

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 18, 2024

A Framework for Organization-Aware Agents

Jensen, Andreas Schmidt; Dignum, Virginia; Villadsen, Jørgen

Published in:
Autonomous Agents and Multi-Agent Systems

Link to article, DOI:
10.1007/s10458-015-9324-2

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Jensen, A. S., Dignum, V., & Villadsen, J. (2017). A Framework for Organization-Aware Agents. Autonomous
Agents and Multi-Agent Systems, 31(3), 387–422. https://doi.org/10.1007/s10458-015-9324-2

https://doi.org/10.1007/s10458-015-9324-2
https://orbit.dtu.dk/en/publications/0fe97f4f-0823-421a-9729-7f52c28145db
https://doi.org/10.1007/s10458-015-9324-2

Autonomous Agents and Multi-Agent Systems First online: 12 January 2016
The final publication is available at Springer via http://dx.doi.org/10.1007/s10458-015-9324-2

A Framework for Organization-Aware Agents

Andreas Schmidt Jensen · Virginia Dignum ·
Jørgen Villadsen

Abstract Open systems are characterized by the presence of a diversity of heterogeneous
and autonomous agents that act according to private goals. Organizations, such as those
used in real-life to structure human activities such as task allocation, coordination and su-
pervision, can regulate the agents’ behavior space and describe the expected behavior of the
agents. Assuming an open environment, where agents are developed independently of the
organizational structures, agents need to be able to reason about the structure, so that they
can deliberate about their actions and act within the expected boundaries and work towards
the objectives of the organization.

In this paper, we present the AORTA reasoning framework and show how it can be in-
tegrated into typical BDI-agents. We provide operational semantics that enables agents to
make organizational decisions in order to coordinate and cooperate without explicit coor-
dination mechanisms within the agents. The organizational model is independent of that of
the agents, and the approach is not tied to a specific organizational model, but uses an orga-
nizational metamodel. We show how AORTA helps agents work together in a system with
an organization for choosing the best tender for a building project.

Keywords Organization-aware agents · Organizational reasoning · Operational semantics

1 Introduction

In multi-agent systems, intelligent agents interact with each other and the environment in
order to achieve their goals. They are flexible in that they can react to changes and proac-
tively pursue objectives, and they are autonomous, enabling them to decide by themselves
what to do. They are usually characterized by cognitive elements, such as beliefs, desires,
goals and planning. In open systems, where agents can enter and exit freely, it is hard to
predict and control the agents’ behavior. Such systems include, e.g., auctions or webshops,

A. S. Jensen · J. Villadsen
DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
E-mail: ascje@dtu.dk; jovi@dtu.dk

V. Dignum
Faculty of Technology, Policy and Management, Delft University of Technology, Delft, The Netherlands
E-mail: m.v.dignum@tudelft.nl

2 Andreas Schmidt Jensen et al.

where the agents entering the system need to know the protocols used in order to participate.
By allowing agents to understand these protocols, it is possible to make generic agents that
can enter different systems, instead of specific agents for each case. Such systems are often
specified by means of organizational models (similarly to what is done in human societies),
which defines (amongst other things) roles that describe the expected behavior of the agents
in the system, and the interactions between those roles.

An organizational model provides by itself only structure: roles are specified and are
related to different expectations according to the requirements or goals of the organization.
As such, it provides no central control over the agents and no way to ensure the fulfillment
of the expectations. To further complicate things, agents joining the organization may be de-
signed by distinct designers, which altogether leads to uncertainty about the agents’ motives
and actions.

An organization usually has a set of control mechanisms available, which makes it pos-
sible to better manage the agents entering the organization. The type of control exercised
in an organization is often divided into two categories: regimentation and regulation [31].
Regimented systems are characterized by the fact that certain actions are restricted, whereas
regulated systems puts no such constraints on actions, but rather makes an attempt to ensure
agents will not violate the constrains, despite being able to do so [23]. This is often done
by imposing sanctions on violating agents [4, 40]. In reality, the control mechanisms are
often designed such that certain parts are regimented, while others are regulated. Consider,
e.g., a conference management system: the program chair may restrict the submission of
papers after the submission deadline (regimentation), while deciding to sanction papers not
following the formatting instructions (regulation).

Whereas strong guarantees can be made about regimented systems (e.g., a forbidden
action is never successfully executed), the same is more difficult for regulated systems. It
might be possible to guarantee that upon violation of certain expectations, a sanction is
always put in effect, but given the uncertainty of the agents in the organization, it is not
possible to guarantee that 1) the sanction recovers the system and 2) the behavior of agent
is affected by the sanction.

Since open systems do not in general pose restrictions upon the agents entering, it seems
that in order to ensure that nothing undesirable happens, two options are possible: (1) make
no assumptions about the agents’ organizational reasoning capabilities and regiment all in-
teraction between agent and system (similar to governors in AMELI/ISLANDER [21]), or
(2) assume that the agents are able to reason about the expectations of the organization and
are able to handle sanctions. The first option limits the actions the agent can take and ensures
that nothing bad happens, but since the agents are not free to do as they like (since some ac-
tions are restricted), the execution of the system may not be very efficient. The second option
lets the agents do what they want (within reason), but they may be sanctioned if they vio-
late the expectations. However, if agents that do not understand the organizational model
enter the system, they will first of all not be able to understand what is expected of them,
but secondly, if (and when) they violate the expectations, they may not even understand the
sanctions, which may then have no effect.

Our motivation for this work is as follows: in open systems, anyone can participate, but
the success of an agent’s participation depends on its ability to understand and reason about
the system – including an organization, if present. We therefore look at it the other way
round: we want anyone to be able to successfully participate in open systems. Successful
participation is a vague statement, but our goal is clear: provide previously “organization-
ignorant” agents with capabilities that allow them to perform organizational reasoning, such
that they understand the organizational model of the system, can reason about participation

A Framework for Organization-Aware Agents 3

and are able to choose whether or not to comply with the expectations that stem from the
role(s) they enact. Such capabilities will essentially make agents organization-aware [40].

In this paper, we present a complete version of the operational semantics of the AORTA1

reasoning framework [29, 30], which provides cognitive agents with a component that en-
able them to reason about organizational models and to act upon them. In [29], we first pre-
sented AORTA, and in [30], we provided an implementation of the framework, integrated
with Jason. This paper extends the AORTA framework as follows:

– Obligations: We incorporate conditional obligations with deadlines, allowing agents to
deliberately violate objectives and be subject to sanctioning.

– Capabilities: The framework supports the notion of agent capabilities, making it possi-
ble to suggest which roles match the agent best.

– Semantics: We present the complete operational semantics of AORTA.

AORTA is agent-centered, and assumes that the organization is preexisting and independent
from the agent, thus focusing on letting the agent reason about the organization. By sepa-
rating the organization from the agent, the architecture of the agent is independent from the
organizational model, and the agent is free to decide on how to use AORTA in its reasoning.
On the other hand, having a separate component for organizational reasoning may compli-
cate reasoning about multiple organizations in a single system. Furthermore, as is usually
the case with generic systems, there will be systems in which a specialized framework is
better suited. We claim, however, that for most purposes, having a generic framework, such
as a AORTA, makes the agent able to participate within organizations without impeding its
behavior too much.

The separation of AORTA and the agent is achieved by basing the reasoning on rules
using an organizational metamodel, designed to support different organizational models.
The metamodel is based on roles, objectives and obligations, which are common traits of
many organizational models. As a proof of concept, we provide a translation from OperA
organizational models to the AORTA metamodel to demonstrate its usefulness, and show
how this enables previously “organization-ignorant” agents to use an OperA organizational
model to successfully participate in a system.

The rest of the paper is organized as follows. In Section 2, we discuss what is meant by
organizational reasoning. In Section 3, we describe how organizational reasoning is done in
AORTA by describing the different phases in the AORTA reasoning cycle, and we present
the AORTA organizational metamodel, a model based on roles, objectives and obligations,
which is used to represent organizational models inside the framework. In Section 4, we
present the operational semantics of AORTA. We provide an initial evaluation of the frame-
work in Section 5. Finally, we conclude the paper by discussing future work in Section 6.

2 Organizational Reasoning

Agents that are able to perform organizational reasoning are called organization-aware
agents [40]. The concept of organizational reasoning covers many aspects: reasoning about
entering and exiting an organization, reasoning about which roles to enact, whether to com-
ply or violate certain norms and how to coordinate tasks with other members of the organi-
zation. In the following, we define what we mean by organizational reasoning and compare
our approach to related work on organizational reasoning. Considering the three dimensions
of organizational reasoning presented in [40], our work can be positioned as follows:

1 AORTA stands for Adding Organizational Reasoning to Agents.

4 Andreas Schmidt Jensen et al.

– Direction of organizational reasoning: AORTA takes a top-down approach, assuming an
existing model and providing agents with the means to reason about this model.

– Understanding organizational specifications: AORTA provides agents with the possibil-
ity to understand organizational specifications, and assumes that agents understand the
domain ontology used in the organizational model.

– Phases of participation: AORTA provides reasoning rules that allow agents to success-
fully move through the phases of participation: entering the organization, playing roles
in the organization and leaving the organization.

2.1 Understanding organizational specifications

In order to understand an organizational specification, two things are required. First, the
agent should understand the concepts used to describe the organization (i.e., how is a role
specified, what are the objectives, etc.), and second, the agent should be able to operational-
ize the specification based on this knowledge. That is, given that the agent understands the
notion of a role, how does it decide to enact that role, and how does the agent commit to
completing organizational objectives alongside its own, personal objectives. This process
assumes that agents understand the domain ontology and the modelling ontology (i.e the
agent is able to understand what a role is, and shares the domain ontology used by the or-
ganizational model. As discusssed in [14], this is not a trivial aspect, but is one that can be
determined by design of agents entering the organization.

Much effort has been put into adding such capabilities to agents [6, 8, 9, 15, 16, 28, 33],
and the focus has usually been on agents that are based on the belief-desire-intention (BDI)
model. The approach has most commonly been to modify the BDI interpreter loop [38]
to incorporate organizational matters into the reasoning process. While not dealing specifi-
cally with organizational reasoning, recent work by Wallace and Rovatsos [43] proposes a
mechanism for social reasoning that is separate from the agent’s BDI reasoning.

In [6] conflicts between beliefs, obligations, intentions and desires are discussed with
a focus on a distinction between internal conflicts, e.g. contradictory beliefs, conflicting
obligations and external conflicts, such as a desire which is in conflict with an obligation.
The solution proposed, the BOID architecture, imposes a strict ordering between beliefs,
obligations, intentions and desires, such that the order of derivation determines the agent’s
attitude. Thus different agent types emerge; an agent deriving desires before beliefs is a
wishful-thinking agent, while an agent deriving obligations before desires is social. Another
approach is discussed in [15] in which the orderings are mapped into a common scale, such
that very desirable situations could outweigh the cost of violating certain obligations. Such
ordering should be quite dynamic since, for example, obligations toward a trusted agent
should become less important if that agent becomes less trustworthy.

In [16], obligations are represented using Prohairetic Deontic Logic [42], a preference-
based dyadic deontic logic which allows for contrary-to-duty obligations (obligations hold-
ing in a sub-ideal context). Furthermore, they propose a modified BDI-interpreter in which
selected events are augmented with potential deontic events, which, put simply, are obliga-
tions and norms that may become applicable when choosing a plan.

While these, and other approaches, do enable agents to reason about organizational mat-
ters, they do so by changing the architecture of the agents. By doing so, existing imple-
mentations of agents may not work as expected using such architecture, meaning that in
order to impose organizational reasoning capabilities upon such agents, changes in seem-
ingly unrelated matters may be necessary. Furthermore, we believe that by abstracting the

A Framework for Organization-Aware Agents 5

cognitive reasoning away from the organizational reasoning, we benefit from the principle
of separation of concerns, which is often mentioned as a key point for using organizations
in multi-agent systems: what should be done is separated from how it should be done [22].

This is accommodated by the MOISE+ model, which separates organized multi-agent
systems into a system level and an agent level. The MOISE+ model is based on three or-
ganizational dimensions: the structural, functional and deontic dimensions [28]. The system
level, S-MOISE+, provides an interface (a middleware) between the agents and the organiza-
tion using a special agent, the OrgManager, to change the organizational state, ensuring or-
ganizational consistency. The agent level, J-MOISE+, joins Jason and MOISE+, by making
organizational actions available to agents, such that they can reason about (and change, using
the OrgManager) an organization. J-MOISE+differs from AORTA in that the organization-
oriented reasoning is done as a part of the agent’s normal reasoning process, whereas agents
using AORTA perform the organizational reasoning inside the AORTA component, and then
decide how to complete their objectives at a different level. The main advantage of keeping
the reasoning apart in AORTA is that it allows agents on different agent platforms to perform
the same kind of organizational reasoning without any extra development required.

A generic architecture for organization-aware agents is suggested in [40], where the
agent is divided into two layers: a cognitive layer, which provides more or less the same rea-
soning capabilities as seen in, e.g. BDI agents, and an organizational layer, which communi-
cates with the organization and handles decision making that has to do with the organization,
e.g. reasoning about role enactment. Our approach is similar to this; agents are enriched with
an organizational reasoning component, which performs organizational reasoning separate
from the cognitive reasoning performed by the agent. Our framework is generic enough to
be useful for many different kinds of cognitive agents, such that they gain organizational
reasoning capabilities without making changes to the “normal” reasoning.

2.2 Phases of participation

We divide participation into three phases: entering, playing roles and leaving. In the follow-
ing, we discuss work done by others in relation to these phases, and later, when we have
presented the operational semantics of AORTA, we show how some of these concepts can
be used in AORTA to participate in an organization.

Entering an organization An agent entering an organization has to consider several things
before choosing to play a role. In general, the agent has to decide whether it wants to enter
the organization. This includes, first of all, considering why it should enter it. What can the
agent gain from entering the organization, which capabilities are gained, and what resources
will be accessible. Furthermore, what capabilities are lost, and what does the organization
expect from the agent, once it enters. A considerable amount of work has been done in the
area of deciding which role(s) to adopt in an organization. In [11, 18], agent goals and role
objectives are compared in order to decide whether the agent is compatible and consistent
with a role. A role is compatible with an agent if the objectives of the role are a subset of
the goals of the agent, and the objectives can be achieved using the agent’s plans. An agent
and a role are consistent if the objectives and goals are not in conflict. Agents can use this
to decide how well it matches a role, and what is gained (e.g., the role provides plans for
achieving the agent’s goals) or lost (a goal is in conflict with an objective) by enacting a
given role. Furthermore, the papers distinguish between different kinds of role enactment,

6 Andreas Schmidt Jensen et al.

such as social or selfish enactment, which describes how the agent gives priority to the
objectives of the role and its own goals.

It is also possible to consider the relationship between agents enacting roles in an organi-
zation before deciding whether to participate [7]. By distinguishing between what an agent
can do, has access to, and is allowed to do, they define what it means to have power over
resources. Then, by defining social dependencies, it is possible to define a power relation
between agents in an organization. Before entering the organization, the agents can use this
to reason about what (or who) they will have power over, and who (if any) will have power
over them.

Finally, the agents should consider their own capabilities before choosing a role to enact.
That is, what can the agent do, and what capabilities are required for successfully enacting
a given role. In order to consider the agent’s capabilities, we should first make clear what
kinds of capabilities an agent can have. A straightforward definition of agent capability is
the set of states the agent can achieve. This has been investigated in the context of BDI logic
in [34], where BDI systems with a plan library are considered. Here, having a capability
for φ means having at least one plan with the goal φ as its trigger. In [1, 39], the notion of
capability is extended to include actions the agent is able to perform, percepts the agent can
perceive and expressions the agent can utter. In [1], the OperA model is extended to include
role capabilities, and agents entering the organization have to match the capabilities in order
to enter. This decision is done by a gatekeeper, which decides, based on what the agent tells
the gatekeeper that it can do, whether or not the agent is allowed to participate. In [39], it is
investigated how agents can reason about their own capabilities using reflection.

In AORTA a goal is a desired state, i.e. a state the agent desires to achieve. Therefore, we
will define a agent capability as a partial state description φ that an agent is able to achieve.

Playing roles in an organization Once an agent has entered the organization, it has to reason
about the organization’s expectations based on the role(s) it enacts. That is, the organization
expects the agent enacting a role to achieve the objectives of the role, so the agent has to
reason about 1) how to complete the objectives, 2) how this relates to the completion of its
own goals and 3) what happens if it, for some reason, it has to or, decides to violate some of
the expectations. There is, of course, some overlap of reasoning between this phase and the
previous, since this kind of reasoning played a part in deciding to enact the role.

In order to reason about completing organizational objectives, the agent has to under-
stand what is required to complete an objective, and whether it can do so itself or by dele-
gating the objective to other agents. The first point is concerned with relating the objectives
of the organization to its own goals. The second point requires the agent to understand the
organizational model, such that it can deduce hierarchical relations between different roles,
and use this to decide how objectives can be delegated.

The organizational expectations might not be met by the agent, and in such case, the
agent should know that. Depending on the agents ability, different levels of understanding
the model emerge: it might be able to understand before executing an action that this will
violate an obligation, or it might just be able to understand that a obligation has now been vi-
olated. Furthermore, the agent should ideally be able to understand the sanctions that might
be imposed upon the agent. If not, it has no way to decide whether or not to violate an obli-
gation, since it does not know the impact a sanction may have. The B-DOING framework
[15] incorporates the possibility to reason about sanctions by introducing the worth of a
state and cost of violating an obligation. This is used to make a preference ordering of obli-
gations, such that agents can choose to violate obligations when the worth of the resulting
state outranks the sanction. In [33], norms are perceived by the agent in the environment,

A Framework for Organization-Aware Agents 7

and can then choose to accept or reject it. By rejecting, sanctions are imposed, thus reason-
ing about norms and sanctions in this case is done at different levels. First, when perceiving
a norm, the agent decides to accept or reject a norm. Then, if it accepts the norm, it changes
its behavior to conform to the norm. However, the change in behavior may not show until
later, once the agent chooses to complete the objective described by the norm.

Leaving an organization The agent may have different reasons for wanting to leave an or-
ganization. Just as it had to decide why to enter the organization, it has to decide why it
wants to leave. These decisions are, of course, related. If, for example, the agent entered the
organization in order to achieve a specific objective, it seems perfectly reasonable to want to
leave the organization once that objective has been completed. Once the agent has decided
to leave the organization (see [26] for reasons for leaving an organization), it has to deact
the roles it enacts in the organization. By deacting a role, the agent tells the organization to
drop the expectations about the agent, but there might be situations where this is not ideal.
For example, in an auction house, if the agent tries to deact the buyer role before having paid
for the items it has bought, it should generally not be allowed to do so; at least not without
getting sanctioned as well [40].

It might also be the case that the agent is thrown out of the organization (e.g. as a sanc-
tion), because it repeatedly violates obligations. This is only possible when enactment and
deactment is determined by the whole community [12], since other agents in the organiza-
tion have to decide that the agent in question should be removed from the organization.

2.3 Norms

We now turn to norms, which describe what role-enacting agents are expected to do (or not
do) from the perspective of the organization. Norms are used in organizational modeling
to specify the expectations about the enactors, while still allowing them to be deliberately
violated. We noted above that agents should be able to understand the organization’s expec-
tations and also reason about the result of violating those expectations. In the following, we
discuss how norms can be modelled, and how this makes it possible for the agents to reason
about obligations and violations.

Deontic logic is often used as a formalization of obligations, permissions and prohibi-
tions. In deontic logic, it is possible to state, e.g. Oφ , meaning that φ ought to be the case.
Deontic logic has been applied as a formalism for multi-agent systems [41], and provides
mechanisms to reason about norms and violation thereof.

We take the common view [2, 15, 33] that an obligation specifies an ideal state of a
system, from the point of view of the creator of the obligation (the organization, in our
case). An agent cannot be obliged to do φ ; it will rather be obliged to achieve ψ (e.g., by
doing φ , by taking some other action(s) that lead to φ , or by making sure ψ is achieved by
some other means, such as making some another agent do it). By looking at states rather
than actions, we abstract away from specific actions. This corresponds well to the fact that
the same state often can be achieved in different ways, so rather than requiring agents with
a specific ability to do something, the fulfillment of an obligation requires that the agent
achieves something. This choice means that we cannot distinguish between different ways
of achieving the same state, but since we take the point of view of the organization, this is
not a problem, since the focus here is on the results and not on the specific steps taking to
achieve the results.

8 Andreas Schmidt Jensen et al.

Specification Activation

Fulfillment

Violation

Fig. 1 The states of an obligation. Once specified, the obligation is activated when the activation condition
holds. It is fulfilled when the desirable state is achieved, and it is violated if the deadline is reached before it
has been fulfilled.

A key aspect of obligations is that of violation: the organization does not constrain the
agents to fulfill their obligations. Instead, it is necessary to detect the violation of an obli-
gation, making it possible to punish agents that achieves an undesirable state. However,
detecting when an obligation has been violated can be difficult. Detecting violation of a
prohibition is straightforward: once we reach the prohibited state, the prohibition has been
violated. If we apply the same method to obligations, we run into a problem: either the obli-
gation is violated until it is fulfilled (since the ideal state is not reached yet), or the obligation
is violated only when the ideal state cannot be reached anymore. The first option is not very
intuitive. Imagine borrowing a book from a friend; this creates the obligation to return the
book at some point, however we would probably not immediately say that we have violated
the obligation. On the other hand, if we set the book on fire, the obligation is clearly violated,
since it can no longer be returned, but in other cases it might not be as straightforward. f

If we cannot detect if an obligation has been violated, it becomes difficult to punish
agents that does not follow the rules. If the agents have no incentives for following the rules,
it becomes very difficult to ensure fulfillment of the organization’s objectives. In this paper,
we therefore consider conditional obligations with a deadline:

O(p < δ | c),

where p should be achieved, the condition c specifies the state in which an obligation be-
comes active and the deadline δ specifies the first state in which the obligation has been
violated. That is, once the deadline holds and p has not been achieved, the obligation is
violated. The states of an obligation are shown in Figure 1. We assume that an obligation
can only be activated once and that once an obligation has been fulfilled, it can never be vi-
olated. The last point implies that the fulfillment of an obligation happens in the state where
p holds, and at that point, the deadline becomes irrelevant, since it can never be violated.

The activation of an obligation refers to the activation of a ground obligation. When we
define the organizational metamodel in Section 3.4, the conditional obligation can be seen
as a template with variables. This means that there can be multiple activated instantiations
of one obligation template, but we assume that each ground obligation can only be activated
once. Our work can be extended to release the assumptions, but that is out of scope for this
paper.

Even though we say that fulfillment of an obligation is based on what the agent achieves,
this does not mean that our semantics is based on stit-logic [3]. If an obligation to achieve p
is only fulfilled once the agent sees to it that p holds, it may actually violate the obligation
if another agent independently achieves p. For example, it would be counterintuitive to be
punished for not returning the book, if someone else has returned it.

A Framework for Organization-Aware Agents 9

Organizational beliefs

OPG AEOC

Organizational Reasoning Component

GOALS

BELIEFS

REASONING RULES

Cognitive Agent

Mailbox

Fig. 2 The AORTA component. The arrows indicate flow of information. Obligations and options are gen-
erated from the organizational beliefs, and actions are based on the generated options.

3 The AORTA Reasoning Framework

The AORTA reasoning framework adds a component to cognitive agents, which provides
them with organizational reasoning capabilities. It assumes a preexisting organization, is in-
dependent from the agent, and focuses on reasoning rules that specify how the agent reasons
about the organization. The organization is completely separated from the agent, meaning
that the architecture of the agent is independent from the organizational model, and the agent
is free to decide on how to use AORTA in its reasoning. The separation is possible because
AORTA is based on an organizational metamodel, to which other organizational models can
be translated.

Organizational reasoning in AORTA divided into three phases: obligation check (OC),
option generation (OPG) and action execution (AE). The OPG-phase uses the organizational
state to generate possible organizational options. The OC-phase uses the agent’s mental state
and organizational state to determine if obligations are activated, satisfied or violated, and
updates the organizational state accordingly. The agent considers these options in the AE-
phase using reasoning rules, which can alter the organizational state, the agent’s intentions
or send messages to other agents. The component is shown in Figure 2.

The component is connected to certain inner structures of the cognitive agent’s reasoning
component, e.g., the belief and goal base, and the agent’s mailbox. Given that our component
is designed to be independent from the cognitive agent, we need to ensure 1) that changing
the agent’s beliefs (or goals) does not create inconsistencies in the agent’s reasoning and 2)
that the agent’s beliefs (or goals) used in the organizational reasoning does not change during
the organizational reasoning phases. In [30], we showed that both of these issues could be
addressed by executing the AORTA reasoning cycle and the cognitive agent’s reasoning
cycle sequentially. Since the two cycles are not executed in parallel, changes to the agent’s
beliefs, goals or organizational beliefs will only be used (and altered) by a single process.
We note that in very active environments it may prove to be inefficient since the agent’s
reasoning cycle is not executed as often. However, our approach is meant to be generic and
it might not be suitable for certain scenarios.

Note that within the AORTA component, the organizational state is actually the agent’s
beliefs about the organizational state. This has a number of implications: first, the agent
may hold wrong beliefs about the organization. Second, in order to let others know about
organizational actions, certain measures must be taken (e.g., communication can be used

10 Andreas Schmidt Jensen et al.

to inform others). Third, there is no central organizational entity, which effectively means
that it is the agents in the system that makes up the organization. While the first implication
can be considered a disadvantage, we believe that it more accurately corresponds to our
idea of agents in an organization. Furthermore, by not having a central organizational entity,
different kinds of organizations having different kinds of rules of enactment and deactment
can be implemented in the same framework.

We assume the component is connected to a cognitive agent, i.e., an agent with mental
attitudes (such as beliefs and goals) and practical reasoning rules. This could, for example,
be BDI agents (defined by their mental attitudes: beliefs, desires and intentions), which have
been used as a basis for many agent programming languages [5, 10, 25].

3.1 Obligation check

The OC-phase is the first phase of the organizational reasoning in AORTA. The agent’s state
is used to determine for each obligation if it should change to a new state (cf. the states in
Figure 1). That is, if the condition for activating an obligation has happened, the framework
activates the obligation by updating the organizational state. Similarly, it checks whether
the obligation has been satisfied (the objective is completed) or violated (the deadline was
reached before the objective was completed).

AORTA has no central mechanism that can detect violations and sanction violating
agents. It is up to the agents in the system to do so. One way to handle this is to activate new
obligations on the condition of a violation (a so-called contrary-to-duty obligation [42]). For
example, an agent that violates the obligation to return a book to the library is then obliged
to pay a fine. If the new obligation is violated, a new obligation may be activated.

3.2 Option generation

The OPG-phase uses the mental state of the agent and the organizational state to consider
what the agent can do regarding the organization. The following organizational aspects are
considered in the OPG-phase:

Role enactment: Roles that are possible to enact given the agent’s capabilities.
Role deactment: (Currently enacting) roles that have been fulfilled or are no longer useful.
Obligations: States the agent is currently obliged to achieve.
Delegation: Objectives that can be delegated based on a dependency relation.
Information: Obtained information that other agents will benefit from knowing.

The options that are generated in this phase are then available to act upon in the AE-phase.

3.3 Action execution

The AE-phase uses reasoning rules to decide how to react on a given option in a given
context. The AE-phase selects at most one option to act upon. The reasoning is based on
rules of the form2

option : context→ action

2 Inspired by the plan syntax of AgentSpeak(L) [37].

A Framework for Organization-Aware Agents 11

where option is a previously generated option, context is a state description that should hold
for an action to be applicable, and action is the action to be executed.

The agent has actions available to enact or deact a role, commit to or drop an objec-
tive, and send messages. This corresponds well to the options that can be generated in the
previous phase.

We assume that the agent’s actions directly related to the domain of the organization,
that is, we do not consider counts-as relations [24] to relate agent actions with organizational
objectives.

3.4 AORTA Organizational Metamodel

Organizational models are used in multi-agent systems to give agents an explicit represen-
tation of an organization. Similarly to [19] we use concepts from Organizational Theory
(OT), which, even though it lacks formality, has been studied for years and has been applied
successfully. OT defines an organization as an entity in which individuals have roles, and
use these roles to accomplish collective goals. Organizations are furthermore defined with
a purpose; individuals in the organization have intentions and objectives, which lead to the
overall collective goals.

Different models are proposed in the literature (e.g. MOISE+ [28], OperA [17], IS-
LANDER [20]). These models typically use concepts from OT as well, especially the notion
of roles, abstracting implementation details away from expectations, and objectives, defin-
ing the desired outcome of the organization. Furthermore, organizational models often take
a normative view of a system, specifying how the agents ideally should behave, what they
are allowed to do, and what is explicitly forbidden.

We base reasoning in AORTA on an organizational metamodel, which is based on roles,
objectives and obligations.

Definition 1 (Organizational metamodel) The organizational metamodel of AORTA is
defined by the following predicates:

role(Role,Objs) Role is the role name, and Objs is a set of
objectives, where each Obj is a partial state
description.

obj(Obj, SubObjs) Obj is the name of an objective, and SubObjs
is a set of sub-objectives.

dep(Role1,Role2,Obj) Role Role1 depends on role Role2 for com-
pletion of objective Obj.

rea(Ag,Role) Agent Ag enacts role Role.

cond(Role, Obj, Deadline, Cond) A conditional obligation for role Role to
complete Obj before Deadline when Cond
holds.

obl(Ag, Role, Obj, Deadline) An obligation for agent Ag playing role Role
to complete Obj before Deadline.

viol(Ag, Role, Obj) Agent Ag playing role Role has violated the
obligation to complete Obj.

12 Andreas Schmidt Jensen et al.

A role is defined only by its name and its main objectives. Sub-objectives of an objective
are specified using obj-predicates. We distinguish between the different states of norms by
using different predicates. For example, the conditional obligation

Oreader(returned(Book)< Deadline | borrowed(Book))

is represented by the predicate cond(reader, returned(Book), Deadline, borrowed(Book)). If
an agent Bob enacts the reader role and borrows the book “1984”, the obligation is activated
and we have

Orea(bob,reader)(returned(“1984”)< Deadline).

This is represented by the predicate obl(bob, reader, returned(“1984”), Deadline). A viola-
tion of the obligation is represented by the predicate viol(bob, reader, returned(“1984”)).

While the metamodel can be used as-is, we further argue its usefulness by the fact that
existing organizational models can be translated into it. As a proof of concept, we include
in Appendix a translation from the OperA organizational model to the metamodel.

4 Operational Semantics of AORTA

In Section 2, we described what we mean by organizational reasoning, and in Section 3,
we showed how our framework integrates this into agents using a reasoning component
that generates options and executes actions. In this section, we proceed to more formally
show how this can be done. First, we define the semantics of organization-aware agents
in AORTA using a temporal logic to make clear the intended behavior. Second, we define
the operational semantics of executing agents in the AORTA framework. We define the
semantics using a transition system [35], which consists of a set of transition rules that
define the transformation from one configuration to another.

One of the key ideas of AORTA is the notion of the organizational knowledge base
used for reasoning about options and actions. Furthermore, the framework makes use of an
options base containing the options generated in the OPG-phase.

Definition 2 (Mental state) The AORTA mental state is based on knowledge bases. A
knowledge base is a set of predicates believed by the agent to be true. Each knowledge
base is based on a predicate language, L, with typical formula φ . The agent’s belief base
and intention base are denoted Σa and Γa, respectively. The language of the organization
is denoted Lorg ⊆ L, and the option language is denoted Lopt ⊆ L. The organizational state
and options are denoted Σo and Γo, respectively. The mental state, MS, is then a tuple of
knowledge bases:

MS = 〈Σa,Γa,Σo,Γo〉,
where Σa,Γa ⊆ L, Σo ⊆ Lorg and Γo ⊆ Lopt . We write MS to denote a set of mental states.

The definition above puts the organizational state inside the mental state of each agent.
That is, we consider what the agent believes about the organization, meaning that it may
not be consistent with the actual state of the organization (and different agents may hold
different beliefs about the organization). We believe this corresponds well to the idea that
agents hold beliefs about the environment, which, similarly, may be wrong.

Definition 3 (Options) The option language, Lopt with typical element γ is defined as fol-
lows:

γ ::= role(R) | ¬role(R) | obj(O) | ¬obj(O) | send(R, ilf,φ),
where R is a role identifier, O is an objective, ilf is tell or achieve, and φ ∈ L is a message.

A Framework for Organization-Aware Agents 13

Notice that send(R, ilf,φ) specifies an option to send a message to a role R rather than
a specific agent. This gives the agent more freedom as to deciding who to inform. Further-
more, at the point in time where the option is generated, the agent might not (yet) know who
should receive the message.

Each of the knowledge bases in the mental state can be queried using reasoning formu-
las.

Definition 4 (Reasoning formulas) AORTA uses reasoning formulas, LR, with typical el-
ement ρ , which are based on organizational formulas, option formulas, belief formulas and
goal formulas.

ρ ::= > | org(φ) | opt(φ) | bel(φ) | goal(φ) | ¬ρ | ρ1∧ρ2,

where φ ∈ L.

Organizational formulas, org(φ), query the organizational beliefs, option formulas, opt(φ),
query the options base, belief formulas, bel(φ), query the belief base and goal formulas,
goal(φ), query the goal base. For example, the formula

org(rea(bob,bidder))∧goal(bid(RFT,Bid))

succeeds if agent Bob plays the bidder role and bid(RFT,Bid) is a goal.

Definition 5 (Semantics of reasoning formulas) The semantics are based on the agent’s
mental state, MS = 〈Σa,Γa,Σo,Γo〉.

MS |=>
MS |= bel(φ) iff φ ∈ Σa
MS |= goal(φ) iff φ ∈ Γa
MS |= org(φ) iff φ ∈ Σo
MS |= opt(φ) iff φ ∈ Γo
MS |= ¬ρ iff MS 6|= ρ

MS |= ρ1∧ρ2 iff MS |= ρ1 and MS |= ρ2

The above definition makes it possible to reason about the agent’s mental state. We can,
for example, check who enacts a specific role, what the agent’s options are, and what it
believes. However, this does not capture the fact that the agents and the organization reside
in an environment, which none of them fully control. To capture this, we use the Logic for
Agent Organizations (LAO) [19] extended with the ability to deal with obligations.

LAO uses Kripke semantics to describe the system, such that a world in the semantics
corresponds to a state of the environment, and a transition corresponds to changes happening
in the environment (e.g. agents executing actions). As we are going to use the semantics for
formalizing the execution, we let each world correspond to a set of agent mental states, i.e.
the agents’ view of the environment and organization. This makes the semantics correspond
to what the agents believe rather than what may actually be the case (since beliefs can be
wrong).

LAO (and our extension, LAO with Obligations, LAO2) uses the temporal logic CTL* to
describe the environment and organizational concepts. The language of LAO2, L , consists
of two subsets: Ls, the set of state formulas with typical element Φ , and Lp, the set of path
formulas with typical element φ . We define the set of state formulas as follows:

Φ ::= ρ | ¬Φ | Φ ∨Φ | Aφ | Eφ ,

14 Andreas Schmidt Jensen et al.

where φ is a path formula and ρ is a reasoning formula. The set of path formulas is defined
as follows:

φ ::= Φ | ¬φ | φ ∨φ | Fφ | Gφ | Xφ | φUφ ,

where the operators are the usual CTL* operators: A is all, E is exists, F is future, G is
always in the future, X is next, and U is until.

The semantic structure over which formulas of L are interpreted is the tuple

M = (W,Rt,π),

where W is a non-empty set of states, Rt is a partial order of states, and π associates each
w ∈W with a mental state, π : W →MS. The semantics distinguish between state and path
formulas. State formulas are interpreted wrt. a state w ∈W and a path formula is interpreted
wrt. a path through the structure given in Rt. A path in Rt is a sequence (wi,wi+1, . . .), where
wi,wi+1, · · · ∈W and ∀i : (wi,wi+1) ∈ Rt. A path is denoted rt = (w0,w1, . . .) and we can
refer to a state i in a path using rt(i). For state formulas, we write M,w |= φ to denote that
state formula φ is true in M at state w. Similarly, we write M,rt |= φ for path formulas. We
let paths(W,Rt) denote the set of all paths in M.

Definition 6 (Semantics)

M,w |= p iff π(w) |= p, where p ∈ LR
M,w |= ¬φ iff M,w 6|= φ

M,w |= φ ∨ψ iff M,w |= φ or M,w |= ψ

M,w |= Aφ iff ∀rt ∈ paths(W,Rt), if rt(0) = w then M,rt |= φ

M,w |= Eφ iff ∃rt ∈ paths(W,Rt), s.t. rt(0) = w and M,rt |= φ

M,rt |= p iff M,rt(0) |= p, where p ∈ LR
M,rt |= ¬φ iff M,rt 6|= φ

M,rt |= φ ∨ψ iff M,rt |= φ or M,rt |= ψ

M,rt |= Fφ iff ∃i(M,rt(i)) |= φ

M,rt |= Gφ iff ∀i(M,rt(i)) |= φ

M,rt |= Xφ iff M,rt(1) |= φ

M,rt |= φUψ iff ∃i s.t. M,rt(i) |= ψ and ∀0≤ k < i M,rt(k) |= φ

The semantics differs from the semantics in LAO in that we use reasoning formulas
rather than propositions. A reasoning formula is true in a world iff it is true in the mental
state of the agent in that world.

Obligations are first specified, and are then activated once their condition is met. The
semantics for obligations include the role for which the obligation applies (when specified),
and the role enactment relation (when activated).

Definition 7 (Conditional obligation with deadline) Given a role r and an agent α enact-
ing r, a conditional obligation with deadline, Or(p < δ | c), is defined as:

M,rt |= Or(p < δ | c) iff ∀i(M,rt(i), i |= Or(p < δ | c))
M,rt |= Orea(α,r)(p < δ) iff ∀i(M,rt(i), i |= Orea(α,r)(p < δ))

M,rt, i |= Or(p < δ | c) iff

∃α s.t. (M,rt(i+1) |= c∧org(rea(α,r)) and

M,rt(i+1), i+1 |= Orea(α,r)(p < δ)), or
M,rt(i+1) |= ¬c and

M,rt(i+1), i+1 |= Or(p < δ | c)

M,rt, i |= Orea(α,r)(p < δ) iff

M,rt(i+1) |= ¬p∧¬δ and

M,rt(i+1), i+1 |= Orea(α,r)(p < δ), or
M,rt(i+1) |= p∧¬δ ∧AG¬viol(α,r, p), or
M,rt(i+1) |= ¬p∧AG(δ ∧ viol(α,r, p))

A Framework for Organization-Aware Agents 15

where p,δ ,c ∈ LR. Orea(α,r)(p < δ) is an activated instance of the obligation for α enacting
role r.

The semantics are divided into conditional obligations and activated obligations. A con-
ditional obligation for a role r can be activated for an agent α when α enacts r and the
condition holds. That is the case in worlds w, where π(w) |= org(rea(α,r)). A conditional
obligation is then activated in a state where the condition, c, holds and the activated obliga-
tion holds. There are four possible outcomes for an activated obligation:

– ¬p∧¬δ : The obligation is still active, since it has not been fulfilled and the deadline is
not reached.

– p∧¬δ : The obligation has been fulfilled, and the deadline is not reached, thus the obli-
gation can never be violated.

– ¬p∧δ : The deadline is reached without fulfilling the obligation, thus the obligation will
always be violated.

– p∧ δ : If the obligation has been fulfilled and the deadline is reached, the outcome de-
pends on when p occurred. If it occurred before δ , we the obligation can never be vio-
lated, otherwise it will always be violated.

The semantics do not take into account infinite deadlines, such as ⊥. In such case, the dead-
line will never occur, so the obligation can never be violated.

Note that the obliged state, p, the deadline, δ and the condition, c are reasoning formu-
las, meaning that we can specify obligations to achieve a state φ (i.e. bel(φ)), but also e.g.
an organizational state (i.e. org(φ)). This creates the possibility to create an obligation to
e.g. enact or deact a role. It furthermore enables reorganization, e.g. in the context of LAO
[13], to create new roles, dependency relations and objectives, but that is out of scope this
paper.

We define organization-specific actions, that are used to perform changes to the organi-
zation, or committing to completing objectives.

Definition 8 (Actions) The set of actions with typical element a is denoted Act.

a ::= enact(role) | deact(role) | commit(φ) | drop(φ) | send(rcp,msg)

Agents can decide when to execute a given action based on action rules. Action rules
match options generated in the OPG-phase, and are applicable if the context follows from
the agent’s mental state.

Definition 9 (Action rule) The set of action rules is defined by:

RA = {o : ctx→ a | o ∈ Lopt ,ctx ∈ LR,a ∈ Act}

For example, the rule role(bidder) : goal(bid(RFT,Bid))∧bel(rftPublished(RFT))→
enact(bidder) is applicable when the OPG-phase has generated the option to enact the bid-
der role, and the agent wants to bid on a published RFT (i.e., bid(RFT,Bid) is in the goal
base and rftPublished(RFT) is in the belief base).

Finally, following [34], we define the capabilities of an agent the states the agent can
achieve.

Definition 10 (Capability) The set of capabilities for an agent α is defined as follows:

cap(α) = {φ | ableToAchieve(α,φ)},

where ableToAchieve(α,φ) means that the agent is able to achieve φ .

16 Andreas Schmidt Jensen et al.

What “able to achieve” means depends on the cognitive agent. For example, in [39] it is
suggested that the capability for a GOAL agent to achieve a goal φ translates to the existence
of goal conditions in action rules and context conditions of modules. In BDI systems with
a plan library that associates plans with a triggering event, an agent has the capability to
achieve a goal φ if it has at least one plan with a triggering event of type achieve goal φ .

We are now able to define the agents of AORTA:

Definition 11 (AORTA-agent) An AORTA-agent configuration is defined by the following
tuple:

A = 〈α,MS,AR,F,C,µ〉,

where α is the name of the agent, MS is the mental state, AR is the agents reasoning rules,
AR⊆ RA, F is the set of transition functions (see Definition 14), C is the set of capabilities,
C = cap(α), and µ = 〈µin,µout〉 is the mailbox, contains incoming and outgoing messages.

4.1 Transition system

The semantics allow us to find applicable reasoning rules and use them to update the agent’s
knowledge bases. We now introduce the transition rules that can be used to make computa-
tion runs for AORTA-agents. Each transition rule is only applicable given certain conditions,
and by firing a rule, the agent’s configuration will change. This makes it possible to com-
pute different traces given an initial state, thus allowing the agents to compute how to best
complete their objectives. Our aim is to present a number of transition rules that can be used
for organizational reasoning; for which we provide sufficient formal evidence to claim that
the rules can be used for organizational reasoning.

Transitions are of the form

premises
s→ s′

where s and s′ are agent configurations. If the premises hold, the rule can be executed, which
will change the configuration. In the following, we include only the parts of the configuration
that are used or updated by the transition rules.

It is the case for all rules below, that they are only applicable if the addition or removal
of predicates actually change the configuration. That is, adding a role as an enactment option
is only possible, if it is not already an option. To make the rules more easily legible we omit
this check in the definitions. The rules can easily be expanded to conform to the constraint
following the general patterns, where X refers to a set in the agent’s configuration:

. . . φ 6∈ X
X → X ∪{φ}

. . . φ ∈ X
X → X \{φ}

Unless otherwise stated, we let α refer to an arbitrary agent’s name. This means that, for
example, the obligation rules will activate obligations for other role-enacting agents as well
as the agent itself. This makes it possible for the agent to reason about obligation fulfillment
and violation of other agents, potentially allowing the agents to sanction each other.

A Framework for Organization-Aware Agents 17

4.1.1 Obligation rules

Obligation rules are applicable based on Definition 7, and adds predicates to the organiza-
tional knowledge base, enabling agents to use obligations and their violation in reasoning
formulas. However, since the rules should apply to the individual agent and not the entire
system, we use the metamodel predicates to specify the different phases of the obligation
(Figure 1).

When an obligation is activated for a role-enacting agent (i.e. when the condition is
fulfilled), the activated obligation is added to the organizational knowledge base.

rea(α,R) ∈ Σo MS |= org(cond(R, p,δ ,c))∧bel(c)∧¬bel(p)
Σo→ Σo∪{obl(α,R, p,δ)}

(Obl-Activated)

Fulfillment of an obligation simply removes the obligation from the organizational state.
Notice, however, that the requirement for fulfillment is only that p follows from the mental
state; the deadline may have been reached, but the obligation will still be removed from the
knowledge base. We do this to make it easier for agents to distinguish between active and
fulfilled obligations.

obl(α,R, p,δ) ∈ Σo MS |= bel(p)
Σo→ Σo \{obl(α,R, p,δ)}

(Obl-Satisfied)

Violation of an obligation adds the violation to the organizational knowledge base. No
other rules adds or removes violations from Σo, which means that once an obligation has
been violated, the agent(s) can always reason about this (and sanction accordingly).

obl(α,R, p,δ) ∈ Σo MS |= ¬bel(p)∧bel(δ)
Σo→ Σo∪{viol(α,R, p)}

(Obl-Violated)

We abbreviate the execution of obligation rules into a single rule, Obl. We let Rule∗ de-
note that Rule is executed until the configuration no longer changes, and we let ; (semicolon)
denote sequence, that is, execute the rules delimited by a semicolon in a sequence.

Definition 12 (Obligation execution)

Obl ::= Obl-Activated∗;Obl-Violated∗;Obl-Satisfied∗

Note that the execution of each obligation rule is conditional to the instantiation of the
premises of each transition. That is, the subsequent executions of rule Obl-Activated is appli-
cable when the previous execution of the rule led to a changed configuration. Furthermore,
the execution of Obl-Violated relies on the condition that the previous execution of Obl-
Activated left the configuration unchanged.

4.1.2 Option rules

The option rules correspond to the organizational aspects listed in Section 3. Here, we let α

denote the agent executing the rules.
We let the agent consider a role, if it is capable of achieving one or more main objectives

of the role.

18 Andreas Schmidt Jensen et al.

role(R,Os) ∈ Σo rea(α,R) 6∈ Σo cap(α)∩Os 6= /0
Γo→ Γo∪{role(R)} (Enact)

Note that execution of this rule does not mean that the agent will enact any role it can
fulfill, but rather that the agent can consider them as potential roles to enact.

If all main objectives of an enacting role have been completed, the agent should consider
whether deacting that role.

role(R,Os) ∈ Σo rea(α,R) ∈ Σo Os⊆ Σa

Γo→ Γo∪{¬role(R)} (Deact)

Active obligations concerning an objective should be considered as options. Only the
objective of the obligation is part of the option, but the agent can still reason about the
deadline and role using reasoning formulas in the context of action rules.

obl(α,R, p,δ) ∈ Σo obj(p,SubObj) ∈ Σo

Γo→ Γo∪{obj(p)} (Objective)

The final option rules are concerned with dependency relations. An agent should con-
sider delegating (or requesting the completion of) an objective (by sending an achieve-
message), if it is in a dependency relation that enables it to do so. Note that since AORTA
only considers the beliefs of each agent in isolation, acting upon a dependency relation can
lead to inconsistencies in the agents’ behavior. For example, if an agent believes it has dele-
gated a task to another agent, but the second does not hold the same belief.

{dep(R1,R2,o), rea(α,R1)} ⊆ Σo obj(o) ∈ Γo

Γo→ Γo∪{send(R2,achieve,o)}
(Delegate)

The agent should consider informing about the completion of an objective (by sending
a tell-message), if other agents depend on that objective.

{dep(R1,R2,o), rea(α,R2)} ⊆ Σo MS |= o
Γo→ Γo∪{send(R1, tell,o)}

(Inform)

We abbreviate the execution of option rules into a single rule, Opt, which executes each
option rule until none of them are applicable.

Definition 13 (Option execution)

Opt ::= Enact∗;Deact∗;Objective∗;Delegate∗; Inform∗

4.1.3 Action rules

The action transition rules are applicable if there is an option for which the context is en-
tailed by the mental state and the action is defined by the transition function. We distinguish
between executing actions and sending a message.

A Framework for Organization-Aware Agents 19

Definition 14 (Action transition function) The action transition function, A , is defined as
a partial function A : (Act×MS)→MS.

In the following, α is the agent’s name.

A (enact(ρ),MS) = 〈Σa,Γa,Σo∪{rea(α,ρ)},Γo∪{send(>, tell, rea(α,ρ))}〉
if Σo |= ∃O.role(ρ,O)
and Σo 6|= rea(α,ρ)

A (deact(ρ),MS) = 〈Σa,Γa,Σo \{rea(α,ρ)},Γo∪{send(>, tell,¬rea(α,ρ))}〉
if Σo |= rea(α,ρ)

A (commit(φ),MS) = 〈Σa,Γa∪{φ},Σo,Γo∪{send(>, tell,obj(o))}〉
if Σa 6|= φ and Γa 6|= φ

A (drop(φ),MS) = 〈Σa,Γa \{φ},Σo,Γo∪{send(>, tell,¬obj(o))}〉
if Γa |= φ

Notice that the execution of an action makes changes to two knowledge bases; it gener-
ates an option to inform others about the result. We use > to denote that the message does
not have an intended recipient role; it is up to the agent to decide who to inform, if it deems
this necessary.

The action execution rule uses the action transition function to change the mental state,
if the context for an option holds. Given that the transition function is partial, the rule is only
applicable if the transition function is defined.

o : ctx→ a ∈ RA o ∈ Γo MS |= ctx A (a,MS) = MS′

MS→MS′
(Act-Exec)

We assume that the action succeeds once it is acted upon.
Sending a message is possible when the context holds; the agent adds the message to its

outgoing mailbox.

o : ctx→ send(rcp,msg) ∈ RA o ∈ Γo MS |= ctx
µout → µout ∪{msg(rcp,msg)}

(Act-Send)

If no other action is available, the agent has a special no-op action available, which does
not change the system state. This action is denoted No-Op.

We let action execution, Act, be either the execution of an action or sending a message.
We denote choice by | (vertical bar), meaning that one of the rules should be (nondetermin-
istically) chosen for execution.

Definition 15 (Action execution)

Act ::= (Act-Exec|Act-Send|No-Op)

4.1.4 Other rules

Finally, we define rules for handling external changes and for checking for incoming mes-
sages. We assume that the agents share a platform or environment that enables message
passing.

We deal with external changes using the following rule:

20 Andreas Schmidt Jensen et al.

MS→MS′
(Ext)

Our aim is to define the interaction between the agent and the organization in terms of an
organizational reasoning component. The interaction between AORTA, different cognitive
agents and the environment is thus not in the scope of this paper, thus we abstract away from
dealing with the environment. For a deeper discussion of how to deal with these issues, we
refer to [36].

Incoming messages are handled by processing the message through a message transition
function, which adds the message to the appropriate knowledge base.

msg(sender,msg) ∈ µin M (sender,msg,MS) = MS′

µin→ µin \{msg(sender,msg)}
MS→MS′

(Check)

Where M is a message transition function. A simple function will simply put the message
into the knowledge base. A more sophisticated function might take into account the sender
of the message to, for example, consider whether the sender is trustworthy or if the message
should be discarded.

The execution of an entire organizational cycle, Org, will then check for messages and
external changes, apply obligation rules, generate options and execute an action.

Definition 16 (Organizational cycle execution)

Org ::= Check∗;Ext;Obl;Opt;Act

The semantics of AORTA-agents is then defined as computation runs using the transition
system.

Definition 17 (AORTA-agent semantics) The semantics of an AORTA-agent is the set of
all computation runs for the agent. A computation run is a sequence, s0, . . . ,sn or s0, . . . , such
that each si is a configuration, s0 is the initial configuration, and for all si, i > 0, we have that
a transition si −→ si+1 can be made in the transition system. For finite computation runs,
s0, . . . ,sn, we have that for sn there is no sn+1 such that sn −→ sn+1.

We write ρx 7→ ρy to denote a computation run from a state described by the reasoning
formula ρx to a state described by the reasoning formula ρy, where ρx,ρy ∈ LR. Furthermore,
we may write ρa 7→ ρb where a,b are agents to describe a computation run involving several
agents where the state of one agent eventually leads to a state for the other.

5 Evaluation of the AORTA Framework

In this section, we proceed to show how cognitive agents using the AORTA framework are
able to reason about organizational matters. We use the RFT scenario to illustrate how the
organization-aware agents are able to handle different situations. Since the performance of
an AORTA agent depends on the behavior of the cognitive agent, it is difficult to provide
general results of a MAS using AORTA without assumptions about the agents. For example,
AORTA does not guarantee that an agent will actually achieve the objectives of an organiza-
tion, since this depends on the agent’s own goals and motives, and the organization’s ability
to sanction violations. Instead, AORTA provides options for the agent to consider, in order

A Framework for Organization-Aware Agents 21

to decide how to act in relation to the organization. The evaluation thus depends on (1) the
behavior of the agents, which determines their motivation to participate in the organization,
(2) the AORTA reasoning rules that specify how to react to the organizational options and
(3) environment dynamics, e.g. time passing. Furthermore, we are not aiming at a full eval-
uation of the AORTA model. This section aims to show that we have successfully defined
a reasoning component that provides agents with organizational reasoning capabilities that
are useful in business scenarios such as this one.

5.1 The “request for tender” scenario

In this section we present the scenario used for evaluating AORTA. We consider the request
for tender (RFT) process, which is a formal, structured invitation to suppliers, to bid, to
supply products or services. For example, a company or government may put a building
project “out to tender”; that is, publish an invitation for other parties to make a proposal for
the building’s construction. The aim of the process is to ensure best supplier possible for the
requested service or product, such that no parties having the unfair advantage of separate,
prior, closed-door negotiations for the contract. The stakeholders of the scenario includes
the contracting authority, bidders consortium (possibly consisting of several partners), eval-
uators, and a publication body.

A system should be able to handle more than one RFT at the same time: i.e. there can
be more than one contracting authority putting out an RFT to be fulfilled by different bidder
consortia, and possibly advertised by different publication bodies.

The RFT process consists of (at least) the following stages:

1. Tender elaboration: decide on terms, conditions, deadlines, etc. for the RFT.
2. Publication: publication of the tender and/or distributed to potential bidders.
3. Request for information: interested bidders can ask for further information to clarify any

uncertainties.
4. Bid preparation and (optionally) consortium formation.
5. Bid submission.
6. Bid evaluation and decision: An evaluation team will go through the tenders and decide

who will get the contract. Each tender will be checked for compliance and if compliant,
then evaluated against the criteria specified in the tender documentation. The tender that
offers best value for money will win the business.

7. Notification: When a contract has been awarded, the successful tenderer will be advised
in writing of the outcome. Unsuccessful tenderers are also informed.

8. Contract formation: a formal agreement will be required between the successful ten-
derer and the contracting authority.

Furthermore, a number of norms can be defined for the scenario:

– Bids must be submitted before the deadline.
– Evaluators have to submit their evaluation on time.
– All bids must be written in English.
– Bids include at least X and at most Y partners.
– Each tender must receive at least Z different bids.
– Evaluators and contractors cannot participate in any bid consortium.
– Bids must be blind.

The scenario is interesting to consider in the context of organizations. It is based on an
existing process and is as such well-defined. It is a simple scenario, yet it shows different

22 Andreas Schmidt Jensen et al.

kinds of organizational aspects, e.g. explicit definition of roles and objectives. It describes
a very strict business process in which the order of certain phases is important. A success
criteria of an implemented system is the comparison with evaluation of real-life RFTs. Since
it is formally described and based on a number of well-defined stages, organization-aware
agents can reason about the best decisions to make in each of the stages. A successful system
of organization-aware agents for the RFT process should be able to, e.g., publish different
kinds of RFTs that capable agents can bid on, and it should be possible for the agents to
choose to violate some of the norms, while taking possible sanctions into account.

5.2 Evaluation

We focus on the part of the RFT process that has to do with bid submission and evaluation.
The organization is listed in Table 1 using the metamodel. Notice that the conditional obli-
gations serve two purposes: first, they can be used to describe the obligation to achieve some
task (as usual), and second, they can help the agents in understanding the order of execution
of the tasks in the organization. For example, the first cond-rule states that a bid must be
submitted, before the evaluator can decide if the bid complies with the rules.

We focus on an agent enacting the evaluator role and show how AORTA helps the agent
adhere to the norms of the system and as efficiently as possible fulfills its responsibilities as
an evaluator. The variable binding that takes place when the agents execute their reasoning
rules is straightforward and will not be explained in detail. We note, however, that due to the
variable binding, the agents will only commit to the RFTs they are interested in.

We initially assume that an agent called Eve has generated the options based on her
capabilities to enact both the bidder role and the evaluator role using the (Enact) rule. She
decides to enact the evaluator role, because she has a goal to evaluate bids for an RFT:

role(evaluator) : goal(evaluated(Bid,Result))→ enact(evaluator).
role(bidder) : goal(submitted(RFT,Bidder,Bid))→ enact(bidder).

Enactment of a role generates the option to tell other agents in the system about this enact-
ment: send(>, tell,org(rea(eve,evaluator))). She can choose to act upon this option using
an action rule, thus allowing other agents to know about her enactment.

All of the agents in the system are shown in Figure 3 and the AORTA action rules are
listed in Table 2. Rule (AR1) deals with submission of bids, and (AR2) lets agents inform
each other about beliefs. Rules (AR3) and (AR4) are specific to the evaluation: the first
rule lets the evaluator commit to perform compliance check of a bid if the bidder did not
violate its obligations, and the second rule lets the agent commit to evaluating a bid once a
compliance check has been performed.

Since we look at only a part of the system, we assume that the rest of the agents have also
enacted roles based on their capabilities, so we proceed to show how they use AORTA for
coordination and objective completion. We assume that each agent knows the other agents
and which role they enact. We furthermore assume that all agents hold the following beliefs:

– rft(bridge)
– published(bridge, dave)
– deadline(bridge, 5, 10, 15)
– time(1),

A Framework for Organization-Aware Agents 23

Table 1 Metamodel for the evaluation part of the RFT scenario.

role(bidder,{submitted(RFT,Bidder,Bid)})
role(evaluator,{bestTender(RFT,Bid)})
obj(submitted(RFT,Bidder,Bid),{})
obj(bestTender(RFT,Bid),{complies(RFT,Bid),evaluated(Bid,Result)})
obj(complies(RFT,Bid),{})
obj(evaluated(Bid,Result),{})
dep(contractor,bidder,submitted(RFT,Bidder,Bid))
dep(contractor,evaluator,bestTender(RFT,Bid))
dep(evaluator,contractor,submitted(RFT,Bidder,Bid))

cond(bidder,submitted(RFT,Bidder,Bid),complies(RFT,Bid),bid(RFT,Bid))
cond(bidder,submitted(RFT,Bidder,Bid), time(DB),

deadline(RFT,DB,DE,DD)∧published(RFT,Contractor))
cond(evaluator,complies(RFT,Bid),evaluated(Bid,Result),

published(RFT,Contractor)∧ submitted(RFT,Bidder,Bid)∧ evaluator(RFT,Evaluator))
cond(evaluator,evaluated(Bid,Result),bestTender(RFT,Bid),complies(RFT,Bid))
cond(evaluator,bestTender(RFT,Bid),biddersInformed(RFT),evaluated(Bid,Result))
cond(evaluator,evaluated(Bid,Result), time(DE),

deadline(RFT,DB,DE,DD)∧ submitted(RFT,Bidder,Bid))

Alice
rea(alice, bidder)

bid(bridge, aliceCo)
bidDetails(6)

org

bel

goal

Bob
rea(bob, bidder)

bid(bridge, bobsFirm)
bidDetails(10)

Charlie
rea(charlie, bidder)

bid(bridge, charlieAndSon)
bidDetails(12)

Dave
rea(dave, contractor)

evaluator(bridge, eve)

contractSigned(C)

org
bel
goal

Eve
rea(eve, evaluator)

evaluator(bridge, eve)

bestTender(bridge, Bid)

Fig. 3 The agents being evaluated. Each agent has (from the top) organization beliefs, ordinary beliefs and
goals.

Table 2 Action rules available to each of the agents in the system. The predicate me(Name) identifies the
agent by its name.

(AR1) obj(submitted(RFT,Bidder,Details)) : bel(me(Me))∧bel(bidDetails(X)) ∧
bel(bid(RFT,Bid))→ commit(submitted(RFT,Me,bid(Bid,X)))

(AR2) send(R, tell,X) : org(rea(A,R))→ send(A,bel(X))

(AR3) obj(complies(RFT,Bid)) :
bel(me(Me))∧bel(evaluator(RFT,Me))∧bel(submitted(RFT,Bidder,Details)) ∧
¬org(viol(Bidder,bidder,submitted(RFT,Bidder,Details)))
→ commit(complies(RFT,Bid))

(AR4) obj(evaluated(Bid,Result)) : bel(complies(RFT,Bid))→ commit(evaluated(Bid,Result))

that is, there is a published RFT for a bridge, requested by Dave. The deadline predicate,
deadline(bridge, 5, 10, 15), specifies the deadline for bidding (5), evaluation (10) and deci-
sion (15), respectively. The time is perceived by the agents and is updated in AORTA using
the (Ext) transition rule.

In the following, since we are considering multiple agents, we write belα to denote a
belief held by agent α . We write bel∗ to denote a belief held by every agent in the system

24 Andreas Schmidt Jensen et al.

(typically a percept visible to all agents). We use similar conventions for organizational
beliefs, organizational options and goals.

We show two things: first, that AORTA lets the agents playing the contractor and eval-
uator roles decide on the best tender for building a bridge, and second, that the evaluator is
able to handle bidders violating the submission deadline by not evaluating them:

goaleve(bestTender(bridge,Bid)) 7→ beldave(bestTender(bridge,bobsFirm)) (1)

org∗(viol(Bidder,bidder,submitted(bridge,Bidder,bid(BidCompany,6))))

7→ ¬beleve(evaluated(bid(BidCompany,6),Result))

∧¬beldave(bestTender(bridge,BidCompany))

(2)

The first property states that when Eve has a goal to find the best tender for the RFT, this
will eventually lead to the contractor (in this case, Dave) knowing that the best bid came
from Bob. The second property states that if a bidder violates the submission deadline, their
bid will not be evaluated and will not be chosen as the best tender. Note that the properties
describe the system from the outside; Eve does not initially know that Bob is the best tender,
but since we designed the system, we expect that she will eventually know it and therefore
inform Dave.

Initially, the submission-obligations for each of the bidders will be activated. The activa-
tion condition for both obligations holds, so both obligations are activated. For the purpose
of the evaluation, we focus on the second obligation dealing with the submission deadline
defined by the contractor.

(Obl-Activated) org∗(obl(alice, bidder, submitted(bridge, Bidder, Details), time(5)))
org∗(obl(bob, bidder, submitted(bridge, Bidder, Details), time(5)))
org∗(obl(charlie, bidder, submitted(bridge, Bidder, Details), time(5)))

Notice that the obligations are part of all of the agents’ organizational belief base, since
all of them know about the agents’ role enactment and can reason about the conditional
obligation.

Since the obligations concern organizational objectives, options for completing these
objectives are generated:

(Objective) optalice(obj(submitted(bridge, Bidder, Details)))
optbob(obj(submitted(bridge, Bidder, Details)))
optcharlie(obj(submitted(bridge, Bidder, Details)))

Finally, using action rule (AR1), each of the agents commit to completing the objective:

(Act-Exec) goalalice(submitted(bridge, Bidder, Details))
goalbob(submitted(bridge, Bidder, Details))
goalcharlie(submitted(bridge, Bidder, Details))

At this point, no reasoning rules are applicable, so the AORTA organizational cycle does
not perform any changes to the agent’s mental state. It is thus up to the agents (using their
capabilities) to complete the objectives they have committed to achieving. Then, one of two
things happen: either the deadline for submission is reached and the obligation to submit is
violated, or the bids are submitted and the obligation is satisfied.

We assume that all of the bidders have the capability to submit their bid, but to make
things interesting, we let Alice submit her bid after the deadline has been reached to show
how the contractor and the evaluator can react to this violation using AORTA.

A Framework for Organization-Aware Agents 25

After a while, Bob and Charlie submit their bids:

(Ext) bel∗(time(4))
belbob(submitted(bridge, bob, bid(bobsFirm, 10)))
belcharlie(submitted(bridge, charlie, bid(charlieAndSon, 12)))

The dependency relation between contractor and bidder regarding submission generates an
option to inform contractors about the submission. The agents use (AR2) to inform the
contractor:

(Inform) optbob(send(contractor, tell,
submitted(bridge, bob, bid(bobsFirm, 10))))

optcharlie(send(contractor, tell,
submitted(bridge, charlie, bid(charlieAndSon, 12))))

(Act-Send) msg(dave, bel(submitted(bridge, bob, bid(bobsFirm, 10))))∈ µbob
out

msg(dave, bel(submitted(bridge, charlie, bid(charlieAndSon, 12))))∈
µcharlie

out

The contractor receives the bids and adds them to the belief base:

(Check) beldave(submitted(bridge, bob, bid(bobsFirm, 10)))
beldave(submitted(bridge, charlie, bid(charlieAndSon, 12)))

We note that Alice has not yet submitted her bid. Let us assume we reach the submission
deadline, leading to the violation of her submission obligation:

(Ext) bel∗(time(5))

(Obl-Violated) org∗(viol(alice, bidder, submitted(bridge, Bidder, Details)))

Similarly to the activation of obligations, the violation of Alice’s obligation is part of every
agents’ organizational belief base. This means that, at this point, all agents in the system
know that Alice has violated her obligation.

We assume that she eventually submits a bid, which is received by the contractor:

(Check) beldave(submitted(bridge, alice, bid(aliceCo, 6)))

To summarize, the bidders have used the organizational model and AORTA to (1) commit to
submitting their bids and (2) inform the contractor about this. We now turn to the evaluator
role, which depends on the contractor for receiving the bids that should be evaluated. Based
on this dependency relation, the contractor generates options using the (Inform) rule to in-
form the evaluator about the bids and acts upon these options by sending the submissions to
Eve:

(Check) beleve(submitted(bridge, alice, bid(aliceCo, 6)))
beleve(submitted(bridge, bob, bid(bobsFirm, 10)))
beleve(submitted(bridge, charlie, bid(charlieAndSon, 12)))

The submissions activate obligations for the evaluator to evaluate the bids before the evalua-
tion deadline is reached. Furthermore, the evaluator is obliged to perform compliance check

26 Andreas Schmidt Jensen et al.

for each of the submissions before evaluating them:

(Obl-Activated) org∗(obl(eve, evaluator, evaluated(bid(aliceCo, 6), Result), time(10))
org∗(obl(eve, evaluator, complies(bridge, bid(aliceCo, 6)), evalu-
ated(bid(aliceCo, 6), Result)))
...

(Objective) opteve(obj(evaluated(bid(aliceCo, 6), Result)))
opteve(obj(complies(bridge, bid(aliceCo, 6))))
...

The evaluator can now consider the generated objective options using its reasoning rules
(AR3) and (AR4). Since we assume that she has the capabilities required for her role, Eve
will eventually complete the objectives she commits to. Rule (AR3) concerns the compliance
check and is only applicable if the submission deadline for a given bid was not violated.
Rule (AR4) concerns evaluation and is only applicable if the evaluator has verified that the
submission complies to the terms and conditions of the RFT. We thus assume that eventually,
the bids from Bob and Charlie will be evaluated. Furthermore, since she already has adopted
the goal to find the best tender, she will eventually make that decision:

(Ext) beleve(evaluated(bid(bobsFirm, 10), won))
beleve(evaluated(bid(charlieAndSon, 12), lost))
beleve(bestTender(bridge, bobsFirm))

We should note that while the action rules of AORTA makes Eve skip the evaluation of one
of the bidders, she may still choose to do so if it is in her own interest. However, since the
contractor can also reason about the violation, he may still choose to ignore the bid from
Alice. The dependency relation between contractor and evaluator generates an option to
inform the contractor about the best tender, which the evaluator then acts upon using (AR2):

(Inform) opteve(send(contractor, tell, bestTender(bridge, bobsFirm)))

(Act-Send) msg(dave, bel(bestTender(bridge, bobsFirm)))∈ µe
out

(Check) beldave(bestTender(bridge, bobsFirm))

This concludes the execution of the RFT scenario. We have shown that the bids have been
evaluated by the evaluator and the best tender was chosen, after which this information was
passed on to the contractor.

We have thus shown that by using AORTA the organizational model in the system is
made available for the agents to act upon. In the OPG-phase, the framework generates op-
tions in relation to the model and the state of the system, helping the agents decide what to do
in relation to the organization. Since the capabilities of the agents are preexistent, AORTA
mainly provides a functional way for the agents to use their capabilities in completing the
organizational objectives. Furthermore, in the OC-phase, obligations are activated for the
agents, and are available to not only responsible agents, but other agents as well, giving a
way for them to react to fulfillment and violation by other agents in the system. We showed
that the evaluator could decide not to evaluate a submission if the was submitted after the
submission deadline. This was possible exactly because the OC-phase handles obligations
for every agent, not just the agent itself.

How the agents use AORTA is specified by the action rules, and they should be specified
by the programmer. While very general rules can be established (e.g. always enact possible

A Framework for Organization-Aware Agents 27

roles, always commit to objectives), more specific rules allow the agents to better react to
preconditions for performing a task or to possible violations.

The fact that each agent uses a separate AORTA component means that the agents may
hold different beliefs about the organization, just as they may have different views of their
environment. The (Inform) rule and the enact-action accommodate this by generating send-
options for maintaining consistency among the agents. For example, when Eve enacts the
evaluator role, an option is generated to tell other agents in the system about this, and when
an agent enacting the bidder role submits an application, an option is generated to inform the
contractor about this. The second option can then be acted upon using (AR2), which uses
the agents’ beliefs about role enactment to tell the contractor about the submission.

Furthermore, since the component is added to the agent and assumes nothing a priori
about the agent, the plans inside the agent may very well conflict with the AORTA action
rules. For example, the agent may choose not to commit to an objective using AORTA,
but adopt it anyway using its internal plans. However, if this leads to a violation of an
organizational obligation, other agents will be aware of this, and can choose to punish the
agent. Thus, AORTA allows the agents to follow the rules of an organization, but poses
no restrictions on them to do so; if they choose to follow their own plans, this cannot be
prevented – and rightfully so: otherwise their autonomy would be severely limited.

6 Conclusion

In this paper, we present AORTA, a framework to provide agents with means to reason about,
enter and leave an organization in open environments in a way that does not take away all of
their autonomy. AORTA can be seen as an add-on component to cognitive agents, providing
them with organizational reasoning capabilities. These capabilities are general and not based
on a specific organizational model or agent framework, but is designed to allow different
kinds of agents to reason about different kinds of organizational models.

AORTA is used by each agent individually, which first of all means that the agents can
decide by themselves how to use the component, making AORTA suitable for many differ-
ent kinds of agents. It may, however, also lead to agents holding different views about the
organization, leading to inconsistency among them. This is not different from what happens
in real-life, where actors in an environment may very well have different views about the
world state, and is as such not something we believe is particularly problematic.

The framework is founded in formal operational semantics that precisely define how the
agent can reason about an organization. Using temporal logic, we have formalized the in-
tended behavior of organization-aware agents and have subsequently captured this behavior
using operational semantics. Note that there is currently no formal connection between these
semantics, and future work is needed in order to establish the correctness of the operational
semantics with respect to the semantics of obligations.

Organizations in AORTA are represented by an organizational metamodel. We have
shown that agents can use the metamodel to reason about a system in which that organiza-
tional model is in effect. The metamodel supports the notions of roles and role enactment,
objectives and objective dependencies, and conditional obligations. Using transition rules,
the component can activate obligations, detect violations and suggest role enactment or ob-
jective commitments, all based on the agent’s current state. The agents act upon this using
organizational actions, allowing to following the suggestions – enact roles or commit to
objectives – or to coordinate their actions with other agents in the system.

28 Andreas Schmidt Jensen et al.

We have provided an initial evaluation of the the framework using a scenario in which a
company puts a building project out to tender, i.e. requests other parties to make a proposal
for the building’s construction. We showed that, given agents with the capabilities to fulfill
the roles in such a scenario, AORTA made it possible for them to coordinate their tasks and
detect and act upon violations of the obligations imposed upon the agents.

Since AORTA provides organizational reasoning capabilities without taking away the
agents’ autonomy, the agents can by themselves choose how to make use of the framework.
That is, AORTA may generate options for committing to certain objectives or coordinating
with other agents, but the agents are free to choose not to act upon these options. Further-
more, even if an AORTA reasoning rule is designed to e.g. punish a violating agent, the
agent’s own intentions may conflict with these rules; AORTA poses no restrictions on this,
since this would limit the agent’s autonomy. As argued, even if an agent then violates the
organizational obligations, other agents can detect this, and may choose to punish accord-
ingly. If they do not punish, then either the obligations are unnecessary, or the agents are not
interested in fulfilling their roles.

As mentioned, we have implemented an earlier version of the framework in Java and
have integrated it with the Jason platform [30]. We plan to extend that work with the com-
plete and updated operational semantics presented in this paper. This would make it possible
to execute and evaluate larger scenarios, and to, e.g., test how agents are able to recover from
violations of obligations.

AORTA takes the perspective of the agent and provides it with capabilities to reason
in a system with an organization. Therefore, the focus of the framework is on the agent’s
beliefs about the organization and the environment, meaning that there is no notion of an
organizational entity that the agents can interact with. If we instead take the organization’s
perspective, we are required to look at it from the point of view of an organizational entity;
this entity would exist in the environment and would contain the state of the organization.
Such entity is called an artifact [27] and agents are able to interact with it to e.g. enact
roles or form groups. We plan to investigate how to integrate AORTA with organizational
artifacts, so that e.g. the enactment action is connected to an organizational artifact.

Appendix: Translating an OperA model

The OperA model [17] proposes an expressive way for defining open organizations distin-
guishing explicitly between the organizational aims, and the agents who act in it. OperA
enables the specification of the organizational structure, requirements and objectives, and at
the same time allows participants to have the freedom to act according to their own capabil-
ities and demands. At an abstract level, an OperA model describes the aims and concerns of
the organization with respect to the social system. These are described as the organization’s
externally observable objectives, i.e. the desired states of affairs for the organization.

The OperA model contains the Organizational Model (OM), which is the result of the
observation and analysis of the domain and describes the desired behavior of the organiza-
tion, as determined by the organizational stakeholders in terms of objectives, norms, roles,
interactions and ontologies. The OM consists of four interrelated structures: the social, in-
teraction, normative and communicative structure. The social structure of an organization
describes the roles holding in the organization. It consists of a list of role definitions, group
definitions, and a role dependencies graph. The interaction structure describes the states
that the agents should achieve, in terms of meaningful scenes that follow pre-defined ab-
stract scene scripts. A scene script describes a scene by its players (roles), its desired results

A Framework for Organization-Aware Agents 29

and the norms regulating the interaction. A scene script establishes also the desired inter-
action patterns between roles, that is, a desired combination of the (sub-) objectives of the
roles. The normative structure describes expectations and boundaries for agent behavior,
and the communicative structure specifies the ontology and the communication language
used in the society.

In many ways, the OperA model is richer than the AORTA metamodel. The notion of,
e.g., groups and scenes is not present in AORTA, and they cannot be directly translated into
an equivalent notion. Furthermore, in some cases, the translation may not be ideal for practi-
cal purposes, so it may be necessary to manually change the metamodel after translating the
OperA model. Even so, the translation provides a starting point for creating a metamodel,
which should be preferred to creating the entire metamodel manually.

In the following we focus on the social, interaction and normative structure, and show
how a subset of the OperA model can be translated into the AORTA metamodel. We do not
directly consider the communicative structure, but since the ontology defined here is used
in the other structures, the communication language is inherently included in the AORTA
metamodel as well.

Social structure

The social structure specifies the roles, groups and role dependencies of the organization.
Since the metamodel does not contain the notion of groups, we show only how to translate
roles and role dependencies. A role in OperA is a tuple

role(r,Obj,Sbj,Rgt,Nor, tp),

where r is the role identifier, Obj and Sbj are objectives and sub-objectives, Rgt is the set of
rights associated with the role, Nor is the set of norms and tp is the type of the role (which
can be either external or institutional).

The metamodel has no concept of rights and does not distinguish between different role
types. A role can therefore at most be described by its identifier, objectives, sub-objectives
and norms. An OperA role then becomes role(r,Obj) in the metamodel. We show how role
norms can be translated in the normative structure. A set of sub-objectives for objective γ is
defined in OperA as a set Πγ = {γ1, . . . ,γn} such that

n
∧

i=1
γi → γ . For each objective, γ , we

thus add obj(γ,Πγ) to the metamodel.
The social structure defines three kinds of dependency relations: hierarchical, market

and network relations. They differ in how agents in the relation have authority over one
another: the market relation facilitates bidding, the network relation is based on requests,
and a hierarchical relation uses delegation. In AORTA, a dependency relation between roles
r1 and r2 means that r1 depends on r2 for the completion of an objective. The AORTA
dependency relation is not based on one agent having authority over another, thus it is up to
the agents to decide how to use it, for example, by delegate tasks to agents enacting r2. We
thus perform the following translation: an OperA relation r1 �γ r2 becomes dep(r1,r2,γ) in
the metamodel.

Interaction structure

The interaction structure divides the organizational activity into scene scripts that provide
partial ordering of objectives and transitions between scenes that provide synchronization

30 Andreas Schmidt Jensen et al.

λ1

λ2

λ3

λ4

Scene 1

λ5 λ6

Scene 2

λ7

λ8

λ9

Scene 3start end

Fig. 4 Interaction structure with landmark patterns for each scene script. Landmarks with a double edge are
results of the scene script.

and evolution of roles. Objectives of scenes are partially ordered using landmark patterns,
which represent the minimum requirements for achieving the results of the scene.

Figure 4 shows an interaction structure with three scene scripts. We use this to show
how to perform the translation into the metamodel. Informally, the interaction structure tells
us that scene 1 ought to be completed before beginning on scene 2 and 3, and either scene 2
or scene 3 ought to be completed before moving on to the end scene. Furthermore, looking
at scene 1, landmark λ1 should be completed before λ2 and λ3, and so on. Since AORTA
does not have a notion of scenes, we propose a translation of the interaction structure to
conditional obligations with deadline. We basically convert each landmark pattern to a set
of conditional obligations, and we connect the scenes using conditional obligations as well.

An obligation O(p < δ | c) means that p ought to be achieved once c is achieved,
and before δ occurs. We thus propose a translation where each landmark is the objective
of an obligation, with the previous landmark(s) as condition and the next landmark(s) as
deadline. For example, given a landmark pattern λa ≤ λb ≤ λc, the obligation to achieve
λb becomes O(λb < λc | λa), which states that the agent ought to achieve λb once λa has
been achieved, but before λc is achieved, corresponding to the landmark pattern. In other
patterns where multiple landmarks must be achieved in parallel before the next landmark,
the obligation becomes a bit more complex, since we have to incorporate this. However the
well-defined semantics of landmark patterns [32] and of scene transitions make it possible
to translate such patterns into conditional obligations that correspond well with the meaning
of the pattern. Table 3 lists the different kinds of patterns that can appear in the interaction
structure.

We deal with the edge cases as follows. If for a landmark λ there is no landmark λ ′,
such that λ ′ ≤ λ , then the condition for the obligation to achieve λ is >. This corresponds
to an obligation that is immediately activated. If for a landmark λ there is no λ ′, such that
λ ≤ λ ′, then the deadline for the obligation to achieve λ is ⊥. This makes it hard to detect
a violation, since an obligation is only violated once the deadline is reached, which never
happens in this case. In order to accommodate this, it will be necessary to manually change
the resulting metamodel to incorporate actual deadlines in these cases.

Example 1 We can use the translation scheme above to translate the interaction structure in
Figure 4. The first objective, λ1, is translated into the obligation O(λ1 < λ2 ∨λ3 | >). The
condition is > since λ1 is the first objective. The deadline is reached when either λ2 or λ3
have been achieved, corresponding the fact that they are after λ1 in the partial ordering. The

A Framework for Organization-Aware Agents 31

Table 3 Different types of landmark patterns and scene transitions and their corresponding conditional obli-
gations with deadline.

Landmark patterns

c0 ...
cn

p δ O(p < δ | c0 ∧·· ·∧ cn)
c p δ0

δn

... O(p < δ0 ∨·· ·∨δn | c)

Scene transitions
c0

...
cn

p δ O(p < δ | c0 ∨·· ·∨ cn)

c0

...
cn

p δ O(p < δ | c0 ∧·· ·∧ cn)

c p

δ0

...
δn

O(p < δ0 ∨·· ·∨λn | c) c p

δ0

...
δn

O(p < δ0 ∨·· ·∨λn | c)

rest of the resulting obligations are shown below.

O(λ2 < λ4 | λ1) O(λ3 < λ4 | λ1)
O(λ4 < λ5∨λ7∨λ8 | λ2∧λ3) O(λ5 < λ6 | λ4)
O(λ6 <⊥ | λ5) O(λ7 < λ9 | λ4)
O(λ8 < λ9 | λ4) O(λ9 <⊥ | λ7∧λ8)

In this case, the obligations to achieve λ6 and λ9 both have ⊥ as deadline, so it may be
necessary to manually change the obligations to use actual deadlines.

The translation shown above omits a few parts of the interaction structure. Transitions
between scenes may include role evolution relations, specifying how agents can (or are
obliged) to enact a role in the next scene based on there current role. Furthermore, a role
evolution may specify a conflict between roles, i.e. that two roles may not be simultaneously
enacted by a single agent. This is not captured in the translation above. A role evolution
relation is defined by

role-evolution(s.r1, t.r2,SN,λ),

where s and t are scenes, r1 is a role in s, r2 a role in t, SN is the type of relation and can
be either necessary, sufficient or conflict, and λ is the set of conditions for performing the
role evolution (the landmarks that must be fulfilled by the agent). As we are considering
only obligations, we are not translating sufficient role evolutions (i.e. the agent is allowed to
enact a certain role in the next scene).

A necessary role evolution is translated into the following conditional obligation:

Or1(rea(Ag,r2)< λt | λ),

where Ag is the agent, λt is the set of initial landmarks of scene t, and λ is the set of
conditions for performing the role evolution.

Role conflicts are somewhat problematic in AORTA. Intuitively, a role conflict is trans-
lated into the following conditional obligation:

Or1(¬rea(Ag,r2)< λ
r
t | λ),

32 Andreas Schmidt Jensen et al.

where Ag is the agent, λ r
t is the set of results of scene t, and λ is the set of conditions

for the role evolution. However, if the obligation is activated and Ag is not enacting r2,
the obligation is immediate satisfied, and can therefore never be violated. The issue stems
from the fact that obligations in AORTA are based on achievement, not maintenance, which
means we cannot specify an obligation to maintain a state (in this case ¬rea(Ag,r2). A
work-around is to let the activation condition be based on the enactment of both roles:

Or1(¬rea(Ag,r2)< λ
r
t | rea(Ag,r2)∧λ).

That is, whenever the agent enacts both roles, it is obliged to deact the second role. Similarly,
a global role conflict can be translated into Or1(¬rea(Ag,r2)<⊥ | rea(Ag,r2)).

Normative structure

The normative structure defines the expected boundaries of the agents participating in an
organization. This is done by specifying norms that describe what agents enacting specific
roles are expected to do. Norms in the normative structure are divided into role norms,
scene norms and transition norms. Role norms define the generally expected behavior of
a role regardless of participation in scenes. Scene norms define the expected behavior of
roles participating in a specific scene. Transition norms define the limitations related with
enacting new roles when moving between scenes, and were handled above in the translation
of the interaction structure.

Norms in OperA are specified in Logic for Contract Representation (LCR). Different
types of obligations are defined: conditional obligations, obligations with deadline and obli-
gations without deadline. A obligation to achieve p before δ when c in LCR is translated
to O(p < δ | c) in the metamodel. If c = >, the obligation has no condition. If δ = ⊥,
the obligation has no deadline, which as discussed causes some issues regarding violation
detection.

Example: Request for tender

The RFT organization has been implemented in OperA. Our implementation of the bidding
procedure is somewhat simple, in that we assume that the bidders simply specify a price for
the RFT and the evaluator chooses the lowest bid. Since the process of making such deci-
sions is not in the scope of this paper, we believe this is justified. We briefly describe the
implementation and show its translation to the AORTA metamodel. The organization con-
tains five roles, as shown in the social structure in Figure 5. The social structure furthermore
defines dependencies between the roles, based on the organization’s objectives. The roles
are translated into the following roles in the metamodel:

role(bidder,{submitted(RFT,Bidder,Bid),contractSigned(Contract)})
role(contractor,{rft(RFT),published(RFT,Contractor),

contractSigned(Contract),bestTender(RFT,Bid)})
role(evaluator,{bestTender(RFT,Bid)})
role(publicationBody,{published(RFT,Contractor)})
role(consortiumPartner,{submitted(RFT,Bidder,Bid),consortium(Bid,Partners)})

Each role is associated with a number of main objectives. Most of these objectives are in
turn associated with a number of subobjectives. We will not go into details with the objective

A Framework for Organization-Aware Agents 33

Contractor

Publication
body Evaluator

Bidder

Consortium
partner

Bid submitted

RFT announced Consortium
formed

RFT
announced Bids

evaluatedBids
received

Fig. 5 The social structure of the RFT scenario. Each node corresponds to a role, and each edge corresponds
to an objective dependency between roles.

specification, but will use the objectives in the translations below. The objectives are mostly
self-explanatory, but will be explained in detail when deemed necessary.

The dependency relations are translated into the following predicates:

dep(bidder,contractor,published(RFT,Contractor))
dep(bidder,consortiumPartner,consortium(Bid,Partners))
dep(contractor,evaluator,bestTender(RFT,Bid))
dep(contractor,publicationBody,published(RFT,Contractor))
dep(contractor,bidder,submitted(RFT,Bidder,Bid))
dep(evaluator,contractor,submitted(RFT,Bidder,Bid))

The dependency relations let the agents know how to cooperate in order to achieve the ob-
jectives. For example, a publication body agent can reason that since the contractor depends
on it for publishing the RFT, it can request information about the RFT from the contractor,
in order to fulfill its objectives. Furthermore, the contractor can ask the publication body
to achieve the goal and provide the agent with the information required to publish it. No-
tice that the contractor depends on bidders for the submission of bids, while the evaluators
depend on the contractor for this information.

The RFT process consists of a number of stages, which are translated into scenes in
the interaction structure (Figure 6). The contractor should enroll a publication body and a
number of evaluators. The publication body will publish the RFT once its terms, conditions
and deadlines have been decided by the contractor. Potential bidders can prepare a bid,
including requesting more information and forming a consortium. They can then submit
their bids (before the deadline). In the evaluation process, the evaluators ensure that the bids
are compliant and decide on the best tender. Finally, the contract is then awarded to the best
tender, and the parts form and sign the contract.

The following is a subset of the conditional obligations generated from the IS:

Obidder(bid(RFT,Bid)< submitted(RFT,Bidder,Bid)
| consortium(Bid,Partners)∧ infoRequested(Bid,Request))

Ocontractor(rft(RFT)< published(RFT,Contractor)
| deadline(RFT,DBid,DEvaluation,DDecision) ∧

terms(RFT,Terms)∧ conditions(RFT,Conditions))
Ocontractor(contract(Contract,RFT,Bid)< contractSigned(Contract)

| biddersInformed(RFT))
Oevaluator(complies(RFT,Bid)< evaluated(Bid,Result)

| published(RFT,Contractor)∧ submitted(RFT,Bidder,Bid) ∧
evaluator(RFT,Evaluator))

34 Andreas Schmidt Jensen et al.

start

Enroll
publication

body

Publish
RFT

Enroll
evaluators

Prepare
bid

Bid
submission

Evaluation
process

Award
contract

Contract
formation end

Fig. 6 The interaction structure of the RFT scenario. The forked arcs indicate that all incoming/outgoing
scenes must be realized.

For example, the contractor should only finalize the RFT once deadline, terms and condi-
tions have been decided, and it should be done before it is being published. Similarly, the
evaluator should ensure that a bid complies with the terms and conditions of an RFT before
evaluating it, and should only do so once the RFT has been published, the bids are submitted
and the evaluators have been assigned.

Finally, the normative structure includes the norms defined in Section 5.1. Since the
translation is rather straightforward, we simply show a few of the obligations as defined in
the metamodel:

Obidder(submitted(Bid,Bidder,Details)< time(DBid)
| deadline(RFT,DBid,DEvaluation,DDecision) ∧

published(RFT,Contractor))
Oevaluator(evaluated(Bid,Result)< time(DEvaluation)

| deadline(RFT,DBid,DEvaluation,DDecision) ∧
submitted(RFT,Bidder,Bid))

The norms allow for more specific obligations concerning the objectives. For example, bid
submission should happen before the bidding deadline (DBid), and evaluation must be com-
pleted before the evaluation deadline (DEvaluation).

The norm concerning evaluators and contractors participating in a bidding consortium
may be considered a role conflict, which in the metamodel can be expressed as follows:

Oevaluator(¬rea(α,bidder)< evaluated(Bid,Result)
| rea(α,bidder)∧ evaluator(RFT,α)∧bid(RFT,Bid)∧

consortium(Bid,Partners)∧α ∈ Partners).

That is, an agent enacting the evaluator role is obliged to deact the bidder role, before the
bid is evaluated, if that agent is an evaluator in an RFT for which it is also a consortium
partner. A similar obligation can be specified for contractors.

References

1. Aldewereld, H., Dignum, V., Jonker, C.M., van Riemsdijk, M.B.: Agreeing on Role
Adoption in Open Organisations. Künstliche Intelligenz 26(1), 37–45 (2011)

2. Alechina, N., Dastani, M., Logan, B.: Programming norm-aware agents. AAMAS 12
Proceedings of the 11th International Conference on Autonomous Agents and Multia-
gent Systems 2 (2012)

A Framework for Organization-Aware Agents 35

3. Belnap, N., Perloff, M., Xu, M.: Facing the Future: Agents and Choices in Our Indeter-
minist World. Oxford University Press (2001)

4. Boissier, O., Riemsdijk, M.B.: Organisational reasoning agents. In: Agreement Tech-
nologies, Law, Governance and Technology Series. Springer (2013)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in
AgentSpeak using Jason. John Wiley & Sons (2007)

6. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID archi-
tecture: conflicts between beliefs, obligations, intentions and desires. AAMAS ’06 pp.
9–16 (2001)

7. Carabelea, C., Boissier, O., Castelfranchi, C.: Using Social Power to Enable Agents to
Reason About Being Part of a Group. In: Engineering Societies in the Agents World V,
pp. 166–177 (2005)

8. Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberate Normative Agents:
Principles and Architecture. Intelligent Agents VI LNAI 1757, 364–378 (2000)

9. Criado, N., Argente, E., Noriega, P., Botti, V.: Towards a normative BDI architecture
for norm compliance. In: COIN@MALLOW2010 (2010)

10. Dastani, M.: 2APL: A Practical Agent Programming Language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008). DOI 10.1007/s10458-008-9036-y

11. Dastani, M., Dignum, V., Dignum, F.: Role-assignment in open agent societies. In:
AAMAS ’03, pp. 489–496 (2003)

12. Dastani, M., van Riemsdijk, M.B., Hulstijn, J., Dignum, F., Meyer, J.J.: Enacting and
deacting roles in agent programming. In: Agent-Oriented Software Engineering V, Lec-
ture Notes in Computer Science, vol. 3382, pp. 189–204. Springer (2005)

13. Dignum, F., Dignum, V.: A formal semantics for agent (re)organization.
Journal of Logic and Computation pp. 61–76 (2013). URL
http://logcom.oxfordjournals.org/content/early/2013/11/22/logcom.ext058.short

14. Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., Winikoff, M.: Open agent sys-
tems??? In: Agent-Oriented Software Engineering VIII, pp. 73–87. Springer (2008)

15. Dignum, F., Kinny, D., Sonenberg, L.: From desires, obligations and norms to goals.
Cognitive Science Quarterly 2(3-4), 405–427 (2002)

16. Dignum, F., Morley, D., Sonenberg, E.a., Cavedon, L.: Towards socially sophisticated
BDI agents. In: Proceedings Fourth International Conference on MultiAgent Systems,
pp. 111–118. IEEE Comput. Soc (2000)

17. Dignum, V.: A model for organizational interaction: based on agents, founded in logic.
Ph.D. thesis, Utrecht University (2004)

18. Dignum, V., Dignum, F.: What’s in it for me? Agent deliberation on taking up social
roles. In: EUMAS 2004 (2004). URL http://dspace.library.uu.nl/handle/1874/11493

19. Dignum, V., Dignum, F.: A logic of agent organizations. Logic Journal of the IGPL
20(1), 283–316 (2011)

20. Esteva, M., de la Cruz, D., Sierra, C.: Islander: An electronic institutions editor. In:
AAMAS ’02 (2002). DOI 10.1145/545056.545069

21. Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based
middleware for electronic institutions. In: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS
’04, pp. 236–243. IEEE Computer Society, Washington, DC, USA (2004). DOI
10.1109/AAMAS.2004.56. URL http://dx.doi.org/10.1109/AAMAS.2004.56

22. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multi-agent systems. Agent-Oriented Software Engineering IV LNCS
2935(July 2003), 214–230 (2004)

36 Andreas Schmidt Jensen et al.

23. Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex, ibi poena: Designing norm enforce-
ment in e-institutions. In: P. Noriega, J. Vzquez-Salceda, G. Boella, O. Boissier,
V. Dignum, N. Fornara, E. Matson (eds.) Coordination, Organizations, Institutions, and
Norms in Agent Systems II, Lecture Notes in Computer Science, vol. 4386, pp. 101–
114. Springer Berlin Heidelberg (2007). DOI 10.1007/978-3-540-74459-7 7. URL
http://dx.doi.org/10.1007/978-3-540-74459-7 7

24. Grossi, D., Meyer, J.J.C., Dignum, F.: Counts-as: Classification or constitution? an an-
swer using modal logic. In: L. Goble, J.J. Meyer (eds.) Deontic Logic and Artificial Nor-
mative Systems, Lecture Notes in Computer Science, vol. 4048, pp. 115–130. Springer
Berlin Heidelberg (2006)

25. Hindriks, K.V.: Programming Rational Agents in GOAL. Multi-Agent Programming:
Languages, Tools and Applications pp. 119–157 (2009)

26. Hormazbal, N., Cardoso, H., de la Rosa, J.L., Oliveira, E.: An approach for virtual
organisations dissolution. In: Coordination, Organizations, Institutions and Norms in
Agent Systems V, Lecture Notes in Computer Science, vol. 6069, pp. 70–85. Springer
(2010)

27. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisations
with organisational artifacts and agents. Autonomous Agents and Multi-Agent Systems
20(3), 369–400 (2009)

28. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems us-
ing the MOISE+ model: programming issues at the system and agent levels. Interna-
tional Journal of Agent-Oriented Software Engineering 1(3), 370–395 (2007)

29. Jensen, A.S., Dignum, V.: AORTA: adding organizational reasoning to agents. In: AA-
MAS ’14, pp. 1493–1494 (2014)

30. Jensen, A.S., Dignum, V., Villadsen, J.: The AORTA architecture: Integrating organiza-
tional reasoning in Jason. In: EMAS@AAMAS ’14, pp. 112–128 (2014)

31. Jones, A.J.I., Sergot, M.: On the characterisation of law and computer systems: The
normative systems perspective. In: Deontic Logic in Computer Science: Normative
System Specification, pp. 275–307. John Wiley & Sons (1993)

32. Kumar, S., Huber, M.J., Cohen, P.R., Mcgee, D.R.: Toward a formalism for conversation
protocols using joint intention theory. Comp. Intelligence 18 (2002)

33. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In: AA-
MAS ’09, pp. 177–184 (2009)

34. Padgham, L., Lambrix, P.: Formalisations of Capabilities for BDI-Agents. Autonomous
Agents and Multi-Agent Systems 10(3), 249–271 (2005)

35. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program.
60-61, 17–139 (2004)

36. Ranathunga, S., Cranefield, S., Purvis, M.: Integrating expectation monitoring into bdi
agents. In: L. Dennis, O. Boissier, R.H. Bordini (eds.) Programming Multi-Agent Sys-
tems, Lecture Notes in Computer Science, vol. 7217, pp. 74–91. Springer Berlin Hei-
delberg (2012)

37. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logical computable language.
Agents Breaking Away (L) (1996)

38. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: ICMAS ’95 (1995)
39. van Riemsdijk, M.B., Dignum, V., Jonker, C.M., Aldewereld, H.: Programming Role

Enactment through Reflection. In: 2011 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 133–140. IEEE Com-
puter Society (2011)

A Framework for Organization-Aware Agents 37

40. Riemsdijk, M.B., Hindriks, K., Jonker, C.: Programming organization-aware agents. In:
ESAW ’09. Springer (2009)

41. van der Torre, L.: Contextual deontic logic: Normative agents, violations and indepen-
dence. Annals of Mathematics and Artificial Intelligence pp. 33–63 (2003)

42. van der Torre, L., Tan, Y.H.: Contrary-to-duty reasoning with preference-based dyadic
obligations. Annals of Mathematics and Artificial Intelligence 27(1–4), 49–78 (1999)

43. Wallace, I., Rovatsos, M.: A computational framework for practical social reasoning.
Computational Intelligence 31(1), 69–105 (2015). DOI 10.1111/coin.12014. URL
http://dx.doi.org/10.1111/coin.12014

