
ning within CANPlan formally justifies the “interfacing” of available HTN planning systems
to existing agent platforms, as was done in the practical work reported in [20].

The work reported here builds and is based on previously published one within our group
[20, 56, 59, 73]. In particular, the BDI failure handling mechanism and that of declarative
goals were first proposed in [73]; whereas the formal incorporation of HTN planning into a
BDI language was first done in [59]. Still, this paper refines and extends such works, includ-
ing the details for handling a language with variables (rather than restricting to a proposi-
tional language), providing an account of external events, and a more powerful mechanism
for dropping goals. What is more, this paper provides more details about the motivations for
definitions, the analysis of the properties, and the related work.

In the following, we present CANPlan in an incremental fashion by gradually building
from an account which is conceptually approximately equivalent to AgentSpeak with failure
handling (Section 2); then adding a more nuanced account of goals (Section 3); and finally
incorporating HTN planning (Section 4). We believe this presentation is sufficiently detailed
that it facilitates modification of existing BDI platforms to incorporate the aspects specified.
We have in fact largely done this by extending Jack. Implementation issues regarding the par-
ticular features of CANPlan are addressed in Section 6. We conclude the paper by discussing
related work (Section 7) and future extensions to the language (Section 8).

2 The Core BDI Language

We start by defining the basic agent language that shall be used throughout the paper. This
language is based on that introduced in [73] and it accommodates the core features of BDI
programming, therefore resembling AgentSpeak [6, 53], probably the best known BDI pro-
gramming language. We shall call this language CANA.1

1 CAN stands for Conceptual Agent Notation; the superscriptA refers to AgentSpeak.
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Fig. 1 A typical BDI Agent System Architecture.

In a nutshell, a BDI system—see Figure 1—responds to events, the inputs to the system,
by selecting a plan from the plan library, and placing it into the intention base, thus commit-
ting to the plan-strategy for responding to the event-goal in question. The execution of the
chosen plan may, in turn, post new subgoal events to be achieved. The plan library stands
for a collection of pre-defined hierarchical plans indexed by goals (i.e., events) and repre-
senting the standard operations of the domain. Because an event goal may be resolved in
different ways at runtime, BDI programming has often been regarded as “implicit program-
ming” [4]. Flexibility is obtained from the fact that different (plan) choices could be made at
various stages of execution based on the current environment state. Robustness is achieved
by trying all available (applicable) plan options to achieve unresolved events; if there is no
successful way to achieve a step, then different options are tried at more abstract levels. A
crucial point in BDI systems is that execution happens at each step. The assumption is that
the use of plans’ preconditions to make choices as late as possible, together with the built-in
mechanism for retrying alternative options upon failure, will usually ensure that a successful
execution eventually ensues, even in the context of changes in the environment.

Besides capturing the standard features of BDI architectures, the formal BDI language
that we describe in this section has a few unique characteristics. First, like 3APL and unlike
AgentSpeak, CANA has a modular operational semantics that separates the execution of a
single intention from that of the whole agent. Technically, this is achieved by using two
different type of transition systems—one for capturing the evolution of an agent and one for
capturing the evolution of an intention—rather than a single transition system, as it is the case
with AgentSpeak. This facilitates the incremental extension or modification of the language,
as later done in Sections 3 and 4. For instance, one can alter the top-level execution cycle
without modifying the semantics of the basic language constructs.

More importantly, CANA includes a built-in failure handling mechanism that is consis-
tent with most real BDI implemented platforms, such as Jack [9], dMARS [23], and even
3APL [14], and was first defined in [73]. Informally, when a (sub)goal cannot be achieved by
a certain means, alternative means may be tried. A (sub)goal fails when all possible strategies
are attempted with no success, in which case failure is propagated to higher-level motivat-
ing goals. As a consequence, achievement event-goals enjoy, by default, a certain degree of
commitment, in that the agent will try as much as possible to resolve the goal successfully.
In contrast with the language given in [73], CANA excludes declarative goals, which shall be
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introduced in Section 3 as a modular extension, handles a first-order language with variables,
and accommodates for external events (belief update or event goals).

2.1 Syntax

An agent is simply specified by its name N , its initial belief base B, its plan library Π , and
its action description library Λ. Generally speaking, an agent is built around three type of
atoms, namely, events e, basic beliefs b, and actions act. Belief formulas are built from basic
beliefs using the usual logical connectors and are denoted φ, ψ, γ, etc. Similarly, programs
are built from actions and complex constructs (see below). We write φ(~x), e(~x), b(~x), act(~x),
and P (~x) to state that all the free variables in the formula φ, event e, belief b, action act,
and program P , respectively, are among vector of variables ~x. Term and vector of terms are
denoted t and ~t, respectively. We write φ(~t) to denote the formula φ(~x) with variables ~x
instantiated with terms ~t (similar notation applies for events, beliefs, actions, and programs),
All this notation will also be used with annotations.

The belief base B of an agent—encoding what the agent believes about the world—is a
set of ground atoms facts (e.g., At(Home)). Operations exist to check whether a condition φ,
a logical formula over the agent’s beliefs, follows from a belief set (i.e., B |= φ), and to add
and delete a ground basic belief b to and from a belief base (i.e., B∪{b} and B \ {b}, resp.).2

The agent’s plan libraryΠ—encoding the typical operational procedures of the domain—
consists of a collection of plan rules of the form

e(~t) : ψ(~xt, ~y)← P (~xt, ~y, ~z).

Here, e(~t) is the plan rule’s triggering event, ψ(~xt, ~y) its context condition, with ~xt denot-
ing all free variables in terms ~t, and P (~xt, ~y, ~z) its plan-body program—P is a reasonable
strategy to follow when ψ is believed true in order to resolve/achieve event e. Variables ~y are
those free variables not appearing in the triggering event but introduced in the context con-
dition, generally to bind objects that are to be used in the plan-body program P . Similarly,
free variables ~z are those appearing in the program P , but not in the context condition or the
triggering event (usually introduced in tests or event postings; see below).

The programs in plan rules belong to the following so-called user program language:

act primitive action
+b, −b add/delete belief atom
?φ tests for condition
!e event goal
P1;P2 sequence
P1‖P2 interleaved concurrency

In the full program language, there are also a number of auxiliary program forms that are
used internally when assigning semantics to constructs, namely:

nil basic (terminating) program
P1 B P2 try P1 with P2 as backup
e :L{ψ1 : P1, . . . , ψn : Pn}M choice of plan / relevant plans for e

2 Although most practical BDI systems take this type of database-like approach to beliefsets, one could in
principle use more expressive knowledge representation formalisms, as long as operations are provided for
checking conditions and updating belief bases. For example, Alechina et al. [1] explores more general but still
tractable belief revision approaches for BDI agents.
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Program nil is the empty program stating that nothing is left to execute; program P1 B P2

states to execute P1, falling back to executing P2 if P1 cannot execute further; and lastly
program e :L{ψ1 : P1, . . . , ψn : Pn}M is used to encode a set of guarded plans for event e.

Finally, the action description library Λ contains STRIPS-style operators of the form
act(~x) : ψ(~x) ← Φ+(~x);Φ−(~x), one for each action type in the domain. Formula ψ(~x)
corresponds to the action’s precondition (i.e., conjunction of literals), and Φ+(~x) and Φ−(~x)
stand for the add and delete lists of atoms, respectively.

2.2 Semantics

The semantics of the language states what it means to execute an agent, that is, it specifies
what are the legal executions of an agent. A standard notation for semantics of programming
language is Plotkin’s structural single-step operational semantics [51].

A transition relation −→ on so-called configurations is defined by a set of derivation
rules. A transition C −→ C′ specifies that evolving configuration C a single step yields
configuration C′. We write C −→ to state that there exists C′ such that C −→ C′, C 6−→
to state that there is no such C′, and ∗−→ to denote the reflexive transitive closure of −→.
A labelled transition is written as C `−→ C′, where ` is the transition label. When no label
is stated, we assume that all labels apply. A derivation rule consists of a, possibly empty,
set of premises, which are transitions together with some auxiliary conditions, and a single
transition conclusion derivable from these premises. (See [29, 51] for details on operational
semantics for programming languages.)

Before we continue, we shall point out that even though the BDI languages that we shall
discuss in this paper do allow variables, as does any practical language, we will first present
the semantics for their non-variable fragments. The reason for this is legibility: the treatment
of variables requires substantial technical notation and additional complexity that makes the
material much more cumbersome. We discuss the extensions required to accommodate vari-
ables in Section 5.

So, a CANA agent configuration, or simply an agent, is defined by a tuple of the form
〈N , Π,Λ,B,A, Γ 〉 consisting of the agent name N , a plan library Π , an action description
library Λ, a belief base B, the sequence of actions A executed so far by the agent, and the
intention base Γ . An intention I is a tuple 〈id, P 〉, where id ∈ N is the (unique) intention
identifier and P is a program term in the full program language. The intention base then is
the set of active intentions that the agent is currently pursuing. Sometimes we will need to
add one or more plan-body programs in the intention base, as new intentions.

Definition 1. Let Γ be an intention base and γ be a set of ground plan-body programs.
Intention base Γ d γ denotes the intention base resulting from incorporating each P ∈ γ into
intention base Γ , as a new intention of the form 〈id, P 〉, where id is the intention’s unique
identifier (i.e., no other intention in Γ d γ shares the same identifier). �

The semantics of CANA is designed in two layers, by means of two types of transitions.
The first transition −→ states what it means to evolve a single intention and is defined in
terms of intention-level configurations of the form 〈Π,Λ,B,A, P 〉 consisting of the agent’s
plan and action libraries Π and Λ, respectively, its belief base B, the sequence of primitive
actionsA executed so far, and the plan-body program P being executed (i.e., the intention of
interest).3 Thus, derivation rules for−→ characterize the intention-level execution semantics.

3 For legibility, we will omit both Π and Λ when not explicitly required and just write 〈B,A, P 〉.
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The second type of transition =⇒ is between (full) agent configurations and defines the
agent-level execution. Agent transitions are stated in terms of intention-level transitions and
defines what it means to execute a complete agent.

2.2.1 Intention-Level Execution

Let us now provide the derivation rules, grouped in clusters for legibility, characterizing the
legal intention-level transitions of the form 〈B,A, P 〉 −→ 〈B′,A′, P ′〉.

Basic Programs Derivation rule ? deals with tests by checking that the condition follows
from the current belief base, with adequate bindings if the condition is open. Rule do handles
the case of primitive actions by using the domain action description library Λ. Finally, rules
+b and −b account for the execution of belief update operations.

B |= φ

〈B,A, ?φ〉 −→ 〈B,A, nil〉 ?
a : ψ ← Φ−;Φ+ ∈ Λ B |= ψ

〈Λ,B,A, a〉 −→ 〈Λ, (B \ Φ−) ∪ Φ+,A · a, nil〉
do

〈B,A,+b〉 −→ 〈B ∪ {b},A, nil〉 +b 〈B,A,−b〉 −→ 〈B \ {b},A, nil〉 −b

Complex Programs The following derivation rules define what it means to execute a sequen-
tial program and two interleaved concurrent programs:

〈B,A, P1〉 −→ 〈B′,A′, P ′1〉
〈B,A, P1;P2〉 −→ 〈B′,A′, P ′1;P2〉

Seq1
〈B,A, P 〉 −→ 〈B′,A′, P ′〉
〈B,A, nil;P 〉 −→ 〈B′,A′, P ′〉

Seq2

〈B,A, P1〉 −→ 〈B′,A′, P ′〉
〈B,A, P1 ‖ P2〉 −→ 〈B′,A′, P ′ ‖ P2〉

‖1
〈B,A, P2〉 −→ 〈B′,A′, P ′〉

〈B,A, P1 ‖ P2〉 −→ 〈B′,A′, P1 ‖ P ′〉
‖2

〈B,A, nil ‖ nil〉 −→ 〈B,A, nil〉
‖end

Rule Seq1 evolves a sequence by evolving its first part, while Seq2 does it by evolving the
second part of the sequence provided the first part is finished. A concurrent program may
be evolved by evolving either parts (rules ‖1 and ‖2), and may be terminated if both parts
are terminating (rule ‖end). See that a concurrent program can always execute if one of its
sub-programs can execute. Thus, one branch can just “wait” by means of a test condition ?φ.

Event & Failure Handling The main feature of CANA is its detailed operational semantics
for the kind of failure handling typical of implemented BDI systems, where if a plan fails,
alternative plans for achieving the goal are tried, if possible. This is accomplished by com-
bining constructs e : L∆M, which maintains a set of (alternative) relevant plans ∆ for event
e, and construct P1 B P2, which tries to execute a strategy P1 while maintaining the set of
possible alternative plans to consider in P2.

Upon an event goal posting !e, either internal or external, a three-stage process is started
in order to handle the pending event. The first stage involves collecting the set ∆ of relevant
guarded plans of the form 〈ψ : P 〉, that is, those plans from the library Π whose triggering
events are able to match the pending event. Formally,

∆ = {ψ :P | e′ : ψ ← P ∈ Π, e′ = e} ∆ 6= ∅
〈Π,Λ,B,A, !e〉 −→ 〈Π,Λ,B,A, e :L∆M〉 Event
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As standard, the plan-body program P of a rule is included in the set of relevant plans ∆ if
its triggering head e′ matches the actual event goal e. In that case, its guard condition in the
set of alternatives is the rule’s context condition ψ.

Example 1. Imagine an agent that, at some point, may need to arrange a trip to a distant des-
tination for various reasons (e.g., attending a conference, vacation, or business). The goal/task
of arranging this trip can be decomposed into various subgoals, such as arranging transporta-
tion, accommodation, insurance as well as actually traveling and returning. We imagine then
the following plan rules used to address the event subgoal travelTo(dest) to go from the
current location to destination location dest:

travelTo(dest) : At(x) ∧WalkDist(x, dest)←!prepareWalk; walk(dest); ?At(dest)

travelTo(dest) : At(x) ∧ ∃y(InCity(x, y) ∧ InCity(dest, y))← Pcity(x, dest)

travelTo(dest) : At(x) ∧ ¬∃y(InCity(x, y) ∧ InCity(dest, y))← Pfar(x, dest)

travelTo(Home) : true←?At(x); Phome

The first plan rule states to walk to destination when this is close to the current location. See
that such strategy requires the agent to first prepare for a walk (e.g., bring an umbrella if it
is raining), by posting internally the event subgoal !prepareWalk. After walking, the strategy
verifies that we have actually arrived to the desired destination. The second and third plan
rules state that the agent should follow different strategies, represented by programs Pcity
and Pfar , depending on whether the trip is local (e.g., take a taxi, ride a bus, or arrange for a
lift) or the trip is not within the city (e.g., take a flight or a train). Lastly, the agent is equipped
with a special strategy Phome she can follow if going home.

Suppose next that, at some point, an internal/external event goal of the form !travelTo(Uni)
needs to be resolved. In such case, ruleEvent above would yield the following (sub)program
encoding all the relevant options available for addressing the event:

travelTo(Uni) :L{ψ1 :Pwalk(Uni), ψ2 :Pcity(x,Uni), ψ3 :Pfar(x,Uni)}M, (1)

where

Pwalk(Uni) def
= !prepareWalk; walk(Uni); ?At(Uni)

ψ1
def
= At(x) ∧WalkDist(x,Uni)

ψ2
def
= At(x) ∧ ∃y(InCity(x, y) ∧ InCity(Uni, y))

ψ3
def
= At(x) ∧ ¬∃y(InCity(x, y) ∧ InCity(Uni, y))

Finally, we point out two observations. In some scenarios, the agent may be able to both
walk to uni as well as take the Pcity strategy, that is, both ψ1 and ψ2 may hold true in
some states of affairs. Second, the strategy for going home (i.e., the last plan rule above) is
not included as an option by the Event rule, as its triggering event travelTo(Home) is not
relevant for the actual event goal travelTo(Uni) to be resolved. �

The second stage in the process of handling an event goal involves selecting one applica-
ble strategy Pi from the set of (remaining) relevant guarded options e :L{ψ1 :P1, . . . , ψn :Pn}M.
A strategy option is applicable if it is relevant and its guard context condition is believed true.
In that case, the rule Sel below builds a program of the form P B e : L∆′M, where P is the
chosen strategy to be tried and ∆′ is the new set of remaining strategies.

ψ : P ∈ ∆ B |= ψ

〈Π,Λ,B,A, e :L∆M〉 −→ 〈Π,Λ,B,A, P B e :L∆ \ {ψ : P}M〉 Sel
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Informally, Pi becomes the so-called current strategy to be tried in order to address the event
in question. The right hand side program in B encodes the remaining alternative strategies
that could be considered, should the current strategy fail to execute. Observe that in case of
failure of the current strategy, only new options not tried before are considered.

Example 2. Continuing with our above example, suppose next that the agent believes she
is currently at home, which is walking distance to the university destination. Then, the plan
selection rule Sel may legally transform the set of relevant strategies shown in (1) into the
following program:

Pwalk(Uni)B travelTo(Uni) :Lψ2 : Pcity(x,Uni), ψ3 : Pfar(x,Uni)M. (2)

That is, since the context condition of the first strategy is true, the agent decides to try
program Pwalk(Uni); however, she still keeps the other non-chosen strategies as “backup”
alternatives (see right-hand side program in the B construct).

Next, the agent may execute program Pwalk(Uni), whose first step involves resolving the
subgoal of preparing for the walk. This in turn will involve the use of derivation rule Event
and then Sel, but now for event prepareWalk. The program above could then evolve to the
following one:

P ′walk B travelTo(Uni) :Lψ2 : Pcity(x,Uni), ψ3 : Pfar(x,Uni)M, (3)

where P ′walk
def
= (Ppw B prepareWalk : L∆pwM);walk(Uni); ?At(Uni) is the evolution of pro-

gram Pwalk(Uni), Ppw is the current strategy selected to address event prepareWalk and
∆pw encodes the alternative, not yet selected, strategies. Note that the agent needs to carry
out Ppw, or eventually some strategy in ∆pw, before she can perform action walk(Uni). �

Once an applicable strategy has been selected, it must be carried out to completion, if
possible. To that end, the following derivation rules are included to execute the current strat-
egy program one step (rule Bstep) and to fully finish its execution (rule Bend). Recall that
the current strategy is the first program in the “try” construct B, e.g., programs Pwalk and
P ′walk in (2) and (3) above, respectively.4

〈B,A, P1〉−→〈B′,A′′, P ′〉
〈B,A, P1 B P2〉−→〈B′,A′′, P ′ B P2〉

Bstep
〈B,A, nilB P ′〉−→〈B,A, nil〉

Bend

Finally, let us focus on the the third stage in handling an event, namely, the failure re-
covery of an event goal whose current strategy is not able to execute further (e.g., the agent
was not able to successfully prepare for the walk, as it is raining and there is no umbrella).
Technically, this may arise, for instance, when an action’s precondition or a test is not met,
or a subgoal event has no applicable plans. In such cases, the current strategy program P

in a program of the form P B e : L∆M—e.g., Pwalk in program (2) above—would have no
intention-level transition (i.e., neither rules Bstep nor Bend apply). In that case, the event
goal e may be recovered by falling back to some “backup” strategy in ∆, if any available for
execution. This mechanism is exactly what the following derivation rule Brec captures:

P1 6= nil 〈B,A, P1〉 6−→ 〈B,A, P2〉 −→ 〈B′,A′′, P ′2〉
〈B,A, P1 B P2〉 −→ 〈B′,A′′, P ′2〉

Brec

4 The “try” construct B should not be understood as a concurrency constructs. Though it may resemble
constructs like ConGolog’s prioritized concurrency construct 〉〉, the intended meaning of P1 B P2 is not to
execute both programs to completion, but only one of them (and preferably P1).
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Notice that, because in our case P2 was constructed via rules Event and Sel, it ought to
be of the form e : L∆M. Thus, the requirement that P2 evolves to P ′2 implies that there is an
alternative strategy P ′ in ∆ that is applicable at the current situation—P2 shall evolve to P ′2
due to rule Sel. Otherwise, if ∆ contains no applicable option, it makes sense for the agent to
simply “wait,” rather than drop its current strategy, only to discover afterwards that there is
currently no better option. Moreover, since rule Sel does not include already tried strategies
into the set of remaining strategies ∆, the new selected strategy program P ′ may not be the
same as previous tries.5

Example 3. Returning to our example, imagine that, for some reason, the agent was not able
to successfully prepare for the walk and was therefore unable to resolve the first step in strat-
egy Pwalk, namely, it was unable to find a successful plan for resolving event prepareWalk.

At that point, program Pwalk is not able to execute and, as a result, recovery rule Brec
can be applied to the program shown in equation 2: program P1 becomes the current blocked
walking strategy, whereas P2 becomes the right hand side of the program in equation 2. Since
the university is indeed within the same city, the guard condition for alternative strategy Pcity
does apply and as a result one application of rule Brec would yield the following program:

Pcity(Home,Uni)B travelTo(Uni) :Lψ3 : Pfar(x,Uni)M. (4)

Now the agent will try to go to university by following the Pcity strategy (e.g., taking a
taxi). Observe also how the remaining alternatives are updated to those ones that have not
been tried so far. �

Putting it all together, then, by suitably combining constructs e : L∆M and B, we are able
to model the desired plan selection and failure handling mechanisms for event goals.

2.2.2 Agent-Level Execution

On top of the above intention-level rules, we characterize the evolution of an agent who is
pursuing multiple goals and intentions concurrently. Since we do not discuss multi-agent
features in this article, we shall drop the agent name N and just write agent configuration as
〈Π,Λ,B,A, Γ 〉. When C is an agent configuration, we use C[X] to refer to component X of
C (e.g., C[B] and C[Γ ] stand for the belief base and intention base of agent C, respectively).

Top-Level Agent Execution The top-level semantics for our language closely matches Rao
and Georgeff’s abstract interpreter for intelligent rational agents [55] which, roughly speak-
ing, requires the following three steps: (i) select an intention and execute a step; (ii) incorpo-
rate any pending external events; and finally (iii) update the set of goals and intentions.

Technically, in defining the single-step evolution of a CANA agent, three auxiliary agent-
level transition types capturing the above three steps, namely int, event, and goal, are used:
(Note that goal-type transitions are defined in terms of pairs of agent configurations.)

C
int
=⇒ C1 C1

event
=⇒ C2 〈C,C2〉

goal ∗
=⇒ 〈C,C′〉 〈C,C′〉 6goal=⇒

C
CANA
=⇒ C′

ACANA

5 It is straightforward to modify rule Sel so as to keep the chosen strategy in the set of remaining alterna-
tives, thus allowing the agent to try previously failed programs. One can even let the programmer decide which
mechanism should be used for a particular case, by having different event posting constructs. Our particular
choice here is mostly motivated by the fact that real BDI platforms do discard previously failed strategies,
since, by doing so, they avoid cases in which the agent is stuck failing the same plans over and over.
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That is, an agent step involves a step on some active intention, followed by the assimilation
of all external events that have occurred during the execution cycle (including information
from sensors), and finally followed by a complete update of its goals. Informally, the last two
requirements state that the agent should perform as many goal update transitions as possible,
i.e., until no more goal updates can be done (in agent configuration C′). Observe that the
whole goal update process is broken into a sequence of atomic goal update steps. In order to
have access to the original agent configurationC at the start of the agent execution cycle, goal
update transitions are defined in terms of pairs of configurations, where the first component
(i.e., the original agent configuration) is meant to be propagated without any change.

Below, we develop in detail the three kinds of transitions used in the main agent rule.

Intention Selection & Execution The first step in an agent cycle involves selecting an active
intention from the intention base and evolving it one step. An intention can evolve/execute
by making a legal intention-level step, as defined by the derivation rules explained before.
This may result in some internal reasoning (e.g., an application of derivation rule Sel) and
even the execution of an action. Formally,

〈id, P 〉 ∈ Γ 〈Π,Λ,B,A, P 〉 −→ 〈Π,Λ,B′,A′, P ′〉

〈Π,Λ,B,A, Γ 〉 int
=⇒ 〈Π,Λ,B′,A′, (Γ \ {〈id, P 〉}) ∪ {〈id, P ′〉}〉

Aint

In our example, we could imagine the agent having, at some point, an intention of the
form 〈#4, !travelTo(Uni)〉 in order to go to the university. If such intention is chosen and
rule Aint is applied, the new intention base will contain an intention of the form 〈#4, P1〉,
where P1 is the program shown in (1) above. Yet another step on such transition would yield
intention 〈#4, P2〉, where P2 is the program shown in (2), and so on.

It could be claimed that a blocked intention may eventually become unblocked and,
hence, the agent should just “wait” rather than abandon it. We argue, though, that for this
to be a general principled approach, the programmer should made this “waiting” explicit
(e.g., wait for some change in the environment that is expected to happen). It is straightfor-
ward to include a variation of the test construct ?φ to that end, namely a construct ??φ that
would cause an intention to wait for a condition without being blocked.

Incorporating External Events Events originated from the environment have to be assimi-
lated by the agent at every cycle. Their rather informal treatment in many existing formal
programming languages (e.g., [5, 23, 53, 73]) makes it difficult to prove properties relative
to the external world.

External events may account for sensor information, which changes the agent’s beliefs
about the world,6 or external achievement event goals that the agent must react to (e.g., a
request from another agent). We shall distinguish three types of events: (i) !e stands for an
external (achievement) event; (ii) +b stands for the sensor input that b is true; and (iii) −b
stands for sensor input that b is false. The set of all possible ground events in the domain is
denoted Events , whereas the set of all possible agent configurations is denoted Confs . An
(external) environment is defined as follows.

Definition 2 (Environment). An environment is a total function E : Confs 7→ 2Events such
that for every C ∈ Confs and ground atom b, if +b ∈ E(C), then −b 6∈ E(C). �

6 Original versions of CAN/CANPlan [59, 73] did not deal with belief updates from sensor inputs; only
plans could update the agent’s beliefs.
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First, note that environments (or their models) are assumed, at the cognitive level at least,
to be always consistent. Second, observe that each function E , being deterministic, stands for
one possible environment. Therefore, the semantics obtained for our language is predicated
on such environment, as is the case in other works (e.g., [40, 58]). To reason about execu-
tions under incomplete information on the environment, one needs then to quantify over the
relevant set of environment functions E . Finally, environments are defined in terms of agent
configurations, so that external events are allowed to occur while the agent is performing
internal practical reasoning. We are in fact interested in studying the behaviour of the agent
system if, for example, an unexpected event arises while the agent is building the set of rele-
vant plans for some goal or updating its beliefs.7 For example, {+At(Uni),−At(c)} ⊆ E(C),
when C[B] |= At(c), may apply due to the agent receiving location information from its GPS.

Assimilating all external information amounts to updating the belief base with the new
information received as well as updating the intention base to accommodate all new events.
So, relative to a (consistent) environment, we define the following—always applicable—
derivation rule to handle external events.8

B′ = (B \ {b | −b ∈ E(C)}) ∪ {b | +b ∈ E(C)} γ! = {!e | !e ∈ E(C)}

C = 〈Π,Λ,B,A, Γ 〉 event=⇒ 〈Π,Λ,B′,A, Γ d γ!〉
Aev

(Recall operation Γ d γ incorporates all programs in γ into intention base Γ ; Definition 1.)
Thus, the external events corresponding to sensing information are used to update the

beliefs of the agent, whereas the set of achievement event goals γ! from the environment
(e.g., messages from other agents) are incorporated as new intentions.

Goal Updates Finally, let us develop the derivation rules for transitions
goal
=⇒ in charge of

performing goal updates. Recall that in order to carry the original agent configuration Cinit
at the start of the agent execution cycle, this transition is defined in terms of pairs of config-
urations 〈Cinit, C〉, where configuration Cinit is always kept intact.

We consider two type of goal updates. Recall that in languages like CANA, goals are
represented with events, i.e., tasks the agent ought to perform. The first type of update in-
volves terminating those top-level goals, that is, intentions, that cannot execute further, either
because they are totally blocked or because they have actually executed successfully to com-
pletion (i.e., P = nil). In such case, the intention is simply dropped from the intention base:

〈id, P 〉 ∈ Γ 〈Π,Λ,B,A, P 〉 6−→

〈Cinit, 〈Π,Λ,B,A, Γ 〉〉
goal
=⇒ 〈Cinit, 〈Π,Λ,B,A, Γ \ {〈id, P 〉}〉〉

A1
goal

Notice that for this kind of update, the original agent configuration Cinit is not used.
The second type of update involves generating new event goals due to changes in the

beliefs of the agent. Like AgentSpeak [5, 53] and many BDI platforms, new distinguished
achievement event goals—here of the form !+b and !−b—are created for every actual belief
update that has happened in the current agent cycle. 9

7 Since the history of world altering actions is part of the agent configuration, an environment defined only
in terms of (observable) external world, as done in [40] for instance, can easily be represented.

8 For simplicity, we keep the environment E global and implicit. Technically, E should be part of the agent
configuration. In fact, one could easily follow [5] and define transitions between pairs of system configurations
〈E, C〉, where E is an environment “circumstance” and C is an agent configuration.

9 Though we kept notation as similar as possible to AgentSpeak, there are still a few syntactic differences
when it comes to events. Since our language handles failure at the semantic level, we need only three kinds of
triggering events: e (for simple achievement goals; equivalent to +!e in AgentSpeak), and +b and −b (for
belief update goals; as in AgentSpeak). AgentSpeak has also −!e and −?b for handling failure.
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This allows agents, if necessary, to react to such belief changes by including the corre-
sponding plans in the plan library. In the Jack [9] BDI platform, for instance, this mechanism
is referred to as automatic events. Observe that the rules below create a new intention of the
form !+b or !−b provided there are relevant plans for the belief update event (last constraint)
and that the agent is not already working on such event goal (fourth constraint).

Cinit[B] 6|= b B |= b e = +b e 6∈ EG(Γ ) 〈Π,Λ,B,A, !e〉 −→

〈Cinit, 〈Π,Λ,B,A, Γ 〉〉
goal
=⇒ 〈Cinit, 〈Π,Λ,B,A, Γ d {!e}〉〉

A2
goal

Cinit[B] |= b B 6|= b e = −b e 6∈ EG(Γ ) 〈Π,Λ,B,A, !e〉 −→

〈Cinit, 〈Π,Λ,B,A, Γ 〉〉
goal
=⇒ 〈Cinit, 〈Π,Λ,B,A, Γ d {!e}〉〉

A3
goal

where EG(Γ ) = {e | there exists 〈id, P 〉 ∈ Γ such that P ∈ {!e, e :L∆M, P ′B e :L∆M}} is the
set of top-level event goals in the intention base Γ . Observe how agent configuration Cinit is
used above to check what was believed originally (i.e., at the start of the agent cycle). Note
also that the process of generating a belief update event is completely independent from the
actual source of the corresponding belief change. Such belief change may have been directly
linked to sensing information or the consequence of a complex belief revision in rule Aev,
when considering operations ∪ and \ on belief bases as general belief change operators.

With the set of derivation rules defined, we can define the meaning of an agent execution.

Definition 3 (BDI Agent Execution). A t-BDI execution E of an agent C in language t (rel-
ative to an environment E) is a, possibly infinite, sequence of agent configurations C0 ·C1 · . . .
such that Ci

t
=⇒ Ci+1, for every i ≥ 0. A terminating execution is a finite execution

C0 · . . . · Cn where Cn[Γ ] = {}, that is, all intentions have been successfully completed. �

For example, we take t = CANA to define the possible executions for the core BDI language
CANA arising from the intention-level and agent-level derivation rules presented above.

An intention is blocked when it is not possible to evolve it one step further.

Definition 4 (Blocked Program/Intention). A program P is blocked in an agent configura-
tion 〈Π,Λ,B,A, Γ 〉 iff 〈Π,Λ,B,A, P 〉 6−→. An intention I = 〈id, P 〉 is blocked in an agent
configuration if program P is blocked in such configuration. �

Finally, we define different ways an intention can execute throughout a BDI agent execu-
tion. As with configurations, I[X] denotes component X in intention I: I[id] stands for I’s
identifier and I[P ] for I’s program.

Definition 5 (Intention Execution). Let E = C0 · C1 · . . . · Cn be a BDI execution for an
agent C0. Intention I ∈ C0[Γ ] in C0 has been fully executed in E if there is no I ′ ∈ Cn[Γ ]
such that I ′[id] = I[id]; otherwise I is said to be executing in E. In addition, we say that
intention I has been successfully executed in E if 〈I[id], nil〉 ∈ Ci, for some i ≤ n; and I has
failed in E if it has been fully but not successfully executed in E. �

So, a fully executed intention is one that has been removed from the intention base;
and an intention has been successfully executed when it has reached the empty nil program.
Consequently, for an agent to fail an intention by dropping it before it is finished, the intention
must have been unable to execute (i.e., blocked) somewhere along the execution.
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2.3 On the commitment of CANA to goals

As the reader has already noticed, CANA is basically a typical BDI-style agent programming
language, close to languages like AgentSpeak and Jason, PRS, and even 3APL and its vari-
ants. Probably the characteristic feature of CANA is its built-in failure handling mechanism
consistent with most real BDI implemented systems such as dMARS [23] and Jack [9]. When
a subgoal cannot be achieved by a certain mean, alternative applicable means are considered
and tried, via derivation rules Sel andBrec. A (sub)goal fails when all possible strategies are
attempted with no success; and thus failure is propagated to higher-level motivating goals.
As a consequence, achievement event goals !e enjoy, by default, a certain degree of commit-
ment: the agent will try as much as possible to resolve them successfully. In what follows,
we make all this precise and set the technical stage for the next two sections.

We start by identifying what an “active” goal is within an CANA agent, that is, one that
the agent is pursuing with some commitment. An active goal arises when an event goal
!e is “adopted” by means of derivation rule Event. As typical of most BDI programming
languages, goals in CANA have a strong procedural flavor based around the concept of events.

Definition 6 (Active Event Goal). An active event-goal is a program G of the form e : L∆M
or P B e :L∆M. The event of G is denoted G[e]. Program P , if any, is G’s current strategy and
e :L∆M is G’s set of alternative strategies. A goal G has an alternative applicable strategy in
an agent C if e :L∆M is not blocked in C. Goal G is fully blocked in C if G’s current strategy,
if any, is blocked in C and G has no alternative applicable strategy in C. �

Observe that a program of the form !e is not considered an active goal, as it has not yet been
“adopted,” that is, started, by the agent.

To resolve a (top-level) goal, an intention often needs to work on several subgoals in
a hierarchical manner: some goals are pursued as mere instruments for other higher-level
goals. The following concept captures this formally.

Definition 7 (Active Goal Trace, for CANA agents). An active goal trace λ is a sequence
of active goals G1 · . . . · Gn. The multiset of all active goal traces in a program P , denoted
GTrace(P ), is inductively defined as follows:10

GTrace(P ) =



∅ if P = nil | act | ?φ | +b | −b
{P · λ | λ ∈ GTrace(P1)} if P = P1 B e :L∆M,GTrace(P1) 6= ∅
{P}X if P = P1 B e :L∆M,GTrace(P1) = ∅
{P} if P = e :L∆M
GTrace(P1) if P = P1;P2

GTrace(P1) ] GTrace(P2) if P = P1‖P2

The set trivially extends to intentions as GTrace(〈id, P 〉) = GTrace(P ). �

Informally, an active goal trace represents a chain of subgoals that are active in an intention.
The k-th subgoal in an active goal trace λ is the k-th element in λ, and is denoted with λ[k]
(where λ[k] = ε when k > |λ|). So, we say that the (n + 1)-th subgoal in λ is a subsidiary
goal for the motivating n-th subgoal in λ. The set of all active goals in a program P (intention
I = 〈id, P 〉) is defined as G(P ) = {λ[k] | λ ∈ GTrace(P ), k ≥ 1} (G(I) = G(P )).

10 Observe we need multisets, rather than sets, because the agent may be pursuing the same hierarchy of
goals more than once in different concurrent programs. Here, operation ] is the the multiset union. For details
on multisets and their operations we refer to [38, page 483].
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Observe that, because for an event goal to be active it must have been previously adopted—
by means of intention-level derivation rule Event—there can be no active goal within the
second part of a sequence P1;P2, as P2 has not yet been started (fourth case above). Note
also that, due to potential concurrent execution of programs (fifth case above), an intention
may give rise to several active goal traces—an intention free of concurrency, though, always
has (at most) one active goal trace. Indeed, an active goal may have multiple subsidiary active
sub-goals; a single trace corresponds to one hierarchical chain of goals and sub-goals.

Example 4. Following our example, the program (3) above (pp. 9) has only one active goal
trace λ = G1 ·G2, where

G1 = P ′walk B travelTo(Uni) :L{ψ2 : Pcity(x,Uni), ψ3 : Pfar(x,Uni)}M;
G2 = Ppw B prepareWalk :L∆pwM.

The first active goal G1 in trace λ is indeed the whole program shown in (3), which stands
for how the agent is handling event-goal travelTo(Uni). The second active goal G2, in turn,
stands for how the agent is handling goal event prepareWalk, which is instrumental to the
higher-level goal travelTo(Uni). See that goal G2 only accounts for those subgoals in pro-
gram P ′walk that are already active.

Next, imagine that program Ppw involves the concurrent execution of two subgoal events
followed by another subgoal event, that is, Ppw = (!ev subgoal1‖ !ev subgoal2); !ev subgoal3,
and suppose that both concurrent events have just been handled via rule Event, thus yielding
the following program:

P ′′walk B travelTo(Uni) :L{ψ2 : Pcity(x,Uni), ψ3 : Pfar(x,Uni)}M, (5)

where

P ′′walk = [((P 1
pw‖P 2

pw); !ev subgoal3)B prepareWalk :L∆pwM]; walk(Uni); ?At(Uni);

P ipw = ev subgoali :L∆
i
pwM, for i ∈ {1, 2}.

In other words, both concurrent events in Ppw have started being executed and hence
they have become active goals. Then, program (5) above yields now two active goal traces,
namely, λi = G1 ·G2 ·Gi3, for i ∈ {1, 2}, such that:

G1 = P ′′walk B travelTo(Uni) :L{ψ2 : Pcity(x,Uni), ψ3 : Pfar(x,Uni)}M;

G2 = ((P 1
pw‖P 2

pw); !ev subgoal3)B prepareWalk :L∆pwM;

Gi3 = ev subgoali :L∆
i
pwM.

First, see that whereas traces λ1 and λ2 share the first two subgoals, they differ on the
third one depending on which of the two concurrent programs P 1

pw or P 2
pw are considered,

respectively. Second, observe that from the active traces, one can easily obtain which goal
events are active, by looking at the event mentioned in each goal. In our case, the events
being handled are travelTo(Uni), prepareWalk, ev subgoal1, and ev subgoal2. Lastly, we
recall that only active goals are considered in traces, that is, events that the agent has already
started working on. Thus, for example, event-goal !ev subgoal3 has not yet been started, is
not active, and is therefore not an active goal in any trace (yet). �



16

We now have all the machinery required to state the two main results for CANA. The
first result is related to the failure-handling or goal-recovery mechanism. Roughly speaking,
it states that the built-in failure handling mechanism respects the hierarchical structure of
goals, by preserving what has already been executed as much as possible. To understand
the claim better, let us recall how goal-recovery works. At any point in time, an agent may
be pursuing a particular (current) strategy P to resolve an event-goal !e. If at some point
such strategy cannot be continued further (i.e., P is blocked), then the agent may resort to
alternative courses of actions for event e. Technically, the agent may apply intention-level
derivation rule Brec so as to abandon the current strategy P in an active goal P B e : L∆M,
and adopt an alternative applicable strategy within set ∆.

Theorem 1. Let C be a CANA agent and I ∈ C[Γ ] be an active intention in C.X Furthermore,
letGk = λ[k], with k ≥ 1, be the k-th active goal in some active goal trace λ ∈ GTrace(I). If
Gk’s current strategy is blocked, then for every k′ > k, subgoal Gk′ = λ[k′] is fully blocked.

Proof. IfGk is of the form ek :L∆kM, then there are no lower-level goals thanGk in the trace,
Gk is the last goal. Suppose now that Gk = Pk B ek : L∆kM. We perform induction on k′. If
k′ = k+1 (base case), then Gk′ = Pk, that is, goal Gk′ is in fact Gk’s current strategy. Since
Gk’s current strategy is in fact Pk, then Gk′ ought to be fully blocked (see Definition 6).

Next, suppose the claim holds for all goals in the trace up to some k′ ≤ k̂ < |λ| and let
us consider goal k̂ + 1. By induction, active goal λ[k̂] is fully blocked. Since λ[k̂ + 1] ≤ |λ|,
goal λ[k̂] is of the form Pk B ek :L∆kM and, moreover, λ[k̂ + 1] = Pk. In turn, Pk itself must
be of the form ek+1 : L∆k+1M or of the form Pk+1 B ek+1 : L∆k+1M. In both cases, because
program λ[k̂] is fully blocked in C, programs Pk+1 and ek+1 :L∆k+1M must be blocked in C.
Hence, goal λ[k̂+1]’s current strategy (Pk+1) is blocked and it has no alternative applicable
strategies in C. �

As a consequence, the current strategy for a goal Gk, or even the whole goal itself, may
be reconsidered by the agent only if all its active lower-level subsidiary subgoals have their
current strategy blocked and no alternative strategy to try. Thus, the goal failure recovery
works hierarchically on the set of goals being pursued.11

The second result is important in that it characterizes how active goals may change within
an intention after an agent execution cycle. The first case states that every existing goal G
before the agent step is either (1a) preserved intact; (1b) updated or fully terminated due to a
step performed on it; or (1c) removed due to goal-failure recovery of some higher-level goal.
The second case states that every goal G′ after the agent step is either an existing one or the
evolution of an existing one (cases (2a) and (2b)), or a newly created one by some existing
goal (case (2c)). No other dynamics for goals can apply.

Theorem 2. Let C and C′ be two CANA agent configurations such that C
agent
=⇒ C′. Let

〈id, P 〉 ∈ Γ and 〈id, P ′〉 ∈ Γ ′. Then (here, B′ = C′[B], and A′ = C′[A]):

1. For every G ∈ G(P ) (i.e., G is an active goal in P ), one of the following three cases must
apply (see that B′′ is assumed to be existentially quantified):
(a) G ∈ G(P ′), that is, G has remained unchanged;
(b) 〈B,A, G〉 −→ 〈B′′,A′, G′〉 and G′ ∈ G(P ′) ∪ {nil}, that is, G has evolved to G′

when P was evolved to P ′; or

11 In some cases, though, an agent may want to drop a goal even when some of its subgoals are not failed,
for instance, when the goal is not “desired” anymore. This however should be considered as goal “abortion”
rather than goal failure; see [64] for treatment of this issue.



17

(c) for some λ ∈ GTrace(P ), and 1 ≤ k1 < k2, goalG = λ[k2] is fully blocked in C and
goal G1 = λ[k1] has its current strategy blocked, but has an alternative applicable
strategy in C, that is, a higher-level goal G1 has been recovered.

2. For everyG′ ∈ G(P ′) (i.e.G′ is an active goal in P ′), there existsG ∈ G(P ) such that one
of the following cases must apply (again, B′′ is assumed to be existentially quantified):

(a) G′ = G, that is, G′ is an already active goal that has remained unchanged;
(b) 〈B,A, G〉 −→ 〈B′′,A′, G′〉, that is, G′ is an evolution of some active goal; or
(c) 〈B,A, G〉 −→ 〈B′′,A′, G′′〉 and G(G′′) = (G(G)\{G})∪{G′′, G′}, that is, goal G′

has just been adopted by the current strategy of some active goal G.

Proof. If I ′ = I, then the intention was not selected for execution in the agent cycle. Then,
GTrace(P ) = GTrace(P ′) and cases (1a) and (2a) apply trivially.

Suppose that I 6= I ′. Then, 〈B,A, P 〉 −→ 〈B′′,A′, P ′〉, for some B′′. It is not hard to
see that, because every pair of active goal traces of a program must share a common prefix
(at least their first top-level goal), the set GTrace(P ) induces a unique (up to isomorphism)
unordered tree of active goals TP , where each node v in TP is labelled with an active goal
Gv and where each branch corresponds one-to-one to an active goal trace in GTrace(P ). So,
let us see how the tree of active goals TP ′ is related to the original tree of active goals TP .

First, the above transition must be due to a transition 〈B,A, Gv〉 −→ 〈B′′,A′, G′v〉 of
an active goal Gv in some node v of TP , that is, one of the following cases applies: (i) Gv’s
current strategy performs a step on a primitive action, test, belief update operation, or parallel
terminating programs (basic rule act, ?, +b, −b, or ‖end); (ii) Gv’s performs a terminating
step since its current strategy has successfully completed (rule Bt); (iii) Gv’s current strategy
performs a step on an internal event goal !e (rule Event); or (iv) Gv’s current strategy is
blocked but performs a recovery step on an existing alternative strategy (basic rule Brec).

Second, we observe that given the basic transition on goal node Gv , every ancestor goal
Gw of Gv makes a non-basic transition of the form 〈B,A, Gw〉 −→ 〈B′′,A′, G′w〉, for some
G′w. This is the case because every ancestor goal of Gv is in fact a program that mentions,
nested in its current strategy, goal Gv . Thus, G′w is Gw with Gv replaced with G′v .

So, the new tree TP ′ is obtained from tree TP by suitably changing node Gv , every
ancestor of Gv and, possibly, adding a new descendant of Gv (for case (iii)) or dropping all
its descendants (for case (iv)). More concretely:

– In case (i), node Gv is updated to G′v and every ancestor Gw is updated to G′w.
– In case (ii), node Gv is a leaf in TP , which is removed completely and every ancestor
Gw updated to G′w.

– In case (iii), node Gv is updated to G′v , every ancestor Gw is updated to G′w, and a new
node Gr , representing the just adopted goal, is created as a child node of G′v .

– Finally, in case (iv), node Gv is updated to G′v , every ancestor Gw is updated to G′w, and
all descendants of Gv are removed.

In all cases, the remaining nodes in TP remain unchanged.
With this understanding of how TP ′ is obtained from TP , one can easily verify that the

two claims of the theorem hold. For the first part, see that every goal G in TP is either kept
unchanged in TP ′ , updated to its intention-level evolution G′ in TP ′ , or completely removed
in TP ′ due to its own termination or to a goal recovery transition at a higher-level goal (in
which case G is fully blocked by Theorem 1). For the second part of the theorem, observe
that every goal G′ in the evolved tree TP ′ must be an unchanged active goal, the evolution of
some previous active goal, or a new goal adopted by an existing active goal (case (iii)). �
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Putting it all together, Theorem 1 constrains the way the built-in goal recovery mech-
anism works, whereas Theorem 2 identifies the relation between the goals being pursued
before and after an agent evolution in each intention.

3 CAN: Declarative Goals in BDI Programming

One of the main drawbacks of typical BDI agent programming languages like CANA is their
extreme procedural view of goals as mere tasks or processes that ought to be executed to
completion. Even though a procedural view of goals in the form of know-how information
is often highly desirable to ensure that these can be achieved efficiently in dynamic environ-
ments [46], a declarative perspective, as common in agent theory [11, 54] and automated
planning [28, 46], opens the door to more sophisticated reasoning. Indeed, with an explicit
notion at hand of what state of affairs a goal stands for, one may be able to check whether
the goal in question has been achieved, whether it has become impossible, or whether it may
interfere with other goals [62, 63]. The fact that most BDI agent programming languages
only deal with procedural aspects of goals shows the existing gap between BDI theory and
implementation. Nonetheless, the need for richer accounts of goals in these languages has
recently been recognized in the literature (e.g., [16, 32, 57, 67, 73]).

In this section, we show how the language presented in the previous section can be incre-
mentally and modularly extended to accommodate an account of goals with both procedural
and declarative aspects. The idea is to enrich the BDI event goals with some declarative
information so as to decouple plan failure/completion from goal failure/achievability.

Following Winikoff et al. [73], we first enhance the simple event-goal program !e in
CANA with a new type of program that accommodates declarative information about the goal
to be achieved. More concretely, we extend the full program language from Section 2.1 with
a so-called goal-program construct, though we shall restrict the user program language—the
languages available for programming plan libraries Π—to user goal-programs only.

Definition 8 (Goal-programs and Declarative Goals). A goal-program is a program of the
form Goal(φs, P, φf ), where φs and φf are belief formulas and P is a program. A user goal-
program is one where P is of the form !e. When an agent is executing a goal-program, we
say that it is pursuing the declarative goal 〈φs, φf 〉. �

The intended meaning of a program Goal(φs, P, φf ) is that “the (declarative) goal state φs
should be achieved by using the (procedural) program P ; failing if φf becomes true (e.g.,
the goal is impossible, not required anymore, etc.)” By “declarative” here we mean that its
desired result is specified as a state of affairs, by means of formula φs.

Generally speaking, the execution of a goal-program is expected to be consistent with
some desired properties of goals, namely:

Persistent A rational agent should not abandon a goal without good reasons. A goal-program
will insist on resolving event !e as long as it has not been achieved or deemed impossible
due to its success and failure conditions, respectively.

Unachieved A rational agent should not be pursuing goals that are already true. A goal-
program is successfully dropped as soon as its success condition φs holds, that is, when
the goal has been achieved.12

12 We note that dropping a goal when its success condition φs holds true may, in some cases, violate the
implicit non-functional requirements encoded in the procedural knowledge (e.g., always leave the safe locked
after using it). Though beyond the scope of this paper, ways to address this could be inclusion of such require-
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Possible A rational agent should only pursue goals that are eventually possible to achieve.
At any point in the execution of a goal-program, if its failure condition φf becomes true,
then the goal is deemed impossible and dropped with failure.

The importance of the success φs and the failure φf condition is that, together, they
decouple the success and failure of the goal from the success or failure of its plans—a goal
should not be dropped merely because a plan to achieve the goal has failed, and a goal cannot
be assumed achieved just because the plan has executed fully.

Example 5. Let us come back to event goal travelTo(dest) from Example 1. The agent could
use that event-goal when she needs to go to a place as part of a larger goal, such as business
or holiday trip:

doTrip(dest, reason) :Work(reason)←
(!arrangeTransp(dest)‖ !arrangeHotel(dest)‖ !arrangeLocalCar(dest));
!travelTo(dest); !doWork; ?Address(Home, addr); !travelTo(addr).

Informally, the agent first arranges the trip—by concurrently booking the transportation,
accommodation, and local transportation at destination. Then, she does the actual traveling
and fulfills the work duties, and finally returns home.

In this case, we could enhance the event-goal posttravelTo(dest) to travel to the destina-
tion with the following declarative goal-program:

Goal(At(dest), !travelTo(dest),Unreachable(dest) ∨ Cancelled(reason))).

This program will not just succeed when the corresponding event goal completes execu-
tion, but when its execution actually achieves the goal, that is, when At(dest) is believed
true. Furthermore, the subgoal will be dropped with failure if the agent comes to believe the
destination is unreachable or that the reason for the trip does not apply anymore (e.g., the
conference has been cancelled). �

As with all the other constructs, we need to provide the semantics for the new construct.
To that end, five new intention-level derivation rules are introduced. The first rule is meant
to “initialize” the execution of a goal-program Goal(φs, !e, φf ) when this is first encountered
at execution time, thus “adopting” the declarative goal 〈φs, φf 〉. A successful adoption of a
goal requires that the goal is not already true or deemed impossible/failed, and that the agent
does have some relevant plan to eventually handle the goal—agents should not adopt goals
for which there are no capabilities. Formally,13

B 6|= (φs ∨ φf ) 〈B,A, !e〉 −→ 〈B′,A′, P 〉
〈B,A,Goal(φs, !e, φf )〉 −→ 〈B′,A′,Goal(φs, P B P, φf )〉

Gadopt

Roughly speaking, adopting a declarative goal involves setting its procedural program to
P B P . For instance, if e = travelTo(Uni) as in Example 1, then P would be the program
shown in (1); see pp. 8. Note that program P in the rule above would always stand, in our
language, for the set e : L∆M of relevant program-strategies for addressing the event—the
second requirement of rule Gadopt holds only if derivation rule Event (see pp. 7) applies.
So, the program built by the rule is of the form Goal(φs, e :L∆MB e :L∆M, φf ).

ments in the goal’s success condition itself, execution of “clean-up” procedures following plan termination (as
exists in, e.g., Jack), or use of transaction-like mechanisms to disallow interruption within a specified block.

13 Rule Gadopt could be further developed to capture extra constraints, such as the goal not being in conflict
with a goal already committed to (see discussion section).
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Next, the agent carries out the current strategy by basically “consuming” the first left pro-
gram in the already adopted goal. More concretely, the agent shall execute the goal-program
current strategy P1 in the rule below, while keeping (backup) program P2 “intact.” This, of
course, provided the success or failure condition do not hold true.

〈B,A, P1〉 −→ 〈B′,A′, P ′〉 B 6|= φs B 6|= φf

〈B,A,Goal(φs, P1 B P2, φf )〉 −→ 〈B′,A′,Goal(φs, P ′ B P2, φf )〉
Gstep

Once again, program P2 is, in fact, the original set of relevant strategies e : L∆M obtained
when the goal was adopted via rule Gadopt. The idea behind carrying along the original set of
strategies is that should the agent run out of current options, she may consider re-instantiating
those original set of relevant strategies. Informally, the agent shall “insist” on the available
strategies as much as possible until the the goal is realized or deemed impossible (see below).

In contrast with standard events, the agent is not concerned only with the (total) execution
of the programs, but also with conforming to the declarative aspects of the goal. As a result,
the following two rules allow the goal to be dropped if it becomes achieved or failed:

B |= φs

〈B,A,Goal(φs, P, φf )〉−→〈B,A, nil〉Gsucc
B |= φf

〈B,A,Goal(φs, P, φf )〉−→〈B,A, ?false〉
Gfail

Thus, succeeding a goal means that there is nothing else to be done for it—the remaining
program is the empty program nil. Failing the goal is captured by evolving to a program that
is always impossible (i.e., always blocked) for the agent, namely, test program ?false.

Finally, we consider the case in which the goal has not yet been achieved but its pro-
cedural program cannot continue further, either because it has executed fully or because it
has reached a dead-end and is blocked. To capture the expected persistence of (declarative)
goals, the very original strategies for the goal (carried along as program P2 below) are re-
instantiated as the current strategy, in the hope that an applicable one can be found. Formally,

〈B,A, P1〉 6−→ 〈B,A, P2〉 −→ 〈B′,A′, P ′2〉
〈B,A,Goal(φs, P1 B P2, φf )〉 −→ 〈B′,A′,Goal(φs, P ′2 B P2, φf )〉

Grestart

Observe that for a goal to be re-instantiated, the current strategy P1 must be blocked (first
requirement) and P2, which stands for the original set of relevant plans e : L∆M, must con-
tain a backup alternative strategy (second requirement). Otherwise, if there is no applicable
strategy in P2 = e :L∆M, then the whole goal-program should become blocked. This is impor-
tant because it shall enable the agent—via rule Brec (page 9)—to actually drop a (blocked)
declarative goal-program (e.g., the goal to travel to the bookstore) if there is an alternative
way (e.g., buying books online) of achieving a higher-level motivating goal (e.g., buying a
particular book).14 Note also the difference between a goal-program being blocked and its
failure condition being true. In the latter case, the goal-program may indeed perform a single
step via rule Gfail to the always failing program ?false.

Example 6. Suppose that instead of addressing the event-goal travelTo(Uni), as in Exam-
ple 1, the agent is meant to execute the following declarative version:

Goal(At(Uni), !travelTo(Uni),Cancelled(Exam)).

14 This is one of the main differences with the goal-programs in [73], where declarative goals may never be
dropped for the sake of higher-level goals.
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After the application of rule Gadopt this program will evolve to:

Goal(At(Uni), P B P,Cancelled(Exam)).

where P = travelTo(Uni) : L{ψ1 : Pwalk(Uni), ψ2 : Pcity(x,Uni), ψ3 : Pfar(x,Uni)}M is
the program shown in equation (1), pp. 8, encoding the set of all relevant program-strategies.

Next, we imagine the agent executing the first (left) copy of P in a similar manner as
discussed in Examples 2 and 3, though this time by relying on derivation rule Gstep:

Goal(At(Uni), P ′ B P,Cancelled(Exam)), (6)

where P ′ = Pcity(Home,Uni) B travelTo(Uni) : L〈ψ3 : Pfar(x,Uni)〉M. In other words, the
current strategy of the goal-program—the left copy of P–has basically executed as a standard
event does: P ′ is exactly the program shown in equation (4); pp. 4.

Next, suppose that current strategy of Pcity cannot execute further, e.g., taxis are fully
booked and the buses have been cancelled in the city. Under a standard event-goal, the whole
program P ′ would simply fail, as the remaining alternative strategy Pfar in P ′ is not applica-
ble for short distances. Nonetheless, while the strategy to walk is not included in P ′ anymore,
as it has been tried without success (see Example 3), it is still accounted in the original set
of relevant strategies P . Thus, because the procedural event-goal is running within a goal-
program, rule Grestart could be applied to come back to the original set of strategies P . If
walking is still a feasible option, the rule yields the following next program:

Goal(At(Uni), P ′′ B P,Cancelled(Exam)),

where P ′′ = Pwalk(Uni) B travelTo(Uni) : Lψ2 : Pcity(x,Uni), ψ3 : Pfar(x,Uni)M is the
program shown in (2) stating to walk to destination—the agent insists on the goal as there
are still “reasonable” strategies to be tried.

On the other hand, if no applicable strategy is found in P (e.g., GPS signal was lost,
the agent does not know its current location and cannot therefore evaluate atom At(x)), then
Grestart cannot be used and the whole goal-program (6) above becomes blocked.

Finally, we point out that if, at any time, the agent happens to be at the university or
learns the exam has been cancelled, the whole goal-program is terminated via rules Gsucc
and Gfail even if the procedural part of it has not executed to completion. �

So, by re-instantiating the original strategies when the current one has not been able to
actually achieve the corresponding goal, the language provides a persistence on declarative
goals that standard BDI events lack. Failure of the program should not be considered, in
principle, equal to the failure of the goal [15, 67]: as long as there are applicable plans,
there are reasons to believe that the goal is still achievable. Nonetheless, if no “recovery”
alternative plan can be found, then the whole goal may be re-considered for the sake of
higher-level motivating goals. Observe that when recovering, the original strategies in P2 are
still kept as backup: the agent may need to come back to them (again) if executing P ′2 still
fails to realize the goal.

This concludes the set of intention-level derivation rules for goal-programs.

3.1 Generating Goals Proactively

Besides allowing plans in the plan library to make use of declarative goals, we shall also
allow agents to generate top-level declarative goals in a proactive manner. To that end, we
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equip our agents with a special motivation libraryM. Intuitively, libraryM stands for the
agent’s intrinsic motivations or desires. At this stage, we consider motivation libraries that
only account for what has been elsewhere called desires (as conditional goals) [67, 68] or
automatic events [9]: goals that are conditionalised by beliefs. Hence, an agent may adopt a
new goal on the basis of recognising a particular world state.

So, a motivation libraryM consists of rules of the form

ψ  Goal(φs, !e, φf ),

Informally, if the agent comes to believe ψ, she should consider adopting the declarative
event goal Goal(φs, !e, φf ).

Example 7. The following motivational rule states that when the agent happens to learn her
paper was accepted, she should start working towards producing the paper camera ready
version for final submission:

PaperAccepted Goal(CameraReady, !prepareCameraReady,PaperWithdrawn).

The adopted goal may be dropped with success when the camera ready version is produced
(i.e., CameraReady holds true) or with failure if the paper has been withdrawn from the
conference (e.g., a technical error has been found or the agent cannot attend the venue). �

By means of her motivation library, the agent may now create intentions—new focus
of attention—not only for responding to external events, but for satisfying her own internal
desires as well.15 Observe that we have not imposed any semantic constraints on the new
library and it is hence conceivable for an agent to hold “contradictory” motivations.

3.2 Agent Level Execution with Goals

We now explain how the agent-level semantics from Section 2.2.2 need to be extended to ac-
commodate the extended language. The main top-level rule implementing the abstract BDI
execution cycle (see pp. 10) remains exactly the same, now labelled CAN instead (i.e., deriva-
tion rule ACAN). To account for the agent’s motivation library, agent configurations are ex-
tended to tuples of the form 〈Π,Λ,M,B,A, Γ 〉, whereM is a motivation library as above.

The remaining changes involve two new goal-update rules for characterizing the
goal
=⇒

agent transitions, and a slight adaptation of derivation rule Aint (pp. 11) for executing one
selected intention. To show these three changes, we first need to extend and introduce a few
concepts. First of all, besides event goals (Definition 6; pp. 14), an intention may now also
be working on declarative goals.

Definition 9 (Active Declarative Goal). An active declarative goal is a program of the form
G = Goal(φs, P B e : L∆M, φf ). Program P is the goal’s current strategy and e : L∆M encodes
the alternative strategies for the goal. We say that goal G has an alternative applicable
strategy in an agent C if program e :L∆M is not blocked in C. �

15 Of course, rational agents may adopt goals for other reasons besides these two. For example, agent com-
munication [44] and social norms and obligations [8, 39] are also typical sources of motivations for agents.
Interestingly, for instance, the norm specification in the NoA architecture [39] is very close to our motivational
rules; besides having an “activation” condition they also include an “expiration” condition.
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Again, due to its syntactic form, for a declarative goal to be active, it must have been previ-
ously adopted, by means of intention-level derivation rule Gadopt.

Next, we extend the notion of active goal traces (Definition 7; pp. 14) in order to account
for active declarative goals (see second case).

Definition 10 (Active Goal Trace, for CAN agents). An active goal trace λ is a sequence
of active goals G1 · . . . · Gn. The multiset of all active goal traces in a program P , denoted
GTrace(P ), is inductively defined as follows:

GTrace(P ) =



∅ if P = nil | act | ?φ | +b | −b
{P · λ | λ ∈ GTrace(P1)} if P = P1 B e :L∆M | Goal(φs, P1 B P2, φf )

and GTrace(P1) 6= ∅
{P} Xif P = P1 B e :L∆M | Goal(φs, P1 B P2, φf )

and GTrace(P1) = ∅
{P} if P = e :L∆M
GTrace(P1) if P = P1;P2

GTrace(P1) ] GTrace(P2) if P = P1‖P2

�

Hence, an active goal trace encodes a hierarchical chain of both active event goals and active
declarative goals.

When it comes to declarative goals, we need to “extract” those that the agent is currently
pursuing. To that end, we defineDG(P ) to be the set of declarative goals of the form 〈φs, φf 〉
that the agent has already adopted, and is executing, within intention program P .16

Definition 11. The multiset of all active declarative goals in a program P , denoted DG(P ),
is defined as DG(P ) =

⊎
n∈NDG(P, n), where DG(P, n) stands for the multiset of all active

declarative goals at level n (the top-level goal being at level 1) and is defined as follows:

DG(P, n) = {〈φs, φf 〉 | (∃λ).λ ∈ G(P ) ∧ λ[n] = Goal(φs, P
′, φf )}.

The multiset of achieved/failed goals in a program P at beliefset B is defined as follows:

DGend(B, P ) = {〈φs, φf 〉 | 〈φs, φf 〉 ∈ DG(P ), B |= φs or B |= φf}.

Lastly, all these notions extend to intentions and intention bases in a straightforward way,
e.g., DG(〈id, P 〉) = DG(P ) and DG(Γ ) =

⊎
I∈Γ DG(I). �

Again, we appeal to multisets because the same declarative goal may be pursued many
times in one intention (e.g., in different parallel sub-programs), and we want this to be
captured in the above notions. So, for example, if our student agent is working on the
goal-program shown in equation (6), pp. 21, as the fourth subgoal for an (original) top-
level intention of the form I = 〈#2,Goal(ExamDone, !writeExam,Cancelled(Exam))〉, then
DG(P, 1)={〈ExamDone,Cancelled(Exam)〉} andDG(P, 4)={〈At(Uni),Cancelled(Exam)〉}.
Also, if B |= Cancelled(Exam), for some belief base B (i.e., the exam has been cancelled),
then {〈At(Uni),Cancelled(Exam)〉, 〈ExamDone,Cancelled(Exam)〉} ⊆ DGend(B̂, I).

At this point, we have all the technical machinery to extend the agent-level semantics of
the core language (Section 2.2.2) to the CAN language. The first new rule accommodates a

16 Unlike the original semantics of CAN [73], we do not keep and update an explicit goal base G, as this is
already implicitly represented in the intention base Γ .
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proactive mechanism for generating new top-level intentions from the motivational library:
(Recall operation Γ d γ from Definition 1;pp. 6)

ψ  P ∈M Cinit[B] 6|= ψ B |= ψ 〈B,A, P 〉 −→ 〈B,A, P ′〉 6 ∃〈id, P ′〉 ∈ Γ

〈Cinit, 〈Π,Λ,M,B,A, Γ 〉〉 goal
=⇒ 〈Cinit, 〈Π,Λ,M,B,A, Γ d {P ′}〉〉

A4
goal

That is, when the agent comes to believe that ψ holds (second and third constraints), she
shall “adopt” program P as a new intention, provided P can execute (fourth constraint) and
is not already an active intention (fifth constraint). Note that since we have so far restricted
P to be a declarative goal-program of the form Goal(φs, P, φf ), P can execute only if rule
Gadopt (pp. 19) applies—that is, the goal is fully specified, unachieved, deemed possible, and
with capabilities (i.e., relevant plans) available. Taking our Example 7, if the agent happens
to receive an email confirming the acceptance of her paper, the above rule may yield the
following new intention in her intention base:

〈#12,Goal(CameraReady, prepareCameraReady :L∆M,PaperWithdrawn)〉.

The second rule allows the agent to update its goal base by legally dropping a current
goal. As discussed, a goal ought to be abandoned if it has been achieved or is deemed failed.
Hence, a goal update may ensue whenever the agent is able to remove a goal that is in the set
DGend(B, P ), thus making this set smaller:

〈id, P 〉 ∈ Γ 〈B,A, P 〉 −→ 〈B,A, P ′〉 |DGend(B, P )| < |DGend(B, P ′)|

〈Π,Λ,M,B,A, Γ 〉 goal
=⇒ 〈Π,Λ,M,B,A, (Γ \ {〈id, P 〉}) ∪ {〈id, P ′〉}〉

A5
goal

In other words, an active intention P is legally evolved to P ′—basically, due to rule Gsucc
or rule Gfail (see pp. 20)—such that P ′ has less achieved/failed goals.

It is worth mentioning that, as is the case with rules A1−4
goal from CANA, the two new

goal update rules also handle single updates, that is, the update of one goal only. Multiple
applications of these rules will be required for the agent to fully update its goal base.

Lastly, we need to modify the agent-level rule in charge of terminating an intention,
namely, rule A1

goal (pp. 12). In CANA, any intention that is blocked may be completely
dropped. In the presence of declarative goals, however, only purely reactive intentions—
intentions not pursuing any declarative goal—may be abandoned when blocked. There must
be better reasons, though, to drop a declarative goal, besides being blocked (see below).

〈id, P 〉 ∈ Γ DG(P ) = ∅ 〈Π,Λ,B,A, P 〉 6−→

〈Π,Λ,B,A, Γ 〉 int
=⇒ 〈Π,Λ,B,A, Γ \ {〈id, P 〉}〉

A1
goal

By including the constraint DG(P ) = ∅, we ensure that this rule does not allow dropping of
any intention working on a declarative goal.

This concludes the addition of declarative goals into the core language of Section 2, thus
yielding the extended language CAN. Notably, the new language is an incremental extension
of the core language, or in other words, CANA is a fragment of CAN. In fact, it is not hard to
prove that when it comes to agents not using the goal-program construct Goal (i.e., Π and Γ
do not mention construct Goal andM = ∅), the CAN and CANA BDI execution coincide.

As in CANA, the failure handling mechanism does respect the hierarchical structure of
the active goals, where these may be either standard event-goals or declarative ones.
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Theorem 3. Theorem 1 (pp. 16) holds for CAN agents and goal traces as in Definition 10.

Proof. Exactly as the proof for Theorem 1 except that now Gk can be a declarative goal
of the form Goal(φs, Pk B ek : L∆kM, φf ). In such case, since the current and alternative
strategies for a declarative goal are independent of the goal success and failure conditions,
the same argument still follows through. That is, program Pk is indeed blocked in C which
shall imply that every active goal in Pk will be fully blocked. �

Hence, the alternative strategies for a goal, either event or declarative, may be considered (by
means of rules Brec or Grestart) only if no working alternative strategies can be found for
all the subgoals that are instrumental to it. As a consequence, failure is handled bottom-up
by trying to recover the lowest active goal possible.

3.3 On the Commitment of CAN: Between Single and Open Minded Agents

Let us focus now specifically on (the commitment to) declarative goals. As already discussed,
it is generally accepted that a rational agent should not insist on goals that are deemed
achieved or impossible. A single-minded agent maintains her commitment to a goal until
she believes she has achieved it or that there are no options available to bring the goal about
[54]. CAN agents go a step further by providing what we shall call a “flexible” single-minded
type of commitment.

Informally, a flexible single-minded agent behaves like a single-minded agent, except that
she may reconsider a subgoal of a motivating goal under certain circumstances. In that way,
the unachieved and possible properties of goals are understood as sufficient conditions but
not necessary conditions for an agent to drop her goals.

The following result states that CAN agents always drop their commitments to goals that
are believed achieved or deemed impossible/unnecessary.

Theorem 4. LetC0 be a CAN agent configuration such that for every 〈φs, φf 〉 ∈ DG(C0[Γ ]),
B 6|= φs and B 6|= φf . Let C0 · . . . · Cn be a BDI execution of C0 (relative to an environment
E). Then, for every declarative goal 〈φs, φf 〉 ∈ DG(Cn[Γ ]), B 6|= φs and B 6|= φf apply.

Proof. Follows from the fact that, for every C, if C CAN
=⇒ C′, then C′ may not contain any

intention with an achieved or failed goal, that is, there is no 〈φs, φf 〉 ∈ DG(C′[Γ ]) such

that B 6|= φs or B 6|= φf . If, on the contrary, there is such a goal, then C′
goal
=⇒ C′′, for

some C′′, due to derivation rule A2
goal, which will allow the dropping of the corresponding

goal-program. This means C′ 6goal=⇒ does not hold and neither does C CAN
=⇒ C′. �

Thus, no matter how an agent evolves relative to the environment, her goal base is cor-
rectly updated—she would never desire goals that are currently true or deemed failed.

The second result identifies all the reasons why a CAN agent may drop a declarative goal.
More specifically, it provides the necessary conditions for our flexible single-minded type
of commitment. Although Theorem 4 suggests that, at the very minimum, a declarative goal
ought to be dropped if it has been achieved or deemed failed, there are also other reasons why
a goal may be abandoned. A subgoal, for instance, ought to be dropped if it is a subsidiary
goal for a higher-level motivating goal which is considered achieved or unachievable. More
interestingly, a subsidiary declarative goal might be abandoned by the agent if she does not
have any current way of acting upon it, but an alternative plan is found for a higher-level
motivating goal. In that case, the agent may consider dropping the lower-level instrumental
goal to pursue the alternative plan for the higher-level goal.
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Theorem 5. Let C and C′ be two agent configurations such that C
agent
=⇒ C′ and 〈φs, φf 〉 ∈

DG(C[Γ ]), but 〈φs, φf 〉 6∈ DG(C′[Γ ]). Then, one of the following cases applies (below, B′ is
the belief base of configuration C′, that is, B′ = C′[B]):

1. B′ |= φs, i.e., the goal has been achieved.
2. B′ |= φf , i.e., the goal is believed to be impossible.
3. For every I ∈ C[Γ ], if λ ∈ GTrace(I) and λ[k] = Goal(φs, P, φf ), then there exists

1 ≤ k′ < k such that either
(a) λ[k′] = Goal(φ′s, P

′, φ′f ) and B′ |= φ′s ∨ φ′f , for some φ′s, φ′f and P ′; or
(b) goal λ[k] is fully blocked and goal λ[k′] has its current strategy blocked but an alter-

native applicable strategy in C.

Proof. Suppose that B′ 6|= φs and B′ 6|= φf , that is the goal is neither achieved nor deemed
unfeasible by the agent. Observe first that there exist intermediate configurations C1 and

C2 such that C int
=⇒ C1, C1

event
=⇒ C2, C2

goal∗
=⇒ C′ and C′ 6goal=⇒. Take now any I =

〈id, P 〉 ∈ Γ such that 〈φs, φf 〉 ∈ DG(I), that is, for some λ ∈ GTrace(P ) and k ≥ 1,
λ[k] = Goal(φs, Pk, φf ).

By assumption, if I ′ = 〈id, P ′〉 ∈ Γ ′, then 〈φs, φf 〉 6∈ DG(P ′). Suppose next that, for
all k′ < k such that λ[k′] = Goal(φ′s, Pk′ , φ

′
s), neither B′ |= φ′s nor B′ |= φ′f hold. That,

together with the fact that B′ 6|= φs and B′ 6|= φf , goal λ[k] was not dropped during the (last)

goal update transition. Thus, it must have been dropped during the C int
=⇒ C1 transition.

The only way this could happen is if λ[k] is fully blocked in C, and a goal-recovery step is
performed on a higher-level motivating goal in λ for which an applicable alternative strategy
exists in C. Thus, case (3b) applies and the theorem follows. �

The first two cases account for the situations where the declarative goal is abandoned be-
cause it has been achieved or deemed failed, respectively. The third case covers the situations
in which the dropped goal is not required anymore as a subsidiary goal for a higher-level
motivating goal Gk′ . This could happen either because the higher-level goal in question has
been considered achieved or failed (case 3a), or because an alternative way of addressing it
has been selected (case 3b).

It is worth noting a few interesting points. First, it is conceivable that a goal G could
be fully blocked (i.e., G’s current strategy is blocked and G has no alternative applicable
strategy), while the current strategy of a higher-level motivating goal G′ is not blocked. Such
situation could arise when the current strategy for G′ involves the concurrent execution of
two programs (i.e., G = P1‖P2), goal G belongs to just one of those programs, say P1,
and the other parallel program P2 is able to evolve. Second, the above theorem refers to
active declarative goals only. Nonetheless, the theorem can easily be rephrased for active
event goals of the form P B e : L∆M, by merely replacing the first two cases with a single
case accounting for the fact that the goal’s current strategy is the terminating program nil.
Third, the theorem is only concerned with situations in which the declarative goal is com-
pletely abandoned by the agent. One could imagine, however, cases where the very same
goal 〈φs, φf 〉 is being simultaneously pursued by different intentions or even multiple times
within the same intention. In those cases, a particular instance of such goal may be (locally)
dropped (due to case 3 above) without necessarily abandoning all its other instantiations—
goal 〈φs, φf 〉 would still show up in configuration C′. It is not hard to see that a local, though
more cumbersome, version of the above theorem can be devised.

So, by putting together Theorems 4 and 5, we claim that CAN agents are indeed flex-
ible single-minded, in the sense explained above. Their commitment strategy goes beyond
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the well-established single-minded type, in that a (problematic) goal may be reconsidered
as an appropriate instrument for some motivating goal. Observe such goal reconsideration is
optional, as the agent may consider devoting its attention somewhere else in the hope that
the problematic sub-goal becomes enabled again. The actual decision could be domain de-
pendent or may even depend on implementation or runtime properties (e.g., how much time
is devoted to re-consideration or how dynamic is the environment; see [36]). Thus, as with
other features like plan selection, the semantics provided here is skeptical and the details are
left to the actual BDI interpreter implementation.

We close by pointing out that the success and failure conditions in goal-programs can be
used to capture other reasons besides the actual achievability or impossibility of the goal. The
programmer, for instance, can use such conditions to design an agent that drops a goal when
its original motivation is not present anymore (e.g., a canceled request from another agent),
or when the goal, though achievable, has a high cost. It follows then that the flexible single-
minded type of commitment that CAN agents enjoy lies between the simple single-minded
strategy and the sophisticated, though underspecified, open-minded strategy [54].

4 CANPlan: Integrating Hierarchical Planning in BDI Languages

Since typical BDI systems are extremely flexible and responsive to the environment, they are
well suited for complex applications with (soft) real-time reasoning and control requirements.
Nonetheless, a limitation of such systems is that they normally do no lookahead reasoning:
means-end analysis is entirely based on context sensitive (reactive) subgoal expansion, act-
ing as they go. In some circumstances, however, lookahead deliberation (i.e., hypothetical
reasoning) about the effects of one choice of expansion over another is clearly desirable, or
even mandatory in order to avoid undesired situations. This is the case, for instance, when (a)
important resources may be used in taking actions that do not lead to a successful outcome;
(b) actions are not always reversible and may lead to states from which there is no successful
outcome; (c) execution of actions take substantially longer than “thinking” (or planning); and
(d) actions have side effects which are undesirable if they turn out not to be useful.

Another approach to means-end analysis is that of automated planning, a field that has
experienced an outstanding progress in the last decade [27, 28, 42, 70]. Over the years, plan-
ning systems have been developed that are capable of solving large and complex problems,
using richly expressive domain models and meeting advanced demands on the structure and
quality of solutions [28]. Among others, heuristic search, forward search, graphplan-based
mechanisms, and control knowledge are some of the techniques successfully used by cur-
rent state-of-the art planners. In particular, we shall be interested here in control knowledge
techniques, where domain independent planners are able to exploit user-provided domain
information in order to guide the planning process. One such popular approach is that of hi-
erarchical HTN-style planning [26, 28], in which domain knowledge is provided in the form
of hierarchical information for decomposing complex tasks into simpler processes. As it will
become evident below, HTN planners and BDI agent systems share many similarities, and
therefore are suitable candidates for a principled integration.

So, in this section, we develop the full language CANPlan (CAN + planning), an extended
version of CAN that incorporates an account of (offline) lookahead in the form of hierarchical
HTN-style planning. Such a built-in planning mechanism will allow for a careful analysis,
when necessary, on how to expand different plans. One could argue, of course, that it is
always possible, in critical situations, to explicitly program lookahead within existing BDI
systems. However, such code would generally be domain dependent, can be fairly complex,
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and would lie outside the infrastructure support provided by the BDI agent platform. Al-
ternatively, there are many frameworks that attempt to interleave BDI-type execution with
offline planning (e.g., [2, 22, 37, 50, 72]). Still, these are mostly implemented systems with
no precise semantics and with little programmer control over when to plan. The approach
presented here, instead, is aimed to provide a formal specification of planning as a built-in
feature of the BDI infrastructure that the programmer can use as appropriate. We have in fact
implemented this as a distinguished new construct within Jack (see Section 6).

Before going into the details of CANPlan, let us first provide a brief overview of HTN-
style planning planning.

4.1 HTN Planning

Hierarchical Task Network (HTN) planning is a well-known approach to automated planning
based on the decomposition of (high-level) tasks into subtasks by applying HTN methods.
Examples of HTN (implemented) systems include SHOP [47] and its successor SHOP2 [48].
Such systems have been applied in several domains and have a significant user base that
includes government laboratories, industries, and universities [49]. SHOP2, in particular, ex-
celled in the 2002 International Planning Competition [42].

From now on, we shall mostly follow the definitions of HTN-planning from [26]. The
central concept in HTN planning is that of a task. There are two kinds of tasks. A primitive
task is an action act(~x) which can be directly executed by the agent in the environment (e.g.,
drive(x1, x2)). A (high-level) compound task e(~x) is one that cannot be executed directly
(e.g., travel(origin, dest)). A task network d = [s, φ] is a collection of tasks s that need
to be accomplished and a boolean formula of constraints φ. Constraints impose restrictions
on the ordering of the tasks (e ≺ e′), on the binding of variables (x = x′) and (x = c) (c
is a constant), and on what literals must be true before or after a task (l, e), (e, l), or during
two tasks (e, l, e′). A method (e, d) encodes a way of decomposing a high-level compound
task e into lower-level tasks using task network d. HTN methods thus provide the procedural
knowledge of the domain.

Example 8. The method mtravel encodes one way of travelling to a close-by destination:

mtravel = 〈travelTo(x), dtaxi〉;

dtaxi = [{t1 : getTaxi, t2 : ride(x, y), t3 : payDriver}, φ];

φ = t1 ≺ t2 ∧ t1 ≺ t3 ∧ ((t1,FlatTariff ) ∨ t2 ≺ t3) ∧ (At(x) ∧ Close(x, y), t1).

Notice that, when traveling by taxi, one should always pay at the end of the trip, unless the
tariff found after booking the taxi is flat. �

An HTN planning domain D = 〈Π,Λ〉 consists of a library Π of methods and a library
Λ of primitive tasks. Each primitive task in Λ is a STRIPS-style operator with corresponding
preconditions and effects in the form of add and delete lists. It is convenient to assume the
existence of a dummy noOp operator in Λ with empty precondition and no effects, used to
decompose a task trivially. An HTN planning problem P is a triple 〈d,B,D〉 where d is the
task network to be accomplished, B is the initial state (i.e., a set of all ground atoms that are
true in B), and D is a planning domain. A plan σ is a sequence act1 · . . . · actn of ground
actions (that is, ground primitive tasks).

Given a planning problem P, the planning process involves selecting and applying an
applicable reduction method from D to some compound task in d. This results in a new,
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and typically more “primitive,” task network d′. This reduction process is repeated until only
primitive tasks (i.e., actions) are left. If no applicable reduction can be found for a compound
task at any stage, the planner “backtracks” and tries an alternative reduction for a compound
task previously reduced. If all compound tasks can eventually be reduced, a plan solution
σ is obtained. The set of all plans that solves a planning problem P = 〈d,B,D〉 is denoted
sol(d,B,D); its definition provides a clear operational semantics for HTN planning.

We refer to [26, 28] for more details on HTN and its formal semantics.

4.1.1 BDI and HTN Systems: Similarities

BDI agent systems and HTN planners come from different communities and differ in many
important ways. The former focus on the execution of plans, whereas the latter is concerned
with the actual generation of such plans. The former are generally designed to respond to
goals and information; the latter are designed to bring about goals. In addition, BDI systems
are meant to be embedded in the real world and therefore take decisions based on a particular
(current) state. Planners, on the other hand, perform hypothetical reasoning about actions
and their interactions in multiple potential states. Thus, failure has very different meaning for
these two types of systems. In the context of planning, failure means that a plan or potential
plan is not suitable; within BDI agent systems failure typically means that an active (sub)plan
ought to be aborted. Whereas backtracking upon failure is an option for planning systems, it
is generally not for BDI systems, as actions are taken in the real world.

In spite of all the above differences, BDI agent-oriented programming languages and
HTN planners share many similarities [19, 24, 71], both in terms of the type of knowledge
they use as well as on how such knowledge is manipulated to create solutions. First of all,
HTN systems and BDI languages assume an explicit representation of the agent’s knowledge
(i.e., the state or belief base) and a set of primitive tasks or actions that the agent can directly
execute in the world. Secondly, and most importantly, procedural knowledge about the do-
main is available in both HTN and BDI systems in the form of reduction methods and plan
rules, respectively. HTN methods and BDI plan rules are meant to describe the “standard
operating procedures” that are normally used to carry on common tasks in some domain,
thus corresponding well to the way that users/experts think about problems. Thirdly, both
systems create solutions by reducing higher-level entities into lower-level ones using a given
set of reduction “recipes.” Whereas a BDI system “reduces” an event into a plan-body pro-
gram using a plan from the plan library, an HTN planner reduces a compound task into a task
network using a reduction method from the method library. Figure 2 gives an indication of
the mapping between HTN and BDI entities and notions.17

Example 9. The corresponding plan-rule for the traveling method mtravel described in Ex-
ample 8 is as follows:

travelTo(y) : At(x) ∧ Close(x, y)← !getTaxi; ?(FlatTariff ); (ride(x, y) ‖ !payDriver).

Hence, the network dtaxi corresponds to the rule’s plan-body. �

Special consideration has to be taken when considering goal-programs within a plan-
ning context. The goal-construct as formulated here is not available in most BDI agent
systems and no direct construct exists within HTN planners either. Nonetheless, a program
Goal(φs, P, φf ) within the context of a planning construct can be understood as “searching

17 The table is not complete; whereas some entities have a straightforward mapping, some others require a
more elaborate translation; see [19, 71] for a more detailed mapping.
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BDI SYSTEMS HTN SYSTEMS

belief base state
plan library method library
event compound task
action primitive task
plan-body/program network task
plan rule method
plan rule context method precondition
test ?φ in plan-body state constraints
sequence ; in plan-body ordering constraint ≺
parallelism ‖ in plan-body no ordering constraint
goal-programs Goal(φs, P, φf ) task P with a constraint (P, φs)
relevant plans for an event matching methods for a task
plan selection task reduction
successful execution of plan task-network solution

Fig. 2 Comparison between BDI and HTN systems.

for a solution of P that would bring about a state of affairs where φs holds.” Because of that,
we shall see goal-programs of the form Goal(φs, P, φf ) within a planning context as (if they
were) programs of the form (P ; ?φs).18

4.2 A Local lookahead planner for CAN

In incorporating planning into BDI programming languages, several issues need to be ad-
dressed. First, we want to keep the language as uniform as possible. Second, we want to
allow control over when and on what planning is to be performed within the BDI architec-
ture. Third, we need to decide what domain information the planner will use—we want the
planner to re-use as much information as possible from an existing BDI specification. Lastly,
the result of the planning process ought to be carried on, and possibly monitored, within the
BDI execution cycle in a uniform manner.

In a nutshell, we shall enhance CAN with a form of on-demand planning by adding a new
construct Plan(P ) to the language: plan for P offline (i.e., without actually executing P ),
searching for a complete hierarchical decomposition. Thus, on program Plan(P ), the agent
is meant to deliberate about how to perform P before committing to even its first step. The
obtained extended language will be called CANPlan (CAN + planning).

As with other constructs in the language, we need to provide the operational rules for the
Plan construct. To do this, we distinguish, from now on, between two types of intention-level
transitions, namely, “bdi” and “plan” (labelled) transitions. Intuitively, bdi-type steps will be
used to model the normal BDI execution cycle, whereas plan-type transitions will represent
(internal) deliberation steps within a planning context. When no label is stated, both apply.

Following the semantics of the so-called “search operator” in the IndiGolog logic-based
agent programming language [17, 58], the main operational rule states that a basic configu-
ration 〈B,A,Plan(P )〉 can evolve to configuration 〈B′,A′,Plan(P ′)〉 provided that configu-
ration 〈B,A, P 〉 can evolve to configuration 〈B′,A′, P ′〉 from where it is possible to reach a

18 One can easily get closer approximations to goal-programs which take the success and failure conditions
into account before trying P . This would amount to understanding goal-programs within planning as programs
of the form if φs then ?true else (?φf ;P ; ?φs). Such a translation would instruct the planner whether it is
worth decomposing P for φs, as a kind of control knowledge at the outset of the planning process. However,
the translation required is notationally more involved and we therefore avoid it here for legibility purposes.



31

final configuration in a finite number of planning steps (recall from Section 2.2, pp. 6, that
plan∗−→ stands for the reflexive transitive closure of transition relation

plan−→):

〈B,A, P 〉 plan−→ 〈B′,A′, P ′〉 〈B′,A′, P ′〉
plan∗−→ 〈B′′,A′′, nil〉

〈B,A,Plan(P )〉 bdi−→ 〈B′,A′,Plan(P ′)〉
P

Intuitively, the Plan construct guarantees that a “safe” step is chosen, that is, a step that is on
an execution path that is guaranteed to eventually succeed. In addition, by propagating the
Plan construct to the remaining program, only such safe evolutions will be selected through-
out the whole execution of the program.

Also, two simpler rules are used to terminate empty planning problems, and to handle
nested planning problems (i.e., a planning step already within a planning plan context):

〈B,A,Plan(nil)〉 −→ 〈B,A, nil〉
Pend

〈B,A, P 〉 plan−→ 〈B′,A′, P ′〉

〈B,A,Plan(P )〉 plan−→ 〈B′,A′,Plan(P ′)〉
PP

In addition to the rules for the Plan construct, we need to restrict the applicability of some
existing rules in order to adequately integrate the new construct within the BDI execution
cycle and the Goal construct—planning is not merely lookahead on the BDI execution cycle.

First of all, we shall distinguish failure during BDI execution (usually triggering the
failure recovery mechanism) from failure during planning (usually dealt with backtracking).
To that end, we confine the failure handling mechanism only to the online execution, by
restricting derivation rule Brestart (see Section 2, pp. 3) to the bdi context, that is:

P1 6= nil 〈B,A, P1〉 6
bdi−→ 〈B,A, P2〉

bdi−→ 〈B′,A′, P ′2〉

〈B,A, P1 B P2〉
bdi−→ 〈B′,A′, P ′2〉

Bbdi
f

By using this variant of rule Brec, only the BDI execution cycle would be allowed to re-try
alternative plans for an event upon the failure of some strategy. So, for example, a program of
the form (?falseBe :L∆M) would have no transition within a plan context, whereas alternatives
in ∆ would be tried within a bdi context.

Another distinction that needs to be made is between goal adoption during online ex-
ecution (as in CAN) from goal adoption during planning reasoning. To do so, we restrict
the previous rule Gadopt (see Section 3, pp. 19) to bdi type of transitions, and provide the
following alternative rule for adopting declarative goals when planning:

〈B,A,Goal(φs, !e, φf )〉
plan−→ 〈B,A, (!e; ?φs)〉

Gplan
adopt

That is, during planning, the intended meaning of a goal Goal(φs, !e, φf ) is “plan for a (to-
tal) execution of !e that will bring about φs.” Notice that since, in principle, all possible ways
of resolving !e will be considered at planning time, there is no need to check for feasibility
via failure condition φf . In this way, the Goal construct becomes relevant only when exe-
cuted in an online fashion, which is compatible with its original motivations in [73]. (Again,
more involved adoption mechanisms are conceivable in the context of particular planning
techniques, such as using φf as declarative control knowledge information [28].)

Finally, agent-level transitions should now rely on online intention-level transitions. Tech-
nically, the intention-level transitions used in rules Aint (pp. 11) and A1

goal (pp. 24) should
now be based on bdi-type intention-level transitions.
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This concludes the formal integration of a local planning mechanism into the BDI lan-
guage, yielding thus the language CANPlan. It involved four new intention-level rules, and
the confinement of two intention-level and two agent-level rules to the bdi context only—all
remaining rules for CAN are therefore available within both bdi and plan contexts.

The first main result of this section states that construct Plan(P ) guarantees, under plau-
sible assumptions, the successful execution of program P . Intuitively, this means that the
planning construct provides a careful plan selection analysis that will yield non-failing exe-
cutions: as long as there are no negative changes in the environment and the agent does not
itself pursue an interfering intention, the execution of P , which the agent has planned for,
will not get stuck at any point. Informally, the reason why this theorem applies is that each
step performed on a Plan(P ) program is “safe,” in that a successful continuation of it does
exist, together with the fact that the Plan construct itself is propagated (see main rule P).

Theorem 6. Let C be a an agent configuration such that intention I = 〈id,Plan(P )〉 ∈
C[Γ ] is not blocked in C. Let E = C0 · . . . · Cn be a BDI execution of C0 = C, where
Ii = 〈id,Plan(Pi)〉 ∈ Ci[Γ ] is the evolution of I throughout E, such that for every i < n:

(a) Ii+1 = Ii and Ci+1[B] = Ci[B]; or

(b) 〈Ci[B], Ci[A],Plan(Pi)〉
bdi−→ 〈Ci+1[B], Ci+1[A],Plan(Pi+1)〉.

Then, intention Ii is not blocked in Ci, for every i ≤ n.

Proof. We prove this by induction on n. The base case, when n = 0, is trivial by assumption:
I0 is not blocked in C0. Suppose the result holds for n = k and take an execution E = C0 ·
. . .·Ck ·Ck+1 under the above assumptions, and thus, either (a) or (b) applies betweenCk and
Ck+1. If case (a) applies in E, then Ik = 〈id,Plan(Pk)〉 would also be blocked at configura-
tion Ck, since Pk−1 = Pk and Bk = Bk+1, thus reaching a contradiction with the induction

hypothesis. So, it has to be the case that 〈Bk,Ak,Plan(Pk)〉
bdi−→ 〈Bk+1,Ak+1,Plan(Pk+1)〉,

that is, the last step in E actually involves the execution of intention I. This can only hold

due to derivation rule P and hence 〈Bk,Ak,Plan(Pk)〉
plan−→ 〈Bk+1,Ak+1,Plan(Pk+1)〉 and

〈Bk+1,Ak+1,Plan(Pk+1)〉
plan∗−→ 〈B′,A′, nil〉, for some B′ and A′. This, in turn, implies

that there exists ` > 0 such that 〈Bk+1,Ak+1,Plan(Pk+1)〉
plan`−→ 〈B′,A′, nil〉 (` 6= 0 since

Plan(Pk+1) 6= nil). If ` = 1, then Pk+1 = nil and transition 〈Bk+1,Ak+1,Plan(Pk+1)〉
bdi−→

〈Bk+1,Ak+1, nil〉 applies due to rule Pend. Otherwise, if ` > 1, then rule P can be applied

and 〈Bk+1,Ak+1,Plan(Pk+1)〉
bdi−→ 〈Bk+2,Ak+2,Plan(Pk+2)〉, for some Bk+2,Ak+2, and

Pk+2. In both cases, intention Ik+1 cannot be blocked in Ck+1 and the thesis follows. �

Thus, by using the new lookahead construct Plan(P ), the programmer can make sure—to
some extent—that failing executions of program P will be avoided. This contrasts with the
usual (default) BDI execution of P which may potentially fail program P due to wrong
decisions at choice points. Nonetheless, it should be clear that the proposed deliberation
module is local, in the sense that it does not take into account the potential interactions with
the external environment and other concurrent intentions. Still, notice that the above theorem
does account for some (limited) interleaved execution of other intentions, as long as these do
not produce world-changing actions.19

19 Such constraints could be lifted, for instance, if a meta-level module is able to interleave intentions that
do not interact negatively [63].
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Example 10. Let us come back to the plan rule in Example 5. As discussed, the first step in
the strategy is to arrange transportation to the destination (e.g., arrange flight), accommoda-
tion (e.g., book hotel), and local transportation (e.g., rent a car). Because these three tasks
may depend on shared resources (e.g., money), it could be the case that choices performed in
one of the these three sub-tasks impact negatively, and preclude, the successful completion of
the other tasks. Indeed, the system may book successfully an expensive flight, only to realize
that no hotel can be booked with the remaining funds.

To address this problem, the programmer can rely on local planning and write the fol-
lowing alternative strategy:

doTrip(dest, reason) :Work(reason)←
Plan[(!arrangeTransp(dest)‖ !arrangeHotel(dest)‖ !arrangeLocalCar(dest))];
!travelTo(dest); !doWork; ?Address(Home, addr); !travelTo(addr).

Hence, it is now left to the lookahead reasoning module to make sure that, in resolving
the three subgoal events, the (right) choices are made in such a way that all three can be
successfully completed. �

Before, we argued that the CAN language was an incremental extensions over the CANA

one. Here, we show that CANPlan is an incremental extension over the CAN language—CAN
agents are CANPlan agents with no planning.

Theorem 7. LetC be a planning-free CANPlan agent (i.e., one where libraryΠ and intention
base Γ do not mention construct Plan). Then, E is a CANPlan BDI execution of C relative to
E iff E is a CAN BDI execution of C relative to E , for any environment E .

Proof. Direct from the fact that the top-level agent rules are the same for both languages and
none of the three derivation rules for Plan ever apply for planning-free agents. �

4.3 HTN-style planning via the Plan construct

In Section 4.1.1, we informally reviewed the relation between BDI agent systems and HTN
planners. Here, we focus on the formal relationship between our planning construct Plan and
HTN-style planning. To that end, we first define bounded agents as those CANPlan agents
whose belief base and belief conditions are defined in a language which follows the same
constraints as those imposed by HTN planners [26] (e.g., first-order atoms, finite domains,
closed world assumption). It is worth pointing out that, in practice, most existing BDI pro-
gramming language implementations do actualise such constraints. Furthermore, we assume,
without loss of generality, that bounded agents do not make use of belief update statements
+b and −b in their plans—only primitive actions can change the belief base.20

The second main result of this section establishes, formally, the link between the Plan

construct and HTN planning. Intuitively, any total execution of a planning problem in our
agents corresponds one-to-one to an HTN solution. More concretely, if a full intention-level
execution resolving an event e yields a sequence of primitive actions σ, then σ is indeed
a valid HTN solution for the corresponding abstract task e, and vice-versa. (Recall from
Section 4.1 that sol(e,B, 〈Π,Λ〉) is the set of all HTN solutions for task e.)

20 Belief update statements can be easily modelled using special actions with empty preconditions.
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Theorem 8. For any libraries Π and Λ, and belief bases B and B′ in a bounded agent, and
for any action sequences A and σ, and event e:21

〈Π,Λ,B,A,Plan(!e)〉 bdi∗−→ 〈Π,Λ,B′,A · σ, nil〉 iff σ ∈ sol(e,B, 〈Π,Λ〉).

Proof. See Appendix A. �

As a direct consequence, a Plan step within the BDI execution may evolve if and only if
the corresponding HTN problem has a solution; formally, 〈Π,Λ,B,A,Plan(!e)〉 bdi−→ iff
sol(e,B, 〈Π,Λ〉) 6= ∅, for any bounded agent. Thus, one could indeed see construct Plan
as an HTN planner over the same domain knowledge as the BDI agent. In other words, pro-
vided we restrict to the language of HTN, our deliberator construct Plan provides a built-in
HTN planner within the whole BDI framework.

The importance of the above result is twofold. Theoretically, it shows that the BDI ex-
ecution model and the HTN planning framework are strongly related. More concretely, by
a suitable HTN understanding of the BDI structures (see Figure 2) and by merely “turning
off” the BDI failure handling mechanism, one obtains the essence of an HTN planner. The
fact that the changes required to the BDI architecture for modelling HTN-style planning are
minimal does not diminish the mixed account of execution and planning. On the contrary,
it demonstrates that one could get both types of systems integrated in a parsimonious and
uniform manner. Practically, the result above supports the use of existing HTN planning sys-
tems, such as SHOP or SHOP2, within current BDI platforms, such as Jason or Jack. As a
matter of fact, one would not expect the BDI system itself to do the lookahead planning rea-
soning, that is, implement the derivation rule P, but an external HTN planner to do so, whose
output plan shall be used in the BDI language.

Another important issue to investigate is how the executions obtained via planning relate
to classical BDI executions. In particular, we want to know the impact of doing planning
on a basic agent, that is, one corresponding basically to classical BDI agent programming
languages like AgentSpeak or PRS. Roughly speaking, we show that doing planning within
the classical BDI execution cycle reduces to intelligent plan selection. To show that, we first
prove the following intermediate result, stating that in the context of classical BDI agents,
every legal planning step can be mimicked with a corresponding non-planning step.

Lemma 1 For every program P not mentioning construct Goal or construct Plan, if
〈Π,Λ,B,A,Plan(P )〉 bdi−→〈Π,Λ,B′,A′,Plan(P ′)〉, then 〈Π,Λ,B,A, P 〉 bdi−→〈Π,Λ,B′,A′, P ′〉.

Proof. By assumption, 〈Π,Λ,B,A, P 〉 plan−→ 〈Π,Λ,B′,A′, P ′〉 due to the application of some
set χplan of plan-type intention-level derivation rules. Since P does not mention any Plan or
Goal construct, then PP 6∈ χplan and Gplan

adopt 6∈ χplan, and thus, all the rules in χplan have their

counterpart as bdi-type rules. It follows then that 〈Π,Λ,B,A, P 〉 bdi−→ 〈Π,Λ,B′,A′, P ′〉. �

With this result at hand, one can then show that any agent execution that successfully
terminates a planning intention can be simulated by the classical BDI execution engine.

Theorem 9. Let C be a CANPlan agent and I = 〈id,Plan(P )〉 ∈ C[Γ ] an active intention in
C, where program P and library C[Π] do not mention any Plan or Goal construct. Let agent

21 For legibility, we keep the translation between the BDI domain knowledge (i.e., libraries Π and Λ, and
programs) and the HTN domain knowledge (i.e., planning domain and task networks) implicit.
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C′ be like C but with intention base C′[Γ ] = (C[Γ ] \ {I}) ∪ {〈id, P 〉}. Suppose next that
C0 · . . . ·Cn is a CANPlan-BDI execution of C0 = C such that 〈id,Plan(nil)〉 ∈ Cn[Γ ]. Then,
there is a CANPlan-BDI execution C′0 · . . . · C′n, of agent C′0 = C′ such that C′i is like Ci but
with intention base C′i[Γ ] = (Ci[Γ ]\{〈id,Plan(Pi)〉})∪{〈id, Pi〉}, for every i ∈ {0, . . . , n}.

Proof. It is easy to see that for each i ∈ {1, . . . , n}, 〈id,Plan(Pi)〉 ∈ Ci[Γ ], for some Pi.
The theorem then follows directly from Lemma 1 and the fact that, because P and Π are
Goal and Plan free, so are each of the programs Pi along the execution. �

So, the execution cycle itself can obtain the same outcomes as the planning module does,
provided the correct plan choices are made throughout the execution.

On the other hand, when the full CANPlan language is considered, the interaction between
planning, concurrency, and goal-programs, makes planning more than just lookahead on the
BDI execution cycle. In fact, program Plan(P1)‖P2 may not be able to imitate program
Plan(Plan(P1)‖P2), as the latter is equivalent to executing Plan(P1‖P2)—a Plan construct
is just redundant within the context of another Plan construct due to rule PP.22 Similarly,
program Goal(φs, P, φf ) may not be able to simulate all executions of Plan(Goal(φs, P, φf )),
as the offline and online interpretations of goal-programs differ.

Surprisingly, also, the BDI execution engine may obtain (other) successful executions
that the planner cannot produce. More concretely, due to the unavailability of failure recov-
ery at planning time, the built-in planner cannot always imitate the behavior of an intention
totally executed online, i.e., with no lookahead.

Example 11. Consider an agent configuration where all actions are possible, propositions p
and q are both false initially (i.e., B |= ¬p ∧ ¬q), and action act1’s effect is to make p true
(i.e., act1 : true← {p}; {} ∈ Λ). Next suppose the agent’s plan library Π contains only two
plan rules for handling an event e, namely, e : true← act1; ?q; act2; and e : p← act3; act2.

First, there is no solution for program Plan(!e), that is, 〈Π,Λ,B,A,Plan(!e)〉 6plan−→: the
first plan rule would fail when testing for q, and the second one is simply not applicable.
On the other hand, a successful BDI execution of program !e can be obtained, by partially
executing the plan-body of the first plan rule (i.e., executing action act1) and then—upon
failure on test ?q—fully executing the plan-body of the second plan rule, whose context
would now hold true due to the execution of action act1. �

As one can observe, the above counter-example relies on both the plan failure handling
mechanism built into the BDI execution cycle and the programmer not having provided
a full set of plans. In fact, if the plan library had also included a third rule of the form
e : true← act1; ?p; act3; act2, then the planner would have found a full execution. Still, as
agent’s plan libraries are often developed incrementally and in modules, the above situation
could very well arise. Notice also that the agent used is basically a CANA agent, so the result
is independent of both the planning and goal-program constructs.

Summarizing, the combined framework of (default) BDI execution plus local hierarchical
planning is strictly more general than hierarchical planning alone. Furthermore, as discussed
after Theorem 6, by using the new local planning mechanism the programmer can rule out—
to some extent—BDI executions that are bound to fail.

22 In other words, there is no notion of “nesting” planning. An alternative language where
Plan(Plan(P1)‖P2) is not equivalent to Plan(P1‖P2) can be easily obtained by dropping derivation rule
PlanP and making rule Plan also available within the plan context. Then, Theorem 9 would also hold when
Plan constructs are mentioned in either Π or P . Nonetheless, such alternative language would require an
account of HTN planning within an HTN planner. We stick here to the standard non-nested version of HTN
planning.
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4.4 Active goals in CANPlan

We finish by generalizing some of the definitions and results given for CAN agents regarding
goals, now in the potential presence of planning programs. Besides event and declarative
goals (Definitions 6 and 11), we also distinguish a third kind of active goals in CANPlan.

Definition 12 (Active Planning Goal). An active planning goal is a program of the form
G = Plan(P ), where Plan(P ) itself is said to be the goal’s current strategy. �

Note that planning goals do not have alternative strategies—alternatives are only mean-
ingful during online execution. With this new type of active goal, we further extend the notion
of active goal traces (Definition 10) accordingly (see second case).

Definition 13 (Active Goal Trace, for CANPlan agents). An active goal trace λ is a sequence
of active goals G1 · . . . · Gn. The multiset of all active goal traces in a program P , denoted
GTrace(P ), is inductively defined as follows:

GTrace(P ) =



∅ if P = nil | act | ?φ | +b | −b
{P · λ | λ ∈ GTrace(P1)} if P = Ω, GTrace(P1) 6= ∅X

{P} if P = Ω, GTrace(P1) = ∅
{P} if P = e :L∆M
GTrace(P1) if P = P1;P2

GTrace(P1) ] GTrace(P2) if P = P1‖P2

where Ω = P1 B e :L∆M | Goal(φs, P1 B P2, φf ) | Plan(P1). �

The full-fledged version of Theorem 1 (for CANA) and Theorem 3 (for CAN) in the con-
text of planning goals can now be restated as follows. Observe that this result accommodates
the fact that an active goal may also be abandoned if it is instrumental to a (higher) moti-
vating planning goal for which there is no (total) solution, as the successful achievement of
such instrumental goal is meaningless if the motivating planning goal is unsolvable.

Theorem 10. Let C be a CANPlan agent and I ∈ C[Γ ] be an active intention in C. Fur-
thermore, let Gk = λ[k], with k ≥ 1, be the k-th active goal in some active goal trace
λ ∈ GTrace(I). If Gk’s current strategy is blocked, then for every subgoal Gk′ = λ[k′], with
k′ > k, either:

1. goal Gk′ is fully blocked in C, i.e., its current strategy is blocked and it has no feasible
(applicable) alternative strategy; or

2. there exists k ≤ k′′ < k′, such that goal λ[k′′] is an active but blocked planning goal.

Proof. On the contrary, suppose Gk′ is not part of a higher-level planning goal Gk′′ that is
instrumental to Gk. If Gk′ ’s current strategy is not blocked or Gk′ has an alternative appli-
cable strategy, then Gk′ is not fully blocked and it can evolve a single step. Since there is no
planning goal between Gk and Gk′ , then Gk’s current strategy is not blocked, as a step on it
can be performed by evolving its instrumental subgoal Gk′ . �

So, a planning goal takes precedence over all its subsidiary goals, since all of them ought to
be successfully solved in order to solve the planning goal itself.

In addition, Theorems 4 and 5 (pp. 25) apply also for CANPlan agents, and therefore, goal-
programs behave the same when executed online. This is because, due to the way declarative
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goal-programs are adopted at planning time via rule Gplan
adopt (pp. 31), there could never be an

active declarative goal instrumental to an active planning goal.23

We close by pointing out a particular powerful combination of the Goal and Plan con-
structs in CANPlan, namely, Plan(φs, P, φf )

def
= Goal(φs,Plan(P ; ?φs), φf ). Under such con-

struct, the benefits of lookahead analysis and online goal monitoring are combined together.
In contrast with the simpler version Plan(P ; ?φs), should φs become true while executing P ,
either fortuitously or due to P itself, the whole program terminates with success. Similarly,
should condition φf become true while P is being performed, P is terminated with failure.

5 Handling of Variables

Clearly, the use of variables in agent programs is mandatory for any practical programming
language. However, accounting for variables in the semantics of the language poses several
technical difficulties, yielding a formal framework that is considerably more complicated
notationally. At an abstract level, when considering variables in programs we need to account
for the following issues:

1. Test programs may hold with different bindings and action programs may mention vari-
ables that need to be resolved before they can be performed.

2. Variables in plan-body programs need to be propagated along their execution.
3. Variables in plan rule context conditions imply that a strategy may be applicable for dif-

ferent instantiations of such variables. This, in turn, implies that a more involved formal-
ization of failure recovery is required since the agent may want to try the same strategy
with different bindings (e.g., with different domain objects).

4. Careful handling of shared variables in parallel programs—e.g., variable x in program
P1(x) ‖ P2(x)—is required to avoid undesired side-effects, where “failed” bindings done
in one program are used by the other concurrent programs. For instance, an event within
P1 may bind variable x to some object c1, only to fail afterwards and be recovered by
an alternative strategy that would successfully end up binding x to c2. In such cases,
program P2 should never make use of the first failed binding x = c1.

Whereas the handling of the first two issues is relatively straightforward and standard in
the literature, the last two are more involved and would yield more complex derivation rules
than the ones discussed in the paper.

So, in what follows, we shall discuss the major changes to the framework developed
above that are required to accommodate variables in agent programs.

5.1 Substitutions

Below, we shall extensively appeal to substitutions, also called variable bindings, which will
be denoted using θ or η, possibly with annotations.

Definition 14 (Lloyd [41]). A substitution θ is a finite set of the form {x1/t1, . . . , xn/tn},
where each xi is a distinct variable and each ti is a term distinct from xi. θ is called a
ground substitution if the ti are all ground terms, a variable-pure substitution if the ti are all
variables, and a non-variable substitution if no ti is a variable. �

23 Technically, for every plan-body program P and goal trace λ ∈ G(P ), if the n-th active subgoal in λ is
a planning goal, then λ[m], for any m > n is not an active declarative goal.
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Observe that while ground substitutions are non-variable ones, the converse is not true (e.g.,
θ = {x/cell(12, y)}). Informally, non-variable substitutions do not contain any “renaming”
of variables.

As usual, θθ′ denotes the composition of substitutions θ and θ′. When E is an expression,
Eθ is the expression obtained from E by simultaneously replacing each occurrence of the
variable xi in E with the term ti, for all i ∈ {1, . . . , n}. For example, if φ = Holding(x, y)
and θ = {x/John, y/box(x)}, θ′ = {x/23}, then we obtain φθ = ¬Holding(John, box(x)),
and φθθ′ = Holding(John, box(23)).

In the rest of the paper, we shall make use of following convenient notation. The the set
of all most general unifiers between expressions E1 and E2 is denoted mgu(E1, E2). Set
ren(X,Y ) will denote the set of all renaming substitutions for variables in X without using
variables in Y , that is, the set of all variable-pure substitution of the form {x1/y1, . . . , xn/yn},
where X = {x1, . . . , xn} and such that {y1, . . . , yn} ∩ (X ∪ Y ) = ∅. When θ is a variable-
pure substitution, θ−1 stands for the “inverse” of θ, that is, θ−1 = {x/y | y/x ∈ θ}. (Of
course, the inverse operation is not well-defined for non variable-pure substitutions.) Finally,
we will use vars(E) to denote the set of all free variables in expression E (e.g., vars(ψ),
vars(P ), or even vars(θ)); and θ̂ to denote the (induced) equality formula

∧
x/t∈θ x = t.

5.2 Definition Generalizations

When considering variables, some concepts need to be extended to account for variable bind-
ings. An intention I is now tuple 〈id, P, η〉, where id ∈ N is the (unique) intention identifier,
P is a, possibly open, program term in the full program language, and η is the set of (current)
variable bindings for P . The intention insertion operation Γ d γ (Definition 1) denotes the
intention base resulting from incorporating each P ∈ γ into intention base Γ , as a new inten-
tion of the form 〈id, P, ∅〉, where id is the intention’s unique identifier (i.e., no other intention
in Γ d γ shares the same identifier). Finally, intention-level configurations are extended to
tuples of the form 〈Π,Λ,B,A, η, P 〉, where η stands for the current variable bindings per-
formed so far in the execution of the program. To generalize Definition 4, we say that a
program P is blocked in an agent configuration 〈Π,Λ,B,A, Γ 〉 iff 〈Π,Λ,B,A, ∅, P 〉 6−→.
An intention I = 〈id, P, η〉 is blocked in an agent configuration if program Pη is blocked.

As discussed above, when formulas have free variables (e.g., Holding(x)), they can hold
in a belief base relative to some bindings of such variables—a formula may hold for different
domain objects. This will have a substantial impact when an agent executes test programs of
the form ?φ(~x) as well as when it evaluates plan rules’ context conditions of the form ψ(~x).
To handle this, we define the notion of an answer for a query. Informally, an answer is a
grounding of every variable except those ones constrained only by equality atoms; for such
variables, we look for most “general” answers.

Definition 15. Let B be a belief base and ψ be a test formula, possibly with free variables.
A substitution θ is an answer to ψ relative to B, written B |=· ψθ, iff

1. B |= ψθ;
2. each variable in vars(ψθ) appears in equality atoms in ψ only;
3. θ is a most general substitution satisfying the previous two conditions, i.e., there is no θ′

satisfying the first two conditions such that vars(ψθ) ⊂ vars(ψθ′). �

Informally, the reason why we treat equality atoms differently is because we will use
such atoms to encode plan relevance constraints (i.e., an actual event posting unifying with the
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triggering event of a plan rule). The above definition takes a least-committed approach to such
atoms, whereas tests of domain belief atoms (e.g., ?At(x)) are used by the BDI programmer
to obtain concrete groundings (e.g., x = Home).

So, if ψ = Holding(x, y) ∧ x = John ∧ w = z, then θ = {x/John, y/box(23), w/z}
is an answer provided that B |= Holding(John, box(23)) holds. However, substitution θ′ =
{x/John, y/box(23), w/box(1), z/box(1)} is not an answer, as it over-commits to variables
w and z. See that any answer for ψ should ground variables x and y since they appear in a
belief atom.

Finally, the set of active goal traces (Definition 7) for intentions should now be redefined
as expected, namely, GTrace(〈id, P, η〉) = GTrace(Pη). Similarly, the set of all active goals
in a program P is defined as G(P ) = {λ[k] | λ ∈ GTrace(P ), k ≥ 1}, and for intentions
as G(〈id, P, η〉) = G(Pη). The multiset of active declarative goals in an intention is now
redefined as DG(〈id, P, η〉) = DG(Pη).

5.3 Derivation Rules Extensions

Here we will go over the derivation rules for CANPlan that would require more than trivial
changes. We refer to Appendix B for the complete set of rules for the language with variables.

Event Handling The rule in charge of constructing the set of relevant plans for an event,
namely rule Ev, needs to be adapted so that (i) fresh variables are used form the plan library
to clashing with the variables already being used in the intention; and (ii) the “matching” of
the actual event posting with the triggering event of plan rules handles event with variables.

θr∈ ren(vars(Π), vars(η)) ∆={ψ∧ θ̂ :P | e′ :ψ ←P ∈ Πθr, θ ∈ mgu(eη, e′)} 6= ∅
〈Π,Λ,M,B,A, η, !e〉 −→ 〈Π,Λ,M,B,A, η, e :L∆M〉 Event

That is, the rule uses a renaming of the plan-libraryΠθr so that fresh variables, not appearing
in the intention, are used. Moreover, the actual event eη being resolved needs to unify with
the triggering head e′ of plan rules. Finally, when a unifying plan rule is found, its guard
condition is built from the rule’s context condition ψ, together with the equality formula θ̂
induced by the corresponding unifier (stating how variables should be restricted to make eη
and e′ “match.”) In that way, the relevance condition is accounted in the guard condition.

For example, consider the event goal e = getObj(r, y) for collecting object y from room
r, and suppose that the bindings η performed so far are such that y/Watch ∈ η. Then, the
actual pending event that needs to be resolved is eη = getObj(r,Watch): get the watch object
from some room. Suppose next that the (renamed) plan library includes a rule of the form
getObj(Locker, x2) : ψ(x2, x3) ← P (x2, x3, x4), encoding a strategy P to grab things from
the locker room when ψ holds. Such plan is relevant for the the actual pending event by
taking θ = {x2/Watch, r/Locker}. As a result, the set ∆ would include a pair of the form
〈ψ(x2, x3) ∧ (x2 = Watch ∧ r = Locker) : P (x2, x3, x4)〉.

Plan Selection The rule for selecting a program strategy from the set of available ones,
namely, rule Sel, needs to be adapted so that (i) the current strategy selected executes using
fresh “local” variables only (i.e., variables not visible outside the strategy) in order to avoid
undesired side-effects with other concurrent programs that may be running in the same in-
tention; and (ii) already tried alternatives are ruled out from the set of alternatives relative to
their previous successful bindings.



40

To achieve the first point, the chosen alternative 〈ψ : P 〉 is renamed, using substitution
θr , to use completely new (local) variables. In addition, the last step in the current strategy
Ps, namely test ?(θ̂r), involves re-instantiating the original variables, thus committing to all
such “temporal” bindings and therefore visible to other concurrent programs.

To achieve the second requirement, the just selected alternative 〈ψ : P 〉 is not removed
from the set of alternatives, but it is further restricted to rule out the bindings θ that were just
used to make ψ true. More specifically, guard ψ is further constrained with an extra conjunct
(¬θ̂r)θ which states that the bindings θ that made the guard true may not satisfy the guard
formula (again).

Finally, because all used variable used in an intention need to be mentioned in the current
bindings η of the intention, a dummy substitution (θfree)

−1—the inverse of variable-only
substitution θfree—is added to the current bindings to that end.

ψ : P ∈ ∆ θr∈ ren(vars(ψη) ∪ vars(Pη), vars(η)) B |=· (ψηθr)θ
Ps = Pηθr; ?(θ̂r) θfree ∈ ren(vars(Ps), vars(ηθ)) ∆′ = {〈ψ ∧ (¬θ̂r)θ : P 〉}

〈B,A, η, e :L∆M〉 −→ 〈B,A, ηθ(θ−1free), Ps B e :L(∆ \ {ψ : P}) ∪∆′M〉
Sel

Observe that, due to the renaming of variables to new local variables, the binding θ that
makes the context ψ true, as well as any substitutions performed during Ps’s execution, could
only bind such local variables.

To illustrate how rule Sel works, let us return to the above example. There, the rule
would yield Ps = P (x′2, x

′
3, x
′
4); ?(x2 = x′2 ∧ x3 = x′3 ∧ x4 = x′4 ∧ r = r′), where

θr = {x2/x′2, x3/x′3, x4/x′4, r/r′}. If, say, ψ(x2, x3) = At(x3) and the agent happens to be
at home, then θ = {x′3/Home, x′2 = Watch, r′ = Locker}, that is, B |= [At(x3) ∧ (x2 =

Watch ∧ r = Locker)]ηθrθ. In turn, the new guard for the strategy would be ψ′ = (ψ ∧ x3 6=
Home)—strategy P may not be used again when the agent is at home. See that the test
for applicability in rule Sel as well as any execution of Ps may only produce bindings for
the local variables x′2, x′3, and x′4, and r′. Thus, the original variable r in the actual pending
event would not be instantiated to value Locker until the very last test step in Ps is performed.
Finally, we point out that all variables mentioned in Ps, including x4 and x′4, are guaranteed
to be mentioned in the current set of bindings due to “dummy” substitution θ−1free.

Interaction between Sel and Brec If, at any point, the current strategy selected via rule Sel
cannot execute further, that is it is blocked, derivation rule Brec may apply, by replacing
the current strategy with an alternative applicable one. The following result formalizes some
of the properties we have informally claimed regarding the way strategies are chosen and
executed for an event. First, the particular bindings θ in rule Sel supporting a chosen strategy
are ruled out from the (new) set of relevant alternative options —a strategy cannot be tried
twice under the same “reasons.” Second, the execution of the chosen strategy does not cause
any free variable in the event to be bound until the strategy is fully executed: the strategy
chosen by rule Sel may end up failing and, if so, any bindings done so far would not be
meaningful and the new selected applicable plan, if any, may end up binding them differently.

Theorem 11. Suppose 〈B,A, η, e :L∆M〉 −→ 〈B,A, η′, Ps B e :L∆′M〉. Then,

1. there exists (a unique) option ψ : P ∈ ∆ such that ∆′ = (∆ \ {ψ : P}) ∪ {ψ′ : P} and
B |= ψηθ, for some θ, and for any belief base B′, B′ 6|= ψ′ηθ; and

2. if for some n ≥ 1, 〈Bi,Ai, ηi, Pi〉 −→ 〈B′i,A
′
i, ηi+1, Pi+1〉, for each i ≤ n− 1 and such

that P0 = Ps and Pn 6= nil, then vars(eη) = vars(eηn).
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Proof. The proof follows from inspecting derivation rule Sel (page 40), which is the rule
that ought to be used to evolve program e :L∆M. The first claim is due to the fact that ψ′ shall
include a conjunct ruling out the bindings that made ψ true, that is ψ′ = ψ ∧ ¬θ̂. For the
second part, observe that due to rule Sel, P0 = Ps = P ′s; ?φ for some program P ′s which
will not mention any free variable in eη. Because each Pi is an evolution of Ps and Pn 6= nil,
then only (part of) program P ′s has executed at Pn and the thesis follows. �

Declarative Goals The two most important modifications for handling declarative goals in
a language with variables involve extending intention-level rule Gadopt and agent-level rule
A1
goal (see Appendix B). With respect to the first one, like 2APL [12], we require the declara-

tive goal to be fully defined in order to be adopted, that is, its corresponding conditions ought
to be fully instantiated. With respect to goal adoption from the motivational library, the ex-
tended rule now needs to find an substitution that would make the triggering condition ψ of a
motivational rule true (and use such binding accordingly when incorporating the new inten-
tion). The motivational rules in libraryM are now such that vars(φs)∪ vars(φf )∪ vars(!e) ⊆
vars(ψ)—all free variables in the goal-program are mentioned in the triggering condition.

6 Implementation Issues

All languages in the CAN family are in themselves high-level plan languages, in the spirit
of process algebras such as the π-calculus and agent systems such as Ψ or Golog, rather
than a programming language per se. So, the three languages discussed above concentrate on
the high-level description of important aspects of BDI programming, such as plan selection,
event handing, belief updates, lookahead planning, etc. rather than on cumbersome imple-
mentation details such as data structures and mechanisms for passing data around—they are
agnostic with respect to such issues.

Nonetheless, because formal languages like CANPlan are also meant to capture and pro-
vide semantics to actual implemented systems and architectures, it is important to understand
how the different features of the language can be effectively realized. Because many of the
features in CANPlan are standard in BDI agent programming (e.g., belief updates, plan se-
lection, etc.), we shall briefly explain the implementation of those features that are unique to
the language, namely, its failure handling mechanism, declarative event-goals, and planning
capability. Although we discuss these with respect to the Java-based Jack agent development
platform, it should be clear that similar approaches can be taken for other BDI platforms.

Goal Failure Handling As argued, the goal-failure recovery in CANPlan captures the typical
recovery mechanism implemented in many BDI systems, such as Jack and PRS, in which
alternatives plans are tried, if possible, when a plan happens to fail. By doing so, the lan-
guage provides a default strategy to capture the commitment of an agent to event-goals.
The Jack programming platform, for instance, includes such built-in mechanism for the so-
called BDIGoalEvent type of events. Whereas other events in Jack (e.g., MessageEvent
events) represent transient information that the agent reacts to and for which failure recovery
is not available, BDIGoalEvent events are used to model goal-directed behaviour, rather
than plan-directed behaviour: an agent commits to the desired outcome, not the method cho-
sen to achieve it [9]. Thus, events in CANPlan model Jack’s BDIGoalEvent type of events.

We point out that other formal BDI programming languages either do not provide any
account for goal failure recovery or it is left to the BDI user to explicitly program it. For
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instance, 3APL [30] provides the so-called failure practical rules, which run at high priori-
ties and provide a mechanism for replacing an intention-program (or part of it) with another
program. Those rules then accommodate “reflective capabilities,” even on the intention struc-
ture, something that is not accounted for in our language. However, failure recovery needs
to be explicitly programmed by designing suitable rules for recognizing failure cases and
recovering from them. Programming the kind of hierarchical goal-failure recovery provided
by most real BDI systems would indeed be a cumbersome task, if at all possible. The lan-
guage AgentSpeak takes another approach to failure. The language itself does not include any
default built-in failure handling, and it allows dropping of a whole intention as soon as this
cannot evolve, thus providing a low-level of commitment. Nonetheless, when a plan for an
achievement event !e fails, a distinguished failure event −!e is posted within the system. As
with 3APL, the programmer may decide to design specific plan rules to handle such failure
events in order to recover from the failure of e. In some implementations of AgentSpeak (e.g.,
Jason [6]), internal actions are provided to access the intention stack, so that the user could,
in principle, program a hierarchical recovery strategy similar to that of CANPlan.

Declarative Goals Despite the fact that most BDI programming platforms rely mostly on
events to represent the agent’s current (pending) goals, some systems have lately incorporated
programming mechanisms that are close to our Goal construct. This was, in fact, what partly
motivated the need for formalizing such mechanisms. The Jack platform, for instance, in-
cludes statements like @achieve(<cond>,e), @insist(<cond>,e), and
@maintain(<cond>,e) to check for a condition after the execution of an event, insist on an
event if the condition is not met, or carry on an event provided some condition is not violated,
respectively. The Jason [6] system also includes similar constructs, such as DG(<goal>) for
testing the actual goal achievement after execution and BDG(<goal>) for “backtracking” on
plan selection upon plan failure to re-try alternative options.

Interestingly, it turns out that our declarative goal construct Goal(φs, !e, φf ) can easily
be expressed in Jack as follows:

whi le (¬φs ) {
i f ( @maintain (¬φs && ¬φf , !e ) )
{ } \\ p l a n f i n i s h e d s u c c e s s f u l l y

e l s e
{ ¬φf ; } \\ m a i n t a i n f a i l e d ; f a i l u r e c o n d i t i o n f a l s e ?

}

Under this code, if the execution of event e finishes successfully, then the while-loop would
execute again only if the goal has not yet been achieved. If, however, either φs or φf becomes
true during the execution of event e, then the @maintain statement would fail immediately
and the else-part of the conditional would execute to check whether the failure was caused by
the goal failure condition. If so, such test fails and so will the whole execution. Otherwise, the
success condition must have become true and the while loop exits successfully. Finally, it is
not hard to see that if neither condition become true but the execution of the event terminates
or fails, then the while–loop will be repeated.

For example, the goal-program Goal(At(Uni), !travelTo(Uni),Cancelled(Exam)) from
Example 6 (pp. 20) can be directly translated into the following Jack code:

@maintain ( ! At . check ( u n i ) && ! C a n c e l l e d . check ( exam ) ,
t r a v e l T o e v . p o s t ( u n i ) )

{ } \\ p l a n f i n i s h e d s u c c e s s f u l l y
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e l s e
{ At . check ( u n i ) ; } \\ m a i n t a i n f a i l e d ; check g o a l s u c c e s s

This Jack agent has two simple beliefsets—At(loc ) and Cancelled(x)—recording the current
location of the agent and whether a venue has been cancelled. Observe that the exclamation
mark ! in the above code refers to Jack logical negation (i.e., the atoms do not hold true).

The Planning Construct In earlier work [20], we presented an implementation that combined
BDI reasoning with HTN planning. We used Jack BDI system [9] and JSHOP HTN planner,
a Java version of SHOP [47]. In concrete, a special @plan construct within Jack, available
to the programmer in exactly the same way as construct @subtask, was provided to initiate
HTN-planning rather than plain BDI execution. Although the integrated framework does not
fully realise the operational semantics presented here, it does incorporate some important
concepts from it. In particular, it allows the programmer to specify from within a Jack pro-
gram the points at which JSHOP should be called, in a manner similar to the Plan construct.
Consistent with the semantics of Plan, JSHOP uses the same domain representation as Jack
does (i.e., the plan library Π and belief base B). In fact, the framework builds at runtime a
JSHOP planning problem representation automatically from the Jack domain knowledge.

Some differences in the implementation arise from the nature of the systems chosen
for the implementation. Since JSHOP is a total-order HTN planner, it cannot accommodate
the concurrent construct ‖. However, since parallelism has benefits, the integrated frame-
work converts JSHOP’s total-order solutions into partial-order solutions so that Jack can ex-
ploit possible parallelism at execution time. Some other differences exist between the im-
plementation and the semantics for the sake of simplicity. For example, we excluded the
Goal(φs, P, φf ) construct in our system, as this construct does not have a direct matching
concept in Jack or JSHOP. Including this goal construct and using SHOP2 [48] to accommo-
date parallel execution of sub-goals naively are left for future work.

The main difference, however, is that the implementation does not re-plan at every step,
as indicated by the Plan derivation rule defined in the semantics. This would clearly be unnec-
essarily inefficient. Instead, JSHOP was modified to return the relevant methods and bindings
(rather than simply the actions); the BDI execution engine then follows step-by-step such
suggested decomposition. Relevant environmental changes are detected by virtue of a step in
the returned plan no longer being applicable within the BDI cycle. At that point, the planner
is then called once again to provide an updated plan, and if none is available failure will occur
in the BDI system. A disadvantage of this is that environmental changes leading to failure
may be detected later in the implemented version than in the semantic rules. This approach
also has the benefit that an intention produced by a call to Plan will, in fact, terminate—
successfully if there is no environmental interference. This is stronger than what Theorem
6 states, in which we needed to account for the strange, but theoretically possible, situation
where the Plan module continually returns a new and different plan prior to termination.

7 Related Work

There are a plethora of agent-oriented programming languages that are related in some way
or another to the language CANPlan described here. Rather than discussing all (minor) dif-
ferences with these frameworks (e.g., the form of plan rules in the library, types of events,
or different variations of the BDI execution engine), we focus here on the two distinguished
features of CANPlan: the integration of automated planning and the use of declarative goals.
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7.1 Planning and Agent Systems

The underlying strong similarities between BDI agent systems and HTN planners is not new.
In fact, Wilkins and Myers [71] proposed the ACT formalism as a uniform language for
supporting the interoperability of reactive plan-executors and hierarchical planners. The ACT
language supports the type of mapping we have proposed in Section 4.1.1.

There are several BDI-like agent programming languages that come with solid formal
semantics. These include PRS [33, 74] and dMARS [23], AgentSpeak [53], 3APL [14, 30] and
2APL [12], and GOAL [16], among others. None of these languages, though, provide at this
point an account of lookahead planning; behavior relies entirely on some type of (online)
context sensitive sub-goal expansion.

There are however a number of implemented platforms which do, in some way or an-
other, mix planning and BDI-style execution. Some of these are planners, such as IPEM [2]
and Sage [37], that allow for the interleaving of action execution during the planning pro-
cess. Similarly, A-SHOP [24] is an agentized version of the well-known HTN SHOP [47]
planner integrated within the IMPACT multi-agent environment [25]. Others are agent archi-
tectures, such as Retsina [50], SRI’s Cypress [72] (based on the mentioned ACT formalism),
Propice-Plan [22], and the work on the JADEX [52] agent framework for integrating state-
based planning [69]. All these systems are able to do some type of lookahead planning within
a typical reactive agent execution. Propice-Plan is perhaps the most similar system to ours,
in that it is a typical BDI agent system (PRS-based) that is able to explicitly call a planning
module (planner IPP) in order for the agent to anticipate alternative execution paths. Like
CANPlan, a unified representation is used by both the planner and the BDI system. On the
other hand, it does not exploit the hierarchical nature of BDI plans as it does not appeal to an
HTN planner. The work done here differs in, at least, two ways from all the above systems.
First, we are particularly concerned with the formal specification of a BDI agent with built-
in planning capabilities, as well as with the formal relation between BDI systems and HTN
planners. The above systems focus on implemented architectures rather than on the precise
semantics of what planning in BDI platforms is. Nonetheless, the formal work that we have
presented here was indeed partly motivated by the existence of such systems, in a way anal-
ogous to how AgentSpeak was motivated by systems like PRS and dMARS. Second, CANPlan
provides a mechanism for local deliberation on-demand, as opposed to a fixed integration
of planning within the execution engine (e.g., Retsina performs continuous planning coupled
with execution and CPEF engages in planning upon goal failure).

Our approach is strongly related to IndiGolog [58], a situation calculus-based high-level
programming language with an interleaved account of execution, planning, and sensing.
As a matter of fact, our planning construct Plan and its actual semantics was inspired by
IndiGolog’s “search operator” Σ for local offline deliberation. Nonetheless, IndiGolog takes
a more traditional computer science perspective and is not per se a BDI programming lan-
guage; its connections with BDI programming notions and properties is, in general, fairly
weak. For instance, there is no notion of goals being pursued besides the overall high-level
program being executed, and there is no account of goal retrying upon plan failure as a way
of realizing the commitment of the agent. Besides that, IndiGolog’s search operator planning
module is not related to any automated planning approach. Our account is strongly linked to
HTN-planning and has a more practical orientation.

We close by briefly mentioning the recent effort on incorporating classical planning in
BDI systems. Meneguzzi and Luck [43] extended AgentSpeak with a mechanism whereby
the agent can call an (external) STRIPS classical planner so as to obtain a plan from first-
principles that achieves a conjunction of literals. The plan returned, in turn, is then incorpo-
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rated into the agent’s plan library for future re-use, by suitably defining the corresponding
context condition. Though promising, the work is in its very early stages; it does not come
with a formal semantics, no proof of correctness is provided, and plan synthesized and learnt
are limited to low-level ones (that is, no abstraction is done to non-primitive plans). In some
sense, at this point, the approach amounts to an implementation extension of AgentSpeak for
performing invocation to an external planner within the plan-body of plan rules. Adding clas-
sical planning to BDI systems was also recently studied by de Silva et al. [21]. However, that
work was more concerned with generalizing low-level plans returned by the planner to more
abstract plans containing abstract steps (i.e., events or compound tasks). By synthesizing
new plans at higher level of abstractions, the agent can not only re-use procedural informa-
tion already available but yield more flexible/robust plans, since higher-level goals/events
may be achievable in multiple ways. Nonetheless, both above works are orthogonal to the
planning approach of CANPlan. Whereas planning from first-principle can be useful in cer-
tain situations where no domain “know-how” information is available, the planning account
developed in this paper follows the HTN view that in many, if not most, dynamic settings,
there is substantial procedural information from the experts that is worth exploiting.

7.2 Goals in Agent-Oriented Programming Languages

Despite the fact that the notion of goals (and that of desires) has been at the core of the BDI
model of rational behavior, both at the philosophical and theoretical levels [7, 11, 54, 61],
BDI agent-oriented programming languages have historically fallen short on representing
and reasoning about them. The reliance on the so-called events limits the account of goals to
a sophisticated kind of method invocation. Nonetheless, there has recently been a growing
effort to account for more sophisticated goals in BDI programming languages.

van Riemsdijk et al. [68] explores the semantics of declarative goals in agent program-
ming languages. The work addresses the issue of what it means that a cognitive agent has
a certain goal, given the state of the data structures modeling the agent (belief base, goal
base, intention base, and rule base). For instance, an agent may pursue two goals that are
inconsistent with each other (e.g., p and ¬p), but cannot pursue an inconsistent goal itself
(e.g., p∧¬p). Their approach to goal representation differs from that used in CANPlan in that
(active) goals are derived, implicitly, from a goal base. Instead, CANPlan does not carry an
explicit goal base, as this can be implicitly extracted from the current plans the agent has
already committed to, following the usual understanding that goals are desires the agent has
committed to realize. We are however interested in exploring the use of an explicit desire
base that may motivate the agent to potentially adopt new (top-level) goals. The motivation
baseM introduced in Section 3 is our starting point for that.

The dynamics of goals is also a central issue when it comes to modeling goals and is
tightly linked to the notion of commitment. In [67], several motivations and mechanisms are
proposed for adopting and dropping declarative goals. The authors formalize what it means
for an agent to adopt or drop a goal within an agent transition, by means of different type
of adoption/failure rules. Among other differences, the declarative and procedural aspects
of goals are not intrinsically related as they are in our CANPlan language. So, for instance,
failure rules are used to describe the conditions under which the agent should abandon a
goal. However, these rules are linked to the declarative aspect of goals only and thus the
programmer cannot specify that a particular strategy for achieving a goal is bound to fail
under some conditions. Similarly, Shapiro et al. [60] develops an account of goal change for
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situation calculus agents and examined expansion, contraction, and persistence properties for
goals, focusing mostly on agents receiving external requests and cancellations.

In [15], three types of goals for agent-oriented programming languages are identified:
perform goals, achieve goals, and maintain goals. A goal type is seen as a special agent
attitude towards goals. Interestingly, the kind of goals we have formally defined in CANPlan
can be classified within these three types. While event goals and planning goals are perform-
type goals, declarative goals are achieve type of goals. Moreover, some types of motivational
rules inM could be seen as (reactive) maintenance goals.

In [32], plan patterns are used in order to indirectly accommodate declarative goals in
AgentSpeak. The declarative goals modeled enjoy similar properties to those of our Goal con-
struct (e.g., successful termination upon achievement, re-trying upon failure, etc.). In contrast
with the Goal construct, though, the extended AgentSpeak does not model declarative goals
with a first-class citizen language construct. Instead, declarative goal statements are “macro
expanded” into a more complex set of rules, whose combined effect model the behavior of
declarative goals. Although this may appear to be a less involved account of declarative goals
than the one proposed in CANPlan, it relies on the so-called “internal actions,” special actions
that allow for the meta-level manipulation of the intention stack (at the object level). Al-
though the use of internal actions may be convenient for implemented systems like Jason,
it is arguable whether their use is desirable for defining the semantic specification of the
language—they blur the line between meta-level and object-level concepts.

There has also been work on accommodating declarative goals into 3APL/2APL [12, 14,
66]. In its latest version, 3APL carries a declarative goal base and plan-generating rules can
be used to select plans on the basis of both belief and goal conditions. Moreover, each ac-
tive intention is associated with the goal it is meant to achieve, i.e., the “reason” why the
plan is being pursued. In contrast with CANPlan, a 3APL agent carries declarative information
only for the initial goal of the intention, no information is carried for any of the active (in-
strumental) sub-goals. The Goal construct allows for declarative information to be specified
at any level of sub-goaling. Also, at this point, 3APL does not make use of the declarative
information attached to each intention—intentions are not dropped even when their initial
motivating goal is achieved. Still, it is not hard to see how to adapt the deliberation cycle
in [13] to account for such information. Although there is no failure condition associated
to intentions/goals in 3APL, it is possible to explicitly program the dropping of a goal via a
distinguished construct dropgoal(ψ).

Perhaps the BDI-style language that takes declarative goals most seriously is de Boer
et al. [16]’s GOAL language. Behavior in GOAL arises as a consequence of applying so-called
conditional actions from a pre-defined library, stating when it is sensible to perform an ac-
tion given the current beliefs and the current goals. Actions include domain actions, as well
as belief and goal change operators. One unique feature of GOAL is that it comes with a
temporal logic suitable for proving properties of GOAL programs. Also, due to the fact that
conditional actions can only have single actions in their plan-bodies and some fairness condi-
tions imposed in the agent execution scheme, many desirable properties of declarative goals
are implicitly satisfied (e.g., an agent will not be committed to a plan whose goal is satisfied).
Like 3APL, and unlike CANPlan, a GOAL agent maintains a goal base explicitly, which would
facilitate goal logical reasoning beyond goal achievability. The way declarative information
of goals is attached to its procedural information in CANPlan can make such kind of reasoning
more cumbersome. As argued before, the aim in CANPlan is to show how the most practical
aspects of declarative information can be incorporated into standard BDI frameworks with-
out major modifications and while maintaining their overall effectiveness. As a result, the
declarative goal construct provided sits somewhere in between procedural goals and declar-
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ative ones. On the other hand, GOAL does not provide any mechanism for specifying typical
(complex) procedural operations of a domain, a feature central to most agent-oriented pro-
gramming languages, and the framework is currently restricted to propositional languages.
Also, the intrinsic relation between goals and subgoals is not captured in the language which,
in turn, precludes the specification of generic failure recovery strategies.

8 Conclusion and Future Work

In this paper, we have presented a formal semantics for a powerful BDI-style agent program-
ming language that goes beyond existing accounts in two central aspects of rational agency,
namely, goals and means-end analysis. CANPlan includes declarative events (as extensions of
the standard events), a goal-failure handling mechanism providing a sophisticated commit-
ment account for goals and plans, and a built-in account of hierarchical lookahead planning.

In particular, the language developed here has the following characteristics:

– A focus on goals and their characteristics including:
– differentiation between reactive “event-goals” and more persistent goals which in-

clude a declarative component;
– a mechanism for proactively adopting new goals, other than a simple reaction to

external events—and similar to the so-called automatic events in real BDI platforms;
– a semantics which ensures agent watchfulness regarding fortuitous goal achievement,

thus matching generally accepted definitions of goal-oriented behaviour;
– a representation and semantics which allows an agent to recognise and respond to

situations where a goal has become unachievable (or in some other way undesirable),
thus facilitating the realisation of Rao and Georgeff [54]’s condition that goals should
be considered possible, as well as commitment strategies that require representation
of conditions for dropping goals;

– a failure handling semantics matching most implemented BDI systems, where if a par-
ticular approach to achieving a goal fails, an alternative applicable plan is tried;

– a commitment semantics that allows a goal to be dropped not only if it is achieved, or
deemed impossible, but also in cases where it is a problematic subgoal of some other
motivating goal and there exists some alternative feasible way for achieving the latter;

– a Plan construct equivalent to Hierarchical Task Network (HTN) planning which allows
a lookahead on a portion of an agent program, to ensure that choices are made which will
result in successful goal achievement if there is no environmental interference;

– a detailed semantics that allows for variables in both formulae and programs.

For legibility and modularity, we developed the full CANPlan language in a incremen-
tal manner. We first described the core language CANA, which is conceptually equivalent to
AgentSpeak (hence the superscript) in that it presents the core features of BDI programming
languages. Unlike AgentSpeak, though, it captures the failure handling typical of most im-
plemented BDI systems. In Section 3, we extended the core language with declarative event-
goals as extensions of the usual events, yielding then the language CAN. We showed that the
original failure handling mechanism is compatible with the richer notion of events and that
the new language enjoys a commitment strategy that is compatible with, but goes further than,
the well-established single-minded strategy [54]. Finally, in Section 4, we further extended
CAN to integrate on-demand planning capabilities, yielding the final language CANPlan. The
planning mechanism can be used for ensuring intelligent plan selection. More importantly,
we demonstrated that the account of offline reasoning provided is provably equivalent to the
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HTN-style automated planning, thus justifying the integration of established HTN planner
systems into existing BDI frameworks.

The BDI language developed here provides a solid foundation for a range of interesting
further work and language extensions. One natural extension of CANPlan is the integration of
first-principles planning, in a way that allows for discovery of new plans while also respecting
the “user-intent” domain knowledge inherent in the BDI program; see [18, 21, 35]. Another
extension we consider is the use of plan monitoring and (intelligent) replanning accounts
[58] in order to notice changes that may render a plan useless and to resolve such situa-
tion in a manner that is compatible with what has already been committed (and executed).
The techniques for plan failure, abortion, and suspension recently developed by Thangarajah
et al. [64, 65] are all orthogonal to the issues addressed in CANPlan, and hence, it should
be easy to accommodate them into the language. Finally, it would be interesting to further
extend the support for reasoning about goals, such as reasoning about conflicts or synergies
among current goals within different intentions, as in [10, 63]. For example, one could extend
intention-level configurations to include the current agent’s goal base G = G(Γ ) and further
develop the goal adoption rule Gadopt (pp. 19) to avoid adopting conflicting goals or goals
already already implied by some other already active goals.

We believe the work presented here is a significant step towards obtaining a formal BDI
agent framework that goes beyond standard reactive execution, and provides firm foundation
for exploring additional reasoning mechanisms at both the theoretical and practical levels.
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A Proof of Theorem 8

We shall show here the version of the theorem with variables: for any libraries Π and Λ, and
belief bases B and B′ in a bounded agent, and for any action sequencesA and σ, substitutions
η and η′, and event e:

〈Π,Λ,B,A, η,Plan(!e)〉 bdi∗−→ 〈Π,Λ,B′,A · σ, η′, nil〉 iff σ ∈ sol(eη,B, 〈Π,Λ〉).

The proof involves an, almost one-to-one, translation between BDI entities (e.g., actions,
plan rules, plan bodies) and HTN entities (e.g., operators, methods, tasks networks) based on
the relationship among them as discussed in Section 4.1.1, and a proof showing that the BDI
and HTN decomposition mechanisms are equivalent.

When it comes to the translation, the only two non-straightforward cases are the ones
for (i) BDI belief conditions into HTN constraints; and (ii) BDI plan-body programs into
HTN task networks. For case (i), when l is a literal, φ a formula, and n and integer, we take
(l, n)∗ = (l, n) for the base case; and inductively (¬φ, n)∗ = ¬(φ, n)∗ and (φ1 ∧ φ2, n)∗ =
(φ1, n)

∗ ∧ (φ2, n)
∗. The cases for (n, φ)∗ and (n1, φ, n2)

∗ are defined in an analogous way.
The most complex part of the translation involves obtaining HTN network tasks from

BDI plan-bodies programs. With that at hand, it is trivial to build the set of methods from a
plan library. To that end, when P is a plan-body program in the CANPlan user-language, we
define T (P, n) to be P ’s corresponding task network with task labels starting from n, and is
defined inductively as follows:

Base Case: if P = act, then T (P, n) = [{n : act}, true]; if P = nil, then T (P, n) =

[∅, true]; if P =!e, then T (P, n) = [{n : e}, true]; and if P =?φ, then T (P, n) = [{n :

noOp}, (φ, n)∗]. Primitive task noOp is the standard dummy action with no effects.
Inductive Case: Suppose that T (P1, n) = [d1, φ1] and T (P2, n+ |d1|+1) = [d2, φ2]. Then,

if P = P1;P2, we define T (P, n) = [d1∪d2, φ1∧φ2∧(n+|d1| ≺ n+|d1|+1)]; and if P =

P1‖P2, we define T (P, n) = [d1 ∪ d2, φ1 ∧ φ2]. (Note the difference between sequence
and concurrency; the former imposes an extra ordering constrain in the network.)

Finally, the corresponding set of HTN methods for a BDI plan library Π is defined as
T (Π) =

⋃
e:ψ←P∈Π{Tev(e : ψ ← P )}, where Tev is as follows (T (P, 1) = [sP , φP ]):

Tev(e : ψ ← P ) = (e, [{0 : noOp} ∪ sP , φP ∧ (ψ, 0)∗ ∧
∧

(n:t)∈sP

0 ≺ n]).

With the formal relationship between BDI and HTN entities established, one can then
demonstrate—by induction on the structure of plan bodies—that a successful execution re-
sulting from the operational rules of CANPlan corresponds directly to a complete task decom-

position in HTN systems. To that end, one shows that 〈B,A, η, P 〉
plank−→ 〈B′,A · A′, η′, nil〉

if and only if there exists a sequence of task networks d0 · . . . · dn, with d0 = T (P, `),
for some ` ≥ 0, such that di ∈ red(di−1,B, 〈T (Π), Λ〉), for each i ∈ {1, . . . , n}, and
A′ ∈ comp(dn,B, 〈T (Π), Λ〉). (Here, comp(d,B,D) is the set of all plan completions of
a network d containing only primitive tasks, and ignoring all dummy noOp operators (i.e.,
plans for which the constraint formula φ in d is satisfied), and red(d,B,D) is the set of all
reductions of d in B by methods in D. See [26].)

The proof is done first on induction on k. So, if k = 0, then A′ = ε and P = nil.
We then take dn = d0 = [∅, true] and ε ∈ comp(dn,B, 〈T (Π), Λ〉) holds trivially. Next,

suppose the claim holds for all numbers less than some k ≥ 1 and that 〈B,A, η, P 〉
plank+1−→
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〈B′,A·A′, η′, nil〉. We then perform induction on the the structure of program P . For the base
case, suppose that P = act and thus d0 = [{1 : act}, true]. Then A′ = act, P ′ = nil, and
B |= prec(act). Then, we take dn = d0 and it follows that act ∈ comp(dn,B, 〈T (Π), Λ〉).
The case for test is similar. Consider now the case of posting of events, that is, P =!e and

thus d0 = [{0 : e}, true]. Clearly, it has to be the case that (i) 〈B,A, η, !e〉
plan2−→ 〈B,A, η′, P B

L∆M〉; and (ii) 〈B,A, η′, P B L∆M〉
plank−1−→ 〈B′,A · A′, η′′, nil〉. Since the backup program

L∆M is irrelevant in any plan-type derivation, 〈B,A, η′, P 〉
plank−2−→ 〈B′,A·A′, η′′, nil〉. By the

hypothesis induction on k and point (ii), there exists a sequence of task networks d1 · . . . ·dn,
with d1 = T (P, 1) = [s, φ], such that di ∈ red(di−1,B, 〈T (Π), Λ〉), for each i ∈ {2, . . . , n},
and A′ ∈ comp(dn,B, 〈T (Π), Λ〉). Now, by point (i), there must exist a plan rule e : ψ ←
P ∈ Π whose context conditions ψ hold in B, that is, B |= ψ. This implies that there is a
method in T (Π) of the form Me = (e, [{0 : noOp} ∪ s, φ ∧ (ψ, 0)∗ ∧

∧
(n:t)∈s 0 ≺ n]).

Let us now take the modified sequence d′1 · . . . · d′n, where d′i = [si ∪ {0 : noOp}, φi ∧
(ψ, 0)∗ ∧

∧
(n:t)∈s 0 ≺ n], for all i ∈ {1, . . . , n}. Since B |= ψ and noOp is the empty

operator, it is not hard to see that d′i ∈ red(d′i−1,B, 〈T (Π), Λ〉), for each i ∈ {2, . . . , n},
and A′ ∈ comp(d′n,B, 〈T (Π), Λ〉). (Recall that, without loss of generality, comp(d,B,D)
ignores noOp primitive tasks.) Furthermore, due to method M2, d0 ∈ red(d′1,B, 〈T (Π), Λ〉)
and sequence d′0 = d0 · d′1 · . . . · d′n is such that d′i ∈ red(d′i−1,B, 〈T (Π), Λ〉), for each
i ∈ {1, . . . , n}, and A′ ∈ comp(d′n,B, 〈T (Π), Λ〉).

B Complete Operational Semantics for CANPlan

Defined between agent configurations of the form C = 〈Π,Λ,M,B,A, Γ 〉.

C
int
=⇒ C1 C1

event
=⇒ C2 〈C,C2〉

goal ∗
=⇒ 〈C,C′〉 〈C,C′〉 6 goal=⇒

C
CANA
=⇒ C′

ACANPlan

〈id, P, η〉 ∈ Γ 〈Π,Λ,M,B,A, η, P 〉 bdi−→ 〈Π,Λ,M,B′,A′, η′, P ′〉

〈Π,Λ,M,B,A, Γ 〉 int
=⇒ 〈Π,Λ,M,B′,A′, (Γ \ {〈id, P, η〉}) ∪ {〈id, P ′, η′〉}〉

Aint

B′ = (B \ {b | −b ∈ E(C)}) ∪ {b | +b ∈ E(C)} γ! = {!e | !e ∈ E(C)}

C = 〈Π,Λ,M,B,A, Γ 〉 event=⇒ 〈Π,Λ,M,B′,A, Γ d γ!〉
Aev

〈id, P, η〉 ∈ Γ DG(P ) = ∅ 〈B,A, η, P 〉 6 bdi−→

〈C, 〈Π,Λ,M,B,A, Γ 〉〉 goal
=⇒ 〈C, 〈Π,Λ,M,B,A, Γ \ {〈id, P, η〉}〉〉

A1
goal

Cinit[B] 6|= b B |= b e = +b e 6∈ EG(Γ ) 〈Π,Λ,M,B,A, !e〉 −→

〈Cinit, 〈Π,Λ,M,B,A, Γ 〉〉 goal
=⇒ 〈Cinit, 〈Π,Λ,M,B,A, Γ d {!e}〉〉

A2
goal

Cinit[B] |= b B 6|= b e = −b e 6∈ EG(Γ ) 〈Π,Λ,M,B,A, !e〉 −→

〈Cinit, 〈Π,Λ,M,B,A, Γ 〉〉 goal
=⇒ 〈Cinit, 〈Π,Λ,M,B,A, Γ d {!e}〉〉

A3
goal

ψ  P ∈M C[B] 6|= ψθ B |= ψθ 〈B,A, θ, P 〉 −→ 〈B,A, θ′, P ′〉 6 ∃〈id, P ′〉 ∈ Γ

〈C, 〈Π,Λ,M,B,A, Γ 〉〉 goal
=⇒ 〈Π,Λ,M,B,A, Γ d {P ′θ}〉

A4
goal

〈id, P, η〉 ∈ Γ 〈B,A, η, P 〉 −→ 〈B,A, η′, P ′〉 |DGend(B, Pη)| < |DGend(B, P ′η′)|

〈C, 〈Π,Λ,M,B,A, Γ 〉〉 goal
=⇒ 〈C, 〈Π,Λ,M,B,A, (Γ \ {〈id, P, η〉}) ∪ {〈id, P ′, η′〉}〉〉

A5
goal
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B.1 Intention-Level Semantics

Defined between intention-level configurations of the form C=〈Π,Λ,B,A, P 〉. We use two

labelled intention-level transitions bdi−→ and
plan−→; both are assumed when none is specified.

θr∈ ren(vars(Π), vars(η)) ∆={ψ∧ θ̂ :P | e′ :ψ ←P ∈ Πθr, θ ∈ mgu(eη, e′)} 6= ∅
〈Π,Λ,M,B,A, η, !e〉 −→ 〈Π,Λ,M,B,A, η, e :L∆M〉 Event

ψ : P ∈ ∆ θr∈ ren(vars(ψη) ∪ vars(Pη), vars(η)) B |=· (ψηθr)θ
Ps = Pηθr; ?(θ̂r) θfree ∈ ren(vars(Ps), vars(ηθ)) ∆′ = {〈ψ ∧ (¬θ̂r)θ : P 〉}

〈B,A, η, e :L∆M〉 −→ 〈B,A, ηθ(θ−1
free), Ps B e :L(∆ \ {ψ : P}) ∪∆′M〉

Sel

〈B,A, η, P1〉−→〈B′,A′, η′, P ′〉
〈B,A, η, P1 B P2〉−→〈B′,A′, η′, P ′ B P2〉

Bstep
〈B,A, η, nil B P ′〉−→〈B,A, η, nil〉

Bend

P1 6= nil 〈B,A, η, P1〉 6
bdi−→ 〈B,A, η, P2〉

bdi−→ 〈B′,A′, η′, P ′2〉

〈B,A, η, P1 B P2〉
bdi−→ 〈B′,A′, η′, P ′2〉

Bbdi
f

vars(bη) = ∅
〈B,A, η,+b〉 −→ 〈B ∪ {bη},A, η, nil〉

+b
vars(bη) = ∅

〈B,A, η,−b〉 −→ 〈B \ {bη},A, η, nil〉
−b

vars(aη)=∅ a′ :ψ ← Φ−;Φ+∈Λ a′θ=aη B |= ψθ

〈Λ,B,A, η, a〉 −→ 〈Λ, (B \ Φ−θ) ∪ Φ+θ,A · aη, η, nil〉
do

B |=· (φη)θ
〈B,A, η, ?φ〉−→〈B,A, ηθ, nil〉 ?

〈B,A, η, P1〉 −→ 〈B′,A′, η′, P ′1〉
〈B,A, η, P1;P2〉 −→ 〈B′,A′, η′, P ′1;P2〉

Seq1
〈B,A, η, P 〉 −→ 〈B′,A′, η′, P ′〉
〈B,A, η, nil;P 〉 −→ 〈B′,A′, η′, P ′〉

Seq2

〈B,A, η, P1〉 −→ 〈B′,A′, η′, P ′〉
〈B,A, η, P1 ‖ P2〉 −→ 〈B′,A′, η′, P ′ ‖ P2〉

‖1
〈B,A, η, P2〉 −→ 〈B′,A′, η′, P ′〉

〈B,A, η, P1 ‖ P2〉 −→ 〈B′,A′, η′, P1 ‖ P ′〉
‖2

〈B,A, η, nil ‖ P2〉 −→ 〈B,A, η′, P2〉
‖t1 〈B,A, η, P1 ‖ nil〉 −→ 〈B,A, η′, P1〉

‖t2

vars(φs) ∪ vars(φf ) = ∅ B 6|= (φs ∨ φf )η 〈B,A, η, !e〉 bdi−→ 〈B′,A′, η′, P 〉

〈B,A, η,Goal(φs, !e, φf )〉
bdi−→ 〈B′,A′, η′,Goal(φs, P B P, φf )〉

Gbdi
adopt

〈B,A, η,Goal(φs, !e, φf )〉
plan−→ 〈B,A, η, (!e; ?φs)〉

Gplan
adopt

〈B,A, η, P1〉 6−→ 〈B,A, η, P2〉 −→ 〈B′,A′, η′, P ′2〉
〈B,A, η,Goal(φs, P1 B P2, φf )〉 −→ 〈B′,A′, η′,Goal(φs, P ′2 B P2, φf )〉

Grestart

〈B,A, η, P1〉 −→ 〈B′,A′, η′, P ′〉 B 6|= φsη B 6|= φfη

〈B,A, η,Goal(φs, P1 B P2, φf )〉 −→ 〈B′,A′, η′,Goal(φs, P ′ B P2, φf )〉
Gstep

B |= φsη

〈B,A, η,Goal(φs, P, φf )〉 −→ 〈B,A, η, nil〉
Gsucc

B |= φfη

〈B,A, η,Goal(φs, P, φf )〉 −→ 〈B,A, η, ?false〉
Gfail

〈B,A, η, P 〉 plan−→ 〈B′,A′, η′, P ′〉 〈B′,A′, η′, P ′〉
plan∗−→ 〈B′′,A′′, η′′, nil〉

〈B,A, η,Plan(P )〉 bdi−→ 〈B′,A′, η′,Plan(P ′)〉
P

〈B,A, η, P 〉 plan−→ 〈B′,A′, η′, P ′〉

〈B,A, η,Plan(P )〉 plan−→ 〈B′,A′, η′,Plan(P ′)〉
PP

〈B,A, η,Plan(nil)〉 −→ 〈B,A, η, nil〉
Pend
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