Skip to main content

Advertisement

Log in

An influence diagram based multi-criteria decision making framework for multirobot coalition formation

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

Novel systems allocating coalitions of humans and unmanned heterogeneous vehicles will act as force multipliers for future real-world missions. Conventional coalition formation architectures seek to compute efficient robot coalitions by leveraging either a single greedy, approximation, or market-based algorithm, which renders such architectures inapplicable to a variety of real-world mission scenarios. A novel, intelligent multi-criteria decision making framework is presented that reasons over a library of coalition formation algorithms for selecting the most appropriate subset of algorithm(s) to apply to a wide spectrum of complex missions. The framework is based on influence diagrams in order to handle uncertainties in dynamic real-world environments. An existing taxonomy comprised of multiple mission and domain dependent features is leveraged to classify the coalition formation algorithms. Dimensionality reduction is achieved via principal component analysis, which extracts the most significant taxonomy features crucial for decision making. A link analysis technique provides the mission specific utility values of each feature-value pair and algorithm in the library. Experimental results demonstrate that the presented framework accurately selects the most appropriate subset of coalition formation algorithm(s) based on multiple mission criteria, when applied to a number of simulated real-world mission scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sandholm, T., Larson, K., Andersson, M., Shehory, O., & Tohmé, F. (1999). Coalition structure generation with worst case guarantees. Artificial Intelligence, 111(1–2), 209–238.

    Article  MathSciNet  MATH  Google Scholar 

  2. Service, T.C., Adams, J.A. (2011). Coalition formation for task allocation: Theory and algorithms. Journal of Autonomous Agents and Multi-agent Systems, 22(2), 225–248.

    Article  Google Scholar 

  3. Abdallah, S., & Lesser, V. (2004). Organization-based cooperative coalition formation. In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 162–168.

  4. Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition formation. Artificial Intelligence, 101, 165–200.

    Article  MathSciNet  MATH  Google Scholar 

  5. Tošić, P. T., & Agha, G. A. (2005). Maximal clique based distributed coalition formation for task allocation in large-scale multi-agent systems. In: Proceedings of the Massively Multi-Agent Systems, I, 104–120.

  6. Vig, L., & Adams, J. A. (2006b). Multi-robot coalition formation. IEEE Transactions on Robotics, 22(4), 637–649.

    Article  Google Scholar 

  7. Dang, V. D., & Jennings, N. (2004). Generating coalition structures with finite bound from the optimal guarantees. In: Proceedings of the Third International Joint Conference on Autonomous Agents and MultiAgent Systems, pp. 564–571.

  8. Rahwan, T., Ramchurn, S., Jennings, N., & Giovannucci, A. (2009). An anytime algorithm for optimal coalition structure generation. Journal of Artificial Intelligence Research, 34, 521–567.

    MathSciNet  MATH  Google Scholar 

  9. Rothkopf, M. H., Pekeč, A., & Harstad, R. M. (1998). Computationally manageable combinational auctions. Management Science, 44(8), 1131–1147.

    Article  MATH  Google Scholar 

  10. Gerkey, B., & Matarić, M. J. (2002). Sold!: Auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation, 18(5), 758–768.

    Article  Google Scholar 

  11. Shiroma, P. M., & Campos, M. F. M. (2009). CoMutaR: A framework for multi-robot coordination and task allocation. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pp. 4817–4824.

  12. Vig, L., & Adams, J. A. (2006a) Market-based multi-robot coalition formation. In: Proceedings of the 8th International Symposium on Distributed Autonomous Robotic Systems, pp. 227–236.

  13. DeJong, P. (2005). Coalition formation in multi-agent UAV systems. MS Thesis, University of Central Florida.

  14. Service, T. C., & Adams, J. A. (2010). Coalition formation algorithm taxonomy. Tech. Rep. HMT-10-03, Vanderbilt University.

  15. Kjærulff, U. B., & Madsen, A. L. (2008). Bayesian networks and influence diagrams: A guide to construction and analysis. Information Science and Statistics. New York, NY: Springer.

    Book  Google Scholar 

  16. Zhang, G., Jiang, J., Su, Z., Qi, M., & Fang, H. (2010). Searching for overlapping coalitions in multiple virtual organizations. Information Sciences, 180(17), 3140–3156.

    Article  Google Scholar 

  17. Weerdt, M., Zhang, Y., & Klos, T. (2007). Distributed task allocation in social networks. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 17–24.

  18. Gaston, M. E., & desJardins, M. (2005). Agent organized networks for dynamic team formation. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 230–237.

  19. Sujit, P. B., George, J. M., & Beard, R. W. (2008). Multiple UAV coalition formation. In: Proceedings of the American Control Conference, pp. 2010–2015.

  20. Campbell, A., Wu, A. S., & Shumaker, R. (2008). Multi-agent task allocation: Learning when to say no. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 201–208.

  21. Koes, M., Nourbakhsh, I., & Sycara, K. (2005). Heterogeneous multirobot coordination with spatial and temporal constraints. In: Proceedings of the 20th National Conference on Artificial Intelligence, pp. 1292–1297.

  22. Ramchurn, S. D., Polukarov, M., Farinelli, A., Truong, C., & Jennings, N. R. (2010). Coalition formation with spatial and temporal constraints. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 1181–1188.

  23. Service, T.C., Adams, J.A. (2011). Constant factor approximation algorithms for coalition structure generation. Journal of Autonomous Agents and Multi-Agent Systems, 23(1), 1–17.

    Article  Google Scholar 

  24. Service, T. C., Sen, S. D., & Adams, J. A. (2014). A simultanesous descending auction for multirobot task allocation. In: Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics.

  25. Cao, Y. U., Fukunaga, A. S., & Kahng, A. (1997). Cooperative mobile robotics: Antecedents and directions. Autonomous Robots, 4(1), 7–27.

    Article  Google Scholar 

  26. Dudek, G., Jenkin, M., & Milios, E. (2002). A taxonomy of multirobot systems. In T. Balch & L. E. Parker (Eds.), Robot teams: From diversity to polymorphism (pp. 3–22). Natick, MA: AK Peters Ltd.

    Google Scholar 

  27. Farinelli, A., Iocchi, L., & Nardi, D. (2004). Multirobot systems: A classification focused on coordination. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(5), 2015–2028.

    Article  Google Scholar 

  28. Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research, 23(9), 939–954.

    Article  Google Scholar 

  29. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–632.

    Article  MathSciNet  MATH  Google Scholar 

  30. Page, L., Sergey, S., Motwani, R., & Winograd, T. (1999). The pagerank citation ranking: Bringing order to the web. Tech. Rep. 1999–66, Stanford InfoLab, Stanford University.

  31. Jolliffe, I. (1972). Discarding variables in a principal component analysis. I: Artificial data. Journal of the Royal Statistics Society. Series C (Applied Statistics), 21(2), 160–173.

    MathSciNet  Google Scholar 

  32. Song, F., Guo, Z., & Mei, D. (2010). Feature selection using principal component analysis. In: Proceedings of the International Conference on System Science, Engineering Design and Manufacturing Informatization, pp. 27–30.

  33. Dunteman, G. H. (1989). Principal components analysis, vol. 69. Newbury Park, CA: Sage Publications.

  34. Yu, Q., & Terzopoulos, D. (2007). A decision network framework for the behavioral animation of virtual humans. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 119–128.

  35. Sen, S. D., & Adams, J. A. (2013). A decision network based framework for multiagent coalition formation. In: Proceedings of the 12th International Conference on Autonomous Agents and Multi-agent Systems, pp. 55–62.

  36. Cohen, M. D. (1984). Coping with complexity: The adaptive value of changing utility. The American Economic Review, 74(1), 30–42.

    Google Scholar 

  37. Cyert, R. M., DeGroot, M. H. (1979) Adaptive utility. In: Expected Utility Hypotheses and the Allais Paradox, pp. 223–241. Netherlands: Springer

  38. Nielsen, T. D., & Jensen, F. V. (2004). Learning a decision maker’s utility function from (possibly) inconsistent behavior. Artificial Intelligence, 160(1), 53–78.

    Article  MathSciNet  MATH  Google Scholar 

  39. Grüne-Yanoff, T., & Hansson, S. O. (2009). Preference change: An introduction. In: Preference Change, pp. 1–26. Netherlands: Springer

  40. Neumann, L. J., & Morgenstern, O. (1947). Theory of games and economic behavior. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  41. Nokia: Qt. (2012). http://www.qt.io/. Accessed 7 Jan 2012.

  42. NORSYS: Netica application: A complete software package to solve problems using bayesian belief networks and influence diagrams. (2012). http://www.norsys.com/netica.html. Accessed 12 June 2012

Download references

Acknowledgments

This research has been supported by an ONR DEPSCOR Award # N000140911161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan D. Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S.D., Adams, J.A. An influence diagram based multi-criteria decision making framework for multirobot coalition formation. Auton Agent Multi-Agent Syst 29, 1061–1090 (2015). https://doi.org/10.1007/s10458-014-9276-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-014-9276-y

Keywords

Navigation