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ABSTRACT
A well known (and often used) result by Marc Pauly states
that for every playable effectivity function E there exists a
strategic game that assigns to coalitions exactly the same
power as E, and vice versa. While the latter direction of the
correspondence is correct, we show that the former does not
always hold in the case of infinite game models. We point
out where the proof of correspondence goes wrong, and we
present examples of playable effectivity functions in infinite
models for which no equivalent strategic game exists. Then,
we characterize the class of truly playable effectivity func-
tions, that does correspond to strategic games. Moreover,
we discuss a construction that transforms any playable effec-
tivity function into a truly playable one while preserving the
power of most (but not all) coalitions. We also show that
Coalition Logic is not expressive enough to distinguish be-
tween playable and truly playable effectivity functions, and
we extend it to a logic that can make this distinction while
enjoying finite axiomatization and finite model property.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic; J.4 [Social and Behavioral Sciences]: Economics

General Terms
Theory

Keywords
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1. INTRODUCTION
Several logics for reasoning about coalitional power have

been proposed and studied in the last two decades. Eminent
examples are: Alternating-time Temporal Logic (ATL) [1],
Coalition Logic (CL) [11], and Seeing To It That (STIT) [2],
used in computer science and philosophy to reason about
properties of multi-agent systems. A crucial feature of these
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logics is the correspondence between their models and the
game structures they are meant to reason about.

In particular, the connection between the semantics of
Coalition Logic and games relies on Pauly’s representation
theorem [11] which states that playable effectivity functions
correspond exactly to strategic games. Moreover, the corre-
spondence has been used to obtain further results for CL: if
the semantics can be defined equivalently in terms of strate-
gic games and playable effectivity functions, they can be
used interchangeably when proving properties of the logic.
A similar remark applies to ATL and STIT, connected to
Coalition Logic by a number of simulation results [4, 6, 7].

The correspondence between strategic games and effectiv-
ity functions is important even without the logical context.
Effectivity functions generalize basic models of cooperative
game theory, whereas strategic games are models of non-
cooperative game theory. Pauly’s result is relevant as it
puts forward a characterization of strategic games in terms
of coalitional games, therefore establishing a connection be-
tween the two families of game models.

In this paper, we show that the representation theorem
is not correct as it stands. More precisely, we show that
there are some playable effectivity functions with no corre-
sponding strategic games. We point out where Pauly’s proof
of correspondence goes wrong, and we present examples of
playable effectivity functions , for which no equivalent strate-
gic games exist. Then, we define a more restricted class of
effectivity functions, that we call truly playable, and we show
that they correspond precisely to strategic games. We dis-
cuss several alternative characterizations of truly playable
functions. Moreover, we present a construction that recov-
ers the correspondence in the sense that it transforms any
playable function into a truly playable one while preserving
the power of most (but not all) coalitions. Finally, we dis-
cuss the ramifications for the above mentioned logics. On
the one hand we show that the complete axiomatization of
Coalition Logic from [11] is not affected if we change the
class of models from playable to truly playable. On the
other hand, we propose more expressive languages that can
characterize the property of true playability, thus drawing a
logical distinction with Pauly’s playability.

2. PRELIMINARIES

2.1 Strategic Games
Strategic games are basic models of non-cooperative game

theory [10]. After [11], we focus on abstract game forms,
where the effect of strategic interaction between players is



represented by abstract outcomes from a given set and play-
ers’ preferences are not specified. For simplicity we refer to
them as strategic games.

Definition 1 (Strategic game). A strategic game G
is a tuple (N, {Σi|i ∈ N}, o, S) that consists of a nonempty
finite set of players N , a nonempty set of strategies Σi for
each player i ∈ N , a nonempty set of outcomes S, and an
outcome function o :

∏
i∈N Σi → S which associates an out-

come with every strategy profile.

Additionally, we follow [11] and define coalitional strate-
gies σC in G as tuples of individual strategies σi for i ∈ C,
i.e., ΣC =

∏
i∈C Σi. Note that this definition allows for only

one strategy σ∅ when C = ∅, namely the empty function.

2.2 Effectivity Functions
Effectivity functions have been introduced in cooperative

game theory [9] to provide an abstract representation of the
powers of coalitions to influence the outcome of the game.

Definition 2 (Effectivity function). An effectivity

function is a function E : 2N → 22S , that associates a family
of sets of states from S with each set of players.

Intuitively, elements of E(C) are choices available to coali-
tion C: if X ∈ E(C) then by choosing X the coalition C can
force the outcome of the game to be in X. Effectivity func-
tions are usually required to satisfy additional properties,
consistent with this interpretation.

Definition 3 (Playability [11]). An effectivity func-
tion E is playable iff the following conditions hold:

Outcome Monotonicity X ∈ E(C) and X ⊆ Y implies
Y ∈ E(C);

N-maximality X 6∈ E(∅) implies X ∈ E(N);

Liveness ∅ /∈ E(C);

Safety S ∈ E(C);

Superadditivity if C ∩D = ∅, X ∈ E(C) and Y ∈ E(D),
then X ∩ Y ∈ E(C ∪D).

Looking at playable effectivity functions, we can observe
that their representation contains some redundancy. In par-
ticular, the fact that E(C) is outcome monotonic suggests
that one could succinctly represent it in terms of minimal
sets, i.e., the elements of E(C) that form an antichain under
set inclusion. The nonmonotonic core, introduced in [11], is
aimed at providing such a representation.

Definition 4 (Nonmonotonic core). Let E be an ef-
fectivity function. The nonmonotonic core Enc(C) for C ⊆
N is the set of minimal sets in E(C):

Enc(C) = {X ∈ E(C) | ¬∃Y (Y ∈ E(C) and Y ( X)}.

We will show in Section 3.1 that not all sets in an effec-
tivity function need to contain a set from the nonmonotonic
core. Thus, Enc does not always behave well as a represen-
tation of the effectivity function, unless it is “complete” in
the following sense.

Definition 5 (Complete nonmonotonic core). The
nonmonotonic core Enc(C) is complete iff for every X ∈
E(C) there exists Y ∈ Enc(C) such that Y ⊆ X.

The nonmonotonic core of the empty coalition is of par-
ticular interest to us. For it, the following holds.

Proposition 1. For every playable effectivity function E:

1. E(∅) is a filter.

2. Enc(∅) is either empty or a singleton.

Proof. (1) E(∅) is non-empty by Safety; closed under
supersets by Outcome Monotonicity, and under intersections
by Superadditivity (with respect to the empty coalition).

(2) Suppose Enc(∅) is non-empty, and let X,Y ∈ Enc(∅).
Then, coalition ∅ is effective for each of X and Y , hence, by
superadditivity, it is effective for X ∩ Y . By the definition
of Enc(∅), it follows that X = X ∩ Y = Y .

Each strategic game G can be canonically associated with
an effectivity function, called the α-effectivity function of G
and denoted with EαG.

Definition 6 (α-Effectivity in Strategic Games).
For a strategic game G the α-effectivity function EαG : 2N →
22S is defined as follows: X ∈ EαG(C) if and only if there
exists σC such that for all σC we have o(σC , σC) ∈ X.

Proposition 2. For every α-effectivity function

EαG : 2N → 22S , the following hold:

1. The nonmonotonic core of EαG(∅) is the singleton set
{Z} where Z = {{x} ∈ S | x = o(σN ) for some σN}.

2. EαG(∅) is the principal1 filter generated by Z.

Proof. For both claims it suffices to observe that Z ∈
EαG(∅) and that Z ⊆ U for every U ∈ EαG(∅). Therefore,
Enc(∅) = {Z} for E = EαG and EαG(∅) is the principal filter
generated by Z.

3. PROBLEM WITH CORRESPONDENCE
In this section we show that playability is not sufficient to

make effectivity functions correspond to strategic games.

3.1 Counterexample to Pauly’s Representation
Theorem

Theorem 3 (Pauly’s Representation Theorem [11]).
A coalitional effectivity function E α-corresponds to a strate-
gic game if and only if E is playable.

Thus, the theorem states that every playable effectivity
function is equal to the α-effectivity function of some game
(Pauly calls this equivalence relation α-correspondence), and
that each game has an α-effectivity function that is playable.
While the latter is true, the former turns out incorrect.

Proposition 4. There is a playable effectivity function
E for which E 6= EαG for all strategic games G.

Proof. Consider an effectivity function E ranging on a
set N consisting of a single player a and on the set of natural
numbers N (i.e., N = {a}, S = N), and defined as follows:

• E({a}) = {X ⊆ N | X is infinite};
1Filter F on domain Ω is principal iff there exists X ⊆ Ω
such that F is the set of all supersets of X. Then, F is said
to be generated by X.



• E(∅) = {X ⊆ N | X is finite}.

We claim that E is playable and that it does not corre-
spond to any strategic game. Let us first verify the playabil-
ity conditions. Outcome monotonicity, N-maximality, live-
ness and safety are straightforward to check. For superad-
ditivity, notice that we have only two cases to verify:

1. C = {a}, D = ∅. Superadditivity holds here because
intersection of an infinite and a cofinite set is infinite.

2. C = ∅, D = ∅. Superadditivity in this case holds be-
cause intersection of two cofinite sets is cofinite.

On the other hand, Enc(∅) = ∅ because there are no
minimal cofinite sets. This implies, by Proposition 2, that
E 6= EαG for all strategic games G.

3.2 Tracing the Problem
Below, we summarize the relevant part of the proof of

Theorem 2.27 from [11], and show where it goes wrong. We
outline the construction of a strategic game G given an effec-
tivity function E (Steps 1–4); then, the argument supposed
to show that E α-corresponds to G (Steps 5–6).

Step 1: the players and the domain remain the same.
The game G = (N,S,Σi, o) inherits the set of outcomes and
the set of players as in the effectivity function E.

Step 2: coalitions choose a set from their effectivity
function. Now, a family of functions is defined:

Fi = {fi : Ci → 2S | for all C we have that fi(C) ∈ E(C)}

where Ci = {C ⊆ N | i ∈ C}. Each function fi assigns
choices to all coalitions of which i is a member. Fi simply
collects all such assignments.

Step 3: coalitions are partitioned according to their
choices. Let f = (fi)i∈N , fi ∈ Fi, be a tuple of such as-
signments, one per player. The next step is to define the set
P∞(f) which results from iterative partitioning of the set of
players in the coarsest possible way such that players in the
same partition are assigned same coalitional choices:

P0(f) = 〈N〉
P1(f) = P (f,N) = 〈C1

1 , . . . , C
1
k1
〉

P2(f) = 〈P (f, C1
1 ), . . . , P (f, C1

k1
)〉 = 〈C2

2 , . . . , C
2
k2
〉

...

P∞(f) = Pr(f) such that Pi(f) = Pi+1(f) for all i ≥ r,

where each P (f, C) returns the coarsest partitioning
〈C1, . . . , Cm〉 of coalition C such that for all l ≤ m and
for all i, j ∈ Cl it holds that fi(C) = fj(C).

Step 4: an outcome is chosen in the intersection of
coalitional choices. Strategies and outcome function are
defined as follows. Each player in N is given a set of strate-
gies of the form (fi, ti, hi) where fi ∈ Fi is an assignment
of coalitional choices for player i (see Step 2), ti is a player
(possibly different from i), and hi : 2S \ ∅ → S is a selec-
tor function that picks up an arbitrary element from each
nonempty subset of S.

The outcome of strategy σN is now defined as:

o(σN ) = hi0(G(f)), G(f) =

k⋂
l=1

f(Cl),

where i0 is a uniquely chosen player, hi0 is the outcome
selector from i0’s strategy, and Cl is one of the k coalitions
in P∞(f).

This concludes the construction of a game G which should
α-correspond to the effectivity function E. Steps 5–6 are
supposed to prove that E = EαG .

Step 5: choices are not removed by the construction.
First, an attempt to prove E(C) ⊆ EαG (C) for arbitrary
coalition C is presented [11, p.29]:

For the inclusion from left to right, assume that
X ∈ E(C). Choose any C-strategy σC = (fi, ti, hi)i∈C
such that for all i ∈ C and for all C′ ⊇ C we have
fi(C

′) = X.(*) By coalition monotonicity, such
fi exists.(**) Take now any C-strategy, σC =
(fi, ti, hi)i∈C . We need to show that o(σC , σC) ∈
X. To see this, note that C must be a subset
of one of the partitions Cl in P∞(f). Hence,

o(σN ) = hi0(G(f)) = hi0
⋂k
l=1 f(Cl) ∈ X.

The deduction of the last sentence is where the proof goes
wrong. The problem is that, for C = ∅, the only available
strategy is the empty strategy σ∅ which vacuously satisfies
condition (*). And, for any agent i, a choice assignment
fi satisfying the condition must exist. However, there is
no guarantee that any i will indeed choose fi in its strategy
since the coalition C for which we can fix its strategy does
not include any players. In consequence, one cannot deduce
that hi0

(⋂k
l=1 f(Cl)

)
∈ X; this could be only concluded if

the intersection contains at least one player whose choice
fi(Cl) is X (or a subset of X).

Another case where the reasoning fails is C = N . Consider
a state space S with x ∈ S, and an effectivity function E
such that {x} /∈ E(N). Now, let strategy profile σN consist
of σi = (fi, ti, hi) where everybody assumes choosing the
whole state space in all circumstances (i.e., fi(C) = S for all
i and C) and applies the same selector hi such that hi(S) =
x. Now we get that o(σN ) = x, so {x} ∈ EαG (N), and hence
E(N) 6= EαG (N).

Step 6: choices are not added by the construction.
The proof of the other direction (EαG (C) ⊆ E(C)) fails too,
because in order to establish the inclusion for C = N , it is
reduced to inclusion in step 5 for C = ∅, and we have just
shown that it does not necessarily hold.

This concludes our analysis of the proof of Pauly’s repre-
sentation theorem in [11]. We consider it important for two
reasons. First, we have identified precisely what was wrong
with the construction of the proof. Second, we will reuse
the sound parts of the original construction when proving a
revised version of the correspondence in Section 4.2 and to
obtain some additional results in Section 4.4.

4. TRULY PLAYABLE EFFECTIVITY
FUNCTIONS

In this section we introduce an additional constraint on
playable effectivity functions, that will enable us to restore
the correspondence with strategic games in in Section 4.2.

4.1 Characterizing True Playability

Definition 7. An effectivity function E is truly playable
iff it is playable and E(∅) has a complete nonmonotonic core.



Several equivalent characterizations of truly playable ef-
fectivity functions are given in Proposition 5. For one of
them, we will need the additional notion of a crown. Intu-
itively, an effectivity function is a crown if every choice of
the agents in the grand coalition includes at least one state
that the grand coalition can enforce precisely.

Definition 8. An effectivity function E is a crown iff
X ∈ E(N) implies {x} ∈ E(N) for some x ∈ X.

Proposition 5. The following are equivalent for every

playable effectivity function E : 2N → 22S .

1. E is truly playable.

2. E(∅) has a non-empty nonmonotonic core.

3. Enc(∅) is a singleton and E(∅) is a principal filter,
generated by Enc(∅).

4. E is a crown.

Proof. (1) ⇒ (2): immediate, by safety.
(2) ⇒ (3): Let Z ∈ Enc(∅) and let X ∈ E(∅). Then,

by superadditivity, Z ∩ X ∈ E(∅), and Z ∩ X ⊆ Z, hence
Z ∩X = Z by definition of Enc(∅). Thus, Z ⊆ X. So, E(∅)
is the principal filter generated by Z, hence Enc(∅) = {Z}.

(3) ⇒ (1): immediate from the definitions.
(3) ⇒ (4): Let Enc(∅) = {Z} and suppose {x} /∈ E(N)

for all x ∈ X for some X ∈ E(∅). Then, by N-maximality,
S \ {x} ∈ E(∅), i.e. Z ⊆ S \ {x} for every x ∈ X. Then
Z ⊆ S \X, hence S \X ∈ E(∅). Therefore, X /∈ E(N) by
superaditivity and liveness. By contraposition, E is a crown.

(4) ⇒ (3): Let Z = {z | {z} ∈ E(N)} and let X ∈ E(∅).
Take any z ∈ Z, which is nonempty by liveness and the
fact that E is a crown. By superadditivity we obtain that
{z} ∩ X ∈ E(∅), hence z ∈ X by liveness. Thus, Z ⊆ X.
Moreover, Z ∈ E(∅), for else S\Z ∈ E(N) by N-maximality,
hence {x} ∈ E(N) for some x ∈ S \ Z, which contradicts
the definition of Z. Therefore, E(∅) is the principal filter
generated by Z, hence Enc(∅) = {Z}.

Corollary 6. Every playable effectivity function

E : 2N → 22S on a finite domain S is truly playable.

Proof. Straightforward, by Proposition 5.3 and the fact
that every filter on a finite set is principal.

4.2 Truly Playable Functions Correspond to
Strategic Games

The proof of Theorem 2.27 from [11] fails when we con-
sider the effectivity function of the empty coalition or the
grand coalition. However the proof is correct for the other
cases. We will now show that the additional condition of
true playability yields correctness of the original construc-
tion from [11].

Theorem 7. A coalitional effectivity function E α-corre-
sponds to a strategic game if and only if E is truly playable.

Proof. By Propositions 2 and 5, for any strategic game
G its α-effectivity function EαG is truly playable.

For the other direction, given a truly playable effectivity
function E, we slightly change Pauly’s procedure outlined in
Section 3.2 (Steps 1–4). We impose an additional constraint
on players’ strategies σi = (fi, ti, hi), namely, we require
that hi(X) = x for some {x} ∈ E(N). In other words,

the selector functions only select the “jewels” in the crown.
Note that for C /∈ {∅, N} the new procedure yields game G′
with exactly the same Eα(C) as the original construction G
from [11] (we omit the proof due to lack of space). It remains
now to show that the procedure constructs a strategic game
G such that E(C) = EαG (C) for all C ⊆ N , that is, to show
that steps 5 and 6 work well in truly playable structures.

Ad. Step 5. We show that E(C) ⊆ EαG (C) for C = ∅ and
C = N , the only cases in which the original proof failed.

Assume that X ∈ E(∅). We need to prove that X ∈
EαG (∅). By true playability we know that there exists Y ∈
Enc(∅) such that Y ⊆ X. By Proposition 5, Enc(∅) =
{Y } and E(∅) = {Z | Y ⊆ Z}. We will show now that
Y = {x | {x} ∈ E(N)} (*). First, suppose that x ∈ Y
and {x} /∈ E(N), then by N -maximality S \ {x} ∈ E(∅), a
contradiction. Second, let {x} ∈ E(N) and x /∈ Y , then by
superadditivity ∅ ∈ E(N) which contradicts liveness.

Now, consider any strategy profile σN . We have o(σN ) =

hi0
(⋂k

l=1 f(Cl)
)
∈ Y because every hi returns only elements

in Y by construction.
For the case C = N , assume that X ∈ E(N). We need

to prove that X ∈ EαG (N). By true playability, there exists
x ∈ X such that {x} ∈ E(N). Now, let σN consist of
strategies σi = (fi, ti, hi) such that fi(N) = {x} for every i.
It is easy to see that o(σN ) = x, and hence {x} ∈ EαG (N).
Thus, X ∈ EαG (N) because EαG (N) is closed under supersets.

Ad. Step 6. Dually to Step 5, we show that EαG (C) ⊆
E(C). That is, assuming X 6∈ E(C) we show that X 6∈
EαG (N). We do it by a slight modification of the original
proof from [11].

Suppose first that C = N . Then, X ∈ E(∅) by N -
maximality, and by Step 5 we have X ∈ EαG (∅). Since EαG is
truly playable, we have also that X 6∈ EαG (N).

Assume now that C 6= N , and let j0 ∈ C. Let σC be
any strategy for coalition C. We must show that there is
a strategy σC such that o(σC , σC) 6∈ X. To show this, we

take σC = (fi, ti, hi)i∈C such that for all C′ ⊇ C and for

all i ∈ C we have fi(C
′) = S. We also choose tj0 such that

((t1+. . .+tn) mod n)+1 = j0. Note that C must be a subset
of one of the partitions Cl in P∞(f), say Cl0 . Moreover,
there must be a partitioning 〈C1, . . . , Ck〉 ofN\Cl0 such that

G(f) = f(Cl0) ∩
⋂k
l=1 f(Cl) =

⋂k
l=1 f(Cl). Since f(Cl) ∈

E(Cl) we get that G(f) ∈ E(N)\Cl0 by superadditivity. By
coalition-monotonicity and the fact that N \ Cl0 ⊆ C, we
also have G(f) ∈ E(C). Finally, by (*) and superadditivity
we obtain G(f) ∩ {x | {x} ∈ E(N)} ∈ E(C).

Since X 6∈ E(C) and E(C) is closed under supersets, it
must hold that G(f) ∩ {x | {x} ∈ E(N)} 6⊆ X. Thus,
there is some s0 ∈ S such that: s0 ∈ G(f), {s0} ∈ E(N),
and s0 /∈ X. Now we fix hj0 so that hj0(G(f)) = s0.
Then, o(σC , σC) = hj0(G(f)) = s0 6∈ X which concludes
the proof.

4.3 Non-Truly Playable Structures
In this section we focus on the class of playable but not

truly playable effectivity functions, hereafter called “non-
truly playable”. Non-truly playable effectivity functions have
a simple abstract characterization, following from Proposi-
tion 5:

Proposition 8. Effectivity function E : 2N → 22S is
non-truly playable if and only if it is playable and E(∅) is a
non-principal filter.



To see a more generic class of examples, consider an infi-
nite domain S, and let F be any non-principal filter on S.
Then we define an effectivity function EF on S as follows.

• EF (∅) = F .

• EF (N) = {X | X 6∈ F}
• For each C with ∅ ( C ( N take EF (C) to be any

set of sets such that EF (∅) ⊆ EF (C) ⊆ EF (N) that is
closed under outcome monotonicity and that are pair-
wise closed under regularity and superadditivity.

Proposition 9. EF is playable but not truly playable.

We omit the proof due to lack of space.

4.4 From Playable to Truly Playable Effectiv-
ity Functions

In this section we show that one can reconstruct a non-
truly playable effectivity function into a truly playable one
with “minimal” modifications. To do so, we interpret choices
of the grand coalition containing multiple outcome states as
ones that involve inherent nondeterminism. That is, we in-
terpret {x1, x2, . . . } ∈ E(N) as a choice where no agent has
control over which state out of x1, x2, . . . will become the
outcome; as a consequence any of these states can possibly
be encountered in the next moment. Under such assump-
tion, it is possible to recover true playability by a simple
extension of Pauly’s procedure. The extension consists in
adding an extra player d (the “decider”) who settles the
nondeterminism and decides which of x1, x2, . . . is going to
become the next state.

Proposition 10. Let E : 2N → 22S be a playable ef-
fectivity function. There exists a truly playable effectivity

function E′ : 2N∪{d} → 22S with additional player d 6∈ N ,
such that:

• E′(C) = E(C) for every C ⊆ N,C 6= ∅,
• E′(∅) = {S}, and

• E′(N ∪ {d}) = 2S \ {∅}.
Proof. Given a playable E, we construct a strategic game

whose α-effectivity function satisfies the properties above.
Then, existence of a truly playable effectivity function fol-
lows immediately. The idea is to take the construction from
the proof of Theorem 2.27 in [11] and reassign selection of
the outcome state to the additional player d.

Let h : 2S \ {∅} → S be any selector function that selects
an arbitrary element from the argument set. In our case,
h will designate the “default” outcome for each subset of S.
Now, the game G is constructed as follows:

• N ′ = N ∪ {d};
• The strategies of each player i 6= d are simply the

player’s assignments of coalitional choice, i.e., Σi = Fi,
as in section 3.2;

• The strategies of d are state selections: Σd = S;

• The transition function is based on the same partition-
ing of N as before, that yields 〈C1, . . . , Ck〉. Then, the
game proceeds to the state selected by the decider if
his choice is consistent with the choices of the others,
otherwise it proceeds to the appropriate “default” out-
come:

o(σN , s) =

{
s if s ∈

⋂k
i=1 f(Cl)

h(
⋂k
i=1 f(Cl)) else.

Now, it is easy to see that for every ∅ ( C ( N indeed
EαG (C) = E(C) because that was the case in the original con-
struction, and the only difference now is that d “took over”
the selection of a state in

⋂k
i=1 f(Cl) from a collective choice

of N . For C = N , we also have EαG (N) = E(N) since for ev-

ery σN we get by superadditivity that
⋂k
i=1 f(Cl) ∈ E(N),

and every state from the intersection can be potentially se-
lected by d. Moreover, {s} ∈ EαG (N ∪ {d}) for every s ∈ S
because {s} is enforced by σN∪{d} = 〈f1, . . . , f|N|, s〉 such
that fi = S for all i ∈ N . Thus, by outcome monotonic-
ity, EαG (N ∪ {d}) = 2S \ {∅}. Finally, by true playability of
EαG , we have EαG (∅) = {{s | {s} ∈ EαG (N ∪ {d})}} = {S}.
We observe additionally that EαG (d) = {{s} ∪ {h(X) | X ∈
EαG(d) and s /∈ X} | s ∈ S}.

5. LOGICS AND TRUE PLAYABILITY
In this section, we investigate the impact of true playabil-

ity on logics of coalitional ability. We begin by indicating
that the validities of Coalition Logic do not change if we re-
strict models to truly playable. As a consequence, CL (and
even ATL) cannot distinguish between playable and truly
playable models. Then, we discuss two extensions of CL
that can discern the two classes of structures.

For preliminaries on modal logic see e.g. [5, 3].

5.1 Ramifications for CL
We recall from [11] that the models of Coalition Logic

(also called coalition models ) are neighborhood models of
the type M = (W,E, V ) consisting of a set of states W , a

dynamic effectivity function E : W →
(
2N → 22W

)
and a

valuation function V : W → 2P ranging over a countable
set of atomic propositions P . A coalitional frame is a coali-
tion model minus the valuation. A model (resp. frame) is
playable iff it includes only playable effectivity functions at
each w ∈ W , and truly playable iff it includes only truly
playable functions at each w ∈ W . The operator [C] is in-
terpreted as follows:

M,w |= [C]φ if and only if φM ∈ E(w)(C),

where φM is the set {v ∈ W |M, v |= φ}. Formula ϕ is valid
in model M (M |= ϕ) if and only if it holds in every state in
M ; ϕ is valid in frame F (F |= ϕ) if and only if it is valid in
every model based on F . We extend these notions to classes
of models and frames in the obvious way.

We note that the problem with Pauly’s Representation
Theorem has no repercussions on the semantics of CL and
the soundness/completeness results for that logic. Let us for-
mally define Play to be the class of playable coalition models,
and TrulyPlay as the class of truly playable models. Since
TrulyPlay ( Play, every CL formula valid in Play is valid in
TrulyPlay, too. The converse follows from the finite model
property of CL with respect to Play [11] and the fact that it
coincides with TrulyPlay on finite models.

Corollary 11. The axiomatization of CL from [11] is
sound and complete wrt truly playable coalition models, and
hence, also with respect to strategic game models.

Furthermore, the semantics based on effectivity functions
can be extended to ATL (see. [6]; also, cf. [11] for the frag-
ment of ATL without “until”, called Extended CL). Again,
it can be shown that Play and TrulyPlay determine the same



sets of validities for ATL, by checking the soundness of the
axiomatization for ATL given in [7] for Play, and using the
completeness result for ATL with respect to strategic game
models (equivalently, TrulyPlay) proved in the same paper.

5.2 CL with Infinite Disjunctions
One possible extension of CL that can tell apart the classes

Play and TrulyPlay involves infinite disjunctions of formulas.
The idea is that in truly playable models, every choice of
the grand coalition can be narrowed down to a singleton.
The infinitary disjunction

∨
i∈I for a set of indices I has the

natural interpretation:

M,w |=
∨
i∈I

φi if and only if M,w |= φi for some i ∈ I.

Proposition 12. For any cardinal number2 κ, let Playκ
(resp. TrulyPlayκ) denote the class of playable (resp. truly
playable) coalition models with the domain of outcomes W
of cardinality at most κ and let {pι}ι∈κ be a set of different
propositional letters.

1. Playκ 6|= [N ]
∨
ι∈κ pι ↔

∨
ι∈κ[N ]pι;

2. TrulyPlayκ |= [N ]
∨
ι∈κ pι ↔

∨
ι∈κ[N ]pι.

Proof. For (1) simply check the example in Section 3.1
with the set S being κ and every state ι associated with a
designating atomic proposition pι. Claim (2) follows from
Proposition 5.

5.3 CL with “Outcome Selector” Modality
Adding infinitary operators to a logical language makes

its practical applicability problematic. Here we propose an-
other (in fact, simpler) extension of CL, by adding a new
normal modality 〈O〉, with a dual [O], called “outcome se-
lector”. The informal reading of 〈O〉φ should be “there is an
outcome state, enforceable by the grand coalition and satis-
fying φ”. In order to define the semantics of 〈O〉 in the usual
semantic way, we first expand coalition models to what we
call extended coalition models with an additional “outcome
enforceability” relation R. Later we will use axioms to im-
pose the right behavior of R.

Definition 9 (Extended coalition frames). An ex-
tended (playable) coalition frame is a neighbourhood frame
F = (W,E,R) where W is a set of outcomes, E a playable
effectivity function, R a binary relation on W .

An extended coalition model is an extended coalition frame
endowed with a valuation function. Given an extended coali-
tion model M = (W,E,R, V ), the modality 〈O〉 is inter-
preted as follows.

M,w |= 〈O〉φ if and only if wRs and M, s |= φ.

That is, 〈O〉 has standard Kripke semantics with respect
to the outcome enforceability relation R. Note that ex-
tended coalition models do not require any interaction be-
tween the effectivity function and the relation R. However,
given the intuitive reading of the relation R, the interaction
suggests itself, and the following definition account for that.

Definition 10 (Standard coalition frames).
A standard coalition frame is an extended coalition frame
such that, for all w, v ∈ W , we have wRv if and only if
{v} ∈ E(w)(N).
2We regard cardinals as (special) ordinals in von Neumann
sense: any ordinal is the set of all smaller ordinals.

A standard coalition model is a standard coalition frame
with a valuation function. Depending on the properties of
the underlying effectivity functions we call extended coali-
tion frames and models playable or truly playable.

5.4 Characterizing Standard Truly Playable
Coalition Frames

Proposition 13. An extended coalition frame F is stan-
dard and truly playable if and only if F |= [N ]q ↔ 〈O〉q, for
any atomic proposition q.

Proof. Left to right: Assume that F is standard and
truly playable. Assume first that (F, V ), w |= [N ]q for any V
and w ∈W . By definition of E we have that qM ∈ E(w)(N).
As F is truly playable there is v ∈ qM with {v} ∈ E(w)(N).
However F is also standard so wRv. But this means that
(F, V ), w |= 〈O〉q. Conversely, if (F, V ), w |= 〈O〉q then
wRv for some v ∈ qM . F being standard we have that
{v} ∈ E(w)(N). By outcome monotonicity qM ∈ E(w)(N),
i.e. (F, V ), w |= [N ]q.

Right to left: Assume that F |= [N ]q ↔ 〈O〉q. Let us first
prove that F is standard. Suppose wRv for some w, v ∈W .
Let V be a valuation that assigns the atom q only to v. We
have that M,w |= 〈O〉q. Then, by the assumptions we also
have M,w |= [N ]q, which means that {v} ∈ E(w)(N). Con-
versely, suppose now that {v} ∈ E(w)(N). For the same
valuation V we must have that (F, V ), w |= [N ]q and by
assumption that 〈O〉q, which means that wRv. Thus, F is
standard. To prove that F is truly playable, assume that
for some X ⊆ W , X ∈ E(w)(N) and let now V be a val-
uation function such that V (q) = X. By definition of E
we have that (F, V ), w |= [N ]q, hence by assumption, that
(F, V ), w |= 〈O〉q, which means that wRv for some v ∈ V (q).
Then, F being standard, {v} ∈ E(w)(N).

5.5 Standard Truly Playable Models: Axioms
We propose the following axiomatic system TPCL for the

class of standard truly playable coalition models TrulyPlay,
extending Pauly’s axiomatization of CL. The axioms include
propositional tautologies plus the following schemes:

1. [N ]>
2. ¬[C]⊥
3. ¬[∅]φ→ [N ]¬φ
4. [C]φ∧[D]ψ → [C∪D](φ∧ψ) for any disjoint C,D ⊆ N
5. [N ]φ↔ 〈O〉φ
6. [O](φ→ ψ)→ ([O]φ→ [O]ψ).

The inference rules are: Modus Ponens, plus:

φ→ ψ

[C]φ→ [C]ψ
, and

φ

[O]φ
.

Remark. Axiom 5 seems to render the outcome modal-
ity [O] redundant. This, however, is not so, because the se-
mantics of the modality [N ] is (monotonic) neighbourhood
semantics, while the semantics of [O] is by default Kripke
semantics. Relating these by Axiom 5 suffices to enforce
the true playability of the underlying frames, as shown in
Proposition 13. On the other hand, it is easy to show that
the normality Axiom 6, as well as the necessitation rule for
[O], are derivable from the rest. We have only added them
to emphasize the fact that [O] is a normal modality.

The proof of the following claim is routine.



Proposition 14. TPCL is sound for the class TrulyPlay:
every formula derivable in TPCL is valid in TrulyPlay.

5.6 Completeness for TPCL

Theorem 15 (Completeness theorem). Every formula
consistent in TPCL is satisfiable in TrulyPlay. Consequently,
the logic TPCL is complete for the class TrulyPlay.

We will prove the completeness, using canonical model
construction followed by filtration for monotonic modal log-
ics, partly using constructions from [5] and [11]. Thus, we
will also obtain finite model property for TPCL. Here we
only sketch the standard canonical model construction and
refer the reader for further details to [5] and [11].

We start with a formula δ which is consistent in TPCL.
By a well-known argument, it is contained in some maximal
TPCL-consistent set. We take the set WL of maximally
consistent sets and define for every formula φ the proof set
of φ as φ∗ = {s ∈WL | φ ∈ s}.

To shorten the notation we hereafter denote the logic
TPCL by L.

Definition 11 (Canonical Model). The canonical
model for TPCL is ML = (WL, EL, RL, V L) where:

- w ∈ V L(p) if and only if p ∈ w;
- X ∈ EL(w)(C) iff ∃ψ∗ ⊆ X : [C]ψ ∈ w, for C 6= N
- X ∈ EL(w)(C) iff ∀ψ∗ if X ⊆ ψ∗ then [C]ψ ∈ w, for C = N
- wRLv iff ∀ψ, if ψ ∈ v then 〈O〉ψ ∈ w.

Some remarks:

• That EL is playable and well-defined is proved in [11].

• The canonical relation for N is defined in [11] in the
following equivalent way: X ∈ EL(w)(N) if and only if
[∅]ψ 6∈ w for all ψ∗ such that ψ∗ ⊆ X. The equivalence
follows easily from the fact that `L [N ]φ↔ ¬[∅]¬φ.

Proposition 16 (Truth Lemma). For any w ∈ WL

we have that ML, w |= φ if and only if φ ∈ w.

Proof. By induction on the length of φ: standard for
atomic propositions, boolean formulas, and formulas of the
form 〈O〉ψ; proved in [11] for formulas of the form [C]ψ.

The canonical model is an extended coalition model, how-
ever it is neither standard nor truly playable. The reason for
that is the fact that for all ψ ∈ L, ψ ∈ v implies that [N ]ψ ∈
w is not sufficient to conclude that {v} ∈ EL(w)(N) as
states are not characterized by unique formulas of the lan-
guage of L. In order to obtain a standard and truly playable
model satisfying the given L-consistent formula δ we are go-
ing to filter the canonical model with the set Σ(δ), obtained
by taking all subformulae of δ and closing under boolean
operators. That set is finite up to propositional equivalence.

Filtrations.
First, we define a general notion of filtration for extended

coalition models and then a special filtration construction
that preserves playability. Filtrations of coalition models are
introduced, e.g., in [8] for the purpose of axiomatizing Nash-
consistent Coalition Logic. Here we only add the filtration
for the relation corresponding to the modality 〈O〉.

Let M = (W,E,R, V ) be an extended coalition model and
Σ a subformula-closed set of formulas over L. The equiva-
lence classes induced by Σ on M are defined as follows:

v ≡Σ w ⇔ for all φ ∈ Σ : M, v |= φ if and only if M,w |= φ.

We denote the equivalence class to which v belongs by |v|
and the set {|v| | v ∈ X} by |X| for any v ∈W and X ⊆W .

Definition 12 (Filtration). Let M = (W,E,R, V )
be an extended coalition model and Σ a subformula closed set
of formulas over L. A coalition model Mf

Σ = (W f
Σ , E

f
Σ, R

f
Σ, V

f
Σ )

is a filtration of M through Σ whenever the following condi-
tions are satisfied:

• W f
Σ = |W |.

• For all C ⊆ N and φ ∈ Σ, φM ∈ E(w)(C) implies

{|v| |M, v |= φ} ∈ EfΣ(|w|)(C).

• For all C ⊆ N and Y ⊆ |W |: Y ∈ EfΣ(|w|)(C)
implies that for all φ ∈ Σ if φM ⊆ {v | |v| ∈ Y } then
φM ∈ E(w)(C).

• If wRv then |w|R|v|.
• If |w|R|v| then for all 〈O〉φ ∈ Σ, if M, v |= φ then M,w |=
〈O〉φ.

• V fΣ (p) = |V (p)| for all atoms p ∈ Σ.

The conditions above are needed to ensure the Filtration
Lemma, as showed in [8] for the neighbourhood relations
and e.g., in [5] for the binary relation.

Proposition 17 (Filtration Lemma). If Mf
Σ =

(W f
Σ , E

f
Σ, R

f
Σ, V

f
Σ ) is a filtration of M through Σ then for all

φ ∈ Σ we have that M,w |= φ if and only if Mf
Σ, |w| |= φ.

Definition 13 (Playable Filtration). Let M =
(W,E,R, V ) be an extended coalition model and Σ(δ) the
boolean closure of the set of subformulas of δ, such that
δ ∈ L, the language of TPCL. A coalition model MF

Σ(δ) =

(WF
Σ(δ), E

F
Σ(δ), R

F
Σ(δ), V

F
Σ(δ)) is a playable filtration of M through

Σ(δ) whenever the following conditions are satisfied:

• WF
Σ(δ) = |W |.

• For all C ( N,C 6= N , and Y ⊆ |W |: Y ∈ EFΣ(δ)(|w|)(C)

if and only if there exists φ ∈ Σ(δ) such that φM ⊆ {v |
|v| ∈ Y } and φM ∈ E(w)(C).

• For all Y ⊆ |W |: Y ∈ EFΣ(δ)(|w|)(N) if and only if

Y 6∈ EFΣ(δ)(|w|)(∅).

• |w|RFΣ(δ)|v| if and only if there exists w′ ∈ |w|, ∃v′ ∈ |v|
such that w′Rv′.

• V FΣ(δ)(p) = |V (p)| for all atoms p ∈ Σ(δ).

That MF
Σ(δ) is a filtration in the sense of Definition 12 is

proved in [8] for the coalitional modalities. We have added
to that a minimal filtration for modality 〈O〉. So MF

Σ(δ) is a
filtration in the sense of Definition 12. In [8] it is also shown
that playability is preserved by that filtration and that every
subset of WF

Σ(δ) is definable by a formula of Σ(δ) as follows.
First, for every state |w| ∈ |W | we define

χFΣ(δ)(|w|) :=
∧
{φ ∈ Σ(δ) |MF

Σ(δ), |w| |= φ}.

Then, for every Y ⊆ |W | we put

χFΣ(δ)(Y ) :=
∨
{χFΣ(δ)(|w|) | |w| ∈ Y }.



It is straightforward to show, using the filtration lemma,
that for every Y ⊆ |W |:

MF
Σ(δ), |w| |= χFΣ(δ)(Y ) if and only if |w| ∈ Y,

that is, χFΣ(δ)(Y ) indeed characterizes the set y in MF
Σ(δ).

Proposition 18. ML,FΣ(δ) is standard and truly playable.

Proof. To prove that ML,FΣ(δ) is standard we have to show

that for each w, v ∈ W , |v|RL,FΣ(δ)|w| if and only if {|v|} ∈
EL,FΣ(δ)(|w|)(N). From right to left it is straightforward. For

the other direction, suppose |v|RL,FΣ(δ)|w|. Then ML,FΣ(δ), |v| |=
〈O〉χFΣ(δ)(|w|) by definition of RL,FΣ(δ) and by the properties

of filtrations. By the fact that RL,FΣ(δ) is a minimal filtra-

tion we have that ∃w′ ∈ |w|, ∃v′ ∈ |v| such that v′RLw′.
By definition of RL and the Truth Lemma we have that
ML, v′ |= 〈O〉χFΣ(δ)(|w|). By the axioms of L and the Truth

Lemma we have ML, v′ |= [N ]χFΣ(δ)(|w|), hence ML, v′ |=
¬[∅]¬χFΣ(δ)(|w|). Then (¬χFΣ(δ)(|w|))M

L
6∈ EL(v′)(∅) by the

definition of EL. But, by Definition 12 {(¬χFΣ(δ)(|w|))
M

L,F
Σ(δ)} 6∈

EL,FΣ(δ)(|v|)(∅) and in turn {(χFΣ(δ)(|w|))
M

L,F
Σ(δ)} ∈ EL,FΣ(δ)(|v|)(N).

Recall now that (χFΣ(δ)(|w|))
M

L,F
Σ(δ) = |w|.

Now, to prove that ML,FΣ(δ) is truly playable, assume Y ∈

EL,FΣ(δ)(|w|)(N). Then, (¬χFΣ(δ)(Y ))
M

L,F
Σ(δ) 6∈ EL(w)(∅) by the

definition of filtration, which means that for all φ ∈ Σ(δ), if

{v | |v| ∈ (¬χFΣ(δ)(Y ))
M

L,F
Σ(δ)} ⊆ φM then φM 6∈ EL(w)(∅).

In particular (¬χFΣ(δ)(Y ))M
L
6∈ EL(w)(∅). By the definition

of EL we have that [∅]¬χFΣ(δ)(Y ) 6∈ w and by true playa-

bility that 〈O〉χFΣ(δ)(Y ) ∈ w. By the definition of canonical

relation for 〈O〉 we have that there exists v with wRLv such

that χFΣ(δ)(Y ) ∈ v. By definition of filtration |w|RL,FΣ(δ)|v|
and by the Filtration Lemma ML,FΣ(δ), |v| |= χFΣ(δ)(Y ). Fi-

nally, {|v|} ∈ EL,FΣ(δ)(|w|)(N) since ML,FΣ(δ) is standard.

This completes the proof of the Completeness theorem 15.

Corollary 19 (Finite Model Property). The logic
TPCL has the finite model property with respect to the class
of models TrulyPlay.

6. CONCLUSIONS
In this paper, we have revisited the correspondence be-

tween two classes of abstract game forms: strategic games
from noncooperative game theory on one hand, and effec-
tivity functions from cooperative game theory on the other.
We consider our contribution as threefold. First, we have
corrected a well-known and often used result from [11] relat-
ing strategic games and playable effectivity functions. We
have shown that strategic games do not correspond to all
playable functions, but to a strict subset of the class, which
we call truly playable effectivity functions. Second, we have
provided several abstract characterizations of truly playable
functions. We have also shown that the remaining playable
effectivity functions (that we call non-truly playable) are in-
duced by non-principal filters, and hence only scenarios with

infinitely many possible outcomes can fall in that class. Fi-
nally, we have pointed out that Coalition Logic and ATL are
not expressive enough to characterize true playability. On
the other hand, they can be extended in a relatively simple
way to obtain such a characterization. To this purpose we
have proposed an extension of Coalition Logic with a normal
outcome selector modality that we have shown sufficient for
axiomatic characterization of truly playable structures.

The importance of our work is mainly theoretical. Essen-
tially, it implies that all the claims that have been proved
using Pauly’s correspondence between playable effectivity
functions and games should be revisited and possibly re-
interpreted in the light of the results presented here. Exam-
ple of such issues, already addressed here, include: axioma-
tization for Coalition Logic in the class of multi-player game
models, axiomatization of ATL in coalitional models, and
the respective finite model properties. In practical terms,
this also means that, whenever a decision procedure is built
on those theoretical results, the designer should be aware
of the correct correspondence between the two classes of
game models, which is especially relevant for satisfiability-
checking algorithms. Tableaux for extensions of Coalition
Logic, like the one for a combination of CL and description
logic ALC from [12], are examples of such procedures.
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