Skip to main content
Log in

Multi-agent exploration of spatial dynamical processes under sparsity constraints

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

This paper addresses the development of an efficient information gathering and exploration strategy for robotic missions when a high level of autonomy is expected. A multi-agent system is considered, which consists of several mobile sensing platforms with the goal to identify the parameters of a spatio-temporal process modeled by a partial differential equation. Specifically, an exploration of a diffusion process driven by an unknown number of sparsely located sources is considered. A probabilistic approach toward partial differential equations and sparsity constraints modeling with factor graphs is developed and realized by a customized message passing algorithm. The algorithm permits efficient identification of source parameters: the number of sources, their locations and amplitudes. In addition, an exploration strategy to guide the agents to more informative sampling locations is proposed; this accelerates identification of the source parameters. The message passing implementation facilitates efficient distributed implementation, which is of significant advantage with respect to scalability, computational complexity and an implementation in a multi-agent system. The effectiveness of the algorithm is demonstrated using synthetic data in simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Note that this is true provided that \( \varvec{M} [n]\) is a selection matrix, i.e., when \(y_c[n]\) is a noisy version of \(f_c[n]\).

  2. Note that \(\tau _c>0\)

  3. Recall that the message \(m_{G_c \rightarrow u_c[n]}\) is responsible for this prior.

  4. Rectangular domains can be considered just as easily.

References

  1. Alexanderian, A., Petra, N., Stadler, G., & Ghattas, O. (2013). A-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems with regularized l0-sparsification. SIAM Journal on Scientific Computing, 36(5), 27. doi:10.1137/130933381.

    MATH  Google Scholar 

  2. Bartlett, M. S. (1951). An inverse matrix adjustment arising in discriminant analysis. The Annals of Mathematical Statistics, 22(1), 107–111.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G., & Wilcox, L. C. (2012). Extreme-scale UQ for Bayesian inverse problems governed by PDEs. In International conference for high performance computing, networking, storage and analysis, SC. doi:10.1109/SC.2012.56.

  4. Candes, E., & Wakin, M. B. (2008). An introduction to compressive sampling. Signal Processing Magazine, IEEE, 25(2), 21–30.

    Article  Google Scholar 

  5. Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford: Clarendon Press.

    MATH  Google Scholar 

  6. Demetriou, M. (1999). Numerical investigation on optimal actuator/sensor location of parabolic PDEs. In Proceedings of the 1999 American control conference (Vol. 3, June, pp. 1722–1726). doi:10.1109/ACC.1999.786131.

  7. Faulds, A. L., King, B. B., & Tech, V. (2000). Sensor location in feedback control of partial differential equation systems. In Proceedings of the 2000 IEEE international conference on control applications (pp. 536–541).

  8. Frey, B. J., & MacKay, D. J. C. (1998). A revolution: Belief propagation in graphs with cycles. In Proceedings of the 1997 conference on advances in neural information processing systems 10 (NIPS ’97) (pp. 479–485). Cambridge, MA: MIT Press.

  9. Frey, B. J., & Kschischang, F. R. (1996). Probability propagation and iterative decoding. In Proceedings of the 34th Allerton conference on communications, control and computing.

  10. Ghahramani, Z., & Beal, M. J. (2000). Graphical models and variational methods. In Advanced mean field methods: Theory and practice. MIT Press.

  11. Golub, G. H., & Loan, C. F. V. (2012). Matrix computations (4th ed.). Baltimore: The Johns Hopkins University Press.

    MATH  Google Scholar 

  12. Gong, W. (2013). Approximations of parabolic equations with measure data. Mathematics of Computation, 82(281), 69–98. doi:10.1090/S0025-5718-2012-02630-5.

    Article  MathSciNet  MATH  Google Scholar 

  13. Herzog, R., Stadler, G., & Wachsmuth, G. (2012). Directional sparsity in optimal control of partial differential equations. SIAM Journal on Control and Optimization, 50(2), 943–963. doi:10.1137/100815037.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaipio, J., & Somersalo, E. (2005). Statistical and computational inverse problems (1st ed.). New York: Springer. doi:10.1007/b138659.

    MATH  Google Scholar 

  15. Krause, A., Singh, A., & Guestrin, C. (2008). Near-optimal sensor placements in gaussian processes: Theory, efficient Algorithms and empirical studies. Journal of Machine Learning Research, 9, 235–284.

  16. Kschischang, F. R., Frey, B. J., & Loeliger, Ha. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47(2), 498–519. doi:10.1109/18.910572.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kubrusly, C. S., & Malebranche, H. (1985). Sensors and controllers location in distributed systems—A survey. Automatica, 21(2), 117–128. doi:10.1016/0005-1098(85)90107-4.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kullback, S., & Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kunisch, K., Pieper, K., & Vexler, B. (2014). Measure valued directional sparsity for parabolic optimal control problems. SIAM Journal on Control and Optimization, 52(5), 3078–3108. doi:10.1137/140959055.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lilienthal, A. J., Reggente, M., Trincavelli, M., Blanco, J. L., & Gonzalez, J. (2009) A statistical approach to gas distribution modelling with mobile robots-the kernel DM+ v algorithm. In IEEE/RSJ international conference on intelligent robots and systems, 2009. IROS 2009 (pp. 570–576). doi:10.1109/IROS.2009.5354304.

  21. Loeliger, Ha. (2004). An introduction to factor graphs. Signal Processing Magazine, IEEE, 21(1), 28–41.

    Article  Google Scholar 

  22. MacKay, D. J. C. (1992). Information-based objective functions for active data selection. Neural Computation, 4(4), 590–604. doi:10.1162/neco.1992.4.4.590.

    Article  Google Scholar 

  23. Mackay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  24. Martinez-Camara, M., Dokmanic, I., Ranieri, J., Scheibler, R., Vetterli, M., & Stohl, A. (2013). The Fukushima inverse problem. In 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4330–4334).

  25. Meyer, F., Riegler, E., Hlinka, O., & Hlawatsch, F. (2012). Simultaneous distributed sensor self-localization and target tracking using belief propagation and likelihood consensus. In 2012 Conference record of the forty sixth Asilomar conference on signals, systems and computers (ASILOMAR).

  26. Morris, K. (2011). Linear-quadratic optimal actuator location. IEEE Transactions on Automatic Control, 56(1), 113–124. doi:10.1109/TAC.2010.2052151.

    Article  MathSciNet  MATH  Google Scholar 

  27. Murphy, K. P., Weiss, Y., & Jordan, M. I. (1999). Loopy belief propagation for approximate inference: An empirical study. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (UAI’99) (pp. 467–475). San Francisco, CA: Morgan Kaufmann Publishers Inc.

  28. Neumann, P. P., Asadi, S., Lilienthal, A. J., Bartholmai, M., & Schiller, J. H. (2012). Micro-drone for wind vector estimation and gas distribution mapping. Robotics & Automation Magazine, IEEE, 19(1), 50–61.

    Article  Google Scholar 

  29. Park, T., & Casella, G. (2008). The bayesian lasso. Journal of the American Statistical Association, 103(482), 681–686. doi:10.1198/016214508000000337.

    Article  MathSciNet  MATH  Google Scholar 

  30. Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco: Kaufmann.

    MATH  Google Scholar 

  31. Pukelsheim, F. (1993). Optimal design of experiments. Hoboken: Wiley.

    MATH  Google Scholar 

  32. Riegler, E., Kirkelund, G., Manchon, C., & Fleury, B. (2010). Merging belief propagation and the mean field approximation: A free energy approach. In 2010 6th International symposium on turbo codes and iterative information processing (ISTC) (Vol. 59, no. 1, pp. 588–602). doi:10.1109/ISTC.2010.5613851.

  33. Rossi, L. A., Krishnamachari, B., & Kuo, C. C. (2004). Distributed parameter estimation for monitoring diffusion phenomena using physical models. In 2004 First annual IEEE communications society conference on sensor and ad hoc communications and networks, 2004. IEEE SECON 2004 (pp. 460–469). doi:10.1109/SAHCN.2004.1381948

  34. Sawo, F., Roberts, K., & Hanebeck, U. D. (2006). Bayesian estimation of distributed phenomena using discretized representations of partial differential equations. In 3rd International conference on informatics in control, automation and robotics (pp. 16–23).

  35. Shutin, D., Kulkarni, S. R., & Poor, H. V. (2011). Stationary point variational bayesian attribute-distributed sparse learning with l 1 sparsity constraints. In 2011 4th IEEE international workshop on computational advances in multi-sensor adaptive processing, CAMSAP 2011 (pp. 277–280). doi:10.1109/CAMSAP.2011.6136003.

  36. Singh, A., Ramos, F., Whyte, H. D., & Kaiser, W. J. (2010). Modeling and decision making in spatio-temporal processes for environmental surveillance. In IEEE international conference on robotics and automation (pp. 5490–5497).

  37. Sivergina, I. F., & Polis, M. P. (2002). Comments on “Model-based solution techniques for the source localization problem”. IEEE Transactions on Control Systems Technology, 10(4), 633.

    Article  Google Scholar 

  38. Strikwerda, J. C. (2004). Finite difference schemes and partial differential equations (2nd ed.). Philadelphia: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  39. Tanner, R. M. (1981). A recursive approach to low complexity codes. IEEE Transactions on Information Theory, 27(5), 533–547.

    Article  MathSciNet  MATH  Google Scholar 

  40. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58(1), 267–288.

    MathSciNet  MATH  Google Scholar 

  41. Tipping, M. E. (2001). Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211–244.

    MathSciNet  MATH  Google Scholar 

  42. Uciński, D. (2004). Optimal measurement methods for distributed parameter system identification. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  43. Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics (2nd ed.). Harlow: Pearson Education Limited. doi:10.2514/1.22547.

    Google Scholar 

  44. Wang, J., & Zabaras, N. (2005). Hierarchical bayesian models for inverse problems in heat conduction. Inverse Problems, 21(1), 29. doi:10.1088/0266-5611/21/1/012.

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, J., & Zabaras, N. (2005). Using bayesian statistics in the estimation of heat source in radiation. International Journal of Heat and Mass Transfer, 48(1), 15–29. doi:10.1016/j.ijheatmasstransfer.2004.08.009.

    Article  MATH  Google Scholar 

  46. Whaite, P., & Ferrie, F. (1997). Autonomous exploration: Driven by uncertainty. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(3), 193–205. doi:10.1109/34.584097.

    Article  Google Scholar 

  47. Winn, J., & Bishop, C. M. (2005). Variational message passing. Journal of Machine Learning Research, 6, 661–694.

    MathSciNet  MATH  Google Scholar 

  48. Wipf, D. P., & Rao, B. D. (2004). Sparse bayesian learning for basis selection. IEEE Transactions on Signal Processing, 52(8), 2153–2164. doi:10.1109/TSP.2004.831016.

    Article  MathSciNet  MATH  Google Scholar 

  49. Xu, Y., Choi, J., Dass, S., & Maiti, T. (2016). Bayesian prediction and adaptive sampling algorithms for mobile sensor networks. Berlin: Springer. doi:10.1007/978-3-319-21921-9.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wiedemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiedemann, T., Manss, C. & Shutin, D. Multi-agent exploration of spatial dynamical processes under sparsity constraints. Auton Agent Multi-Agent Syst 32, 134–162 (2018). https://doi.org/10.1007/s10458-017-9375-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10458-017-9375-7

Keywords

Navigation