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Abstract For people with non-ordinary interests, it is hard to search for information on
the Internet because search engines are impersonalized and are more focused on “average”
individuals with “standard” preferences. In order to improve web search for a community
of people with similar but specific interests, we propose to use the implicit knowledge con-
tained in the search behavior of groups of users. We developed a multi-agent recommendation
system called Implicit, which supports web search for groups or communities of people. In
Implicit, agents observe behavior of their users to learn about the “culture” of the community
with specific interests. They facilitate sharing of knowledge about relevant links within the
community by means of recommendations. The agents also recommend contacts, i.e., who in
the community is the right person to ask for a specific topic. Experimental evaluation shows
that Implicit improves the quality of the web search in terms of precision and recall.

Keywords Implicit Culture · Multi-agent system · Personal agents ·
Recommendation system · Web search · Collaborative search · Communities

1 Introduction

Internet contains a lot of answers to our everyday questions and search engines are aimed at
helping us to find the answers in a set of relevant links. However, results produced by search
engines are mostly impersonalized [57] and satisfy needs of “average” users. If interests of a
user are specific, the most relevant link might not be among the top 10 shown by conventional
search engines. As stated by Gori and Witten [28]

[…]the need to protect minorities can only be addressed within new paradigms; new,
personalized views of the web that supplement today’s horizontal search services.
Different users may merit different answers to the same query[…].
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In the literature this problem is addressed using Internet agents, recommendation
systems and community-based search. Internet agents monitor user browsing behavior, learn
preferences and build profiles of users to assist in their web browsing [16,39]. Coalitions of
agents are also used for answering queries of single or multiple users [15,44] and specific
mechanisms such as auction protocols and reward techniques are applied to implement col-
laboration among agents [58,59]. In order to personalize recommendations, recommendation
systems analyze user queries, the content of the visited pages, and/or implicit and explicit
indicators of satisfaction in order to extract knowledge about user needs and patterns of
behavior. Recommendation systems are usually classified as content-based systems, which
analyze the content of web pages [16,52,54], collaborative filtering systems [30,33,38,41],
which produce recommendations based on the similarity of users, and hybrid systems that
combine the two approaches [4,14,45]. Although groups of users can have common interests
or deal with similar problems, Internet agents and recommendation systems usually focus on
isolated users. Differently, in the research on community-based web search (e.g., I-SPY [51],
Beehive [32], and other systems [2,25]) the focus is on the preferences of the community
rather than those of a single user.

In the majority of solutions developed to date, explicit feedback from the user is required.
This means that after receiving search results users must evaluate them, e.g., by rating, or
ranking. This requires an additional effort from users and, therefore, explicit feedback is
often discouraged [49]. Furthermore, sometimes users are inconsistent in the explicit ratings
provided [36]. All these suggest that implicit indicators of user interests should be exploited.
Moreover, the study by Fox et al. [26] has shown that implicit measures can be a suitable
alternative to explicit feedback. All these indicate that systems supporting web search in
communities of like-minded users with specific interests are required. Moreover, the systems
should use implicit feedback where possible and provide means for sharing search experi-
ence with the community members, i.e., the content found relevant by someone should be
immediately available for others submitting similar queries. The goal of such systems should
be to improve the quality of web search for the community.

In this paper, we present a multi-agent recommendation system called Implicit, which
is intended to support the web search of communities of people working together (e.g., a
project team, PhD students of the same department, a community of practice, organizational
communities). Such communities have specific common interests related to their activities.
Even though Web 2.0 provides a lot of tools for representing explicitly such communities
(Facebook, LinkedIn, to name a few), these tools not necessarily provide support for web
search. Our system is intended to be used in such communities for the purpose of improving
their search experience. The system can increase quality, in terms of precision and recall,
of search in small communities, supporting collaboration of the community members and
sharing experience about using particular web links relevant to their specific interests.

Implicit aims at helping such communities to share their history of searches to recom-
mend links relevant to their interests. This helps to improve community search experience
and also to help novel community members to adapt to the new community quicker. Users
submit their queries to the system and Implicit suggests specific links and people to con-
tact. To produce recommendations relevant to community’s specific interests, the system
uses implicit feedback, namely, observed behavior of the members of the community. More
specifically, it exploits previous observations about the behavior of other users after they sub-
mitted similar queries. Each user has a personal agent that interacts with the personal agents
of other users to produce recommendations. The system implements a hybrid recommenda-
tion approach, providing users with the suggestions from and about the community members
(collaborative recommendations) and with the results obtained from Google (content-based
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recommendations). The system allows for the exploitation of social interactions between
community members, i.e., by their personal agents, in order to increase the quality of recom-
mendations. Personal agents represent their users in the system, tracking their interests and
browsing behavior with respect to using the links and contacts. Thus, Implicit also allows
for shifting the burden of the collaboration task, namely, answering queries from other users,
from the user to the personal agent of the user. The system is based on the concept of Implicit
Culture. Implicit Culture [13] is a generalization of Collaborative Filtering [38], which is a
technique of producing personal recommendations using similarities between user ratings.
Implicit Culture helps new community members to behave similarly to the other members
without the need of expressing explicitly the knowledge of the community.

The following are the main contributions of the paper. The first contribution is architec-
ture and an implemented prototype of a multi-agent system for collaborative web search.
The second contribution is the unique recommendation framework that allows for develop-
ing recommendation systems by using social interactions. The recommendation framework
filters not only links, but also people that make suggestions, thus establishing implicit trust
relations between users. Moreover, filtering is based on the activities of people and allows
for producing suggestions for an emergent community, discovered by the system “on the
fly”, even though the system is more intended for the use in an a priori defined community
of people. The framework generalizes widely used Collaborative Filtering and allows for fil-
tering not only ratings, but also actions in general. This paper is an extension of the previous
work of the authors [8]. With respect to the previous work, the description of the system
and the recommendation mechanism has been extended, more information on the evaluation
methodology has been presented, and new experimental results have been added.

The paper organized as follows: we start with a discussion of related work in Sect. 2.
Section 3 briefly describes the concepts of Implicit Culture and gives the description of Sys-
tems for Implicit Culture Support. Section 4 provides an overview of the Implicit system.
We go into detail of the internal architecture of the system in Sect. 5 and evaluate the system
in Sect. 6. Finally, we discuss the proposed approach in Sect. 7 and conclude the paper in
Sect. 8.

2 Related work

In this section, we review the related work. For convenience, we grouped the related work in
several areas describing system for recommending contacts, social navigation, community-
based search engines, swarm intelligence, agent-based, and other related approaches.

2.1 Recommending contacts

Vignollet et al. in [56] described a recommendation system that adopts the collaborative
filtering and social networks analysis techniques. The system recommends contacts instead
of contents. The idea behind contact recommendations is that users prefer others’ advice to
impersonal guidance and also appreciate enriching relationships with others. This system is
similar to our work in the sense of taking into account the social aspect of the information
search.

A multi-agent referral system MARS has been presented by Yu and Singh [60]. In that
system, each user has a personal agent. The agents interact in order to provide users with
answers to their questions. Agents are also able to give each other the links to the other agents,
which is similar to recommending agent IDs in Implicit. There is a complex model of agent
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interactions in MARS. Each agent classifies the other agents as neighbors and acquaintances
and their status in this classification determines the way of contacting them. The system uses
ontologies to facilitate knowledge sharing among agents. The ontologies must be pre-defined
and shared among all the agents, while we emphasize the facilitation of implicit knowledge
sharing by managing documents, links and reference to people. Differently from our system,
the agents in MARS do not answer all questions of other agents, but only those related to the
interests of their users. The paper is focused more on general knowledge search rather than
on web search. Finally, the system is mail-based while Implicit is a web-based system that
adopts FIPA standards and uses the JADE platform.

Another multi-agent referral system described by Singh et al. [50] is similar to Implicit:
agents send answers to queries and also give referrals to other agents. The scope of their
system is on service provision in general, independently of the kind of service agents pro-
vide, while Implicit focuses only on web search. Systems also differ in the way of modeling
expertise of agents (or their users): agents in the system of Singh et al. explicitly maintain the
expertise of their users and the expertise of neighbors, constantly updating the list of knowl-
edgeable peers, while agents in Implicit do not model expertise of their users and neighbors
explicitly, but get this information from the history of past actions. Also, agents in Implicit
try to answer each query, not only those related to the expertise of their users (as in the system
of Singh et al.).

2.2 Social navigation

Implicit Culture in general and applied for web search in particular is related to the notion
of Social Navigation. Initially introduced in [20] and further developed by Dieberger et al.
[19] it has been also applied to the problem of the navigation on the Internet [18].

Essentially, Implicit Culture and Social Navigation are very close and have been applied
in similar settings. Implicit Culture does not cover all the scope of the Social Navigation
problems and it has been formally defined [7] as a relation between groups of agents. The
definition emphasizes the transfer of knowledge and behavior between groups and allows
one to evaluate whether the Implicit Culture relation arises from some system usage. It can
be argued that some effective Social Navigation systems produce such a relation. On the
other hand, other Social Navigation systems, for instance, those supporting awareness (e.g.,
social proxies [24]) do not necessarily produce the Implicit Culture relation. We argue that
it is possible to use Implicit Culture as a tool for building, assessing and evaluating Social
Navigation systems.

The main problem the Social Navigation approach aims at is guiding people to relevant
information, while the Implicit Culture approach aims at achieving the transfer of knowledge
and behavior from one group to another. In this perspective, the scope of the Implicit Culture
approach seems to be more general than just dealing with the transfer of information between
groups. However, when applied in the field of recommendation systems, two approaches look
very similar.

2.3 Community-based engines

The Implicit system is also related to community-based search engines, like I-Spy [51],
Eurekster,1 and to social bookmarking services, such as Delicious.2 However, the Implicit
system differs from these systems in several aspects. First, Implicit Culture focuses more

1 http://www.eurekster.com/. Social search technology.
2 http://delicious.com/. Social bookmarking.
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on an organizational community, rather than on an emergent or online one. Second, it uses
collaboration and interactions among agents to improve suggestions. Third, it recommends
also agents, therefore establishing implicit trust relationship in the community. Finally, our
system can be used to filter and re-rank the results from systems such as Delicious to a specific
user community. It would be possible to do this by analyzing the similarity between links
from Delicious and links accepted by the community in the past.

2.4 Swarm intelligence

The notion of cultural theory in the Implicit system is related to swarm intelligence theories,
in particular, to trail laying, or ant foraging. These theories have been applied in Social Nav-
igation systems [22,55] to guide people such as learners, to relevant information using the
data from previous interactions with the system. Unlike these approaches, which suggest that
the user follow trails taken by the majority, in the Implicit Culture approach the user’s actions
are compared with actions of the whole community and not necessarily the most popular ones
are suggested. More precisely, taking into account user’s past actions, the system can offer
actions which are less popular in general, but are common among the part of the community
which is the most similar to the user.

2.5 Agent-based systems for improving web search

Menczer [44] suggests complementing search engines with online web mining in order to
take into account the dynamic structure of the web and to recommend recent web pages which
are not yet known by common search engines. To achieve this goal the adaptive population
of web search agents united in a multi-agent system emulate user browsing behavior. The
system consists of InfoSpiders, which are the agents incorporating neural net and analyzing
the links and the context of the documents corresponding to the links on the current page in
order to propose new documents to the user. The main goal of this system is the discovery of
new information, not yet presented in web search engines, in order to provide more up-to-date
service to the user.

A collaborative multi-agent web mining system called Collaborative Spiders was devel-
oped by Chau et. al [15]. The system implements the post-retrieval analysis and enables
across-user collaboration in web search. In order to provide a user with recommendations a
special agent performs profile matching to find the information potentially interesting to the
user. Before the search, the user has to specify the area of the interest and privacy or publicity
of the search. Unlike to Implicit, in the Collaborative Spiders system the user should analyze
excessive system output because he/she has to browse a number of similar already finished
search sessions.

SurfAgent [52] is an information agent that builds a user profile by using user-supplied
examples of relevant document. The authors presented and evaluated the mechanism of
automatic query generation from the user profile and using the generated queries to provide
relevant documents to the user. Such approach of pro-active searching for documents that
might be interesting for the user is called the “push” approach. Implicit applies the “pull”
approach where recommendations are delivered to the users only when they search. Also,
we do not represent information about user searches explicitly, as user profiles. Therefore,
query generation from user profiles is not applicable in our system.

AgentSeeker [47] is a multi-agent platform for indexing local and online textual files.
It implements FIPA standards and aims at improving search in enterprises. AgentSeeker
indexes and retrieves documents using a pre-defined or collaboratively created ontology for
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representing the domain knowledge. Implicit and AgentSeeker are similar in the goal of
finding information relevant to user’s query, but differ in the approaches. Implicit does not
deal with crawling and indexing documents, delegating this task to a conventional search
engine and augmenting results with recommendations from SICS.

2.6 Other related work

The Implicit system can be used in order to increase quality of search in small communities,
supporting collaboration of the community members and sharing experience about using
particular web links relevant to their specific interests. In this regard, Implicit is complemen-
tary to the work by Geczy et al. [27] who investigated patterns in browsing behavior of a
community of knowledge workers.

A recommendation model presented in [57] produces recommendations by using the
social network existing between users and modeling the trust relationships with neighbors.
The topic of using trust in recommendation systems is deeply investigated in papers by Massa
(see, e.g., [43]). Differently to such systems, in Implicit we do not model the social network
and trust relationships explicitly. However, trust relations and social ties emerge from inter-
actions between agents. In the conducted simulations we noted that after a certain number of
queries, the SICS of each agent mainly contacted only one single agent, who gave the most
relevant recommendations in the past.

In the broad sense, the architecture of the Implicit system is similar to peer-to-peer net-
works, if we imagine that agents can run in different hosts (JADE allows this) and different
instances of Implicit system can communicate with each other. Lopes and Botelho [42]
present a survey of recent work on the integration of multi-agent systems and peer-to-peer
computing for resource coordination. Such coordination includes the resource discovery with
web search being just an example of it.

Implicit is one of the applications of the Implicit Culture ideas [7,13] to the web search
area. However, we have applied the Implicit Culture ideas also in other domains, for instance,
recommendation of web services [11], software patterns [9] and supporting the work of biol-
ogists in their laboratories [48]. The detailed description of the recommendation framework
was published in [10]. We are currently working on formal definitions of culture and Implicit
Culture, and preliminary results were presented in [7,12].

3 Background

This section starts with an overview of the general idea of the Implicit Culture approach
that we use to produce recommendations. Then we describe the architecture of a System for
Implicit Culture Support (SICS), which implements Implicit Culture ideas in our system.

3.1 Implicit Culture

A group of agents working together as a community have and exploit a great amount of
knowledge and skills. These skills and knowledge allow agents to behave in an optimal way,
i.e. to perform tasks and to solve problems faster. Knowledge can be either explicit, which can
be formally expressed and transmitted to others through manuals, specifications, regulations,
rules or procedures [46], or implicit, which is understood without being openly expressed, is
unvoiced or unspoken [46], and can be hidden in skills and the experiences of the community
members. For instance, someone’s experience can be classified as implicit knowledge [21].
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When new agents join the community their actions are far from optimal due to the absence
of skills and knowledge the others have. Therefore they face the problem of acquiring the
required knowledge. In other words, in order to act in the community in the optimal way, new-
comers should acquire the knowledge that influences the behavior (actions) of the members
of the community. We also call this knowledge and behavior the culture of the community. In
the Implicit Culture Framework [7] the culture of a community is represented as a cultural
theory consisting of several if …then rules.

If it is possible to exert partial control over the environment, then by changing an agent’s
view about the environment, it is possible to change the set of actions the agent can perform.
The change in possible actions can lead to the situation where the agent acts similarly to the
way a community member would act. This means that the agent behaves according to the
community culture without knowing about the group or its behavior. The relation between
two groups of agents such that the agents belonging to a group behave consistently with the
“culture” of the agents belonging to another group has been defined as Implicit Culture [13].
The groups can partially overlap, or even coincide.

Let us map the web search domain to the terms of the Implicit Culture Framework. Agents
are people searching the web, actions are: requesting a link specifying a query, accepting or
rejecting the proposed link. A cultural theory describing general behavior of the community
in our system is

request(a, q) → accept(a, l, q), (1)

where a is an agent, q is a query, l is a link. This theory (in this case, just a rule) says that
if an agent a searches with a query q then the system should recommend some link l that is
likely to be accepted. Such theory is specified a priori and in terms of the Implicit Culture
Framework it is called the domain theory. More specific culture of the community is the set of
links accepted by the community for certain queries corresponding to their shared interests.
Such theory represents the knowledge about user behavior, and this knowledge is learned by
the system from user interactions with the system. An example of a more specific cultural
theory describing actions of the community could be

∀x∈Group : request(x, ‘apartments’) → accept(x, www.phosphoro.com, ‘apartments’).

(2)

This theory expresses that for all agents of the group if they search for apartments, they
tend to accept the link www.phosphoro.com.

Let us briefly explain the scenario in which this link is non-obvious and relevant. Consider
a community of PhD students in Trento who have been living there for quite some time. In the
past, they searched for apartments in Trento using the Implicit system, got recommendations
about the link www.phosphoro.com and followed this link. All these actions are recorded by
the system. This link is relevant to the specific interests of the group, in this case it is assumed
that a person searches for the apartments in Trento, Italy and prefers private offers, not those
from an agency. Now, let us assume a group of new PhD students arrived in Trento, and they
certainly do not know about this link. For instance, in the time of writing this link did not
appear among the first 10 results provided by Google for the query ‘apartments’. However,
this link is of extreme importance for people searching for an apartment in Trento. If Implicit
is able to provide the newcomers with this link and they access the desired information, then
it is possible to say that new group behave in accordance with the community culture and
that the Implicit Culture relation is established.
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3.2 Systems for Implicit Culture Support (SICS)

In the Implicit system each agent tries to establish the Implicit Culture relation within the
group of agents on the platform. In order to do this, each agent relies on a SICS.

The general architecture of a SICS is shown in Fig. 1 and consists of the following three
basic components:

– The observer, which collects information about actions performed by the user and stores
this information in a database (DB) of observations;

– The inductive module, which analyzes stored observations and applies data mining tech-
niques to find patterns of user behavior, i.e. the culture of the community. The discovered
patterns are referred to as a cultural theory;

– The composer, which uses the information collected by the observer and the theory pro-
duced by the inductive module in order to produce recommendations to its user or to other
agents.

The observer module monitors the actions users perform while interacting with the sys-
tem. For instance, a query is treated as the request action. It is interpreted by the personal
agent both as the request of a relevant resource link and as the request of the ID of an agent
which can provide relevant recommendation. Therefore, two observations appear in the DB
of observations as the result of the query: request(user,query,resource-link)
and request(user,query,agent ID). If the user clicks on the recommended link,
the link is considered to be accepted and the observation accept(user, query,
resource-link) is stored in the DB. If the resource-link has been suggested by
an agent, which could be the user’s personal agent or the personal agent of another user, one
more observation is stored: accept(user,query,agent ID). When the user starts
another search or exits the system, all the recommendations which were proposed to the user

Fig. 1 The architecture of a SICS. The SICS includes three components: the observer, which monitors user
activities and stores in the DB the observations about the performed actions; the inductive module, which
discovers patterns of user behavior by analyzing observations; the composer module, which produces recom-
mendation using information collected by the observer and induced by the inductive module
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but have not been accepted, are treated as rejected. For each rejected link two observations
appear:reject(user,query,resource-link),reject(user,query,agent
ID) (in case the link has been recommended by an agent). It is important to notice that by
storing IDs of the agents that provided the accepted or rejected recommendations the system
can discover patterns of behavior related to accepting results obtained from a certain agent,
thus maintaining implicit trust relationships. At the moment, we do not use any explicit model
of trust, but we noticed in the experiments that during intra-agent communication, agents tend
to ask certain personal agents (but not others) for advice, therefore forming a kind of social
network. The choice of agents to ask is based only on past history of observations, i.e., the
agent providing results that are accepted by the user of the agent–requester is more likely to
be chosen than the agent providing results that are rejected by the user of the agent–requester.

The inductive module applies data mining techniques in order to extract interesting pat-
terns from the user behavior. In the current version of the system the SICS implements the
Apriori algorithm for learning association rules between the actions. This algorithm has been
described by Agrawal and Ramakrishnan [1] and it deals with the problem of association
rules mining. In our settings, this problem can be briefly formulated in the following way:
given a DB of queries and links, it is necessary to find which links are accepted for which
queries. Without going into the details of the algorithm (an interested reader can find them
in [1]), we can say that mined rules have the form query → link and are characterized
by confidence and support. The confidence of a rule denotes the percentage of cases where
the link from the rule (and not other links) was accepted for the keyword from the rule.
The support denotes the percentage of the actions in the DB which contain this rule. For
instance, if there are 100 actions in the DB, 20 of them are request (∗, f ootball), meaning
that some agents asked for the keyword “football”, and seven are accept(*, www.fifa.org,
football) meaning that in seven cases the link www.fifa.org was accepted for this keyword,
then the confidence is 7/20 = 0.35 while the support is 7/100 = 0.07. An example of the
theory produced by the inductive module is the theory in Eq. 2. Similarly, the problem for
discovering which agents are accepted for which keywords can be formulated and addressed.
Such problem is related to the problem of finding experts in a specific area of interests.

The composer finds links and agent IDs that are likely to be accepted by the user or the
agent performing the search. The internal architecture of the composer module is represented
in Fig. 2 and consists of two main modules, the Cultural Action Finder (CAF) and the Scene
Producer (SP). It also includes the pool that serves as a buffer for information exchange
between the CAF and the SP. The goal of the CAF module is to find cultural actions, i.e. the
actions that satisfy the right part of the theory (consequent) for the submitted action, corre-
sponding to the left part of the theory (antecedent). The cultural actions are then placed in the
pool. The SP module evaluates the actions from the pool. In particular, given the actions the
users performed, SP calculates the similarity between the users, and selects the one whose
actions are the most similar to the cultural action. The links or IDs from these actions are
sent as recommendations to the personal agent who started the search.

The similarity between users is calculated based on their actions, i.e., the more actions
two users have in common, the more similarity they have. The similarity between two actions
is calculated based on the similarity of names of actions and objects of the actions, i.e., two
actions will have similarity one if they have the same names and the same objects (keyword,
link) and they will have similarity zero if they have different names. If the actions have the
same name but different objects (e.g., different links accepted for the same keyword), the
similarity will be 0.5 (the users are similar in the terms of accepting something for a certain
keyword, but what they accepted is different). We give an example of how the SICS works
in Sect. 5.
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Fig. 2 The internal architecture of the composer module. In the first step, the composer looks through obser-
vations to select actions that match the “if” part of the theory. In the second step, it builds the matrix of
observations where the columns correspond to links or agent IDs, the rows correspond to users, and the entries
contain observations about the actions (accept,reject) performed with the link or agent ID by the agent. In the
third step, the CAF selects links satisfying the cultural theory to the pool. Finally, the SP uses the matrix of
observations to calculate the similarity between agents and to selects the best link from the pool

The SICS architecture allows the Implicit system to find relevant links and to discover IDs
of relevant agents with the same mechanism. The SICS calculates the similarity between the
community members in order to produce suggestions. Therefore, it personalizes web search
to a certain extent. For the more detailed description of the SICS module, we refer the reader
to [7].

4 The Implicit system

In this section, we describe the architecture of the system and the user interface. The details
concerning the internal agent architecture and the search process are given in Sect. 5.

4.1 The system architecture

Implicit is a multi-agent recommendation system that aims at improving web search of its
users. Figure 3 illustrates the architecture by showing an instance of the system with three
personal agents. The system consists of the client part and the server part. A user at the client
side accesses the user interface via browser. In the system, there is exactly one personal agent
for each user. All personal agents are running on the JADE platform on the server side. The
queries submitted by the user are received by the user’s personal agent. The personal agent
contains behaviors for communication with external information sources, such as Google,
and for producing recommendations about the relevant links and agent IDs using the SICS
module. The SICS module implementing the Implicit Culture recommendation framework,
and, therefore, containing the observer, the inductive and the composer modules, is an essen-
tial part of each personal agent. The SICS does not interact with other personal agents directly
and only stores observations about actions involving its personal agent. This architectural
decision allows for having autonomous agents, so that they can produce recommendations
even if there are no other agents in the platform. It also allows for reduce the number of
observations stored by the observer of the SICS, therefore decreasing the response time of
the SICS. Agents can also produce recommendations using other resources, such as search
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Fig. 3 An example of the system with three agents. Personal agents process queries from users and interact
with each other to share experience of using particular links by their users; the agents produce recommenda-
tions by using the SICS module; they also use GoogleAPI to query the Google search engine. The DF agent
provides a list of personal agents

trees or bookmark collections of their users. The obtained results appear in the user interface.
When producing recommendations, agents aim at finding web pages that members of the
community consider relevant to their searches. For this purpose, the agents adopt the Implicit
Culture approach, searching for the links that satisfy specific behavioral patterns of the
group.

Let us describe how users interact with the system. A user logs into the system, enters a
query and receives the results from Google complemented with recommendations produced
by the user’s personal agent in collaboration with other personal agents. Figure 4 shows the
browser window with the list of results. In the bottom part of the window there are the first
10 links obtained from the Google search engine, while in the top part there are several links
received as recommendations from the personal agents of the community members. The
name of the link provider (“Google” or the name of the community member) appears in the
box preceding the link. Whenever user clicks on one of the results, the information about
this action is forwarded to the personal agent of the user as feedback indicating relevance of
the link to the search. After the user exits the system or starts another search, the non-clicked
links are marked as rejected.

If it is the first time the user interacts with the system, the SICS will recommend the link
expressed by the cultural theory, i.e. corresponding to the Implicit Culture of the community
(the links considered relevant for certain keywords). Otherwise, if the user has performed
several searches already, the SICS will use the domain theory and the history of observations
to find which links were accepted in the past for the entered keyword by similar users.
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Fig. 4 Results produced by the system for the entered query. The links recommended by the personal agents
of the other users are displayed in the top part of the window. The results from the Google search engine are
shown in the bottom part

In the following, we will explain interactions between a user and a personal agent using
a running example.

Example Let us consider a user Sally who looks for a website that provides a collection
of announcements about apartments available for rent. She logs in the Implicit system and
types a query “apartments”. The query is processed by the personal agent of Sally. Fist,
the personal agent obtains the first 10 results from Google. Figure 4 shows the following
Google results: www.apartments.com, www.only-apartments.com, www.rentalinrome.com.
Second, the personal agent uses the SICS module to process the query in several steps: search-
ing for links during the internal search and searching for agents to contact during the external
search. Searched links and agent IDs should be related to the entered query “apartments”.
If the agent does not find any agent IDs using the SICS, it contacts the Directory Facilitator
(DF) agent (explained in more detail in the next section). Once the personal agent contacted
all agents found during the external search or by contacting the DF, it displays all the obtained
links in the user browser. In this example the links www.trentinobedandbreakfast.it, www.
phosphoro.com and www.apartments.com from Sally and her colleagues, Mark and Li, are
displayed. The personal agent stops the search at this point and becomes idle, waiting for
the feedback or a new query from Sally and eventually responding to the queries of other
personal agents. Let us suppose that Sally clicks on www.phosphoro.com. Her personal agent
receives the feedback message about accepting this link. Since the link was suggested by
Mark’s personal agent, the feedback will be also treated as accepting Mark’s personal agent.
When Sally exits the system or starts another search, the not followed link, www.apartments.
com, and the corresponding agent are marked as rejected.

4.2 Personal search history

Implicit also allows for the quick access to the history of previous user searches. The history
is maintained by the personal agent, which accesses it after querying Google and shows the
results on the user interface. For instance, in Fig. 4, the link from Sally’s personal agent
comes from Sally’s history of previous searches. Another example of the knowledge avail-
able locally is a personal bookmark collection in someone’s browser. User personal collection
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of bookmarks on Delicious could be an example of user-specific knowledge, which is not
available locally, i.e., stored on the Internet.

4.3 Motivation for using agents in the system

The use of agents in the system is motivated by the following: (i) agents assist their users in
web search activities, i.e., agents personalize user searches, autonomously interact with other
personal agents of the community, and facilitate maintenance of the past search history; (ii)
agents provide an interface to different kinds of search, i.e., Google, SICS, without the need
of heavy client part of the system; (iii) agents recommend other agents on the platform thus
establishing implicit trust relationships in the system; (iv) even if a user is not accessing the
system for some time, the personal agent stays there, answers queries from other agents and
receives feedback on the proposed results thereby improving its expertise; (v) agents facilitate
sharing of information that is usually shared only by word-of-mouth communications; and
(vi) finally, in the simulations we conducted to validate the system (see Sect. 6), each agent
contained a model of the user in order to simulate users of the system.

4.4 Implementation details

The system has been implemented using JADE (Java Agent DEvelopment framework) [6].
JADE adopts a task-based model of the agent and it is a one of the most powerful tools for the
development of FIPA3-compliant multi-agent systems. In the current implementation, each
agent uses the Google SOAP Search API, but in principle, it is possible to contact any search
engine that provides similar API. Alternatively, user queries can be forwarded to other search
engines, like Yahoo! or Vivisimo by means of wrappers, implemented by special agents on
the platform.4

5 Agent architecture and the search process

This section provides more details about the technical description of personal agents, their
interactions and the search and recommendation mechanism.

5.1 The architecture of a personal agent

In the following we define basic terms used in JADE and describe the internal architecture
of an agent in our system. Figure 5 illustrates the definitions and the architecture.

A personal agent is a software agent running on the server side assisting its user in their
searches, receiving queries and producing recommendations in response.

A behavior is a procedure that implements tasks, or intentions, of an agent [6]. The agent
is able to execute a behavior in response to different internal (e.g., calculations finished) and
external (e.g., message received) events.

A behavior scheduler is an internal agent component that manages the scheduling of
behaviors and determines which behavior to run at the moment and what action to perform
as a consequence.

An inbox is a queue of messages received from the user and from other agents.

3 http://www.fipa.org/. Foundation for Intelligent Physical Agents (FIPA).
4 A wrapper agent for the Vivisimo search engine has been developed as a student project at DISI, UNITN.
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Fig. 5 An internal architecture
of the personal agent. A behavior
of an agent is a task or reactions
to an internal or external event.
The execution of the behaviors
and switching between them is
performed by a behavior
scheduler. An inbox contains
messages received by the agent.
Agent’s resources include
observations, SICS and Google
API

To produce recommendations the agent uses its resources that include the information
available to the agent, e.g., observations about user actions, and specific functionalities such
as getting recommendations using the SICS or getting links from Google.

5.2 The search process

Let us describe behaviors and other parts of the agent architecture that participate in the search
process in detail. As described in Sect. 4, a query received from the user interface triggers
a set of steps executed by the personal agent. The process of producing recommendations
that the user finally sees in the browser window consists of several parts, implemented as
behaviors. When the agent receives the query message from the interface, it starts three search
behaviors that run in the following order: first the Google search behavior, then the Internal
search behavior that includes Search past history behavior, and, finally, the External search
behavior. For brevity, we refer to the sequence of these three behaviors as “the search”. The
results obtained during all three steps of the search are shown to the user.

The sequence diagram in Fig. 6 illustrates the details of the interactions between the user
and the personal agent during the search. During the Google search behavior the agent for-
wards the query to Google. After receiving the response, the agent shows the obtained links
to the user and starts the Internal search behavior. In the internal search the goal of the SICS
module is to recommend web links using the information about the past user actions about
searches and link acceptance. In case the SICS does not produce any recommendation in
this step, the past search history is used to recommend links accepted by the user for similar
queries in the past. All the generated links are stored in the list of results and the External
search behavior is started. This behavior also uses the SICS, but the goal of the SICS in this
case is to find relevant links using external resources, i.e., to propose the IDs of agents to
contact. The techniques used within the SICS to recommend links and agents are the same.
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Fig. 6 A sequence diagram of interactions between the user and the personal agent during the search

If there are no suggestions about agent IDs, the agent contacts the DF. According to the FIPA
standards, the DF is a mandatory agent that provides yellow pages service on the agent plat-
form. In our system, the DF simply provides the agent with the IDs of other personal agents
on the platform. Thus, the use of the SICS module helps to reduce the number of interac-
tions between the agents. Having filled the list of agents to contact, the personal agent starts
interaction by sending a query to each agent in the list. When all the agents are contacted,
the External search behavior queries new agents that were suggested during the search and
so on. When all queries have been answered by the suggested agents, the system adds the
obtained links to the list of results and shows all the links from the list to the user.

Currently, the DF provides only IDs of the personal agents. Such IDs are equal to the
nicknames of agents’ users and, therefore, displayed together with recommendations. In our
settings of a small community this should be enough (even on Internet forums people are
usually known just by their nicknames). However, in the future, it would be possible to also
display, for instance, the top K keywords to which the agent provides best recommendations,
so that agents would be known not only by nicknames of their users, e.g., “Sally”, but also
by the expertise, e.g., “Sally (football, rugby, Java)”.

When agents query each other, the agent-responder does not contact Google, because the
agent-questioner can do this too. The agent-responder executes the Internal search behavior
and the External search behavior to recommend to the agent-questioner links and agents to
contact.
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5.3 An example of recommendation

In this section, we provide more details on how recommendations are created. For explana-
tions we will use the running example.

Example When the personal agent of Sally receives the query “apartments” and starts
the search, an observation is produced by the observer module of the SICS and appears
in the DB of observation. The observation includes the name of the requester, and the
query, which contains the type of the requested recommendation, i.e. link or agent:
request(Sally,apartments:link).

This observation is then sent to the composer module that processes it in several steps. In
the first step, the CAF, a submodule of the composer module of the SICS, builds the matrix
of observations (Table 1) and matches the request action with the rule of the theory shown
in Eq. 1. The action matches the rule, so the right part of the rule, accept (a, l, q), is taken
as a cultural action. After substituting the value of the variables a and q with those from
the request action, the cultural action α = accept (Sally, l, apartments : link) goes to the
pool. The SP, a submodule of the composer module of the SICS, takes the action α from the
pool and calculates which agents performed actions most similar to α. For this calculation,
the SP uses the matrix of observations. The rows of the matrix contain agent names, and the
columns contain links, while the cells contain actions that involve the corresponding agent-
link pair, e.g., accept or reject of the link by the agent for a keyword. Since in the matrix of
observations in our example (Table 1), Mark’s actions are the most similar to Sally’s actions,
the link www.phosphoro.com is recommended and put in the list of results.

Together with asking the SICS for relevant links, the personal agent of Sally submits
another query to the SICS module, requesting agent IDs for the keyword “apartments”, and
the observation request(Sally,apartments:agent) is stored in the DB of obser-
vations. Let us suppose that the SICS returns the ID “Li” as the result. The personal agent
of Sally contacts the personal agent of Li and gets the link www.apartments.com as a rec-
ommendation. This link is put in the list of results and then the results, i.e. www.phosphoro.
com and www.apartments.com are displayed in the user browser. The personal agent stops
the search at this point and becomes idle, waiting for the feedback or a new query from Sally
and eventually responding to the queries of other personal agents. Let us suppose that the
users clicks on www.phosphoro.com. The personal agent of the user receives the feedback
message that is converted to the actions accept(Sally, www.phosphoro.com, apart-
ments:link), accept(Sally, Mark, apartments:agent). When Sally exits the
system or starts another search, the feedback about the not followed link is received about
the personal agent and converted to the actions reject(Sally, www.apartments.com,
apartments:link), reject(Sally, Li, apartments:agent).

Table 1 A matrix of observations

Agent/link www.hotel.it www.phosphoro.com www.only-apartments.com

Li accept(apartments)

Mark accept(hotels), reject(cars) accept(apartments) reject(apartments)

Sally accept(hotels)

Rows contain users, columns contain links, while cells contain actions performed by the user on the link
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6 Experimental evaluation

In this section, we present the results of the pilot study of the system with real users and its
evaluation with user models.

6.1 Pilot study with real users

The goal of this pilot study was to see how the system might be accepted by people and
whether it provides enough support for sharing experience in a community of practice.

We performed the study in a small company located near Trento, Italy. The company
offers courses in different areas of IT. For promoting interaction between course attendees
the company provided a forum with topics dedicated to the content of the courses.

For this study people attending the courses related to the Java programming language were
selected. Eleven course attendees agreed to participate in the study. When dealing with the
system, the participants were focused on a narrower topic of game development in the Java
language. The Implicit system was integrated in the company forum, namely, the interface
was modified to enable user requests, suggestions from the Implicit system, and feedback on
forum messages. Since participants had no prior knowledge of game development in Java,
they were similar with respect to their information needs. There were no explicit control
group in the experiment, but we performed comparison of the group with the same group in
the beginning of the experiment.

Participants used the system in the following manner: whenever they wanted to get an
answer to a question, they clicked on the Implicit button in the interface and submitted sev-
eral keywords as their query to the system. The system ran the general search mechanism
described above, forwarding the query to other personal agents and to Google. In addition
to this, the query was forwarded to the specific wrapper agent that dealt with the retrieval
of the forum messages. This wrapper used the SICS to retrieve messages that were accepted
for similar queries previously. The feedback collected previously has been used to rank the
results. In this application, first forum messages, then links from the users, and, finally, links
from Google were displayed and a result was considered “accepted” if the user clicked on
it. Moreover, users were able to express their level of satisfaction with results by means of
explicit feedback—ratings in the scale from 1(very bad) to 6(excellent) for the five following
categories: (i) quality of message, (ii) quality of the code, (iii) message was useful to the user,
(iv) the user would recommend the message to others, and (v) it was relevant to the original
question of the user. The users were not required to provide ratings in all five categories.
There was also a possibility to rate messages directly when browsing forum threads, without
the connection of messages with requests. Messages rated in such a manner were retrieved
by the forum wrapper in case the retrieval of messages using the SICS produced no results.
This functionality helped us to deal with the cold-start problem [14].

We ran the system for six weeks and measured the number of queries submitted and the
number of recommendations accepted. The results containing the number of queries submit-
ted during the study are given in Table 2. As we can see, the users were reluctant to use the
system during the first two weeks, while during the second two weeks the number of queries
slightly increased and reached the number of 60 queries in the final period.

Table 3 show the how many times one, two, three, and four results were accepted. As can
be seen from the table, in most cases users accepted only one result, sometimes two, and

123



158 Auton Agent Multi-Agent Syst (2012) 24:141–174

Table 2 The number of requests
to the system

Period Number of requests

Weeks 1 and 2 10

Weeks 3 and 4 18

Weeks 5 and 6 60

Table 3 The number of accepted
results

Number of accepted results Number of requests

1 32

2 16

3 2

4 2

only rarely three or four. For the total of 88 queries,5 in 52 searches users accepted at least
one result from the system, i.e., in 60% of the searches the system provided something of
interest.

The obtained results show that the system, after some period, was accepted by the com-
munity and able to provide useful recommendations.

Please note that some settings of this study might seem weak (e.g., we have not compared
the search behavior of the group that used our system with the group that did not use it; we
have not compared the Implicit with just search over company forums), but we decided to
report the results anyway, because they show that over time people perceived the value of the
system.

6.2 Simulation

Thorough evaluation of the system with real users is hard because it requires a lot of time
from the users. Therefore, in this section, we present the goal, materials, methods and results
of the simulation that was conducted using the Implicit system. The simulations provide a
way for an extensive evaluation of the Implicit system. We also define the measures we used
to evaluate the quality of suggestions produced by the SICS.

The goal of the experiment was to understand how the insertion of a new member into
a community affects the relevance, in terms of precision and recall, of the links that were
produced by SICS. We also wanted to check the hypothesis that after a certain number of
interactions personal agents would be able to propose links accepted in previous searches.

The interaction between agents and users was replaced with the interaction between agents
and user models. In the following we give a brief description of the user model and we refer
the reader to Appendix A for details. The model we used is similar to the one proposed in [3].
Essentially, a user model specifies the sequence of search keywords submitted by the users
and determines which links will be accepted for which keyword using the click-through ratio
as represented in Table 4. The probabilities of link acceptance were produced by subjective
evaluation of the Google results for five keywords and then duplicating these five rows.
The duplication was done in order to model correlated keywords and it did not affect the

5 This number might seem low, but you should consider that people attending the courses were not IT people,
some of them hardly seen computer or programmed before courses. Also, the study was conducted several
years ago, when the use of search engines was much lighter than nowadays.
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Table 4 The probabilities of acceptance of links for a set of keywords

Google rank of the link

Keyword 1 2 3 4 5 6 7 8 9 10

tourism 0 0 0.05 0.4 0.05 0.2 0.1 0.05 0.1 0.05

football 0.05 0 0.1 0.3 0.3 0.1 0.1 0.05 0 0

java 0.35 0.3 0.05 0.05 0.05 0.05 0.05 0.1 0 0

oracle 0.1 0.1 0.45 0.2 0 0.05 0.05 0 0 0.05

weather 0 0.3 0 0 0.5 0 0 0.1 0.1 0

tourism1 0 0 0.05 0.4 0.05 0.2 0.1 0.05 0.1 0.05

football1 0.05 0 0.1 0.3 0.3 0.1 0.1 0.05 0 0

java1 0.35 0.3 0.05 0.05 0.05 0.05 0.05 0.1 0 0

oracle1 0.1 0.1 0.45 0.2 0 0.05 0.05 0 0 0.05

weather1 0 0.3 0 0 0.5 0 0 0.1 0.1 0

Links were different for each keyword and are numbered 1…10

behavior of the system (as compared to 10 truly independent keywords, see more on this in
Appendix A). We used 10 keywords and for each keyword 10 first links from Google were
considered. In this experiment, we kept queries intact, without splitting them into individual
keywords. We did not use the following features of the Implicit system: past search history,
wrappers, the inductive module.

We use the following information retrieval measures [5] in order to evaluate the quality
of suggestions:

– We call a link relevant to a particular keyword if the probability of its acceptance, as
specified by the user model, is greater than some pre-defined relevance threshold r .

– Precision is the ratio of the number of suggested relevant links to the total number of
suggested links, relevant and irrelevant.

– Recall is the ratio of the number of proposed relevant links to the total number of relevant
links.

– F-measure is a trade-off between precision and recall, calculated as 2∗Precision∗Recall
Precision+Recall .

Assuming that all users are members of the same community and have similar interests,
the probabilities of accepting links for each user were obtained from the distribution given
in Table 4 by adding noise uniformly distributed in [0.00,…,0.05]. The five user models
obtained as the result of adding noise are listed in Appendix A.

From the set of 10 keywords shown in the first column of Table 4, for each agent we
generated 25 sequences of 25 keywords by extraction with repetition. An example of a
sequence generated for one agent for one simulations could be: weather1, oracle1,
java, tourism, football, weather, football, java1, oracle, tourism1,
football1, weather1, java, java1, weather, football1, tourism, ora-
cle1, java, football, java1, tourism1, football1, java, football. Each
sequence was used for modeling the user query behavior during a search session.

For each query Google returned all 10 links existing for that keyword in the simulation,
while SICS of the user’s personal agent provided only one link that was considered the
most suitable. Other agents, if queried, also provided only one link each. During a single
search zero or one agents (depending on whether agents were recommended by SICS) were
contacted by the personal agent, to minimize the amount of interactions on the platform.
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The user acceptance behavior was modeled in the following way. Given a keyword in
the sequence of keywords, the accepted result was generated randomly according to the dis-
tribution that was specified in the user model (Tables 5, 6, 7, 8, 9 in Appendix A). All the
links from Google, SICS, and other agents were marked as accepted if they were equal to
the accepted result. The links different from the accepted result were marked as rejected.

In the simulation each agent performed 25 search sessions. At the end of each session
(e.g., after agents all finished the first search session) the observation data were deleted. The
reason for performing 25 sessions and not just one is that it allowed us to control the effect of
the order of the keywords and link acceptance. We ran five simulations for one, two, three,
four, and five agents. With one agent on the platform, the agent acted alone without inter-
actions with the others. Five agents represented a small community where agents interacted
with each other. We set the relevance threshold r determining link relevance equal to 0.1. As
we report in Table 11 in Appendix A, such relevance threshold for each keyword selects 2
to 5 of the first 10 Google links that are considered relevant, which seems to be close to the
our experience in using Google with single keywords. In other words, the selected threshold
produces a result comparable with typical user behavior using Google.

Note that the recall was computed without taking into account the search keyword, i.e.,
for each agent module (Google, SICS, other agents) we summed up the number of proposed
relevant links for all keywords and then divided by the sum of the numbers of relevant links
for those keywords. For instance, let us consider keywords “java” and “oracle”. The number
of relevant links for “java” is three, while the number of relevant links for “oracle” is four
(Table 11 in Appendix A). Let us assume the keyword “java” repeated in the search session
four times (as in the example of the search session above), SICS proposed zero, one, one,
and one relevant links for each of the four searches, and the keyword “oracle” appeared only
once and the SICS proposed zero relevant links for it. The total number of the relevant links
in this example is (3*4) + (4*1)=16. The total number of the relevant links proposed by the
SICS is (0 + 1 + 1 + 1)+ (0)=3. In both equations the first parentheses correspond to “java”
and the second ones—to “oracle”. The recall in this example is 3/16=0.1875. An alternative
approach would be to compute recall for each keyword (e.g., 3/12=0.25 and 0/4=0) and
then compute the average ((0.25 + 0)/2=0.125), but we do believe that the former approach
is more suitable for our task, because we do not want the system to be sensitive on the choice
of keywords in the search session.

We computed precision and recall of the links proposed by Google, the SICS of the per-
sonal agents and by all other agents. We did not compute the precision and recall of Implicit
as a whole because it would be equal to the behavior of Google, since the links coming from
SICS and agents are already proposed by Google. However, the experiment allows us to com-
pare the measures for the different components of Implicit. Figure 7a, b, c show, respectively,
the precision of Google, the personal agent alone, and all other agents on the platform. The
results from the personal agent are the results of the SICS, which was incorporated in the
agent. The SICS produced these links by analyzing stored observations. The other agents on
the platform were either recommended by SICS during the external search or were provided
by the DF. In Fig. 8a and b we have analogous box plots for recall and in Fig. 9a–c—for
F-measure. Note that we do not show the recall for Google because it is always 1, since all
the links in the experiment come from Google.

In the following we summarize our observations on the results of the experiments.

– From the figures for precision it is possible to notice that the precision of SICS and agents
is higher than the precision of Google. On the one hand, this is related to the fact that
Google always recommends 10 links, 5–8 of which are irrelevant. On the other hand, it
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Fig. 7 Boxplots for the precision of Google, the SICS of the personal agent and of other agents in 25 simu-
lations with different number of agents

shows that SICS and agents are good at processing users’ feedback on Google results and
re-ranking them.

– Precision of agents grows with the number of agents and achieves a surprisingly high
median value of 0.8, while the precision of Google and personal agent’s SICS does not
change with the number of agents.

– The recall of Google is always one, while recall of SICS and agents rarely goes above
0.2. This is easily explained by the fact that Google always recommends all 10 links that
exist in our simulation for the search keyword, including all relevant links. Contrary, the
suggestions from SICS are limited to one link, so it is not possible to achieve the recall
of one. The same applies to the recall of other agents.

– The increase in community members causes the increase in the recall of the suggestions
from the agents, while the recall of Google and the personal agent remained at the same
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Fig. 8 Boxplots for the recall of the SICS of the personal agent and of other agents in 25 simulations with
different number of agents. The recall of Google is always 1 and, therefore, is not shown

level. It is probably due to the fact that when there are more agents in the system, there are
also more interactions between them. The agents provided each other only with one link,
thus, when more links were provided by the agents during the search, it led to an increase
of the percentage of relevant links proposed by the agents and, therefore, the increase of
recall. Moreover, the increase of recall appeared without the decrease of precision which
remained at a rather high level with median ranging from 0.61 to 0.8. This result proves
the hypothesis that after a certain number of interactions, agents are able to propose links
based on the past user actions.

– F-measure behaves similarly to recall in the sense that it grows for other agents as the
number of agents in the community grows, while it remains at the same level for Google
and the personal agent. The latter is the consequence of the stability of precision and
recall for Google and the personal agent.

The obtained results proved that our way of complementing search engine with sugges-
tions that are produced as a result of indirect user collaboration allows for improving the
quality of the web search. An important point is that even without extending query with addi-
tional keywords and re-ranking links by the system, it is possible to discover which of the
Google links the community prefer and to achieve better quality of suggestions than Google.

6.3 Evaluation of the SICS module

In this section, we describe experiments we carried out to evaluate the core of the Implicit
system—the SICS module. Some of the experiments (performance evaluation, scalability
experiments) have been carried out not with the Implicit system, but with the multi-agent
system for recommending patterns, described in [9]. However, we report the results related
to the evaluation of the SICS module, which is the same for both systems, therefore, there is
no need to re-run these experiments for Implicit.
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Fig. 9 Boxplots for the F-measure of Google, the SICS of the personal agent and of other agents in 25
simulations with different number of agents

6.3.1 Performance evaluation

We measured the response time of the SICS as the time passed from the moment the mod-
ule received the submitted user query till the moment the results were sent to the user. The
response time of the SICS obviously depends on the load of the system, but does not depend
on the network load and on the time required for processing the query by the personal agent.
Therefore, this time is shorter than the time between the moment when the user actually
submits the query and the moment when the user receives results accessing the system in
distributed settings.

Figure 10a shows the response time of the SICS in milliseconds. The response time of
the SICS depends on the number of searches performed. This is probably explained by the
number of observations growing when simulation run contained more searches. The outliers
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Fig. 10 Performance and scalability of the SICS

for each point in SICS response time correspond to the initialization of the SICS, which takes
some time. However, as shown by means, once initialized, the SICS responds faster.

6.3.2 Scalability evaluation

We performed the study on the scalability of the SICS core.
The goal of this experiment was to test how the system response time changes depending

on the number of users. In this configuration of the system, there was only one SICS for
answering all user queries, not one SICS for each personal agent. We expected the response
time to decrease as the number of users increases.

In this experiment we copied the user models several times to simulate the community of
u users. Of course, this led to appearance of several chunks of very similar users, but in this
experiment the goal was not to focus on the reality of such a community, but merely on the
size of the community.

In the experiment we set the number of searches equal to 15 and we ran simulations with
the number of users, u, equal to 3, 6, 9, 12, 15, 18, measuring the response time of the system
for each query. We replicated the simulation 25 times and averaged the response time.

The results contain the response time of the system as shown in Fig. 10b. As can be
expected, the response time grows with the number of agents. The response time of the SICS
more resembles quadratic dependence. However, up to nine agents, the response time of SICS
is less than or equal to a couple of seconds. Let us consider that nine agents in this experiment
do not really correspond to nine users, but, rather, they represent nine users continuously and
simultaneously querying the SICS. This can hardly be seen as a realistic scenario. Thus, we
can claim that the system can support more users as long as no more than nine users query
our system simultaneously. The number of user that can be served is subject of further inves-
tigation. However, this defines a kind of throughput threshold for the system when used with
XML files for storing observations. As we described in [10], the use of a relational DB in
the system would allow for processing queries faster, and should permit serving more users
simultaneously.
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6.4 Experiment with the inductive module

In this section, we briefly describe an experiment that was conducted using the inductive
module of the system.

The goal of the experiment was twofold: (i) to show that the Apriori algorithm [1] is suit-
able for learning associations between keywords and links and (ii) to see if there is difference
between the specified community preferences and the way people actually select links using
the system.

The Apriori algorithm deals with the problem of association rules mining. In the Implicit
system, this problem can be briefly formulated in the following way: given a DB of requests
and links, to find which links were accepted for which keywords. The mined rules have the
form keyword → link and are characterized by confidence and support. Confidence is the
fraction of cases where the link was accepted for the keyword , while support is the fraction
of the actions in the DB which contain the rule. In the experiment, we focused on the confi-
dence of the rules. The application of associated rules in recommendation systems has been
previously described by Lin et al. [40].

To conduct the experiment we used the simulator described in the previous section, so the
interaction between agents and users was replaced with the interaction between agents and
user models. The user models were generated in the same way, using the first five rows of
the probabilities shown in Table 4.

From our set of 10 keywords, for each agent we generated 20 sequences of 25 keywords,
20 sequences of 50 keywords, and 20 sequences of 100 keywords by extraction with rep-
etition. Each sequence modeled a user search session and each keyword in the sequence
corresponded to one query. For instance, 20 sequences of 50 keywords corresponded to 20
sessions of 50 queries each. User acceptance behavior was modeled as in the previous section,
i.e. given a keyword in the sequence, the accepted result was generated randomly according
to the distribution specified in the user model; other links were marked as rejected. In the
simulation we ran 20 search sessions for each agent, deleting observation data after each
session. We performed simulations for 25, 50 and 100 keywords in a search session.

Then we applied the Apriori algorithm on the DBs of observations collected during the
simulation. Since our goal was to discover “average” community interests (corresponding to
the distribution in Table 4) the Apriori algorithm did not consider agent name when mining
rules, only the keyword and the link accepted from the personal agent (the links accepted
from Google and from other agents were ignored).

We compared the confidence of the rules learned by the Apriori algorithm with the accep-
tance rate initially specified in the user model in Table 4. The graph showing the Pearson
correlation coefficient between the learned models and the initial model is given in Fig. 11.
There is one line for each keyword that show the correlation for the initially specified rules
for individual keywords and corresponding learned rules. The line labeled “Overall” corre-
spond to the correlation calculated on complete user profiles (five keywords and 10 links for
each keyword). The results show that the algorithm was effective in capturing the preference-
driven behavior of the simulated users, since after 25 searches the correlation reaches 0.9 and
remains high with minor variations. The variations might indicate that the actual behavior of
the community slightly deviates from the defined preferences.

The success reported might be due to the small number of keywords and links we used
in the experiment (just five keywords and 10 links for each). Increasing the number of
keywords might lead to more noise and less confidence (and surely, less support) in the
learned rules. We are planning to evaluate the Inductive module with more than five key-
words in the future, while the number of links per keywords seems to be reasonable, since it
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Fig. 11 Pearson correlation between the initial user model and rules learned after 25, 50 and 100 searches

corresponds to the number of links appearing in the first Google page of query results for
the most users. Previous studies shown that people rarely go beyond the first page of Google
results [17, p. 6].

7 Discussion

7.1 The use of Google as a collection

We are aware that many information retrieval studies use standard collections such as TREC. 6

Such collections permit clear assessments because the information needs and the correspond-
ing number of relevant documents are pre-defined. However, we wanted to make our eval-
uation as close as possible to the real-world scenario, where people normally use Google
for Web search. As noted by Kobayashi and Takeda [35, p. 7] and Gwizdka and Chignell
[29, p. 5], in such evaluation (using such a large and dynamic collection, as the Web) it is
problematic to calculate recall, because the number of relevant documents on the Web is hard
to estimate. In order to address this shortcoming, we considered and estimated relevance of
only first 10 results from Google for each keyword in our simulation. This allowed us to fix
the number of relevant documents for each query (even though this number slightly varied for
each user). This subjectiveness of relevance of query results is in line with the fact that each
user in the simulated community might perceive different results as relevant to the query.

6 http://ir.dcs.gla.ac.uk/test_collections/. Web Research Collections.

123

http://ir.dcs.gla.ac.uk/test_collections/


Auton Agent Multi-Agent Syst (2012) 24:141–174 167

7.2 Using noise to generate user models

The goal of adding noise was to have a community of similar users (we call such community
single-centered in the sense that they share some behavior with the user represented by the
initial profile), who at the same time are also different (in peculiarities of accepting search
results). Therefore, by introducing noise we achieved diversity among users. Note that we do
not consider communities that have more than one kind of search behavior, i.e. have several
sub-communities. Such multi-centered communities are subject of future studies.

7.3 Using implicit interest indicators

In the Implicit, we are not using an explicit model of the user (e.g., where users specify
their interests, and other relevant information). Rather, the SICS uses user search history
and compares it with the search history of other users in the community in order to provide
relevant results. Furthermore, we are not asking users to provide explicit interest indicators,
such as ratings or relevance judgments. As we mentioned in the Introduction, this requires
an additional effort from users and, therefore, explicit feedback is often discouraged [49].
Moreover, the study by Fox et al. [26] has shown that implicit measures, such as the click-
through rate, time spent reading [a web page], actions used to end a search session, can be
suitable alternatives to explicit feedback. For instance, Ji et al. [34] propose an algorithm
for ranking documents based on the click-through data, while Konig et al. [37] propose an
algorithm for predicting the click-through rate of unseen items.

However, there are several issues to be addressed when dealing with implicit user mod-
els and implicit interest indicators. For instance, if a user clicks a link, but found it is not
relevant and then choose another link, there is currently no way to learn in Implicit that the
former link is irrelevant. We believe, and checking this hypotheses might be one of future
work directions, that such links will be filtered out by the system in the long run, and only
links truly perceived relevant by the community will remain. Another issue is that user might
accept a recommendation, but reject it in the future for the same query (e.g., because this link
is already known to them). How Implicit deals with such inconsistency is subject of more
detailed research, but the SICS should be able to match users with similar behavior w.r.t.
specific links, i.e. users who first accepted and then rejected the same link. Also, dedicated
user browsing models might be applied to deal with the problem of detection of links that
were seen previously [23]. Finally, some links which are marked as rejected in the Implicit
because users did not click on them might be actually relevant. However, we would argue
that if users consistently prefer other links, then these other links are more relevant than the
rejected links, so the system behaves as expected.

7.4 Actions of the cultural theory

In the current implementation of the system we use qualitative predicates such as
accept(user, query, resource-link). In case of explicit feedback, it would
be possible to use accept(user, query, resource-link, rating) for speci-
fying some quantitative value of accept action. However, even in case of implicit feedback
which we use in Implicit, it would be possible to consider applying inductive module of
the SICS on such qualitative predicates in order to obtain a theory about links accepted and
corresponding probability for accept and other predicates. Decision trees could be applied
as a learning technique.
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7.5 Privacy

Sharing the history of observations with other people in the community via SICS might raise
some privacy concerns. For instance, users might not be happy about sharing some particular
searches or all searches. The simplest solution is to make people aware that by using the
Implicit system they enter a community and share the data about searches, similar to what
Google does for Web History. A more sophisticated solution would be to provide “private
search” checkbox as in I-Spy [51], or Google Web History, so that the results about this search
are not stored. Concerning users who do not want to share search results at all, the system
could be able to help their by suggesting recommendations from the community. However,
if the observation history of a particular user is not stored, it would not be possible for the
SICS to learn from past observations and to improve the quality of the recommendations.
To summarize, the Implicit system can provide most benefits in the communities who do
not mind sharing their search results (may be with exception of few of them) via the DB
of observations. Otherwise, we can think about hiding user identity by anonymizing logs
[31,53], but such a solution contradicts the motivation behind the Implicit system, which
is helping to improve the search in a community of like-minded people who know each
other.

Users can also participate in several communities, and we can imagine that they might
have different privacy requirements on sharing their data. For instance, they might want to
share full search history with one community and share only anonymized history with another
community. This is not currently supported by the Implicit system, but can be added as an
extension.

8 Conclusion and future work

We have presented a multi-agent recommendation system for web search, Implicit. The sys-
tem adopts the Implicit Culture approach for recommending web links and exploits social ties
existing within the community. Pilot study with real users proved that the system is working
as intended, improving the quality of the web search in a community of people with similar
interests. However, a more thorough and rigorous study with real users is required as a part
of future work. The simulations we performed allowed us to evaluate different system com-
ponents, and proved that the multi-agent architecture is viable for building recommendation
systems and provides some advantages.

Future work can include analysis of social networks that emerge as the result of intra-
agent communication following recommendations from SICS, and in particular, the anal-
ysis of patterns of behavior related to accepting results obtained from a certain agent
(implicit trust relationships). Another possible direction of future work is dealing with learn-
ing about users interests/expertise and maintaining their models over time (e.g., to focus
only on the recent interests). Different data mining techniques, such as clustering, could
be applied in the inductive module to group similar observations together. For instance,
agents can be clustered by interests and past actions of their users. Finally, it would be
nice to study how the system deals with bigger communities, i.e. whether it is poten-
tially scalable to the size of the community of Web users, and how it deals with dynamic
communities where people enter, quit and their quality of their suggestions change over
time.

123



Auton Agent Multi-Agent Syst (2012) 24:141–174 169

Acknowledgements This research was partially supported by COFIN Project “Integration between learning
and peer-to-peer distributed architectures for web search (2003091149_004)” and by MEnSA (Methodologies
for the Engineering of Complex Software Systems: Agent-Based Approach), funded by the Italian govern-
ment. The authors would like to thank Oscar Menghini for performing real-user evaluation of the system and
Andrea Gastaldello for developing the inductive module.

Appendix A: User model

A user model contains the sequence of search keywords submitted by the user and the rules
for acceptance of links for the keywords. Such acceptance rules are modeled as a set of proba-
bilities of choosing a link for a keyword. As links we took the first m links provided by Google
for each keyword and the rank of the list was adopted as an identifier. Since links provided
by Google for a certain keyword change their ranks continuously, before the experiment we
stored the links corresponding to the chosen keywords in a data set and replaced querying
Google with getting links from this data set. The distribution of probabilities was built by
using n keywords k1, k2, . . . , kn and determining the probabilities p( j |ki ) of choosing
the j th link, j ∈ {1, . . . , m} while searching with the i th keyword. We assume that the user

accepts one and only one link during the search for the keyword ki , so
m∑

j=1
p( j |ki ) = 1. The

distribution of probabilities in the user model can be seen as a set of association rules with a
probability of link acceptance for a given keyword search.

In our experiment, the number of keywords n was equal to 10, the number of the links
provided by Google m was equal to 10. The probabilities of link acceptance were produced
by subjective evaluation of the Google results for five keywords and then duplicating these
five rows. The resulting set of probabilities is shown in Table 4. The duplication was done
in order to model correlated keywords. Such duplication did not affect the behavior of the
system (as compared to 10 truly independent keywords) because links for each keyword were
different, so if a user accepted a link for the keyword weather it only affected their further
searches for the keyword weather and not for oracle or weather1. Also, since we added noise
to rows independently, in actual user profiles (Table 5, 6, 7, 8, 9) rows 1…5 and 6…10 are
different.

Table 5 The probabilities of acceptance of links for User 1

Keyword Google rank of the link

1 2 3 4 5 6 7 8 9 10

tourism 0 0.02 0.06 0.3 0.05 0.19 0.11 0.1 0.11 0.06

football 0.03 0.03 0.09 0.23 0.22 0.12 0.12 0.09 0.05 0.02

java 0.24 0.24 0.06 0.05 0.05 0.08 0.08 0.13 0.05 0.02

oracle 0.07 0.09 0.34 0.16 0.01 0.09 0.08 0.06 0.04 0.06

weather 0 0.23 0.03 0.01 0.37 0.05 0.04 0.13 0.12 0.02

tourism1 0.06 0.03 0.09 0.35 0.05 0.15 0.07 0.03 0.07 0.1

football1 0.03 0.03 0.09 0.23 0.22 0.12 0.12 0.09 0.05 0.02

java1 0.24 0.24 0.06 0.05 0.05 0.08 0.08 0.13 0.05 0.02

oracle1 0.07 0.09 0.34 0.16 0.01 0.09 0.08 0.06 0.04 0.06

weather1 0.03 0.24 0.02 0.05 0.36 0.05 0.04 0.09 0.12 0

Links were different for each keyword and are numbered 1…10
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Table 6 The probabilities of acceptance of links for User 2

Keyword Google rank of the link

1 2 3 4 5 6 7 8 9 10

tourism 0.02 0.01 0.06 0.29 0.06 0.2 0.12 0.07 0.13 0.04

football 0.05 0.01 0.1 0.22 0.23 0.13 0.12 0.07 0.06 0.01

java 0.26 0.21 0.06 0.05 0.06 0.1 0.09 0.1 0.06 0.01

oracle 0.09 0.07 0.34 0.15 0.03 0.09 0.09 0.04 0.06 0.04

weather 0.02 0.21 0.03 0.01 0.37 0.07 0.05 0.1 0.13 0.01

tourism1 0.06 0.06 0.06 0.33 0.05 0.13 0.07 0.05 0.13 0.06

football1 0.05 0.01 0.1 0.22 0.23 0.13 0.12 0.07 0.06 0.01

java1 0.26 0.21 0.06 0.05 0.06 0.1 0.09 0.1 0.06 0.01

oracle1 0.09 0.07 0.34 0.15 0.03 0.09 0.09 0.04 0.06 0.04

weather1 0.03 0.27 0.02 0.03 0.37 0.01 0.02 0.13 0.07 0.05

Links were different for each keyword and are numbered 1…10

Table 7 The probabilities of acceptance of links for User 3

Keyword Google rank of the link

1 2 3 4 5 6 7 8 9 10

tourism 0.03 0.03 0.08 0.35 0.08 0.18 0.11 0.03 0.07 0.04

football 0.06 0.04 0.11 0.28 0.26 0.11 0.1 0.04 0 0

java 0.28 0.25 0.08 0.09 0.09 0.07 0.07 0.07 0 0

oracle 0.07 0.09 0.36 0.17 0.03 0.09 0.08 0.04 0.01 0.06

weather 0.03 0.25 0.04 0.06 0.41 0.03 0.04 0.07 0.07 0

tourism1 0 0.02 0.07 0.32 0.06 0.19 0.13 0.07 0.08 0.06

football1 0.04 0.02 0.1 0.25 0.24 0.12 0.12 0.07 0.02 0.02

java1 0.28 0.25 0.08 0.09 0.09 0.07 0.07 0.07 0 0

oracle1 0.1 0.11 0.36 0.2 0.05 0.07 0.07 0 0 0.04

weather1 0.01 0.22 0.03 0.03 0.35 0.07 0 0.13 0.1 0.06

Links were different for each keyword and are numbered 1…10

Tables 5, 6, 7, 8, 9 show the five user models we have created from the probability distri-
bution in Table 4 by adding noise uniformly distributed in [0.00,…,0.05]. We have chosen the
uniform distribution of noise because we do not prioritize one links w.r.t. others. We added
noise to each entry of the table and then renormalized all entries in order to keep the sum of
each row equal to one.

Table 10 reports similarity among the initial and generated user models in terms of the
Pearson correlation coefficient. Table 11 reports the difference between user models in terms
of the number of relevant links.
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Table 8 The probabilities of acceptance of links for User 4

Keyword Google rank of the link

1 2 3 4 5 6 7 8 9 10

tourism 0.05 0.05 0.08 0.32 0.06 0.14 0.09 0.05 0.09 0.07

football 0.04 0.03 0.09 0.22 0.29 0.08 0.13 0.05 0.03 0.04

java 0.27 0.26 0.08 0.08 0.07 0.04 0.06 0.07 0.03 0.04

oracle 0.07 0.12 0.34 0.15 0.07 0.03 0.1 0.02 0.02 0.08

weather 0 0.26 0.01 0 0.44 0 0.06 0.09 0.1 0.04

tourism1 0 0.04 0.04 0.3 0.11 0.14 0.14 0.05 0.1 0.08

football1 0.04 0.03 0.09 0.22 0.29 0.08 0.13 0.05 0.03 0.04

java1 0.26 0.26 0.05 0.03 0.11 0.04 0.09 0.09 0.03 0.04

oracle1 0.11 0.13 0.34 0.18 0.03 0.04 0.06 0.01 0.03 0.07

weather1 0.01 0.24 0.06 0.01 0.43 0 0.02 0.11 0.1 0.02

Links were different for each keyword and are numbered 1…10

Table 9 The probabilities of acceptance of links for User 5

Keyword Google rank of the link

1 2 3 4 5 6 7 8 9 10

tourism 0.01 0 0.08 0.33 0.09 0.18 0.08 0.06 0.09 0.08

football 0.04 0 0.13 0.25 0.27 0.11 0.08 0.06 0.02 0.04

java 0.26 0.22 0.09 0.07 0.09 0.07 0.05 0.09 0.02 0.04

oracle 0.1 0.12 0.34 0.15 0.02 0.07 0.07 0.03 0.01 0.09

weather 0.03 0.27 0 0 0.4 0.03 0.03 0.11 0.08 0.05

tourism1 0.05 0.04 0.06 0.28 0.05 0.18 0.12 0.05 0.1 0.07

football1 0.08 0.04 0.1 0.21 0.21 0.12 0.12 0.05 0.03 0.04

java1 0.29 0.27 0.04 0.04 0.06 0.06 0.08 0.1 0.01 0.05

oracle1 0.08 0.07 0.38 0.19 0.05 0.07 0.04 0.03 0.01 0.08

weather1 0.04 0.22 0.07 0 0.36 0.02 0.06 0.13 0.08 0.02

Links were different for each keyword and are numbered 1…10

Table 10 Pearson correlation between user models

User model User model

Original User 1 User 2 User 3 User 4 User 5

Original 1

User 1 0.975 1 0 0 0 0

User 2 0.972 0.975 1 0 0 0

User 3 0.98 0.947 0.947 1 0 0

User 4 0.974 0.939 0.938 0.956 1 0

User 5 0.979 0.951 0.947 0.963 0.961 1
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Table 11 The number of relevant links to each keyword in the user models

Keyword User model

Original User 1 User 2 User 3 User 4 User 5

tourism 4 5 4 3 2 2

football 5 4 5 5 3 4

java 3 3 4 2 2 2

oracle 4 2 2 2 4 4

weather 4 4 4 2 3 3

tourism1 4 3 3 3 5 4

football1 5 4 5 5 3 5

java1 3 3 4 2 3 3

oracle1 4 2 2 4 4 2

weather1 4 3 3 4 4 3

total 40 33 36 32 33 32
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