Skip to main content
Log in

Aborting, suspending, and resuming goals and plans in BDI agents

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

Intelligent agents designed to work in complex, dynamic environments such as e-commerce must respond robustly and flexibly to environmental and circumstantial changes, including the actions of other agents. An agent must have the capability to deliberate about appropriate courses of action, which may include reprioritising tasks—whether goals or associated plans—aborting or suspending tasks, or scheduling tasks in a particular order. In this article we study mechanisms to enable principled suspend, resuming, and aborting of goals and plans within a Belief-Desire-Intention (BDI) agent architecture. We give a formal and combined operational semantics for these actions in an abstract agent language (CAN), thus providing a general mechanism that can be incorporated into several BDI-based agent platforms. The abilities enabled by our semantics provides an agent designer greater flexibility to direct agent operation, offering a generic means to manage the status of goals. We demonstrate the reasoning abilities enabled on a document workflow scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. CALO was a multi-year research project from which Apple, Inc.’s Siri evolved.

  2. If there is any difference between how to abort a goal that is externally performed versus how to abort one that is now known to be impossible, the abort-method can detect the circumstances and handle the situation as appropriate.

  3. As we note below, the agent checks in-conditions for falsehood on a regular basis, not just on resumption.

  4. According to the agent’s meta-decisions upon plan failure.

  5. If the necessary resources cannot be obtained, the resume-method can fail, upon which by default the agent drops the goal. More elegantly, since we assume that resume-methods should always succeed, the method can indicate to the agent’s meta-reasoning to abort the goal.

  6. An omitted c is equivalent to \({true}\).

  7. Where it is obvious that e is an event we will sometimes exclude the exclamation mark for readability.

  8. http://www.cs.rmit.edu.au/~jah/orpheus.

References

  1. Amini, M., Wakolbinger, T., Racer, M., & Nejad, M. G. (2012). Alternative supply chain production-sales policies for new product diffusion: An agent-based modeling and simulation approach. European Journal of Operational Research, 216(2), 301–311.

    Article  Google Scholar 

  2. Baldoni, M., Baroglio, C., Marengo, E., Patti, V., & Capuzzimati, F. (2014). Engineering commitment-based business protocols with the 2CL methodology. Journal of Autonomous Agents and Multi-Agent Systems, 28(4), 519–557.

    Article  Google Scholar 

  3. Boella, G., & Damiano, R. (2008). A replanning algorithm for decision theoretic hierarchical planning: Principles and empirical evaluation. Applied Artificial Intelligence, 22(10), 937–963.

    Article  Google Scholar 

  4. Bordini, R. H., & Hübner, J. F. (2010). Semantics for the Jason variant of AgentSpeak (plan failure and some internal actions). In Proceedings of ECAI’10, Lisbon, Portugal (pp. 635–640).

  5. Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent systems in AgentSpeak using Jason. New York: Wiley.

    Book  MATH  Google Scholar 

  6. Braubach, L., Pokahr, A., Moldt, D., & Lamersdorf, W. (2004). Goal representation for BDI Agent systems. In Proceedings of 2nd international workshop on programming multi-agent systems (ProMAS’04), New York, NY (pp. 9–20).

  7. Burmeister, B., Arnold, M., Copaciu, F., & Rimassa, G. (2008). BDI-agents for agile goal-oriented business processes. In Proceedings of AAMAS’08 (Industry Track), Estoril, Portugal (pp. 37–44).

  8. Chessell, M. G., Vines, C., Butler, D., Ferreira, M., & Henderson, P. (2002). Extending the concept of transaction compensation. IBM Systems Journal, 41(4), 743–758.

    Article  Google Scholar 

  9. da Costa Pereira, C., & Tettamanzi, A. (2010). Belief-goal relationships in possibilistic goal generation. In Proceedings of ECAI’10, Lisbon, Portugal (pp. 641–646).

  10. Dai, B., & Chen, H. (2011). A multi-agent and auction-based framework and approach for carrier collaboration. Logistics Research, 3(2–3), 101–120.

    Article  Google Scholar 

  11. Dastani, M., van Riemsdijk, M. B., & Winikoff, M. (2011). Rich goal types in agent programming. In Proceedings of AAMAS’11, Taipei, Taiwan (pp. 405–412).

  12. Dignum, F., Kinny, D., & Sonenberg, E. (2002). From desires, obligations and norms to goals. Cognitive Science Quarterly, 2(3–4), 407–430.

    MATH  Google Scholar 

  13. Groves, W., Collins, J., Gini, M. L., & Ketter, W. (2014). Agent-assisted supply chain management: Analysis and lessons learned. Decision Support Systems, 57, 274–284.

    Article  Google Scholar 

  14. Hang, C. W., & Singh, M. P. (2012). Generalized framework for personalized recommendations in agent networks. Journal of Autonomous Agents and Multi-Agent Systems, 25(3), 475–498.

    Article  Google Scholar 

  15. Harland, J., Morley, D. N., Thangarajah, J., & Yorke-Smith, N. (2014). An operational semantics for the goal life-cycle in BDI agents. Journal of Autonomous Agents and Multi-Agent Systems, 28(4), 682–719.

    Article  Google Scholar 

  16. Heath, B., Hill, R., & Ciarallo, F. (2009). A survey of agent-based modeling practices (January 1998 to July 2008). Journal of Artificial Societies and Social Simulation, 12(4), 9.

    Google Scholar 

  17. Hindriks, K. V., de Boer, F. S., van der Hoek, W., & Meyer, J. J. C. (2000). Agent programming with declarative goals. In Proceedings of ATAL’00, LNCS 1986, Boston, MA (pp. 228–243).

  18. Hübner, J. F., & Bordini, R. H. (2015). Jason: A Java-based interpreter for an extended version of Agentspeak. Retrieved July 02, 2015 from http://jason.sourceforge.net.

  19. Huntbach, M. M., & Ringwood, G. A. (1999). Agent-oriented programming: From prolog to guarded definite clauses. LNCS 1630. Berlin: Springer.

  20. Jarvis, D., Jarvis, J., Rönnquist, R., & Jain, L. C. (2013). Development using the GORITE BDI framework, multiagent systems and applications (Vol. 46). Heidelberg: Springer.

    Book  Google Scholar 

  21. Khan, S. M., & Lespérance, Y. (2010). A logical framework for prioritized goal change. In Proceedings of AAMAS’10, Toronto, Canada (pp. 283–290).

  22. Kinny, D. (2001). The Psi calculus: An algebraic agent language. In Proceedings of ATAL’01, Seattle, WA (pp. 32–50).

  23. Lorini, E., van Ditmarsch, H. P., & Lima, T. D. (2010). A logical model of intention and plan dynamics. In Proceedings of ECAI’10, Lisbon, Portugal (pp. 1075–1076).

  24. Máhr, T., & de Weerdt, M. (2005). Distributed agent platform for advanced logistics. In Proceedings of AAMAS’05, Utrecht, The Netherlands (pp. 155–156).

  25. Mikic-Fonte, F. A., Burguillo-Rial, J. C., & Nistal, M. L. (2012). An intelligent tutoring module controlled by BDI agents for an e-learning platform. Expert Systems with Applications, 39(8), 7546–7554.

    Article  Google Scholar 

  26. Morley, D., & Myers, K. (2004). The SPARK agent framework. In Proceedings of AAMAS’04, New York, NY (pp. 714–721).

  27. Morley, D., Myers, K. L., & Yorke-Smith, N. (2006). Continuous refinement of agent resource estimates. In Proceedings of AAMAS’06, Hakodate, Japan (pp. 858–865).

  28. Myers, K., Berry, P., Blythe, J., Conley, K., Gervasio, M., McGuinness, D., et al. (2007). An intelligent personal assistant for task and time management. AI Magazine, 28(2), 47–61.

    Google Scholar 

  29. Myers, K. L., & Yorke-Smith, N. (2005). A cognitive framework for delegation to an assistive user agent. In Proceedings of AAAI 2005 fall symposium on mixed-initiative problem-solving assistants, Arlington, VA (pp. 94–99).

  30. Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). A goal deliberation strategy for BDI agent systems. In Proceedings of the third German conference on Multi-Agent System TEchnologieS (MATES’05), Koblenz, Germany (pp. 82–94).

  31. Pokahr, A., Braubach, L., & Lamersdorf, W. (2005). Jadex: A BDI reasoning engine. In R. H. Bordini, M. Dastani, J. Dix, & A. E. Fallah-Seghrouchni (Eds.), Multi-agent programming (pp. 149–174). Berlin: Springer.

    Chapter  Google Scholar 

  32. Pěchouček, M., & Mařík, V. (2008). Industrial deployment of multi-agent technologies: Review and selected case studies. Journal of Autonomous Agents and Multi-Agent Systems, 17, 397–431.

    Article  Google Scholar 

  33. Rao, A.S. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language. In Proceedings of seventh European workshop on modelling autonomous agents in a multi-agent world (MAAMAW’96), Eindhoven, The Netherlands (pp. 42–55).

  34. Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. In Proceedings of KR’91, Cambridge, MA (pp. 473–484).

  35. Rao, A. S., & Georgeff, M. P. (1992). An abstract architecture for rational agents. In: Proceedings of KR’92, Cambridge, MA (pp. 439–449).

  36. van Riemsdijk, M. B., Dastani, M., & Winikoff, M. (2008). Goals in agent systems: A unifying framework. In Proceedings of AAMAS’08, Estoril, Portugal (pp. 713–720).

  37. Rönnquist, R. (2007). The goal oriented teams (GORITE) framework. In Proceedings of ProMAS’07, LNCS 4908, Honolulu, HI (pp. 27–41).

  38. Rosaci, D., & Sarnè, G. M. L. (2012). A multi-agent recommender system for supporting device adaptivity in e-commerce. Journal of Intelligent Information Systems, 38(2), 393–418.

    Article  Google Scholar 

  39. Sardiña, S., & Padgham, L. (2007). Goals in the context of BDI plan failure and planning. In Proceedings of AAMAS’07, Honolulu, HI (pp. 16–23).

  40. Sardiña, S., & Padgham, L. (2011). A BDI agent programming language with failure handling, declarative goals, and planning. Journal of Autonomous Agents and Multi-Agent Systems, 23(1), 18–70.

    Article  Google Scholar 

  41. Sardiña, S., de Silva, L., & Padgham, L. (2006). Hierarchical planning in BDI agent programming languages: A formal approach. In Proceedings of AAMAS’06, Hakodate, Japan (pp. 1001–1008).

  42. Shaw, P. H., Farwer, B., & Bordini, R. H. (2008). Theoretical and experimental results on the goal-plan tree problem. In Proceedings of AAMAS’08, Estoril, Portugal (pp. 1379–1382).

  43. de Silva, L., Sardiña, S., & Padgham, L. (2009). First principles planning in BDI systems. In Proceedings of AAMAS’09, Budapest, Hungary (pp. 1105–1112).

  44. Sterling, L., & Shapiro, E. (1994). The Art of Prolog (2nd ed.). Cambridge: MIT Press.

    MATH  Google Scholar 

  45. Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N. (2007). Aborting tasks in BDI agents. In Proceedings of AAMAS’07, Honolulu, HI (pp. 8–15).

  46. Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N. (2008). Suspending and resuming tasks in BDI agents. In Proceedings of AAMAS’08, Estoril, Portugal (pp. 405–412).

  47. Thangarajah, J., Harland, J., Morley, D., & Yorke-Smith, N. (2010). On the life-cycle of BDI agent goals. In Proceedings of ECAI’10, Lisbon, Portugal (pp. 1031–1032).

  48. Thangarajah, J., Harland, J., Morley, D. N., & Yorke-Smith, N. (2014). Quantifying the completeness of goals in BDI agent. In Proceedings of ECAI’14, Prague, Czech Republic (pp. 879–884).

  49. Thangarajah, J., & Padgham, L. (2011). Computationally effective reasoning about goal interactions. Journal of Automated Reasoning, 47(1), 17–56.

    Article  MathSciNet  Google Scholar 

  50. Thangarajah, J., Winikoff, M., Padgham, L., & Fischer, K. (2002). Avoiding resource conflicts in intelligent agents. In Proceedings of ECAI-02, Lyon, France (pp. 18–22).

  51. Wellman, M. P., Greenwald, A., & Stone, P. (2007). Autonomous bidding agents: Strategies and lessons from the trading agent competition. Cambridge: MIT Press.

    Google Scholar 

  52. Winikoff, M. (2005). JACK intelligent agents: An industrial strength platform. In Multi-Agent programming (pp. 175–193). New York: Springer.

  53. Winikoff, M. (2011). A formal framework for reasoning about goal interactions. In Proceedings of AAMAS’11, Taipei, Taiwan (pp. 1107–1108).

  54. Winikoff, M., Padgham, L., Harland, J., & Thangarajah, J. (2002). Declarative and procedural goals in intelligent agent systems. In Proceedings of KR’02, Toulouse, France (pp. 470–481).

  55. Yorke-Smith, N., Saadati, S., Myers, K., & Morley, D. (2012). The design of a proactive personal agent for task management. International Journal on Artificial Intelligence Tools, 21(2), 90–119.

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. FA8750-07-D-0185/0004. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of DARPA, or the Air Force Research Laboratory. The authors thank the JAAMAS reviewers, and the reviewers of the AAMAS 2007 and 2008 conferences at which preliminary parts of this work were presented. NYS thanks the Operations group at the Cambridge Judge Business School and the fellowship at St Edmund’s College, Cambridge, where this work was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Yorke-Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harland, J., Morley, D.N., Thangarajah, J. et al. Aborting, suspending, and resuming goals and plans in BDI agents. Auton Agent Multi-Agent Syst 31, 288–331 (2017). https://doi.org/10.1007/s10458-015-9322-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-015-9322-4

Keywords

Navigation