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Abstract Interactions in multiagent systems are generally more complicated than single
agent ones. Game theory provides solutions on how to act in multiagent scenarios; however,
it assumes that all agents will act rationally. Moreover, some works also assume the opponent
will use a stationary strategy. These assumptions usually do not hold in real world scenarios
where agents have limited capacities and may deviate from a perfect rational response. Our
goal is still to act optimally in these cases by learning the appropriate response and without
any prior policies on how to act. Thus, we focus on the problem when another agent in the
environment uses different stationary strategies over time. This will turn the problem into
learning in a non-stationary environment, posing a problem for most learning algorithms.
This paper introduces DriftER, an algorithm that (1) learns a model of the opponent, (2)
uses that to obtain an optimal policy and then (3) determines when it must re-learn due to an
opponent strategy change. We provide theoretical results showing that DriftER guarantees
to detect switches with high probability. Also, we provide empirical results showing that our
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approach outperforms state of the art algorithms, in normal form games such as prisoner’s
dilemma and then in a more realistic scenario, the Power TAC simulator.

Keywords Learning - Non-stationary environments - Switching strategies - Repeated games

1 Introduction

When different agents interact in real world scenarios they may use different behaviors
depending on the context they encounter. For example, in domains such as poker playing [9]
agents may use different strategies depending on the opponent’s behavior, in patrolling tasks
[4] opponents may use different actions to reduce the ability of the defender to predict its
behavior. In trading and negotiation scenarios, opponents use different strategies and change
among them. In this context, there is one domain which has been used recently to perform
research in energy markets: the Power TAC simulator [30]. In the simulator, competing
brokers (agents) are challenged to maximize their profits by buying energy from a wholesale
market and then offering energy services to customers. A champion agent from a previous
competition was TacTex [42], which uses an approach based on reinforcement learning and
prediction methods. Even though TacTex learns to bid efficiently (in terms of profit), it is not
capable of adapting quickly to non-stationary opponents (that change suddenly to a different
strategy). In general, when agents can change among several stationary strategies, they turn
the environment into a non-stationary one. This is especially problematic for most learning
algorithms which assume a stationary environment and most algorithms will not to react
rapidly to sudden changes or will adapt more slowly, causing sub-optimal performance.

Works from machine learning have studied detection of changes mostly in supervised
learning settings, this area is commonly known a concept drift [44]. However, this is only
a partial representation of our problem since ours is a multiagent setting where actions are
taken from each agent and rewards are based on those actions. In the area of reinforcement
learning some approaches have studied how agents should act against non-stationary agents
in order to converge to an equilibrium [10]. However, they have not been analyzed against
opponents that change from one strategy to another.

Against this background, this paper’s main contribution is to introduce DriftER, Drift
(based on) Error Rate, which leverages the idea of concept drift to detect when the opponent
has changed strategies based on a measure on predictive error. In order to learn how to act,
DriftER assumes no prior information of the opponents instead, DriftER assumes to know the
set of attributes the opponent uses to define its strategy' and starts with an exploratory policy.
DriftER treats the opponent as part of a stationary environment using a Markov decision
process to model its behavior [6] and keeps track of the quality of the learned MDP model.
We provide theoretical bounds for detecting switches with high probability by making two
assumptions: the opponent will remain stationary for some rounds and it is possible to bound
the probability of exploration/mistakes made by the opponent. We also empirically test our
algorithm in two distinct settings: normal-form repeated games and the Power TAC simulator.
We compare with two types of state of the art algorithms, one specifically designed for the
scenario [28] and another general algorithm for interacting in non-stationary environments
[10]. The results show the effectiveness of our approach, outperforming state of the art
algorithms in terms of total reward and accuracy.

! These can be, for example, previous actions of the agents.
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The rest of the paper is organized as follows, in Sect. 2 we present the formalism of repeated
games and Markov decision processes. In Sect. 3 we review related work to learning in non-
stationary environments in multiagent systems and machine learning. In Sect. 4 we present
the DriftER algorithm as well as its theoretical results. In Sect. 5 we present experimental
results in two domains: repeated games and the Power TAC simulator. Finally in Sect. 6 we
present conclusions and ideas for future work.

2 Preliminaries

In this section, first we present repeated games and then some important concepts of rein-
forcement learning used to perform opponent modeling.

2.1 Repeated games

Our approach is tested in the repeated games formalism. Consider two players (A and B)
that face each other and repeatedly play a bimatrix game. A bimatrix game is a two player
simultaneous-move game defined by the tuple (A, B, R4, Rp), where A and B are the set of
possible actions for player A and B, respectively. R; is the reward matrix of size |.A| x |B| for
each agenti € {A, B}, where the payoff to the ith agent for the joint action (a, b) € A x Bis
given by the entry R;(a, b), Y(a, b) € A x B,Vi € {A,B}. A stage game is a single bimatrix
game and a series of rounds of the same stage game form a repeated game.

A strategy specifies a method for choosing an action. One kind of strategy is to select
a single action and play it, this is a pure strategy. In general, a mixed strategy specifies a
probability distribution over actions. A best response for an agent is the strategy (or strategies)
that produce the most favorable outcome for a player, taking other players’ strategies as given.
Another common strategy is the minimax strategy, this is, maximizing its payoff assuming
the opponent will make this maximum as small as possible. The security level is the expected
payoff a player can guarantee itself using a minimax strategy.

In single-agent decision theory, the notion of optimal strategy is the one that maximizes
the agent’s expected payoff for a given environment. In multiagent settings the situation is
more complex, and the notion of an optimal strategy for a given agent is not meaningful since
the best strategy depends on the choices of others. To solve this problem game theory has
identified a solution concept known as Nash equilibrium.

Suppose that all players have a fixed action in a given game, if any player cannot increase
its utility by unilaterally changing its strategy, then the decisions are in Nash equilibrium.
Formally:

Definition 1 (Nash equilibrium [34]) A set of strategies s = (sq, ..., §,) is a Nash equilib-
rium if, for all agents i, s; is a best response to s_i2

One well known game is the prisoner’s dilemma (PD). This is a two player game where
the interactions can be modeled by the payoff matrix in Table 1 (and where the following two
conditions must hold d > ¢ > p > s and 2¢ > d + s). When both players cooperate they
both obtain the reward c. If both defect, they get a punishment reward p. If a player chooses
to cooperate (C) with someone who defects (D) the cooperating player receives the sucker’s
payoff s, whereas the defecting player gains the temptation to defect, d. The iterated version
(iPD) has been subject to many studies, including human trials. A well known strategy in the

2 Where s_ ; denotes the set of all agents except i.
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Table 1 A bimatrix game representing the prisoner’s dilemma (PD), two agents can choose between two
actions, cooperate (C) and defect (D). Each cell represent rewards (c, d, s, p) obtained by the agents depending
on their actions

C D
C c,c s, d
D d,s p,p

Table 2 A bimatrix game representing the battle of the sexes (BoS) game, two agents can chose between two
actions, going to the opera (O) or going to a Football match (F). Values vy, vy > O represent rewards obtained
by the agents

0 F
0 v, V2 0,0
F 0,0 V2, V]

iPD is called Tit-for-Tat (TFT) [5]; it starts by cooperating, then does whatever the opponent
did in the previous round. Another very successful strategy is called Pavlov and cooperates
if both players coordinated with the same action and defects whenever they did not. Bully
[33] is another strategy which in the iPD behaves as an always defecting player. It should be
noticed that these strategies can be defined only by the current state (last joint action) and do
not depend on the time index; they are stationary strategies.

Another well known game is called battle of the sexes (BoS). The matrix describing this
game is presented in Table 2 where v; > 0 and v > O represent rewards obtained by the
agents, with the condition of v1 # v2. This is a two-player coordination game: two people
will meet in certain place in the city, the opera (O) or at a football match (F). One prefers opera
and the other prefers the football match. There is no possible communication and players
have to select where to go. This game has two pure Nash equilibria (O,0) and (F,F) Both
pure equilibria are unfair since one player obtains better scores than the other. There is also
one mixed Nash equilibrium where players go more often to their preferred event.

2.2 Reinforcement learning and opponent modeling

In reinforcement learning (RL) an agent’s objective is to learn an optimal policy in stochastic
environments, in terms of maximizing its expected long-term reward in an initially unknown
environment that is modeled as a Markov decision process (MDP) [38]. An MDP is defined
by (S, A, T, R), where S is the set of states, A is the set of actions, 7 is the transition function
and R is the reward function. A policy is a function 7 (s) that specifies an appropriate action
a for each state s.

The interaction of a learning agent with a stationary opponent can be modeled as an MDP.
This occurs since the interaction between agents generates Markovian observations which
can be used to learn the opponent’s strategy by inducing a MDP [6]. A special type of learning
can happen by using a particular type of information. Bounded memory opponents are agents
that use the opponent’s past actions to assess the way they are behaving. For these agents the
opponent’s history of play defines the state of the learning agent. In [6] the authors propose
the adversary induced MDP (AIM) model, which uses as states a function of the past actions
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of the learning agent. Note that the agent, by just keeping track of its own past moves can
infer the policy of the bounded memory opponent.

3 Related work

In this section we review recent works about learning in non-stationary environments.

The machine learning community has developed areas related to non-stationary environ-
ments, one of those is change point detection [2,29,47]. Another related area is called concept
drift [44]. Here, the approach is similar to a supervised learning scenario where the relation
between the input data and the target variable changes over time [24]. In particular, Gama et
al. [23] studied the problem of learning when the class-probability distribution that generates
the examples changes over time. A central idea is the concept of context: a set of contiguous
examples where the distribution is stationary. The idea behind the concept drift detection
method is to control the online error rate of the algorithm. When a new training instance is
available, it is classified using the actual model. Statistical theory guarantees that while the
distribution is stationary, the error will decrease. When the distribution changes, the error will
increase. Therefore, if the error is greater than a defined threshold, it means that the context
has changed. The method was tested on both artificial and real world datasets. However, the
mentioned approaches are not directly applicable to our multiagent scenario since our agent
needs to (1) learn a model of the opponent (2) learn a policy to maximize its rewards and (3)
detect when the opponent changes strategies over time.

In game theory, one well known algorithm for learning in repeated games is fictitious
play [12]. However, it assumes the opponent is playing a stationary strategy. Other works
have considered how to play against classes of opponents. For example, Manipulator [37] is
designed against adaptive opponents with bounded memory in normal form games. AWE-
SOME [16] and weighted policy learner (WPL) [1] are designed to converge to a Nash
equilibrium but not to adapt to switching opponents. Recent approaches have focused on
learning in two-player stochastic games, one example is the fast adaptive learner in stochas-
tic games (FAL-SG) [21]. It consists of three main parts: (1) a meta-game model to transform
the stochastic game into a simpler (matrix) representation; (2) a prediction model where a set
of hypotheses according to the history of observations is used to predict the opponent’s next
action; and (3) the reasoning model, which differs from our approach since FAL-SG uses a
modified version of the Godfather strategy [33] which is not a general strategy against all
opponents and in all games. Also, FAL-SG shows an exponential increase in the number of
hypotheses (in the size of the observation history) which may limit its use in larger domains.

Some related works were developed in the area of multiagent reinforcement learning
[13]. Littman [32] proposed to extend the Q-learning algorithm [43] to zero-sum stochastic
games. The algorithm uses the minimax operator to take into account the opponent actions.
This allows the agent to converge to a fixed strategy that is guaranteed to be safe in that it
does as well as possible against the worst-case opponent (the one who tries to minimize
the learning agent’s utility). However, this may be unnecessary if the agent is allowed to
adapt continually to its opponent. This is also the reason the algorithm is not rational (does
not converges to the best response). The WoLF (win or learn fast) principle was applied
into WoLF-PHC [10] which is an extension of Q-learning that performs hill-climbing in the
space of mixed policies. This algorithm is designed to converge against opponents that slowly
change its behavior, not sudden changes of strategies like the one we are facing. Another
related approach is the reinforcement learning with context detection (RL-CD) [18]. The idea
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is to learn several partial models and decide which one to use depending on the context of
the environment. However, it has not been tested in multiagent scenarios.

Hidden-mode Markov decision processes (HM-MDPs) [15] are also designed for non-
stationary environments. They assume the environment can be represented in a small number
stationary environments (modes), which have different dynamics and need a different policy.
It is assumed that at each time step there is only one active mode. However, HM-MDPs need
to know the number of modes beforehand and they are more complex than our approach
since they need to solve a POMDP [36] to obtain a policy to act.

When treating an opponent as part of the stationary (Markovian) environment, it is pos-
sible to learn the opponent’s dynamics by inducing a MDP [6]. Modeling non-stationary
strategies requires the model to be updated frequently (every time a change occurs). One
approach that has been successful in identifying sudden strategy switches is MDP-CL [28].
This is a model-based multiagent learning technique designed to handle non-stationary
opponents. The approach learns a model of the opponent in the form of a MDP using
the interaction history. Then it computes an optimal policy against the opponent and the
switch detection process starts. Pairs of opponent models are compared’ every w rounds—
if the difference between the two models is greater than a threshold then a switch has
occurred and the algorithm restarts the learning phase, discarding the previous model.
One weakness of MDP-CL is its parameters that can only be fine tuned after the entire
game has been played. Also, the approach does not provide formal guarantees of switch
detection.

Another related approach is designed to play against a class of opponents: memory
bounded opponents whose memory size is bounded by a known value [14]. Convergence
with Model Learning and Safety (CMLeS) achieves three objectives: (1) converges to fol-
lowing a Nash equilibrium joint-policy in self-play, (2) achieves close to the best response
when interacting with a set of memory bounded agents, and (3) ensures an individual return
that is very close to its security value when interacting with any other set of agents. However,
this approach does not detect opponent switches.

Finally, ad hoc teamwork [3,7] is an area where agents needs to coordinate and has similar
characteristics to our domain. However, we focus on opponents that change among several
stationary strategies. DriftER assumes no prior information of the opponents and only starts
with an exploratory policy. Also, DriftER provides a model based approach that can learn
online models and adapt quickly to possible changes while having theoretical guarantees for
switch detection.

4 DriftER

DriftER leverages insights from concept drift and opponent modeling techniques to iden-
tify switches in an opponent’s strategy. DriftER treats the opponent as part of a stationary
(Markovian) environment but tracks the quality of the learned model as an indicator of a pos-
sible change in the opponent’s strategy. When a switch in the opponent strategy is detected,
DriftER resets its model and restarts the learning process. An additional virtue of DriftER is
that it can check for switches at every timestep.

DriftER pseudocode is presented in Algorithm 1. Since DriftER starts with no prior infor-
mation it uses an exploratory process [11] for learning an opponent model in the form of an
MDP (lines 3-6). When a model has been learned a switch detection process starts which

3 One model uses a fixed size window of past interactions while the other uses all historic interactions.
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predicts the next state of the process (line 8). An error probability is computed, and keeping
track of this error will decide when a switch has happened (lines 9-15). When this happens,
the learning phase is restarted (lines 17-18).

Algorithm 1: DriftER algorithm

Input: Learning phase size w, treshold n;y;;, 6
1 model=9; countError=0;
2 for r=1,...,T do

3 if model ==null then

4 Use R-max to explore

5 if learningSamples==w then

6 L model < learnOpponentModel()
7 if model # () then

8 s < predictNextState(model)

9 observe real state s’

10 p <—computeError(s,s’);

11 [ < computeConflnterval(error)
12 for i < r—1,...,r —m steps do
13 Ai < fupper (i) — Supper (Pi-1)
14 if A; > 0 then
15 L countError++

16 n < adjustN (i, p,d) /lsee Section 4.4
17 if count Error > n then

18 L model < )

19 countError < 0

4.1 Model learning

DriftER learns a model of the opponent which is used to compute a policy to act against it.
DriftER’s interaction with a stationary opponent generates Markovian observations which
can be used to learn an MDP that represents the opponent’s strategy assuming to know the
representation (attributes) used by the opponent (e.g., the most recent action). This is because
the history of interactions define the transition among states and the learning agent can induce
an MDP [6] that models the opponent strategy and can compute an optimal policy against it
7* (assuming the opponent will remain fixed).

The formal framework used throughout this work is defined by (S, A, T, R) where: S :=
X 0,e0 O;, 1.e. each state is formed by the cross product of the set of attributes. The set of
attributes O used to construct the states is assumed to be given by an expert. A are the actions
of the learning agent. 7' : § x A — S, is the transition function which is learned using counts

T(s,a,s') = % where n(s, a, s) is the number of times the agent was in state s, used

action a and arrived at state s', n(s, a) is defined as the number of times the agent was in state

s and used action a. R, the reward function is learned in a similar manner R(s, a) = Zn(fs(sa,;l)
where > r(s, a) is the cumulative reward obtained by the agent when being in state s and
performing action a. Solving this MDP dictates a policy which prescribes how to act against

that opponent.
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In all settings, after interacting with the opponent for w timesteps/rounds, the environment
is learned using the R-max exploration [11] and we can use techniques such as value iteration
[8] to solve the MDP.

4.2 Drift exploration

Many learning techniques decrease their exploration rate over time so that the learned (opti-
mal) policy can be exploited. However, when facing non-stationary opponents whose model
has been learned, an agent must balance exploitation (to perform optimally against that strat-
egy) and exploration (to attempt to detect switches in the opponent). Thus, exploration cannot
be completely suspended so as to detect changes in the structure of the environment at all
times [19,25]. Opponent strategy switches can be particularly hard to detect if the strategies
used before and after the switch are very similar. Such similarities can produce a “shadowing”
effect [22] in the agents perception—an agent’s optimal policy 7* will produce an ergodic
set* of states against some opponent strategy, but if the opponent’s switching strategy induce
a similar MDP> where the policy 7* produce the same ergodic set, the agent will not detect
something has changed (unless some exploration occurs).

DriftER uses an exploration coined as “drift exploration” that solves this shadowing effect
by continuously exploring the state space even after an optimal policy has been learned. The
only requirement of such exploration strategy is to make the entire state space “reachable”
(i.e., the ergodic set produced by the new policy 77 should be the entire state space).

explore
For example, e-greedy or softmax exploration can be used for this purpose.

4.3 Switch detection

Approaches such as MDP-CL that compare pairs of models in fixed timesteps need two
parameters to be tuned: the window size (w € N) that controls how often comparisons are
made and the threshold € R that defines how different models should be to mark a switch.
Both parameters depend heavily on the domain and opponent and therefore renders the
algorithm futile unless good evidence suggest a good parameter setting a priori. In contrast,
our proposed algorithm keeps track on the opponent at every timestep in an efficient manner
with a measure (prediction error) independent of the model of the opponent.

After learning a model of the opponent, DriftER must decide on each timestep if the model
is consistent (the predictions using that model are correct) or the opponent has changed to
a different strategy (the model has consistently shown errors). Using the current MDP that
represents the opponent strategy, DriftER predicts the next state of the MDP (which for
example can correspond to the opponent next action). In the next timestep DriftER com-
pares the predicted and the experienced true state. This comparison can be binarized with
correct/incorrect values. A Bernoulli process Si, S2, ..., St will be produced, assuming a
sequence of independent identically distributed events where S; € {0, 1} and T is the last
timestep. Let p; be the estimated error (probability of observing incorrect) from Sj to S;,
i =1,..., T.Then,the 95% confidence interval [ fiower (i), fupper (Pi)]OVer Sy, Sz, ..., S;
is calculated for each timestep i using the Wilson score [45] such that the confidence interval
will improve as the amount of data grows, where fiower (i) and fupper (pi) denote the lower
bound and upper bound of the confidence interval, respectively.

The estimated error, and its associated confidence interval, can increase for two reasons:

4 Inan ergodic set it is possible to go from every state to every state.

5 Other authors have seen a related behavior which is called observationally equivalent models [20].
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— The opponent is exploring or make mistakes.
— A switch has occurred in the opponent’s strategy.

To detect the latter, DriftER tracks the finite difference of the confidence interval using
the upper bound fipper (Pi) at each timestep i. The finite difference is defined by

Ap = fupper(ﬁi) - fupper(ﬁifl)» i=1,...,T.

IfA; >0,A,_1 >0,..,A;_,4+1 > 0, where n = 1,2, ... is a parameter determined by
the domain (if DriftER detects the confidence interval is 1ncreasing in the last n steps), then
DriftER decides to restart the learning phase.

4.4 Initial estimation and stochastic opponents

Once DriftER has learned a model of the opponent it starts computing the estimated error and
confidence intervals. However, it may take some rounds before having an accurate estimate.
In order to improve the initial estimation, interactions from the learning phase can be used.
With this objective, during the learning phase DriftER keeps the information from those
interactions. When finishing the learning process it uses that information to produce an
initial estimation of the error and confidence values.

Also, using a fixed value of n for all types of opponents may not be the best option. This
may be particularly problematic against stochastic opponents because there will be a non-zero
probability of incorrectly predicting the opponent’s next move. Since we still need to check
when the error increases in what follows, we propose to adjust the value of n accordingly to
the estimated error p.

We set a value n;,;; assuming a deterministic opponent strategy can been learned and n
is adjusted against stochastic opponents following the function:

log(3)
log(p)

C a constant value and § > 0 (described in the next section).

adjustN (Ripir, P, 8) = Ninis +

log(3)

where n < nj,ir + Clog(ﬁ)’

4.5 Theoretical guarantee for switch detection

Now, we provide a theoretical result to justify this method is capable of detecting opponent
switches with high probability. In so doing we make the following assumptions:

— The opponent does not switch strategies while DriftER is in the learning phase.
— The probability of exploration or mistake of the opponent is at most € for each timestep.

Theorem 1 Let € > 0 and § > 0 be small constants. If A; > 0, Aj_1 > 0,...,Aj_p+1 >0
and we set n = O(logé/loge), then DriftER detects the opponent switch wzth probability
1-34.

Proof If A; > 0, Aj—_1 > 0,...,A;j_,4+1 > 0, then DriftER decides to learn a new model.
However, we point out that the A > 0 may be caused by opponent’s exploration/mistake.
The worst case happens when DriftER incorrectly detects a switch while the opponent only
made mistakes or explores, thisis A; ;11 > 0, forall j =0,...,n — 1 dueto opponent’s
exploration/mistake. Let A denote the above event. Given A; > 0 A,,l > 0,...,0; 41 >0,
the probability of event A, is

PIAIA; > 0,Ai—1>0,...,Aj_+1 > 0] < e,
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Since we assume that the probability of exploration or mistake is at most € for each
timestep. By the chain rule, the result follows. Then, set €” = §, where § is the probability of
incorrectly detecting the switch, so 1 — § is the probability of detecting the switch correctly,
finally n = log §/ log € and we have the result. O

This result shows that if DriftER decides to restart the learning phase, it does so because
it detected the opponent switch with high probability (1 — §) which makes the method
robust.

4.6 DriftER example

We now contrast the behavior of DriftER and a learning agent that does not include a switch
detection mechanism against the same non-stationary opponent in the BoS game. The oppo-
nent has two possible actions (O, F). It starts with a mixed strategy of [0.8, 0.2] and changes
(in the middle of the interaction) to a pure strategy [0.0, 1.0] (which is the pure Nash equilib-
rium that is most beneficial to the opponent). Assume both learning agents learn an opponent
model in the first 200 rounds, from that point they compute the predictive error and con-
fidence values. Figure 1 depicts the upper value of the confidence over the error ( fypper)
for a learning algorithm without switch detection mechanism (blue line) and DriftER (black
thick line). Since the opponent uses a stochastic policy the error is close to 0.2, this happens
because the agent predicts the opponent will use one action (O) and with probability 0.2 the
opponent chooses F. At round 750 (marked with a vertical red line) the opponent changes
to a pure Nash equilibrium action which is to use F in every round. This will result in sub-
optimal performance for the agent without switch detection, in contrast DriftER detects the
switch (first double arrow) and starts a learning phase (between arrows) after which DriftER
produces a new opponent model that is consistent with the new opponent strategy, therefore
its error will decrease.

1 : ; ;
No $witch Detection —
DriftER =%
0.8F -
. 0.6 1
o
o,
[N
L|_|:S
0.4 % -
0.2F i
0k . . . .
200 400 600 800 1000 1200 1400

Rounds

Fig. 1 Error probabilities of a learning algorithm with no switch detection and DriftER against an opponent
that changes between two strategies in the middle of the interaction (vertical bar), small arrows represent
DriftER learning phase after detecting the switch
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S Experiments

In this section we present experiments that show how DriftER performs in three different
domains:

— Iterated prisoner’s dilemma (iPD) (see Sect. 2.1) against non-stationary opponents using
deterministic strategies. The iPD it is a well known domain where we can easily use
different strategies for the opponent. We used the three most successful and known human
crafted strategies that the literature has proposed: TFT, Pavlov and Bully as opponent
strategies. These three strategies have different behaviors in the iPD and the optimal
policy differs across them. Using the values ¢ = 3,d = 4,5 = 0, p = 1 (see Table 1)
and a discount factor y = 0.9, the optimal policy against a TFT opponent is always to
cooperate, in contrast to the optimal policy against Bully which is always to defect. The
optimal policy against Pavlov is to play the Pavlov strategy.

— Battle of the sexes and general-sum games against game theoretic strategies (see
Sect. 2.1), including stochastic strategies. The most relevant strategies derived from
game theoretic stability concepts that we found relevant to test are: pure Nash equilibria
(when available), mixed Nash equilibria, minimax strategy and fictitious play [12].

— Energy markets in the Power TAC simulator. Power TAC models a retail electrical energy
market, where brokers are challenged to maximize their profits by buying and selling
energy in the wholesale and tariff markets:

— Inthe tariff market brokers buy and sell energy by offering tariff contracts that specify
price and other characteristics like early withdraw fee, bonus for subscription and
expiration time. Customers choose among those different contracts and later they
decide to continue or to change to a different one.

— The wholesale market allows brokers to buy and sell quantities of energy for future
delivery. It operates as a periodic double auction [46]. These markets are commonly
known as day-ahead market, and are similar to many existing wholesale electric power
markets, such as Nord Pool in Scandinavia or FERC markets in North America [31].In
this market, brokers make bids (offers) for buying or selling energy delivery between
one and 24 h in the future. A wholesale broker can place a bid for buying or selling
energy by issuing a tuple (¢, e, p) that represents the timeslot ¢ the broker makes a
bid/ask for an amount of energy e (expressed in megawatt-hour M W h) at a limit price
p of buying/selling. At each timeslot, Power TAC provides (as public information)
market clearing prices and the cleared volume. It also provides as private information
(only to each respective broker) the successful bids and asks [30]. A bid/ask can be
partially or fully cleared. When a bid is fully cleared the total amount of energy will
be sent at the requested timeslot, if a bid was partially cleared the offer was accepted
but there is not enough energy and only a fraction of the requested energy will be
sent.

The objectives of the experiments are threefold:

— Test DriftER against opponents that change among deterministic strategies and stochastic
strategies.

— Test the behavior of its parameters.

— Show results of DriftER performance in a more realistic domain.

Comparisons were performed against MDP-CL [28] since it is an algorithm for acting against
non-stationary opponents that change suddenly among strategies and WOLF-PHC [10] since
it can learn to play against non-stationary opponents that slowly change behavior.
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Table 3 Average rewards with standard deviation for different non-stationary opponents

Opponent Omniscient DriftER MDP-CL WOLF-PHC
Bully-TFT 2.0 1.20 + 0.30%* 0.95 +0.01 1.09 £+ 0.17
Bully-Pavlov 2.0 1.67 £ 0.067F 1.67 £ 0.03 1.47 £0.19
Pavlov-TFT 3.0 2.82 £ 0.02F 2.81 £0.01 2.09 +0.44
Pavlov-Bully 2.0 1.78 £+ 0.02*F 1.69 + 0.07 1.51 £0.28
TFT-Bully 2.0 1.77 £+ 0.03*F 1.66 £0.13 1.34 +£0.22
TFT-Pavlov 3.0 2.82 + 0.02+ 2.81 +£0.01 2.08 +£0.38
Average 2.33 2.00 + 0.10 1.93 £ 0.26 1.60 +0.28

Bold values indicate the best scores

Each opponent change from one strategy to another in the middle of the interaction in a repeated game of 100
rounds. Results are the average of 100 iterations

* Indicates statistical significance with MDP-CL and { with WOLF-PHC (using Wilcoxon signed-rank test
with @ = 0.05)

5.1 Deterministic strategies

In this section we present comparisons among DriftER, MDP-CL and WOLF-PHC in the
iPD. The opponent changes from one strategy to another in the middle of the interaction and
one repeated game consists of 100 rounds.

In Table 3 we show the average rewards of the three learning approaches and the Omni-
scient agent (that knows when the switch happens and best responds immediately) against
switching opponents in the iPD (all possible pairs of strategies). Results show that DriftER
obtained the best scores on average. DriftER obtained statistically significant better results
than WOLF-PHC against most opponents and against MDP-CL in half of the cases. WOLF-
PHC is slower than DriftER to adapt to changes obtaining suboptimal scores. MDP-CL is
capable of detecting switches in the opponent faster than WOLF-PHC, however, since MDP-
CL is not applying drift exploration it is not capable of detecting some changes between
strategies, in particular against the opponent Bully-TFT (i.e., an opponent that first plays
Bully and then switches to TFT). Thus, MDP-CL fails to detect the switch which results in
results far from the optimal. In contrast, DriftER is capable of detecting switches in fast way
and with drift exploration is capable of detecting all opponent switches.

5.2 Stochastic strategies

In the following setting the non-stationary opponents use common game theoretic strategies:
pure Nash equilibria, mixed Nash, minimax strategy and fictitious play [12]. The opponents
change from one to another during the interaction and DriftER’s goal is to adapt quickly to
these switches. Note that this type of opponents are found in the multiagent learning recent
literature [16,17].

First, we present how the parameter n affects DriftER against switching opponents. The
opponent will start with a mixed Nash equilibrium strategy [0.2, 0.8] and will change to a
minimax strategy [0.8, 0.2] in the middle of the BoS game (round 750). We present experi-
ments varying the parameter n with values {2, 4, 8, 20} in a game of 1500 rounds. For each
n we keep track of the round when a switch was detected (average of 100 trials). In Fig. 2
we depict a histogram showing the fraction of times when a switch was detected in certain
interval of the game. From the figure we note that choosing a small value (2 in this case)
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Fig. 2 Fraction of detected switches with different parameters of DritfER against a non-stationary opponent
that changes from a minimax strategy to a mixed Nash strategy at round 750

may cause to erroneously detect switches (small red bars). A higher value (4 in this case)
reduces the errors. If we increase the value to 8 (blue bars), the errors are almost reduced to
zero, however, it may take more rounds to detect the switch. A large value (20 in this case)
increases the number of rounds required to detect a switch in the opponent’s policy.

Having analyzed the behavior of DriftER with respect to its main parameter we now show
adescriptive example contrasting it with other related algorithms. We compared the behavior
of DriftER, WOLF-PHC and MDP-CL in the BoS game (see Table 2; v; = 25, v, = 100).
The opponent starts with a pure Nash strategy, at round 1000 it changes to a mixed Nash
strategy. At round 2000, again it changes to a different pure Nash strategy. Results are the
average of 100 iterations. In Fig. 3 we depict the immediate rewards of the learning algorithms.
The opponent starts selecting a pure Nash equilibrium which DriftER quickly learns (less
than 50 rounds). In contrast, WOLF-PHC needs a more time to converge to the best action
(120 rounds approximately) and it will not stay with the best possible score (25). At round
1000 the opponent changes to a mixed strategy and both algorithms adapt correctly to the
opponent. At round 2000 the opponent changes to a different pure Nash equilibrium. DriftER
is capable of quickly adapting its model (and its policy) to this change obtaining the best
possible score. WOLF-PHC takes more rounds to adapt and it does not completely exploit
the opponent. We also present rewards for MDP-CL (w = 160). In contrast to DriftER that
uses R-max exploration, MDP-CL uses a fixed window of random exploration and in this
case it takes more time to exploit the model. When the opponent switches at round 1000 it
is capable of adapting. At round 2000 the opponent changes again and we can observe that
MDP-CL adjusts by steps until finally converging to the new opponent model. These steps
happen every w rounds when the model comparison is performed to detect switches.

Normal-form repeated games Finally, we compared the learning algorithms in general-sum
games with different actions and values. The games were randomly generated using Gamut
[35] with the following characteristics: had at least one pure and one mixed Nash equilibria,
with number of actions from 3 to 5, with values between —100 and 100 (see Tables 4 and 5).
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Fig. 3 Rewards obtained by DriftER, WOLF-PHC and MDP-CL in the BoS game against a non-stationary
opponent that uses pure Nash and mixed Nash in a game of 3000 rounds (average of 100 trials). Switches
happen every 1000 rounds

Table 4 Random games used in the experiments

Game 1 Game 2
By By B3 By By B3
Al —29, —41 93, —56 56, —4 Ay 37,35 45,76 67,43
Ar —17, -87 —70, =79 —44, —82 A 33,94 38,74 —94, —72
Ao 50, 49 —175,76 27, —-56 Ay 83, —61 —-95, =5 99,32
Game 3
By By B3 By
Al -50, 20 73, -7 69, —45 83,22
Ay —51, 89 88, 96 —55,40 —26, -92
A3 —58,58 —41, 14 66, —46 0, —80
Ay —62,52 —94, —52 —40, —46 —94, -84
Game 4
B By B3 By Bs
Al 57 32,78 1,7 —55, =79 —-1,0
Ao 89, 96 81, —45 —2661 73,78 —45, —68
A3 29,92 90, —53 —53, —46 45, -83 11,20
Ay —89, 14 94, —99 —26, —10 89,22 67,—19
As 35,84 67,34 75,35 —6,33 —16, —62

They have at least one pure and one mixed Nash equilibrium. Learning agents will play rows and opponents
will play columns
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Table 5 Pure and mixed Nash strategies for column player

Game Id # actions Pure Nash Mixed Nash

Game 1 3 [0,0,1] [0.680, 0.319,0]

Game 2 3 [0,1,0] [0.0, 0.186, 0.813]

Game 3 4 [0,1,0,0] [0.0, 0.879, 0.0, 0.120]
Game 4 5 [1,0,0,0,0] [0.082, 0.0, 0.0, 0.917, 0.0]

Table6 DriftER, MDP-CL and WOLF-PHC against non-stationary opponents in four random repeated games

Game Id DriftER MDP-CL WOLF-PHC Switch freq.
1 35.69 + 1.29 3524 £ 1.51 35.14 £ 1.11 1000
2 58.03 + 1.54F 57.30 £+ 0.67 56.21 £ 1.71 1000
3 71.76 £+ 2.05 75.34 + 1.70 71.68 £+ 1.46 1000
4 68.22 £ 2.19%* 32.76 £ 8.41 68.03 & 5.06 1000
Avg 58.42 +1.77 50.16 £+ 3.07 57.72 £ 1.05 1000
1 3772 £2.19 37.76 + 0.41 35.60 £+ 0.68 2000
2 60.32 £ 0.85F 59.78 £ 0.33 57.58 + 1.06 2000
3 75.61 £+ 1.95F 74.63 £ 1.95 72.87 +£0.92 2000
4 74.19 £ 0.74*% 53.67 + 18.92 70.94 £+ 2.58 2000
Avg 61.96 £ 0.74 56.46 + 5.41 59.25 +1.31 2000

Bold values indicate the best scores
* Indicates statistical significance with MDP-CL and F with WOLF-PHC (using Wilcoxon rank-sum test with
a = 0.05)

In all cases, the opponent starts by playing a pure Nash strategy, then changes to a mixed
Nash strategy and finally uses fictitious play. Switches happen every 1000 or 2000 rounds, the
game consists of 3000 and 6000 rounds respectively. An * indicates statistical significance
of DriftER with MDP-CL and { between DriftER and WOLF-PHC. Table 6 presents average
rewards against non-stationary opponents with two different switching frequencies. Results
show that DriftER obtained on average better results than WOLF-PHC. When switching
frequency was 1000 rounds only one result is statistically significant. In contrast, when
switching frequency increases to 2000 rounds DriftER can exploit the model for more rounds
and therefore the results are statistically different.

The next section presents our last experimental domain in a more realistic application,
double auctions in energy markets.

5.3 Energy markets in Power TAC

The champion agent from the inaugural competition of Power TAC was TacTex [42], which
uses an approach based on reinforcement learning for the wholesale market and prediction
methods for the tariff market. For modeling the wholesale market TacTex uses a modified
version of Tesauro’s representation of a double auction market [41]. The idea is that states
represent agent’s holdings, and transition probabilities are estimated from the market event
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Fig. 4 Partial representation of the MDP broker in Power TAC, ovals represent states (timeslots for future
delivery). Arrows represent transition probability and rewards as defined in Sect. 5.3

history. The model is solved via dynamic programming every time the agent had an oppor-
tunity to bid. TacTex uses a MDP to model the sequential bidding process. TacTex starts a
game with no data and learns to bid online, and while acting its estimates are refined dur-
ing the game. At each timeslot/timestep/round, it solves an MDP with all the data collected
so far, providing the optimal limit price of the biddings for the next hours. Even though
TacTex learns to quickly bid in an online environment, it does not adapt quickly to non-
stationary opponents. However, many real-life strategies do not follow a static (stationary)
regime throughout their interaction. Instead, they switch from one strategy to another (either
to leave the opponent off-guard and guessing or just as a best response measure).

The experiments were designed focusing on the wholesale market of Power TAC. We
compare the performance of three learning agents: DriftER, TacTex-WM (TacTex-WM is the
part of TacTex applied only to the wholesale market), the champion of the 2013 competition,
and MDP-CL, which is not specific for Power TAC but is an algorithm designed for non-
stationary opponents. The opponent is non-stationary in the sense that it uses two stationary
strategies: it starts with a fixed limit priced P; and then in the middle of the interaction changes
to a different (higher) fixed limit price Pj,. The timestep at which the opponent switches is
unknown to the other broker agent. Although we define a fixed limit price, and there is
only a single opponent (other buying broker), Power TAC includes seven wholesale energy
providers as well as one wholesale buyer to ensure liquidity of the market [30], introducing
additional uncertainty and randomness in the simulation.

The problem of submitting bids to obtain energy in the wholesale market in PowerTAC
is modeled as an MDP [42] (a graphical representation is depicted in Fig. 4):

— States: s € {0, 1, ..., n, success}, represent the timeslots for future delivery for the bids
in the market, the initial state is so := n and there are two terminal states: 0, success.

— Actions: values € N that represent limit prices for the offers in the wholesale market.

— Transitions: a state s € {1, ..., n} transitions to one of two states. If a bid is partially or
fully cleared, it transitions to the terminal state success. Otherwise, a state s transitions
to state s — 1. The transition probability is initially unknown.

— Rewards: In state s = 0, the reward is a balancing penalty value. In states s € 1, ..., n,
the reward is 0. In state success, the reward is the limit price of the successful bid.

The MDP’s solution determines an optimal limit-price for each of the n states. Using this
MDP the agent is always in states 1, ..., n of n concurrent bidding processes. Therefore, it
solves the MDP once per timeslot, and submits the n optimal limit-prices to the n auctions.

The MDP that models the opponent has following parameters: the number of states was
set to |s| = 6 (timeslots for buying energy), and the actions represent discretized limit prices
{15, 20, 25, 30, 35}. The opponent started with a P; = 20 and then changed to P, = 34. In
the first case, the learning agent should bid a price > 20 to be assigned bids. Later, when
the opponent uses a limit price of 34, the only bid that will be accepted by the producer is
35. Both the learning agent and the opponent experience the same demand which is greater
than the average energy needed to supply all buyers.
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Fig. 5 Cleared transactions of DriftER (red squares) and the non-stationary opponent (blue dots) in the
wholesale market in Power TAC. In a the opponent uses as limit price the value 20 whereas in b it uses a limit
price of 34 (Color figure online)

Figure 5 depicts cleared transactions: red squares representing those of DriftER and blue
circles for the non-stationary opponent (NSopponent). The more a transaction is on left the
more the agent paid for that transaction. Figure 5a shows the behavior of DriftER against the
first strategy the opponent uses, in this case there are three clusters for the cleared transactions
of DriftER corresponding to the limit prices {25, 30, 35}.° This means that there are three
possible actions that obtain a cleared bid. In contrast, cleared bids of the opponent always
have a value lower than 20 (since it is the stationary limit price). In Fig. 5b, a similar graph
is depicted showing the cleared transactions against the opponent’s second strategy and after
DriftER has updated its policy. Now, the opponent dominates the cleared transactions. The
only limit price that produces cleared bids for DriftER is 35. These figures show how the
optimal policy of the learning agent needs to be updated to cope with the opponent switching
behavior.

An example of the behavior of DriftER and TacTex-WM against a switching opponent
is depicted in Fig. 6. The figure shows that after round 100 (when the opponent changes its
strategy), the error of TacTex-WM increases because it does not adapt rapidly to the opponent.
In contrast, DriftER stops using its learned policy at timeslot 110 and restarts the learning
phase, which ends at timeslot 135. At timeslot 135, DriftER shows a high f;,,p- value (since
it is a new model) but the error decreases rapidly since at this point, DriftER has learned a
new MDP and a new policy.

We now present results using independent-domain measures (accuracy and switch detec-
tion time) and specific-domain measures (traded energy and profit). The learned MDP
contains a transition function for each (s, a) pair; comparing the predicted next state with the
real (experienced) state gives an accuracy value. At each timestep the agent submits |s| bids
and its learned model predicts if those bids will be cleared or not. When the timestep finishes
it receives feedback from the server and compares the predicted transactions with the real
transactions. An average of the result of those predictions is the accuracy of each timestep.

6 Power TAC takes these prices as negative since it as a buying action.
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Fig. 6 Results from Power TAC, upper confidence over the error of TacTex-WM and DriftER against the
non-stationary opponent. Red line shows when the opponent changed strategies and the arrows mark the
learning phase of DriftER (Color figure online)

Table 7 Number of average timeslots for switch detection (average =+ standard deviation), accuracy, and
traded energy of the learning agents against a non-stationary opponent

Avg. switch detection time Accuracy Traded energy
MDP-CL 85.0£55.0 57.55 £28.56 29+£13
DriftER 33.2+13.6 67.60 + 21.21 44£0.5

Bold values indicate the best scores

The switch detection times are the timesteps needed to detect a switch. In Power TAC there
are several important measurements, but we focus on two: traded energy and profit. Traded
energy is the total amount of energy obtained (in MWh) by the broker. This is a measure
of indirect cost provided by Power TAC (the more time it takes to detect the switch, the
less energy the agent successfully buys). Also, it is important to mention that whenever a
broker does not fulfill its energy requirements it will be penalized proportionally (in €) by
the balancing market with the amount of missing energy. Finally, profit is defined in Power
TAC as the total income (in €) minus all the costs (balancing, wholesale, and tariff markets).
We used default parameters for all other settings in Power TAC.

First, we evaluate the switch detection algorithms MDP-CL and DriftER. Additional
experiments were performed to tune MDP-CL parameters. However, optimizing these para-
meters is time consuming since w € N and threshold € R, w = 25, threshold = 0.05 were
selected as the best values (based on accuracy). Table 7 reports the results with a competition
of 250 timesteps. The opponent switched at timestep 100. Results are averaged over 10 inde-
pendent trials. Results show that DriftER needs less time for detecting switches obtaining
better accuracy (explained by the fast switch detection) and as a result is capable of trading
more energy.

Now, we review the three approaches in terms of cumulative traded energy. Figure 7
depicts the learning agents and the switching opponent scores (timeslot when the opponent
switches is displayed with a vertical line). From the figure we note that in the first part of the
game (before the vertical line) TacTex-WM, MDP-CL and DriftER consistently increase their
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Fig. 7 Amount of traded energy for a TacTex-WM, b MDP-CL and ¢ DriftER against the same type of
non-stationary opponent in a competition of 250 timesteps. Timestep when the opponent switches is displayed
with a vertical line

traded energy. In contrast, the traded energy for the opponent is severely limited since the
learning agents are clearing most of their bids. However, at timeslot 100 the opponent changes
its strategy and increases its cleared bids. Against TacTex-WM the opponent increases its
traded energy consistently for the rest of the competition and its traded energy is almost
the same at the end of the interaction (see Fig. 7a), which means that TacTex-WM lacks the
capacity to adapt quickly to the new opponent strategy, reducing cumulative its traded energy.
MDP-CL and DriftER (see Fig. 7b, ¢) are also affected by the change in the opponent strategy.
However, note that DriftER starts increasing its traded energy after the switch detection, since
DriftER now knows how to optimize against the new opponent strategy.
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Table 8 Average profits of the
learning agents against different
types of non-stationary opponents

Agent Opponent

Fixed non-stationary opponent

TacTex-WM 219.0+ 75 228.7+31.7

MDP-CL 261.6 £ 65.8 270.1 £75.5

DriftER 261.0 £ 389 228.7 £ 64.2
Noisy non-stationary opponent

TacTex-WM 198.0 £41.3 197.6 £ 24.78

MDP-CL 250.1 £75.0 305.6 £41.18

DriftER 2559 £39.9 229.0 £+ 38.2

Now, we evaluate the algorithms in the complete Power TAC simulator measuring the
profit of each agent. Recall that our approach considers bidding in the wholesale market.
However, its not possible to isolate markets on Power TAC—thus, to perform experiments
we propose to use the same strategy in the tariff market for all agents (TacTex-WM, MDP-CL
and DriftER). This is, is to publish one flat tariff which is the average of the tariff’s history.
In this way, the profit results will mainly be affected by the performance on the wholesale
market.

We evaluated the algorithms against two types of non-stationary opponents: using fixed and
noisy strategies. With noisy strategies the opponent has a limit price P, = 20.0 with a noise of
42.5 (bids are in the range [ 18.5-22.5]). Then, it switches to P, = 34.0, with bids in the range
[31.5—36.5]. The rest of the experimental setting remains the same as in the previous section.
Table 8 shows the total profits of the learning agents against the non-stationary opponents with
and without noise, averaged over 10 independent trails. TacTex-WM’s profits are reduced
and its standard deviation is increased when the opponent uses a range of values (noisy non-
stationary opponent). MDP-CL shows competitive scores with fixed opponents, since it is
capable of adapting to the non-stationary opponent. However, against a noisy opponent MDP-
CL’s results decrease on average and show a higher standard deviation, which is explained
by the fact that in some cases MDP-CL failed to detect the opponent switch. DriftER shows
a similar result as MDP-CL against fixed opponents and against noisy opponents it is still
capable of detecting switches, showing better results than the rest.

5.4 Practical considerations of DriftER

In Sect. 4.5 we stated the assumptions made by DriftER to guarantee switch detection.
However, in some domains these assumptions will not hold. For this reason, we briefly
discuss what happen in those scenarios.

If the opponent does not remain stationary during DriftER’s learning phase, the computed
model will not be accurate. Since the optimal policy is derived from the learned model,
DriftER will not obtain an optimal policy. Similarly, it is also important to consider which is
the worst opponent that can play against DriftER. This is the opponent that uses a strategy
during the learning phase of DriftER and changes immediately after this phase. The amount
of reward lost in this circumstances (i.e., regret) will depend on the particular reward matrix.
Finally, many algorithms put consideration into what happen when in self-play. While a more
extensive analysis is needed, we note that in self-play DriftER agents will try to learn at the
same time which will lead to poor models and performance.
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6 Conclusions and future work

In real world scenarios where different agents interact witch each other it is reasonable
to expect that they have different characteristics and different behaviors. Moreover, they
probably will change behaviors during the interaction. In particular, we focus on the problem
when another agent in the environment use different stationary strategies over time. This will
turn the problem into learning in a non-stationary environment, posing a problem for most
learning algorithms. This paper introduced DriftER, an algorithm that models an opponent as
an MDP in order to compute an optimal policy against it. Then, it uses the learned model to
estimate the opponent’s behavior and tracks its error rate to detect opponent switches. When
the opponent changes its strategy, the error rate increases and DriftER must learn a new
model. Theoretical results provide a guarantee of detecting switches with high probability.
Empirical results in repeated games show that DriftER can exploit the opponent model and
quickly detect switches, obtaining better scores than the state of art algorithms for non-
stationary environments. Results in the Power TAC simulator show that DriftER can be
adapted to different and more realistic scenarios. Future work will address using transfer
learning [40] ideas so that the previous model can be leveraged to promote fast learning of
new opponent strategies. In particular, we are interested to reuse policies, similar to the work
of Bayesian Policy Reuse [39] and BPR+ which works in multiagent settings [26,27].
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