NonKin Village Models v.4 Jan 2011

Rich Socio-Cognitive Agents for Immersive Training
Environments — Case of NonKin Village

Barry G. Silverman, PhD, David Pietrocola, Nathan Weyer, Oleg Osin, Dan Johnson,
Ransom Weaver, Ben Nye

Ackoff Collaboratory for Advancement of the Systems Approach (ACASA), University of
Pennsylvania, 220 South 33rd Street, Philadelphia, PA 19104-6315

Phone: 215-573-8368 basil@seas.upenn.edu

Abstract: Demand is on the rise for scientifically based human-behavior models that can be quickly customized
and inserted into immersive training environments to recreate a given society or culture. At the same time, there
are no readily available science model-driven environments for this purpose (see survey in Sect. 2). In
researching how to overcome this obstacle, we have created rich (complex) socio-cognitive agents that include a
large number of social science models (cognitive, sociologic, economic, political, etc) needed to enhance the
realism of immersive, artificial agent societies. We describe current efforts to apply model-driven development
concepts and how to permit other models to be plugged in should a developer prefer them instead. The current,
default library of behavioral models is a metamodel, or authoring language, capable of generating immersive
social worlds. Section 3 explores the specific metamodels currently in this library (cognitive, socio-political,
economic, conversational, etc.) and Section 4 illustrates them with an implementation that results in a virtual
Afghan village as a platform-independent model. This is instantiated into a server that then works across a
bridge to control the agents in an immersive, platform-specific 3D gameworld (client). Section 4 also provides
examples of interacting in the resulting gameworld and some of the training a player receives. We end with
lessons learned and next steps for improving both the process and the gameworld. The seeming paradox of this
research is that as agent complexity increases, the easier it becomes for the agents to explain their world, their
dilemmas, and their social networks to a player or trainee.

Keywords: socio-cognitive agents, model driven architecture, explainable agents, game Al,
immersive training.

1 Introduction

A growing number of producers and consumers of immersive simulators, virtual worlds, and game
environments are interested in setting up and running cultural and cross-cultural training and rehearsal
experiences. Their goal is that trainees could gain experience in foreign cultures and learn to be sensitive to local
norms, values, and issues prior to arriving in the country or region where they must interact with and possibly
influence and assist natives in that culture. By making the learning experience immersive, the trainees should
hopefully have an easier time transferring their experiences to the real world.

This is useful for many types of users such as, but not limited to, multinational corporations tutoring
their sales force, international aid organizations training their field representatives, and diplomatic advisors and
military forces needing to learn how to handle counter-insurgency issues. As an example of the later, we shall
show a case study in this article of military players entering a simulated foreign village and having to go through
the three stages of counter-insurgency: inventory the population and befriend the stakeholders; isolate issues
driving stakeholders apart and coopt the agenda; and identify mechanisms for a self-sustaining peace to take
hold. However, this case study is only one example of the broader range of immersive cultural simulation needs
just mentioned.

This approach to training and orientation is mostly done today with humans playing all the roles in the
virtual worlds and simulators. That is, human trainers play the roles of the native stakeholders in order to give
trainees the desired immersion and learning experiences. Still other trainers design the activities and scenarios
that the role players will enact. This human role-playing is costly and time consuming and thus there is
significant interest in replacing the humans with agent-based sims that can carry out the pattern of daily life and
express the various stakeholder issues and behaviors autonomously.

This is challenging since agents for such immersive training games, simulators, and gameworlds would
need to have aspects of their behavior be guided at various times by sociological, psychological, economic,
political, etc. fields of concern. This implies that they are inherently very complex. Until now the agents that
have been made for such worlds were a kind of one-off implementation that would incorporate some aspects

1

NonKin Village Models v.4 Jan 2011

from different fields in one application/domain specific architecture. Therefore they are not reusable. In order to
get to more reusable/maintainable frameworks we propose a model driven approach where one starts with a
model of the different models from the sciences contributing to the functioning of the agents. Let us explore the
specific research goals in the next section, after which we will more fully survey the current practice.

1.1) Objective and Goals

The objective of this research is to improve the realism of the social behaviors of agents in gameworlds in order

to enhance player and trainee engagement or immersion in the experience. Immersion, as used here, means the

human users feel a sense of connection to the social actors, and feel that the actors’ concerns and the actions that
can be taken in this world are reflective of dynamics from the real world. Since this is for training, we want to
be careful to reflect what is important about a given ethno-political situation from a particular scientific stance.

Specifically, our intent is to try and achieve this aim by making use of social scientists theory and data about

real-world situations and their dynamics. While scientists and pollsters may not agree on specifics, and while

subjects might shift their issues rapidly, one can still model communities meaningfully and deeply so that
trainees will be appropriately challenged. While we use gameworlds and discuss similar concepts (eg,
engagement, immersion, etc.), we are not pursuing this for entertainment purposes.

This objective leads to three goals:

1. Model Driven Behaviors — We are interested in culling best-practice theories from the social behavior
literatures (eg, psychology, sociology, political science, etc) and implementing these as parameters, metrics,
and models to drive the agents in the virtual environment. The early stages of the agent field concerned
multi-agent simulations which captured fairly simple rules and showed how these cause agents to shift
behavior in unanticipated ways leading to emergent phenomena and new equilibria (eg, Schelling, 1978). In
general, these offered powerful displays of emergence, but involved over-simplification of human decision
making and stakeholder issues. This over-simplification would cause loss of trainee immersion in a 3D
simulation. Likewise, videogame agents generally have minimal content and instead rely on misperception,
anthropomorphism, etc to trick the players into believing artificial life exists. But this fails on *“up close”
interaction tests. To better support trainee immersion and suspension of disbelief, our goal is to explore how
to model the sim agents more explicitly and to make use of the growing social science theories and data
models. The first goal is thus to explore a rich base of models to replace humans having to drive the avatars
and to allow the agent sims to be able to mimic social dynamics and faithfully express real-world
stakeholder concerns through action choices and conversational interactions.

2. Synthesis Across Models — The social sciences often tend to be fractured into disciplinary silos, yet social
dilemmas and cultural concerns cut across such silos. Stakeholder issues often include aspects from all
disciplines at once. As a result, we do not want a single model of behavior, but the ability to synthesize or
plug together a range of the relevant models. From a scientific viewpoint, we want to explore best-practice
models of the day, plug them together in meaningful ways, and readily unplug and replace them
subsequently as new, better theories and models are derived. If done well, this synthesis might also help to
identify gaps in the science and suggest new research directions. From an engineering viewpoint, we want a
standards-based architecture in which to do this, so that it is widely understood, reusable, and
maintainable/extensible. The second goal is thus to explore if the model driven architecture (MDA)
standard from the Object Management Group and related software design patterns offer a useful pathway to
synthesize, run, and manage a models collection.

3. Synthesis Across Functions — The ultimate aim of an immersive training environment is to improve
trainee performance on specified pedagogical objectives. This raises the need for several added functions
and components. The first component we wish to connect is a platform that runs the animations in a 3D
gameworld. Since such gameworlds permit free play, there is a risk that the trainee will miss some of the
pedagogical objectives. A common solution is to add a “stage director” agent or commander who is able to
send the player to the proper situations (and set up more situations if the player misses some training).
During play it also is useful and common to offer the player a place to store, inspect, reflect on, and analyze
the items they accumulate. Often this is done in a virtual backpack or rucksack which might have a map that
grows as players learn more of the world and that shows what happened where and who said what when.
On the back end, the players also need to receive assessments of their performance in the gameworld. For
this to work, one needs to have an assessment system with metrics provided by training developers and that
can access and assess model parameters to discover what the NPCs (non-player characters) think of the
player’s behavior. All of these diverse components (3 party gameworld, director/coach agent, rucksack
suite of tools, assessment system, etc.) also need a standards-based way to interact with the sims and the
sim world. Our third and final goal is to explore if the same MDA standards based approach will support
these added components.

In sum, the goal of this research at present is to explore answers to these design questions. This is a significant

undertaking and the current paper illustrates some of the progress made to date. Specifically, Section 2 surveys

the literature and explores design trends to date and how and why we are trying to shift the state of the practice.

That section concludes with a review of the MDA standard and an example of how it helps to plug models

2

NonKin Village Models v.4 Jan 2011

together. Section 3 then delves more deeply into the library of models assembled across the social sciences, for
handling agent choices and social dynamics as well as for transactional processes (eg, dialogs, interactions, etc).
Section 4 provides a case study of bridging to drive the agents in an immersive 3D platform. Finally, Section 5
returns to discussion to the three goals and examines lessons learned about the state of design for immersive
training systems. A related topic is whether a given design improvement translates into positive training value.
However, assessing training impact is a future question for subsequent research and papers. In sum, the MDA
approach has helped our thinking and code organization. Since goal 1 is to use models, the MDA approach
facilitates goals 2 and 3, and the case study at the end of this paper is the proof-of-concept test that this works.

Before moving on, it is worth mentioning that the complexity of the agents we present here is in direct
contrast to the parsimony and simplicity of agents often pursued in game theory, in artificial societies, and
elsewhere where the KISS (Keep It Simple, Stupid) principle is followed: eg., see Edmonds & Moss (2005). Just
as a bicycle will not do what a car can do, so too a simple agent will not do what a complex one can do. Rich
socio-cognitive agents exhibit more realistic behaviors for enhancing immersion. In addition, this leads to what
might be seen as an apparent paradox, though it is by design. That is, as agent complexity grows, there is an
inverse decrease in the effort to get the agent to carry the burden for the dialog authoring. An agent that has
many models and can explain its models will be capable of autonomously dialoguing about its world, its
grievances, the networks and organizations its involved with, the conflicts and their potential solutions. Let us
now explore this further.

2 State of the Art

As just explained, our aim is to improve the social realism of the agents in gameworlds for training purposes.
We want to have agents that improve player immersion by reflecting greater depth and breadth. Specifically,
this translates into better agent decision making and interactivity, two dimensions that we plot as the two axes in
Table 1. Across the top of Table 1, it is useful to categorize sims or NPCs into three generations of agents. First
generation agents (left column) are either human-played avatars or hand-scripted finite state machines of limited
capability (eg, FSMs, cellular automatas, or social nets). In the second generation of agents (center column), the
designers adopt ONE of many possible approaches to enhance the thinking and reasoning of the agent FSM (eg,
cognitive model, planning algorithm, or cognitive attributes atop social nets), but do not offer a well-rounded
capability. Thus these tend to be agents that are strongly autonomous in one dimension or another. The third
generation (right column) seeks to unify capabilities so that the agents are reasonably good at cognitive as well
as social tasks. This third generation of agent models do not typically have as great a strength in each dimension
as second generation architectures, but they are better balanced and not as brittle.

Table 1 — Three Generations of Agent Thinking and Conversing in Immersive Training Worlds

—

Increasing Agent Understanding in Social Terrains

|

1st Generation:
Finite State Machines
(and scripted actions)

Discipline Thematic

31d generation:
Meso-Level Socio-
Cognitive Agent Theories
& Models

(Trans-Discipline)

Humans play roles,
supply dialogs
(humerous players
needed each session)

*Most Virtual Worlds,
*Most MMPOGs
*Most Wargames/SAF

*MAS/Cellular Automatas,
Social Nets

Procedural Dialogs:
Scripted branching
dialogs (many 100s of
trainer hours required
to author each case)

Decreasing Reliance on Narrative Developers

VW/MMPOG agents
*Crowd Models/BOIDs
*Most Videogames, eg,

RTSs, FPS, Force More
Powerful, Palestine, etc

«Story/Narrative Agents
(Branching dialog graphs)

*Goal Planning Algorithm
Games, Black-White, GTA??

« Sociol. Sim (SocNet Envmnt,

NetLogo, Repast, etc)

*Cogn Models (ACT-R, SOAR,

PsychSim, etc)
*Embedded Conversational
Agents (ECAs)- eg, REA,
Tact.Iraqi, ICT games...

Declarative Dialogs:
Humans profile inter-
action model
parameters & ethno-
poli-cultural situation
(afew hours to
produce each case)

eInteractive Drama/Fiction
Management (Oz, FACADE,

Etc,..)
*PMFserv & AESOP
*Athena’s Prism

*Nurture Games (SIMS,
Sim City)

*Federated Models
(cognitive, sociologic,
economic, political, etc)
InsurgiSim (Red Force)
*PMFserv-FactionSim

*NonKin Village (daily life
&culture)

*Precursors:

MDA Standard

*SW Design Patterns
*Social Science Models

NonKin Village Models v.4 Jan 2011

The vertical dimension or rows of Table 1 are intended to capture 3 levels of sophistication in the
narrative dimension of a simulated world. In the first row are the simplest agents where humans must play all
the roles and supply the dialogs. In the second row, we classify procedural dialogs — or — the case of developers
having to write out each line of a fixed branching script. Finally, the third row involves declarative dialogs
where the developers only need to declare high level agent parameters and the dialogs get dynamically
generated at runtime as situations evolve. This row becomes possible as agent complexity grows.

Within the body of this 3x3 classification in Table 1 we can plot the progress of a large number of
fields that use agents: videogame artificial intelligence (Al), artificial-life, virtual world folks, social science
modeling, cognitive modeling, and narrative/conversational systems. In terms of the first row of the table, only
the first column is populated. However, that is the vast bulk of the field in terms of quantity of agents built and
operated. That is, the vast majority of “agents” one encounters today in role playing games, virtual worlds
(VWs), massive multiplayer online games (MMPOGS), in mission rehearsal environments, and in military and
commerce wargames are either human-played avatars or hand-scripted finite state machines of limited
capability. The reason for this is twofold: (1) so much effort is required to set up and maintain the 3D immersive
environments, that little budget or effort is generally left when it comes to adding Al, and (2) today’s immersive
Als or agents are too easily perceived as mechanistic automatons, causing users to experience frustration,
inappropriate expectations, and/or failures of engagement and training. Reliable pathways for creating more
realistic and believable agents could ultimately help reduce barriers to interacting with as well as to creating
behaviors of empathetic avatars, electronic training world opponents and allies, digital cast extras, wizard helper
agents, and so on.

Moving down to row 2, most agent developers add dialog into their FSMs by some form of procedural
scripting. This often takes the form of cue cards or hand written dialog lines inserted into procedural code and
triggered by rules. This is used in innumerable gameworlds where players encounter the level “boss” or some
other NPC that has a few choice lines to throw out to setup a scene, give a clue, or steer the player to a location.
The basic design assumption, however, is that the gameworld is about players roaming about freely and stories
constrain the players too much. Likewise, in social science modeling (eg, crowd models, social nets, cellular
automatas), the interest is in the analysis, not the dialog with the agents. When these techniques are used for
movies and games they need only minimal lines for their swarming armies, crowds, and extras. But some story
games occupy this cell of the table that are interested in culture games (eg, Force more Powerful, Palestine, etc),
or very clever dialog games like the Monkey Island series. The more powerful of these scripting approaches
include very large branching dialog graphs for the characters to use in the diverse situations that come up. The
hope is that there is a dialog branch for each situation the player might move into, however, this ultimately leads
either to constraints on player movement (and creativity), or perceived brittleness of the agents. Still, the more
well done of these do have their fan base.

There are several agent communities that operate at the center row and column of Table 1. For
videogame Al and a-life developers, they tend to migrate here by “rewiring” their FSMs into a minimalist goal
planning algorithm. The trick is to look smart or realistic long enough to escape the player’s critical eye, so they
only need a short amount of re-planning of goals, and for limited circumstances (Rabin, 2008). In contrast, a
number of other communities co-exist in this cell that strive for greater autonomous reasoning in one direction
or another. For example, as reviewed in Zacharias et al. 2008, the cognitive modeling community may be
subsumed here with their many scientific models of human reasoning (eg., ACT-R, SOAR, PsychSim,
PMFserv) as can the second generation social science models that add greater reasoning to the agents in their
social nets, cellular automata grids, swarms, and so on. These cognitive vs. sociologic models tend to be
opposite ends of the spectrum. On the one hand, (a) many of the cognitive models are quite detailed about a
single person’s rationality and reasoning, but are incapable of managing relationships, thinking about groups
and collectives, or behaving in culturally relevant ways. On the other hand, (b) the sociologic models often
handle network transactions, collective behavior, and relationships well, but have limited individual agent
reasoning, though sociologic modeling environments like NetLogo, Repast, and so on now come with scripting
languages so developers can create added (one of a kind) reasoning by agents. Some of these types of agents
also can understand a narrative (dialog graph) as a plan and handle and manage conversations with a user as
branching to diverse steps along the plan or toward better or worse relationships during the course of carrying
out a task: eg, Bickmore & Cassell (2008). The games coming out of the Institute for Creative Technology
(ICT) of USC appear to fall into this mid-level cell of Table 1 and amply illustrate the divide between the social
science modelers. For example, ICT has produced a number of immersive 3D, branching dialog
graph/conversational agent-based applications for training the US military in cultural sensitivity topics — eg.,
(ICT, 2010). Some of the games appear to use a goal planning approach (Full Spectrum Warrior), other use the
cognitive science model in PsychSim (BILAT Game), and still others see use a sociologic model or social net (
UrbanSim Game). These games illustrate that despite game industry trepidation, a lot can be done with a wide
array of second generation Al.

Sticking with this middle column of Table 1, if one wishes to move to the bottom row this introduces a
whole new story or drama management capability atop whatever social or cognitive Al the agent already has.
The idea of drama management is to provide the player a chance for free play while simultaneously exposing

4

NonKin Village Models v.4 Jan 2011

him/her to the intended plot points and story elements. This is often done with the aid of a drama manager or
director agent that makes sure that the scenes and NPCs move to where the player is and try to involve the
player in the intended plot regardless of what else the player is engaged in: eg, see Oz (Kelso et al., 1993)’s
drama manager, Mateus and Stern (2003) with Facade and their beat architecture for managing storyline threads,
or Sharma et al (2010) using a case based reasoner approach. Note, drama management does not require a
natural language understanding, but an ability to have autonomous, interactive dialog in the form of context-
triggered questioning and answering. In the current paper we seek to implement these ideas with the aid of a
beat-oriented approach we call Authoring Electronic Stories for Online Players (AESOP) as well as the other
components mentioned under Goal 3 at the outset (eg, Commander agent, Player Assessment and Feedback
System). As will be explained we seek to make the narrative arc and dialog models responsive to the parameters
of the other models driving the agents’ behaviors, which in turn are directly influenced by the players’ actions
and/or inactions.

If we back up to the second row of Table 1 and move to the last column, this is now the territory of the third
generation agents, albeit with traditional branching dialog graphs. In the videogame industry, the nurture games
probably best typify the merger of sociologic and cognitive models, though there is no scientific basis to the
models driving the SIMS or Sim City. Still, these are examples of agents that must balance both extremes of
modeling behaviors. Another videogame example is cited in Bostan (2009) which has about 1,500 agents carry
out a daily life set of activities and appear to socialize, though they are largely unaware of, and have only
limited dialogs for socializing with, the players. Pew & Mavor (1998), Bjorkman et al (2001), Sun (2005),
Graesser et al. (2008), and Zacharias et al. (2008) all point out that there are almost no examples of scientific
models in this category, but a federation approach could help to preserve the investment in legacy simulator and
game environments, while helping to synthesize across the social sciences, and making newer behavioral model
innovations available. This path has been advocated by the US Department of Defense, among others, who has
identified a need for interoperability of human behavior models to help improve the realism of agents in legacy
simulators. This is, essentially, the argument of column 3, that many different types of social science models
should be synthesized if one is to effectively model social systems. Thus in the social simulations, in general,
“model driven” must mean not just one model, but a library of interacting models — a model of models. This
pluralization is an important “extra’ and the topic we turn to next in discussing a standards-based way to manage
multiple models.

In order to progress to the bottom right corner of Table 1 (3™ generation in thinking and interacting), one
wants to have NPCs that use a science-based federation of models to drive their behaviors and so they can
dynamically explain themselves, their wants and aspirations, and their grievances and complaints. This means
they can converse about their own thinking as well as their relations, their affect/cognitions and their socio-
politico-economic concerns. The games mentioned above in the other table cells do not achieve this. For
instance, a minority of the ICT games use the science models in PsychSim (Marsella, et al, 2004), but this omits
socio-politico-economic aspects and is thus far narrower then our focus here. Likewise the drama manager
games have no social science models behind them, but instead illustrate social settings for entertainment value.
For instance, Facade is about a divorce but has no social science model of marriage relations or the divorce
dilemma.

2.1) The Model-Driven Architecture (MDA) Approach

An immersive simulated community created from models would facilitate countless avenues of inquiry
and training in fields as diverse as education, public health and relief, city planning, security operations training,
and policy analysis, among others. However, the major complication facing anyone who attempts a social
systems modeling library is that there are no mature scientific theories (and certainly no first principles) about
what to model and how models inter-relate. For example, how do memes migrate? How do people convey
norms? How does alternative media and messengers play a role or not at the micro-processing level (and how
does this differ upon each type of listener)? Why are some groups happy in impoverished conditions while
others rebel? What is the correct theory behind terrorism (sacred values, religious extremism, genocide,
patrimonialism, poverty, jealousy, mimicry and copying of fashionable but deadly youth movements, etc.)?
There are innumerable questions like these that have no single answers. The result is that a scientific and social
system testbed must be assembled and so alternative competing model hypotheses can be studied. Real world
social systems and cases need to be recreated in the gameworlds and improved over time as new evidence is
uncovered. The breakthrough we hope to occur from this effort will happen only with a socio-cognitive agent
framework that can serve as a theory testbed to study the intersection of psychological and sociological theories
and phenomena. Such an architecture, to be effective, also may need to model the organizations, economics,
infrastructure, and institutions that service and support the individuals in a region.

In particular, we are interested in training and analysis of ethno-political conflict in diverse cultures. In
order to support study of this problem, we attempt to provide a modeling suite that allows one to configure
diverse theories of cross-cultural conflict and their resolution. Specifically, culture is often thought of as (1)
communicative practices involving language and gestures; (2) systems of regulation external to the individual

5

NonKin Village Models v.4 Jan 2011

agent, including formal laws, religious tenets, and norms of practice for different stakeholders; (3) key beliefs

that individuals and groups hold -- personal mindsets and collective worldviews; and (4) cognitive processing

differences such as, for instance, Middle Eastern quam or trust building vs. Western contract and decision-
centric. In this research and paper, we explore a testbed for implementing models of the latter three of these in
order to simulate artificial societies and cultures.

Once one decides to go down this pathway with a model base, it tends to explode in size and one winds
up with many dozens of models that need to be managed. Fortunately, there are several model-oriented
standards, design patterns, and best practices to help out. We discuss the model-driven architecture (MDA)
standard here, and add two others in Section 2.

So what is the model-driven approach and how does a standard support it? Researchers and software
engineers have long sought effective paradigms for enabling domain experts to write their own software and, for
all intents and purposes, without a need to write their own “code.” Schmidt provides an overview of such efforts
by describing computer-aided software engineering (CASE) and explains its lack of commercial success due to
restrictive domain constraints (Schmidt 2006). Similarly, the multiagent systems field has asked the same
questions by looking to mature agent-based modeling tools for end users in domains of interest. For example, a
skills trainer may have a mental model of how certain interactions should proceed in a domain, or context; a
model-driven architecture (MDA) would allow the user to express such a model in a natural way and produce an
application. Despite the obvious benefits for such a method, reaching the full ideal has remained an elusive goal,
and a “one-size-fits-all” representation for such domain models has been difficult, if not impossible.

Still, many in industry have struggled with this idea and the MDA is now a standard (see Object
Management Group. 2003). MDA came out of the software industry’s attempts to handle increasingly complex
projects and systems that become weighed down by programming code specifics. MDA'’s goal, essentially, is to
separate business system requirements and domain details from the specifics of any one technology or platform.
The MDA standard specifies that one should create three layers:

1. Platform Independent Meta-MetaModel (PIMMM) — This is the high level authoring environment
that supports domain specialists in specifying their social system requirements, mental models, and user
applications without needing to write code or program models. This also includes the components that the
library of models will be assembled from.

2. Platform Independent MetaModel (PIMM) — This is the suite of models in code that are exposed in
the PIMMM for domain specialist usage. The programmers must author the PIMM in a way that it can be
readily maintained and updated as new models come out, yet still seamlessly support the PIMMM specialists.
Further, PIMM programmers must develop and maintain middleware bridges so the lowest layer (PSM) can also
seamlessly interoperate.

3. Platform Independent Model (PIM) — This is the instantiation of a single scenario out of the PIMM.
This is independent of any platform that will animate the scenario, but it is a commitment to a configuration that
will then work as a server that interacts with a platform-specific client.

4. Platform Specific Models (PSMs) — These are the actual platforms where users (trainees, analysts,
and other) interact with the domain specialists’ simulated worlds and agent applications. These might be any
number of 3D environments or VWs running on diverse machines.

A reasonable question is who has used the MDA ideas and what have they achieved for domain
specialist programming of applications? The difficulty is that even though this standard was published in 2003,
it still remains an elusive goal to implement it in any domain, including the agent-based modeling field. So any
survey in the agent field, is more a survey of what portions of the MDA have been omitted and why. Let us
examine several examples from the literature.

a) A prime (though non-agent) example of this approach would be using the Unified Modeling Language as a
PIMM (Schmidt 2006). One can then run language-specific code generators to produce skeletal PSM code
that can be filled in to run on a given platform. But this example only highlights the difficulty since the
PSM application cannot be produced by the UML author without programmer support. Further, UML
authoring is not truly a domain-ready PIMMM, since one must conquer the UML language and concepts to
use it. It requires Object-Oriented Analysts to use it, not domain specialists.

b) The NetLogo environment for agent-oriented applications is a great example of a multi-agent systems
environment with broad applicability (Surhone et al. 2010). The applications run over web-browser plugins
so they are, in fact, PSMs that run on any machine that can support Java plugins (though they also require
NetLogo to display their applications). As a PIMM, NetLogo includes an agent authoring environment and
generic screen objects to display the emergent results. However, it relies on the programmer to implement
the social science model of interest (economics, social behavior, psychology, etc.). There is no library of
social science models built into it, though they have a public website where one can inspect the models that
various students and users created. Further, there is no inherent support for a PIMMM usable by domain
specialists not interested in learning the NetLogo language and agent based modeling and simulation topic.

¢) Another strain of recent research is the early attempts at MDA prototyping in multiagent systems: eg, see

Bezivin 2005; Hahn et al. 2009, among others. Hahn et al. provide a survey of approaches and then describe

a prototype of a platform-independent metamodel (PIMM) for developing agent applications in a

6

NonKin Village Models v.4 Jan 2011

generalized manner. By using high-level domain concepts of agents in interactions and organizations, they
follow the MDA standard to transform platform-independent models (PIM) into platform-specific models
(PSM) in two agent environments using mapping rules. There is no attempt to describe a PIMMM. Further,
the example agents that get generated are for workflow tasks and not social simulation (our objective).

2.2 Synthesis of Two lllustrative Models

There are many ways to federate models with each other and with explanation engines that can foster
conversation with users. To help the reader visualize what we will be scaling up throughout this research, it is
helpful to show some details about how two illustrative models might inter-operate. Specifically, we describe
the collaboration between an agent’s default perception model, and its default decision model. These models
represent the core of a PMFserv agent’s reasoning ability (see Sec. 3.1.1) and their connections may be
generalized to all models in PMFserv to generate the PIMMM under discussion. Instead of a rigid standard for
plugging models into the framework, PMFserv facilitates several design patterns, including traditional object-
oriented programming practices and the publish-subscribe pattern, which will be discussed here.

Figure 1 illustrates the three steps to including a model in the framework. These three components feed
into the PMFserv simulation, which resolves all models in a scenario through a model manager and controls
agent steps. On the left-hand side, PMFserv includes a model repository that is maintained by the model
manager, and each model must be registered with the model manager. New models may be added by
subclassing from the base model class to create a plugin class and simply including the model in a designated
plugin directory. The PMFserv plugin manager evaluates these plugin classes and adds them to the overall
model repository, which contains all models native to PMFserv. Once registered as a PMFserv model, a new
model may require data or parameters from other models that exist in the collection. For example, the decision
model of this example is dependent upon an emotion model, a values tree (or multi-attribute payoff function as
will be described in Sect. 3.1), and a perception model. A perception model is defined as any model that
examines the simulation environment and outputs a list of afforded actions along with how taking such action
would affect an agent’s values tree. As the middle component of Figure 1 shows, these dependencies are
specified in a dependency graph. The model manager then resolves all mandatory and optional dependencies,
ensuring that the appropriate model references will exist at agent creation time.

Figure 1 — Example Illustrating How the Model Plugin Framework Works in PMFserv

PMFserv Simulation Environment

X & H
e '____ P X x X 1
J:—____ ____—:} Specify Model Dependency Graph Add te Publish-Subscribe Event List
PMFserv Model — |F'enceptia“ | | Decision |
Repository Decision Model |¢ & bind_watch
Merenyed - % A * -
— % X E
Emations . L] Notify_ignara remove
Perception |, i #{ | decisions
P MEsore) lgnoreEvent —
Plugin Manager g

+

9% ‘ » Stress |
Class
| Alignment | — Wandatory

......... Optional

Let us now describe the interaction of perception and decision-making in an agent (the right-most
component in Figure 1). The default decision model in PMFserv, which performs a subjective expected utility
calculation, asks the model manager for a reference to the perception model and then subscribes (binds) to
events that perception publishes (notifies). For example, a chosen perception model may define perception
scope of the agent as complete omnipotence, where the agent perceives all entities in the world and their actions,
or perhaps only a field of view if the agent were operating in a virtual world. However, the decision model
should not care about these details and instead is only updated with events of importance to the decision-making
process. Specifically, entities that are being watched or ignored dictate which entities may afford actions to the
agent. The decision model then asks a separate emotion model (also in Sect. 3.1) to evaluate how taking each
available action would change its own emotional state. This emotional activation (or decay) is used by the
decision model to calculate a subjective expected utility and the highest ranked action-target pair is then selected
to be performed by the agent.

NonKin Village Models v.4 Jan 2011

3 Model Base Management Practices

In this section we overview the library of models that we are currently synthesizing and federating to simulate
villages and other regions. In particular, as already mentioned, we are interested in creating and autonomously
running an immersive artificial society on the scale of a village, small town, or other community. In general, we
need two broad model categories: product and process. Product models are things like agents, groups, buildings,
infrastructure — anything that will have a physical presence, things that might be teleological and take actions in
the world, or things that might be the object of actions. One can imagine the range of what is needed for
products to be realistic would have to straddle: (1) the minds/bodies of the agents that live there and what
motivates their daily existence; (2) the influential organizations and groups in the region of interest ranging from
familial to commercial to governmental and so on; and (3) the structures, assets, and infrastructure of the
organizations that service the residents. Agents might decide to go home, show up at work, or buy some goods,
but for that to be visualized they need a way to carry out the associated processes. Process models thus are
needed of the workflows, interactions, conversations and the like that we want users to be able to visualize.
Specifically, (4) in a drama theoretic sense, one also needs models that can be reused and instantiated to run the
array of interactions, transactions, and conversations that can transpire between individuals as well as the types
of transgressions and grievances (or good will) that might arise. The important point is that these elements are
the building blocks, or syntax, for any downstream metamodel development. We will describe product- and
process-oriented modeling packages that satisfy these features in Sections 3.1 and 3.2, respectively.

Before explaining the models, it is worth pointing out that several software engineering practices —
model-driven architecture (MDA), model factory pattern, and product vs. process models — have helped us
manage the complexity of the resulting model library. These three practices are summarized in Figure 2 as will
now be explained. First, Figure 2 reflects the three big components of the MDA across its breadth. This
segments the metamodels from the platform model. It also segments the specs for the metamodels from the
metamodel library. That allows one to separately manage and control these differing components. The idea of
moving the models library out of the PSM and into a metamodel might initially seem like a lot of effort.
However, it is the nature of social/behavioral models today that one often must embed behind a client’s legacy
simulator. This is a challenge. In a recent survey of five legacy combat simulators (JSAF, ModSAF, OneSAF,
DISAF, JCATS), it was found that (1) one often cannot discover if a given behavior exists or what level of
fidelity it is modeled at; (2) the software is growing constantly; (3) verification and validation needs of the
legacy software make it prohibitive for anyone other than the prime contractor to add updates (Lavine et al.
2002). This study indicated the need to find novel ways to off-load behavior modules and agent software to
external servers where they can be separately maintained and validated. When needed they could be
dynamically federated (i.e., interoperated) through a mediating service. This article investigates MDA as one
such federation approach.

Second, the center of Figure 2 also shows a Model Factory. The factory is a software design pattern (Cohen
& Gil, 2007) defined as a facility where the user provides the specs (as in a Dell computer website order) and
pre-canned parts are simply snapped together at assembly time to satisfy the order. In the case of software, this
is the “baking process”. This is consistent with the MDA concept (separating PIMMM from PIMM). The
factory of models we adopt is shown in Figure 2 as an extensible model of models architecture where cognitive,
social, and experimentation layer models and tools all can be plugged in or out as needed for the region being
studied. The “glue” for synthesizing the many models together involves the model registry and publish-
subscribe process defined in earlier Section 2.2.

3.1) Socio-Cognitive Agents (Product Models)

As already mentioned, the vast majority of agents in immersive social training worlds are played as
avatars with the second highest fraction being simple finite state machines that have low level Al (navigation,
collision avoidance, simple artificial life functions) and are meant to be hand-scripted for any higher level
behaviors. The goal of our research is to try and synthesize models across the social and behavioral sciences that
will be needed to support autonomous agents carrying out their lives in an artificial society. Since we are
interested in cultural training and ethno-political conflict resolution, we also have a constraint that the models
help to recreate real world places and/or close facsimiles that are archetypical of that real-world culture. We
seek to do this by assembling a collection of product models including agents, groups/organizations, and natural
and manmade structures. The following three sub-sections explore these items.

NonKin Village Models v.4 Jan 2011

Figure 2 -- Overview of How the Model-Driven Architecture, Model Factory Pattern, and Product vs.
Process Model-View-Controllers Help to Manage the Models Library

@tform Independent MetaModel (PIMM) \ Platform

= .
=\ |(Model Factory) Specific
= : Models
= Model Plugin Manager Platform (PSMs)
= R ——— [l 0 denandent ©

Product Models Process Models (@)
L. : - | Model (PIM) | 3
o i N HE N| —/—mm—~ | = R

| Internal Behaviors | " :

= : /Ermoti interaction Model Instantiated m Local

Values/Emotions | 9
& Physio./St S i Virtual Societ
"G_'J My SI0FOMress Proxy Agent Roles : ¥: oJ)

Relationships i context for Affordances | Dilemmas, & i 2D Test
= Decision-making | [l : e | Training) Harness
© AN /il s Scenarios - \ J
@ : . : -Stakeholders ©
g 4 Y Hd Y| | :Oreanizations iy —
[08) {[External Behaviors Transgression Model |i| | *Vilage Objects -
= | Social Belonging Transgression Encyel. | N\ J o
= Roles in Orgs Grievance Record H R Hut_:ksack
w Org'l Services Atonement Paths *:—5' Viewer
e : ; :
=) N /' : 8
= : N—
||l \ X
c | World Markup siststerisrmsatl | — [‘
= Afforded Actions . : : ¥MLRPG
g Daily Life Plans Explainable Agents : To

: . Utterance Catalog 3
o | Tramsactions N agentinitiated Dialog | ; 3D Engines
= ol | model Simulation \ J
k S, / Repository / \ /

3.1.1) Agent Cognition: PMFserv

Since our goal is to study purposeful or teleological agents, we want the agents in the artificial society
to have significant cognitive depth to them. We could adopt any of a number of cognitive models for this
purpose, but a constraint is that they must support modeling individual differences, personality, and cultural
factors. For this purpose, in this section we introduce PMFserv, a COTS (“Commercial off the Shelf”) human
behavior emulator that drives agents in simulated game worlds. This software was developed over the past ten
years at the University of Pennsylvania as an architecture to synthesize many best-of-breed models and best
practice theories of human behavior modeling. PMFserv agents are unscripted, and use their micro-decision
making, as described below, to react to actions as they unfold and to plan out responses.

A performance moderator function (PMF) is a micro-model covering how human performance (e.g.,
perception, memory, or decision-making) might vary as a function of a single factor (e.g., sleep, temperature,
boredom, grievance, and so on.). PMFserv synthesizes dozens of best-of-breed PMFs within a unifying mind-
body framework and thereby offers a family of models. None of these PMFs are “home-grown”; instead they
are culled from the literature of the behavioral sciences. Users can use the PMFserv IDE to turn on or off
different PMFs to focus on particular aspects of interest (or add their own PMF models). PMFserv is an open,
plugin architecture®. These PMFs are synthesized according to the inter-relationships between the parts and with

L1t is worth noting that because our research goal is to study best-of-breed PMFs, we avoid committing to
particular PMFs. Instead, every PMF explored in this research must be readily replaceable. The PMFs that we
synthesized are workable defaults that we expect our users will research and improve on as time goes on. From
the data and modeling perspective, the consequence of not committing to any single approach or theory is that
we have to come up with ways to readily study and then assimilate alternative models that show some benefit
for understanding our phenomena of interest. This means that any computer implementation we embrace must
support plugin/plugout/override capabilities, and that specific PMFs as illustrated in Figure 3 should be testable
and validatable against field data such as the data they were originally derived from.

NonKin Village Models v.4 Jan 2011

each subsystem treated as a system in itself.

The unifying architecture in Figure 3 shows how different subsystems are connected. For each agent,
PMFserv operates what is sometimes known as an observe, orient, decide, and act (OODA) loop. PMFserv runs
the agents perception (observe) and then orients all the entire physiology and personality/value system PMFs to
determine levels of fatigues and hunger, injuries and related stressors, grievances, tension buildup, impact of
rumors and speech acts, emotions, and various mobilizations and social relationship changes since the last tick
of the simulator clock. Once all these modules and their parameters are oriented to the current stimuli/inputs, the
upper right module (decision-making/cognition) runs a best response algorithm to try to determine or decide
what to do next. The algorithm it runs is determined by its stress and emotional levels. In optimal times, it is in
vigilant mode and runs an expected subjective utility algorithm that re-invokes all the other modules to assess
what impact each potential next step might have on its internal parameters. When very bored, it tends to lose
focus (perception degrades) and it runs a decision algorithm known as unconflicted adherence mode. When
highly stressed, it will reach panic mode, its perception basically shuts down and it can only do one of two
things: cower in place or drop everything and flee. In order to instantiate or parameterize these modules and
models, PMFserv requires that the developer profile individuals in terms of each of the module’s parameters
(physiology, stress thresholds, value system, social relationships, etc.).

As an illustration of one of the modules in Figure 3 and of some of the best-of-breed theories that
PMFserv runs, let us consider “cognitive appraisal” (Personality, Culture, Emotion module)—the bottom left
module in Figure 3. This is where an agent (or person) compares the perceived state of the real world to its value
system and appraises which of its values are satisfied or violated. This in turn activates emotional arousals. For
the emotion model, we have fully implemented the one described in Ortony et al. (1998). The OCC model uses
appraisals of actions to compute relationships between each pair of agents based on two primitive variables:
valence (varies from -1 to +1) and degree of agency or humanness (varies from 0 to 1). An agency of 0 implies
the viewer views the other as an object and its values need not apply. This accounts for the ability of agents who
believe “thou shalt not kill”, to commit murder and genocide without violating their values.

Figure 3 — PMFserv, an example Cognitive Architecture

PMFserv|
H Perception Module ‘ Expression
: 2 L 1
Biology Module/Stress Decisionmaking
g W AN T
P o eI e BR = E[Z P*U(s,)] aa
E——) % N t=1
Personality. Social Module, ¢
[P Culture, = o~ Relations, ##"T% %
i Trust R T
[“aiy —.5 e
N Memory #—

To implement a person’s value system, this OCC model requires every agent to have goals, standards,
and preference (GSPs) filled out, though they give no constraints on how to implement that. In our
implementation, GSPs are multi-attribute value tree structures where each tree node is weighted with Bayesian
importance weights. A GSP Tree is shown partially opened on the left of Figure 4. A GSP tree encapsulates an
agent’s long-term desires for world situations and relations (Preferred states or preferences), standards that
govern its behavior and how it judges behavior of others, and goals for short term needs (e.g each day or tick).
Each agent must have the identical tree structure, but their weights are individualized to capture personality and
cultural differences. So the left of Figure 4 shows the weights for a villager who is relatively pro-government,
while the right shows the weights of a committed Taliban Jihadist. Also, the far right of Figure 4 illustrates how
one of the metrics models of the next section (motivational congruence) is computed from lower level agent
models. This is an example of the output of a cognitive model being used to help provide the inputs for a
sociology model. Agent values similarity to leader values is part of the reason that agents keep membership in a
group. The agent’s values are oriented in the OODA loop, then used for decision making as described in earlier
Sect. 2.2, and now the reader sees they also play a role in helping the agent figure out their social network
relations as the next section will elaborate.

We generally elicit the GSP weights from experts in the culture of interest, but in theory, one could
automatically infer them from a corpus of past actions by real world agents. At runtime, this set of values is used
by each agent to Orient and compute a weighted hierarchy of the current state the agent is in. For the Decide
step, the agent infers another weighted hierarchy for each possible new state that an action could precipitate. By
comparing each possible action available, the agent can compute its next action by selecting the one (or several)
action with best possible next step utility. Utility is simply the roll up of the expected activations from that

10

NonKin Village Models v.4 Jan 2011

action times the Bayesian weights on the relevant branches of the GSP tree structure. The resultant is a
Subjective Expected Utility. It is expected since action choices might not lead to the actual outcome. In some
cases FactionSim will run them through the Lanchester equations (see below) to compute likelihood of success,
while in other cases, other agents in the society might be taking countermoves that alter the outcome of the
original agent’s actions.

Figure 4 - GSP Value Tree Structure, Weights and Emotional Activations for Opposing Leaders

Leader GSP Tree Shred
(Pro Constitution)

Insurgent Leader GSP Tree Shred

& [1] Goals =[] Goals Lesend:
+ (1] 010 — Individual) [1] 0,10 — Indlividual 5
-{T] 0.90 — Stete_Leadership &} State_Leadership - Py
&[] Standards o Similarities ”
=[] 0.14 — Conformity_Assertiveness = onfarmity_Assertiveness B
(1] 0.90 — Assert_Individuality -[T] 0.30 — Assert_Individuality Differences < E)
[T] 0.05 — Conform_to_Society [T 0.05 — Conform_to_Society Let,

1] 0.05 — Respect_Authority
0.07 — Exercise_of_Power_n_Culture

isise

0.22 — Humanitarian_Sensitivity_to_n_Respectd_Life

[0 0.20 — Life_Res_r_Sensitive
[T 0.80 — None_r_Sensitive
0.05 — Military_Daoctrine
[T] 0.15 — Shun_violence
[0.35 — Use_Assymmetric_Attacks
4[] 0.50 — Use_Conventional_Attacks
=-{I] 0.23 — Scope_of_Doing_Good
[1] 0.34— Bring_About_Greater_Good
1] 0.66 — Look_after_Narrower_Interests
= {T] 0.05 — Task_Relationship_Balance
= [T] 0.30 — Be_Relationship_Focussed
[1] 0.70 —Be_Task_Focussed
= [IJ 013 — Treatment_of_Out_Groups

e[
#-{I] 0.11 — Honesty
=0
e

(1] 0.05 — Respect_Authority
23,\—\ [1] 0.20 — Exercise_of_Pawer_n_Culture
[T 0.90 — Be_Controlling

| ® [T] 0.05 —Honesty

<.:.... z,}w [T] 0.05 — Humanitarian_Sensitivity_to_n_Respectd_Life

+ (1] 0.80 — Out_Groups_are_Legitimate_Targets

b

=[] 0.40 — Military_Doctrine
[1] 0.00 — Shun_Violence
[D 0.90 — Use_Assymmetric_Attacks
B [D 0.10 — Use_Conventional_Attacks
= [T] 0.05 — Scope_of_Doing_Good
{11 0.20 — Bring_About_Grester_Good
(1] 0.80 — Look_after_Marrower_Interests
=[] 0.05 — Task_Relationship_Balance
#-{]] 0.10 —Be_Relationship_Focussed
L.[T] 0.80 — Be_Task_Focussed
=[] 0.15 — Treatment_of_Out_Groups
1] 0.95 — Out_Groups_are_Legitimate_Targets

GSP_Congruence;; =

(&) z)

Where,

Leafs = Set of all leafnodes of a
GSP tree

w, = multiplicative weight from

[T] 0.20 — Treat_with_Faimess_n_Justice [T] 0.05 — Treat_with_Faimess_n_Justice tree root to child node ofenﬁty e
=[] Preferences Qm;y 1] Preferences
@ [I] 0.56 — Desirable_Future # [1] 0.35 — Desirable_Future
(] 0.34— Peaple # [1] 0.26 — People Example:
= ED 0.10 — Places_n_Things [#] |I| 0.40 — Flaces_n_Things GSP—Congmence PR 0 % 7

3.1.2) Social Framework: FactionSim

One suite of models we have been assembling offers a generic game simulator to social scientists and
policymakers so that they can use it to rapidly mock up a class of conflicts (or opportunities for cooperation)
commonly encountered in today’s world. Simply put, we have created a widely applicable game generator
(called FactionSim) where one can relatively easily recreate a wide range of social, economic, or political
phenomenon so that an analyst can participate in and learn from role-playing games or from computational
experiments about the issues at stake. Indeed, this game generator and its suite of social science models have
successfully been applied in the past to recreate communities in SE Asia, the Mid East, and Horn of Africa. In
over 200 statistical correlations with real world communities it has been shown to be over 80% accurate at
recreating the conflict and cooperation decisions of leaders for and against the groups they manage and follower
membership action choices: eg., see Silverman et al. (2009). These statistics hold for decisions aggregated and
averaged over 3 month intervals, and FactionSim should not be interpreted as capable of predicting what a
specific leader or follower will do on a given day or even in any given week.

Factions are modeled where each has a leader, various sub-faction leaders (eg, loyal and fringe), a set
of starting resources (Economy, E, Security, S, and Politics, P), institutional ministers who manage the flow of
public good and services, and a set of N follower agents. A leader (and possibly a leader council as well as the
institution ministers) is assumed to manage the faction’s E- and S- tanks so as to appeal to the followers and to
each of the other tribes or factions they wants an alliance with. Each of the leaders of those factions, however,
will similarly manage their own E and S assets in trying to keep their sub-factions and memberships happy.
Followers determine the level of the P-tank by voting their membership level (a topic discussed later in this
paper). A high P-tank means that there are more members to recruit for security missions and/or to train and
deploy in economic ventures. So leaders often find it difficult to move to alignments and positions that are very
far from the motivations of their memberships.

As an example, consider Figure 5 which shows the main groups and members of an artificial society.
Here we are showing a village of two Pashtun clans (center of Figure), the Afghan government on the left, the
Taliban on the right, and the US-led International Forces in the top center. In Section 4 we shall explore what
happens when a human plays the US forces. One can also see in Figure 5 that each of the main groups has
subgroups; ego, social and economic networks; and there are resources and services that are included as well. As
indicated by the dashed arrow and box in the lower left, we are showing that there are little services currently for
those in the rural villages (the Government of Afghanistan primarily supports the urban centers). Creating those
local services and fostering jobs will be the way to counter the competing services that the Taliban does provide
in that region.

11

NonKin Village Models v.4 Jan 2011

Figure 5 — FactionSim Layer of an Example Artificial Society

- V(o) T e
— \ ationa / Taliban Gov't \
GIRoA (Official Ministries & s ~ { = : \
: inistries USA / [in Exile |
Afghan Gov't) Resources . e
" lj {Judiciary, ISAF e
Security, L9 o
5, N N | Public g : e
Afglhan Afglhan Works, Informal Services
ga;_l :at 1 Health, (Security, Public Works,
{:h;;? {;;‘:} Education, Poppy Econ, Madrassah
\ _Elections}) ! Schools, Jirgas, etc.)
L)\ y)

T
Y 1
“Awakening”: District : i
Shuras (Local Police, Local E
Schools, Sustain Public

' Waorks, Farming, etc)

's ™

| T
weuws | Achekzai Clan [Noorzai Clan Fringe Pashto Taliban Core
4 \ Fighters

| b 7

In order for this to work, there must be models behind the scenes that run this society. Indeed, FactionSim
includes a suite of default, first approximation models which are extensible and can be improved and/or replaced
by developers who have their own models they wish to explore using. These include:

e Security Model (Skirmish, Modified Lanchester) — carries out attack action choices of diverse leaders:

o Power-vulnerability Computations (conducted by each group and leader)

o Skirmish Model (force size, training, etc.)

0 Modified Lanchester Model (probability of kill, damage) — used for economic attacks as well

e Economy Model (LMR model) — gives each agent a wallet and each group a treasury (econ tank),
carries out many economic actions, and updates the flow of services, goods, jobs, taxes, and related economic
transactions for the following sectors:

o Black Market — poppy economy, smuggling

o Formal Capital Economy — farming, marketplace, taxes, and related jobs and enterprises

e Socio-Political Model (loyalty, membership, injustice, etc.) — handles governmental, institutional, and
group management actions carried out by leaders as well as followers:

o Institution Sustainment Dynamics — handles minister agent allocations and distributions,
bribes

0 Group Membership model — computes numerous averaged metrics using inputs from members
of each group such as resource satisfaction levels, group collective beliefs (vulnerability,
injustice, distrust), mobilization and votes, and motivational congruence (members vs. leader).
The latter of these was illustrated in earlier Figure 5 and discussed in Sect. 3.1.

0 Group Alignment and Familiarity models — computes numerous individual metrics based off
of agent to agent relations (valence and agency parameters — see next section) such as
alignment, strength of relationship, authority/legitimacy level, InGroup influence, CrossGroup
Alignments and Influence levels, and individual agent reputation/familiarity (a merger of
rapport and trust).

FactionSim is thus a tool where you set up a scenario in which the factional leader and follower agents all run
autonomously and are free to use their micro-decision making as they see fit. One can study what emerges and
explore what-if questions, or use it immersively in role playing games and training sessions. The models
provided are default PIMMs only, and the PIMMM facilitates the codification of alternative theories of factional
interaction and the evaluation of policy alternatives. At present, however, the PIMMM only supports parameter
experiments on existing models and requires knowledge of Python to use it for substituting in new models.

————————

3.1.3) Affordance-Based Perception Model and World Entity Markups

While FactionSim specifies the resources of and services provided by and to each group (eg, family,
business, political party, religious sect, etc), this is done in the abstract as statistical properties. For 3D worlds it
is important to map these onto actual natural and manmade structures. For example, if a given group’s
institutions provide health services that only reach 30% of the people, then this should appear in a 3D world as a
small clinic with limited capacity. And, conversely, if that facility is damaged in the 3D world, this needs to be
reflected back to FactionSim as a drop in capacity. Thus, in addition to managing agents, FactionSim and
PMFserv also manage perceivable entities (representing both agents and non-agents, such as a car, location, a
business, etc), including when and how they may be perceived and acted on by agents.

PMFserv manages agents’ perception of perceivables by implementing affordance theory, meaning that
each entity (ie, object, group, institution, and agent) applies perception rules to determine how it should be seen
by each perceiving agent. Entities then reveal the actions (and the potential results of performing those actions)

12

NonKin Village Models v.4 Jan 2011

afforded to the agent. For example, an object representing a car might afford a driving action which can result in
moving from one location to another. A business might afford running it, working there, purchasing goods,
and/or attacking and damaging it. To make it easier to edit a virtual world, a great many entities are being pre-
encoded in the PMFserv libraries so that training scenario developers need not fill in the markups, but only need
to link them to structures, areas, organizations, etc. of that town or region. Section 3 will illustrate this further.

These entity affordance markups permit the PMFserv agents to perceive and reason about the world around
them. Thus the PMFserv agents operate their OODA loop and notice their own needs after the Orient step.

The afforded actions convey how much satisfaction of needs and/or activation of utility they would provide
to the agent (eg, kcal of eating a unit of food, utility from hitting an opponent, or utility from aiding a friend).
The Decide step of the OODA loop merely appraises and ranks all possible actions and selects the optimum
relative to the agent’s current needs. The GSP trees of earlier Figure 5 show two small tanks to the left of each
node on the tree. They are white or empty in that figure. When a given afforded action succeeds the left tank
activates, if it fails, the right tank activates. Succeed and Fail activations cause the agent to want to satisfy that
GSP node less or more on the next tick. Thus if the agent just ate and satisfied its Stay-Healthy Goal, it won’t
need to eat again until the succeed tank activation decays (or the stomach grows empty due to exertion).

Using this implementation of affordance theory, we have developed a taxonomy to categorize and build
up complicated entities that would be needed in an immersive virtual society with socio-cognitive agents and
sufficient player interaction capability (Pietrocola et al, 2010). Ultimately this serves the purpose of allowing
agents to reason about the environment, including objects like buildings that may afford services such as going
to work, or purchasing food. This taxonomy also includes numerous multi-step plans for carrying out daily life
functions (eg, go to work, pray, socialize with friends, carry out an attack on a target, etc.). FactionSim models
described earlier make a set of actions available in the abstract, whereas these actions are the lower level,
individual agent counterparts that permit them to carry out a Faction leader’s higher level plan should he
communicate it to them.

Considering our desire to expose culture in our models, we also build upon universal affordances like
the examples just outlined, and embed culturally-affected “collective perceptions.” Specifically, we use a
culture’s systems of regulation and core beliefs to influence how and when structures and environmental
features are perceived. For example, behaviors related to food purchasing may be driven by norms like market
days or religious observances. Similarly, gender differences may affect accessible locations and interactions
between NPCs.

Additionally, the decentralization of perception rules to the objects themselves provides an engineering
advantage along the lines of modularity and reusability (Cornwell et al, 2003). Each way in which an object,
group, institution, or agent may be perceived is called a perceptual type, or p-type. A grid of p-types is created
for each perceivable entity. Rules on a p-type allow a modeler to establish appropriate contexts for the object to
be viewed in that way. When active, p-types afford actions to the perceiving agent and the decision-making
process can proceed.

3.2) Process-Oriented Models: Interactions, Transgressions, and
Conversations

Process models were earlier defined as the abstract models of social interactions that can happen between
agents, groups, agents to objects, etc. In most game environments, one expends significant manual labor in
producing these types of “models” as one-off, hand- scripted and hard-wired dialog graphs, limited Markov
action chains (and rules), and preset spatio-temporal aspects (timelines, workflows, routes). An alternative is to
approach all of these as potentially reusable models. For that to work, one wants such models to be relatively
well done, maintainable, and extensible. Ideally, such models could interact with product models. Thus there
should be some synergistic effect where many of the interactions and process dynamics freely emerge from the
product models. One should not have to hand-author every utterance, ever action sequence, and every scene if
the agents are autonomously thinking of their own grievances, desires, mobilizations, etc. This section begins by
introducing our Interaction Model, then explains Transgression and Atonement, and finally winds up with the
types of Conversation Models that are being supported. All of these models are supported with an editing tool
we call Authoring Electronic Stories for Online Players (AESOP). AESORP is a first draft of a PIMMM suitable
for programmer usage.

3.2.1) Interaction Model

In carrying out the actions and daily life plans of earlier Section 3.1.3, agents often must interact with each other
or with the player(s). Interactions can be defined as a condition existing between two or more agents such that
each exhibits one or more behaviors affecting the other during a finite period (Biddle 1979). Common
interactions may include socializing and conversations, ordering coffee at a café, searching a residence on

13

NonKin Village Models v.4 Jan 2011

security patrol, holding a council of elders meeting, and so on. We each have our own mental model of
interaction types, many of which fall under a few general domains such as workplace, transactions, or
classroom. The composition of an interaction model and the usage of its semantic layer to create a platform-
independent model is now described.

Consider a villager agent “Ubadah Sabih” in some NonKin scenario. Ubadah is a Medical Supplies
Importer by trade. There are a number of situations related to this occupation that this person might become
involved with such as ordering or selling supplies. Ubadah is also a head of household, so within the context of
being home, visitors have a number of actions afforded to them in interacting with him that they would not have
when he was in his office or on the street. We have these various situations related to roles he fills, with each
role potentially providing a different set of properties and actions to Ubadah.

Suppose a domain expert wished to create a platform-independent interaction model of searching a
house in a law enforcement operation. In the case without interaction models, we would need to map out all the
possible things that can happen in a search house and then apply these actions to every agent who may be
involved in a house search. We would also need to switch off actions that are unrelated to the event currently
happening. From an efficiency, modularity, and authoring perspective this would be both labor intensive and
error prone, causing an explosion in lines of code required and maintenance costs. This lack of reusability
discourages the authoring of complex interactions.

Interaction models avoid this dilemma by creating a “simulation within a simulation”. Each interaction
contains a full simulation model, complete with scenario and agent instances. Each agent is a proxy
(representing an assumed role) for agents back in the main scenario with limited access to their state and
models. Agents are passed in like parameters so that not only can they act like themselves as village entities, but
have different capabilities depending on various situations they are in and what role they fill within that
situation. This gives us a reusable container object to encapsulate various situations independent of who is
involved.

Figure 6 - Interactions as sub-simulation models

| NonKinVillage PMFServ Simulation

22338 3
@ & 8 @ oo

Agent Agent Agent Agent I

Interaction PMFServ Simulation

i b R

Role Role Context

Interactions are made up of a number of interconnected but independent objects that together combine
to create the interaction model itself. These components are:

e Interaction Scene -- The Interaction contains a Scene based off the one executing in the main Simulation
Model. This scene contains only the agents and object that are relevant to the interaction.

e Internal Simulation -- In order to execute the Interaction’s Internal Scene, it also must contain its own
Simulation Model. This model is based off the same PIMM as the one the Interaction exists within.

e External Interaction -- The external interaction is the interaction’s face to the rest of the world. It sits in the
main simulation model alongside all other agents and objects in the village. Just like other perceivable
objects it has actions that can be performed on it and information that can be drawn from it. For example,
one of the default actions they support is “Join”, which allows agents to join an interaction of their own
volition.

o Internal Context -- The internal context sits inside the scene contained within the interaction’s simulation.
It acts as a proxy to the external interactions, permitting sharing of state information between the inside
(within the interaction’s simulation model) and outside (within the simulation that contains the interaction)
worlds. For example it contains its own potential actions like “Leave” which allows an agent to exit an
interaction.

14

NonKin Village Models v.4 Jan 2011

¢ Roles -- Roles are where the bulk of the unique capabilities of interactions come from. Each exists as an
incomplete agent that then proxies for an agent in the main scenario. This proxy causes requests for a subset
of the role’s models to actually return models on the main simulation agent instead. This allows the internal
models of the normal agent to be visible on the proxy agent while it maintains its own perception and
decision model thus tying it to the local simulation. Because of this the agents combine a local-level
knowledge of their interaction with the global state and emotions of the main agent, creating a hybrid object
that can act as an abstract role while maintaining the characteristics that make the agent unique in the
village.

3.2.2) Social Rules: Transgression and Atonement

When interactions occur, social and cultural norms might be violated. Earlier in Section 3.1.2, we looked at the
value systems that people (and agents) might use to appraise their situation. In addition to internally held values,
most societies also have social obligations or cultural norms that individuals are expected to conform to. The
social rules of a given culture need to be captured in a potential norms catalog or encyclopedia. An example of
this in our Afghan village is shown in the left column of Figure 7. These norms are packaged in NonKin as a
Social Norms Catalog that one can transgress against.
By “social transgression” we mean an offense an agent can commit against social norms or rules.
When transgressions are committed they are instantiated as PMFServ objects representing an offense between
an agent and another agent or group. Transgressions are usually created dynamically as a side effect of an
action. For example, in NonKin Village, they are used to represent offensive behaviors executed by the user
(often not intentional!) and to represent historical grievances of the village.
We utilize a simple, yet comprehensive taxonomy of the possible types of transgressions (Knight et al,

2008):

e Faux Pas - refers to the etiquette related transgressions (e.g. rude remarks, eating with left hand)

e Taboo - refers to any symbolistic related transgressions (e.g marrying your sister, defiling a holy relic)

e Materialistic - refers to destroying or stealing someone's possessions (e.g. vandalism, fraud, damaging
property)

e Violence - refers to injuring, killing, or threatening bodily harm.
A transgression could have any single or combination of the above categories violated to different degrees. The
example transgression highlighted in Figure 7 causes three categories of violations simultaneously.

Figure 7 - Overview of a Transgression Catalog Summarizing Social Rules of a Culture

i: NonKin AESOP (AfghanVillage) !EWEI

Motes | Willage | Utterances | Transgressions | Anthologies | Scenes | Assessments | Reflexes

Transgressions | Grievances | Transgression Perceivable | Action Mappings | Intensity Levels

+ = B [¥] Agent Killed
very_excess_confrontational_convo A Is Unforgivable
rnoderateIy_e;cess_confront.atnonal_convo FauxPas Level(9) Intensity (0.750) —
mildly_excessivly_confrontational_convo 9
throw_food_on_ground
kill_member Violence Level (10) Intensity (1.000) M
remain_standing v
search_home
search_womens_body Taboo Level (0) Intensity (0.000) ™
injure_member_of _sect b
refuse_hasphality Materialistic Level (0) Intensity (0.000) ™|
search_womens_areas v
insurgent_attack
eat_with_left_hand Scope
injure_member_of _tribe
point_finger Offender | victim
show_soles . Ackar v
enter_mosque
stare_at_woman Motes
threaten_harm_to_HoH
threaten_harm_to_Family Description
intarranake Famile innore HaH hs Valid Contexts

£ > Trinner Actions

All transgressions have a transgressor, a set of victims, and a set of effects. Effects are the direct effects
of the offending action, not the emotional activations on observers. Those events or effects are handled
internally by the PMFserv agents. Beyond these basic properties, our transgression objects keep track of some

15

NonKin Village Models v.4 Jan 2011

relations with the transgressor, relations with observers, properties of the effects, and relations between the
transgressor and observers.

Each agent automatically perceives any transgression immediately after it's created. Transgressions are
configured to invoke reactionary and usually negative emotions when perceived. Some transgressions are
unforgivable, meaning that their emotional effects never lessen. However, most transgressions are forgivable
and hence decay over time. The rate of forgiveness depends on the agent's "grudge factor". Other factors
effecting forgiveness are apology and the removal of the negative effects of the transgression (e.g. returning
stolen property, or a healed wound). In NonKin Village, serious offenses require a formal apology and possible
compensation according to local customs and tribal law before forgiveness can occur. In this document, we refer
to steps required to rectify an offense "Paths to Atonement".

3.2.3) Scenes Having Conversations and Transactions

Success in the NonKin environment depends on learning the human terrain, and to do that the player needs to
talk to the village inhabitants. Many games implement conversation, but it is almost always based on finite-state
branching structures or simple rule-based systems. The conversation system in NonKin needs to go well beyond
this to support agent expressiveness about its physical and emotional state, and to allow the agent to take
(verbal) actions based on the affordances of those actions.
To achieve this NonKin Depends on several structures:

e Utterance Catalog for each model in the collection

o Dialog graph for each generic, reusable type of interaction/transaction

e Interaction contexts (Scenes)

The Utterance Catalog is a library of statements that enable the agent to express something about a part
of their internal models and sub-models (eg, physiology, emotions, etc) and/or their models of others they like,
dislike, etc. Thus, without any further scripting an agent can state what’s happening to and around it, like: I am
very angry at you, | feel joyful about my daughter’s health, or I am full. Each utterance has an Activation Rule
associated with it. The activation rule is the logic that looks at the agent's internal models and decides the
appropriateness of speaking the statement. The statements in the Utterance Catalog also have replacement rules,
e.g. the agent can say “ @subject is a member of @group”.

It is important to note that the responses generated by the Utterance Catalog are dynamic, in the sense
that they are generated from a static set of responses as an expression of the socio-cognitive models of the agent,
which will differ from agent to agent, and which may change over time. So the Utterance Catalog is a place to
find answers to questions. How can the player pose these questions? The answer is to provide them with dialog
options, and to do that NonKin makes use of a graph-based Dialog system. These superficially resemble finite-
state systems, but through modularization, contextualization and connection to the Utterance Catalog, they are
used to provide needed structure and narrative “arc” to the player-agent conversations.

The main function of the Dialog graph is to give the player a list of statement options, directed at the
currently engaged agent. The attributes of a statement include the verbal statement, a possible transgression, and
an activat