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Abstract We analyze human behavior in crowdsourcing contests using an all-pay
auction model where all participants exert effort, but only the highest bidder receives
the reward. We let workers sourced from Amazon Mechanical Turk participate in
an all-pay auction, and contrast the game theoretic equilibrium with the choices of
the humans participants. We examine how people competing in the contest learn and
adapt their bids, comparing their behavior to well-established online learning algo-
rithms in a novel approach to quantifying the performance of humans as learners.

For the crowdsourcing contest designer, our results show that a bimodal distri-
bution of effort should be expected, with some very high effort and some very low
effort, and that humans have a tendency to overbid. Our results suggest that humans
are weak learners in this setting, so it may be important to educate participants about
the strategic implications of crowdsourcing contests.

Keywords All-pay auctions · crowdsourcing contests · learning

Introduction

Crowdsourcing contests are becoming an increasingly popular mechanism for solving
difficult problems. One prominent example is the Netflix challenge [6], where Net-
flix offered a $1 million prize to the team that managed to best improve their movie
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recommender system. This proved to be a great success in generating sophisticated
algorithms through a large-scale competition among research groups. Other similar
contests include TopCoder and CodeChef1 which are examples of programming chal-
lenges, and the DARPA Network Challenge [37], where participants must harness the
distributed nature of the Internet for performing computationally-demanding tasks.

Participants in such crowdsourcing contests perform tasks, and a reward is only
given to the highest-performing participant. Regardless of who wins the contest, the
expending of resources cannot be undone, so only one participant makes a positive
net profit. Such contests raise a difficult strategic question: as all participants incur the
cost of their bid but only one participant wins the prize, how much effort should you
exert so as to maximize your expected gain? Reasoning about this requires factoring
in beliefs about your opponents’ decisions.

For example, consider a programming contest such as those described above.
Suppose both you and your opponent’s daily salary is $100, whereas the single prize
is also worth $100. As both you and your opponent are equally competent program-
mers, the winner would be the person who invested the most time working on the
solution. On the one hand, spending more than a day on coding is ill-advised, as this
would yield a sure loss (even if you win, you would have made more money from
your normal salary). On the other hand, spending very little time is also likely to re-
sult in a loss: the other participant is likely to invest more effort, so you’d lose the
contest, get no prize and waste your effort in vain. How much time should you spend
on the project, given what you know about your opponent?

The study of such strategic actors is the subject of game theory. This sort of
contest has been extensively studied as an “all-pay auction,” an auction where a single
item is being sold to the highest bidder but all bidders pay their bid (and not just the
winner). The happiness, or utility, of a participant is then value of the prize (if it is
won) minus the amount bid. While the behavior of idealized agents in such auctions
is well understood, the extent to which this reflects behavior of actual participants in
a crowdsourcing setting is less clear.

Our contribution

We designed an online Facebook game that simulates an all-pay auction. We used
Amazon’s Mechanical Turk platform to source a pool of roughly 13,000 instances
of the game. We first perform a “static” analysis that assumes that the behavior of
players is not changing over time. To do so, we examine the distributions of the bids
and the utilities. We find that people tend to have a limited set of used bids, and that
people are inclined to overbid. We cluster players by their bid distributions showing
people can be classified into several types, such as bidders who are prone to extreme
values or those who tend to choose high bids. These results are consistent with pre-
vious (laboratory) studies of human participants in various forms of all-pay auctions
which find that few players play similarly to the mixed-strategy Nash equilibrium of
the game [22, 16, 32]. In particular, researchers have noted that people in such com-

1 www.topcoder.com, www.codechef.com
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petitive settings tend to overbid, but some factors such as experience and reputation
reduce overbidding [29].

However, our main goal is to study the decision processes by which the players
set their bids in each game, and to determine how they learn from past experience.
Our key conceptual contribution is thus evaluating the quality of human learning in
an all-pay auction setting, contrasting human ability to learn from recent experience
with the performance of simple learning algorithms that adjust their bids based on
past experience. While we find that humans do modify their bids based on experience
from past interactions in the game, our results indicate that their average gains are
lower that the expected gains that can be achieved by employing relatively simple
learning algorithms.

We find evidence that players choose their bids depending on the outcome of
the previous game: they raise their bid after losses and decrease it after wins. This
behavior is suboptimal in achieving high expected monetary gains. One interpertation
of our results is that people try to beat their opponents by aggressively outbidding
them, even at very a very high cost, ignoring the bad effect this may have on their
expected payoff.

These results indicate a learning behavior of players. However, our results show
that the average player achieves a negative utility, significantly lower than the utility
obtained by players under the Nash equilibrium (under a Nash equilibrium, players
have an expected utility of 0). Many learning algorithms for agents have been studied,
but the quality of learning algorithms used by humans has received less attention.

We introduce a novel methodology to evaluate humans as learners. We take their
history of opponents, and compare their utility to the utility achieved by a range of
learning algorithms, including multiplicative weight updating, best-response dynam-
ics, and fictitious play. Intuitively, the level of sophistication of learning algorithm
needed to match human performance can be thought of as a rough metric for the
performance of human learning in this setting. Unfortunately for humans, all these
heuristics obtain higher average utilities than a typical player, and significantly out-
perform playing the Nash equilibrium, when playing against a random human adver-
sary. This suggests that human players are relatively weak learners in our game. The
only heuristic we tested that performs at approximately on par with the human play-
ers is an extremely simple policy that increases its bid by a fixed increment after a
loss and decreases by the same increment after a win. These results also suggest that
human players are more interested in winning each game rather than in maximizing
their gain.

In summary:

– We collect a dataset containing strategies of participants playing an all-pay auc-
tion game, modeling a crowdsourcing contest. We find that, consistent with prior
work, humans do not fit models of “rational” behavior.

– We introduce a novel methodology for assessing learning performance of hu-
mans, and show that our data suggests that humans are relatively weak learners
in our game.
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Related Work

A mathematical characterization of the behavior of rational agents in a single-item
all-pay auction is given in [5], using the game theoretic solution of a mixed-strategy
Nash equilibrium. They prove that there is a unique symmetric Nash equilibrium;
In the specific case of two players, this equilibrium is simple: each player chooses
a bid uniformly at random from the range [0,m], where m is the value of the win-
ner’s prize. These results were extended to an incomplete information setting [1, 24]
and to simultaneous and incomplete information settings [21, 13]. These papers point
out the connection between all-pay auctions and crowdsourcing projects, where the
efforts exerted by the agents can be thought of as bids. Further, they investigate equi-
librium behavior as a function of the incentives (rewards). However, these models are
quite different from the simple case examined in [5, 19]: these are multi-item auc-
tions, where items correspond to the different tasks where each player has individual
valuations for each task. Further, each player’s action is a two-stage process, in which
the player first selects a task to participate in, followed by submitting a bid (perform-
ing a task). An extensive literate exists on the design and analysis of contests more
broadly [38].

Previous work studies sequential all-pay auctions on Taskcn.com [28, 40], a pro-
gramming crowdsourcing site. However, the particular auctions studied there are dif-
ferent: the number of participants in such auctions is much larger, and the sequential
auction formulation allows players to strategically defer their participation.

Various papers have examiend human behavior in all-pay auctions [22, 20] (see
the recent survey [12] for a broad discussion of such work). Gneezy and Smorodin-
sky ([22]) empirically analyze all-pay auctions with agent groups, of sizes 4, 8, and
12, where each group participated in ten auction rounds. They study the bid distribu-
tion, finding evidence of players deviating from the theoretical equilibrium behavior,
and showing that players bid more than expected under the game’s symmetric Nash
equilibrium. Roughly speaking, they find an overall tendency of overbidding on the
players’ part, resulting a consistent positive surplus, which diminishes with the num-
ber of steps. Overbidding in contests has also been reported in various other contest
settings [33, 34]. 2 Towards the end of their paper, Gneezy and Smorodinsky suggest
a possible explanation for players’ behaviors in all-pay auctions, by proposing a sim-
ple two-stage process of first deciding on whether to participate in such an auction,
and then deciding on a bid, without the use of any learning procedure. Ernst et al. [16]
investigate the effect of maintaining fixed groups of two and three players on the bid
distributions, over the course of ten rounds, relative to groups that were randomly
set anew in each round. They find evidence of collusion in two-player games where
the pairs of players remain unchanged, and find a bimodal distribution over the bids,
where players tend to bid either very high or very low values, which again, stands in
stark contrast to the bid distribution under the Nash equilibrium. Instead, they pro-

2 Empirical results do not always exhibit overbidding. Some studies examining all-pay auctions be-
tween two players find no overbidding [32, 16], while studies examining auctions between more than
two players find significant overbidding [22, 11] (recent work on this contains a more complete dis-
cussion [20]). Further, the degree of overbidding depends on the specifics of the contest and do-
main [7, 12, 19, 26, 25, 27].
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pose an alternative explanation to their findings, by fitting their data to Kahneman
and Tversky’s prospect theory.

Potters et al. [32] study a rent-seeking problem, and define dissipation as the ratio
of expected expenditure to the value of the rent (the prize). One of their two scenarios
corresponds to all-pay auctions with two players, for 30 rounds, with anonymous
players. Although the player’s bids are not strictly uniform, they find no statistical
evidence for overdisspiation (i.e. for overbidding). Lugovskyy et al. [29] conducted
lab experiments with 144 participants, also focus on overdissipation, but arrive at
different conclusions, and argue that overbidding, both individual and in aggregate,
is a robust phenomenon. In contrast to these papers studying static behavior, we focus
on how agents learn and adapt.

All of the above experimental studies mainly postulate underlying largely static
model, through which the players make their decisions. Although they all acknowl-
edge a significant deviation from the theoretical models, none of them consider a
more dynamic, learning process, through which the agents “react” to the observed
opponent bids. This is especially true in anonymous games, where the agents do not
know the identity of their opponents.

We study the reasoning processes of agents. Similarly to our results, many other
papers find that players choose their bids depending on the outcome of the previous
game [35, 33, 34, 10, 31, 17, 30]. A similar approach to studying bidding reason-
ing was used to investigate Penny auctions [39, 8], which are very different from
our setting. However, these papers also show a significant deviation from theoreti-
cal predictions and provide explanatory work on the observed bid sequences. Roth
and Erev ([15]) studied the explanatory value of models of reinforcement learning
using a game with only two strategies. As opposed to our findings, they show that
strategies like fictitious play and regret minimization explain the agents gameplay
reasonably well (possibly, humans could use advanced learning strategies due to the
simpler game setup).

A Game Theoretic Analysis of All-Pay Auctions

We contrast our findings regarding human behavior in all-pay auctions with the math-
ematical solution of the game, so we first discuss this solution. In our setting, there
is a set N = {1, . . . , n} of agents with a common value m for a single-item. The
auction takes place in a single round, in which each agent i ∈ N submits a single
bid bi. The highest bidder receives the auctioned item, while everyone pays their bid,
regardless of who wins. Thus, the highest bidding player, i, wins the prize and thus
obtains a utility of m− bi, and each other player j gets a utility of −bj .

A prominent mathematical “solution” of such games is the mixed Nash equilib-
rium, a profile of mixed strategies for each player which are mutual best-responses.
In a mixed Nash equilibrium each player has a distribution over bids, such that no
player can change their bid so as to get a higher expected utility (even knowing the
distributions of the other players).

It is easy to show that the game doesn’t admit a deterministic Nash equilibrium,
where each player has a single bid (rather than a distribution over bids), and no player
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can unilaterally change their bid to improve their utility. For example, in a two player
game, given her opponent’s bid, a player can bid slightly higher than her opponent’s,
guaranteeing a win.

The analysis in [5] shows that in the simple all-pay auction, there is a unique sym-
metric mixed Nash equilibrium, in which each player samples a value from a com-
mon distribution over the range [0,m]; Specifically, in this equilibrium each player
chooses a bid at random from the distribution with the following cumulative distribu-
tion function: F (x) = ( x

m )
1

n−1 .
For two-player auctions, this reduces to choosing a bid from the uniform distri-

bution over the range [0,m], yielding an expected revenue of m to the auctioneer and
zero utility to the players.

Methodology

We used the Amazon Mechanical Turk crowdsourcing marketplace to let human par-
ticipants play against one another in all-pay auctions, which we interpret as a simple
model of the decisions made in crowdsourcing contests. To this end, we constructed
a two-player Facebook game called Doubloon Dash.

Although crowdsourcing contests may have more than two participants, we chose
to focus on all-pay auctions with two players, for the sake of simplicity of the game
and the analysis of learning. Each player was asked to play at least 30 games, in which
they were matched against an opponent whose identity was unknown to them3, and
the outcome of each game was determined based on the simple all-pay auction as
previously described, with bids between 0 and m = 10,000 doubloons. We recruited
players in two sessions, each of which lasted a few hours from the time the tasks were
posted until they were completed.

On top of their base payment b, players were paid based on performance: a player
with average utility of u was awarded an amount of u

9,999 +1; so that bonuses ranged
from $0, for players who made the lowest possible utility in every game, to $2 for
players who got the maximal possible payoff in every game.

Empirical Analysis of Bids and Utilities

In this section we discuss our dataset and perform some basic analysis showing that,
consistent with previous experiments with all-pay auctions, participants do not appear
to follow the sort of strategy predicted by game theory.

Dataset

Our dataset consists of 12,899 games by 518 players. The instructions for the task
required players to play at least 30 games, and 178 incomplete players failed to do

3 We also allowed players to play against a specific friend, but such games were not used for the analysis
in this paper.
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so. To discourage non-strategic play, players were asked not to make extensive use
of “simple” bids such as 0, 1, 1000, 9999 or 10,000 (these “suspicious” bids were
compiled after pilot rounds, where we observed a tendency to favor them). We labeled
a player a spammer if they used the simple bids in more than a 25% of their games,
and there were 85 such players. 4

Furthermore, some participants attempted to cheat by using fictitious identities.
Such manipulators used a fictitious Facebook profile designated a “losing“ false
identity (or a Sybil [14]), through which they consistently bid low values. The other
player, controlled by the same individual, played games immediately after, hoping to
be matched against the losing identity, and “win” by bidding slightly higher values,
guaranteeing a very high total utility. For example, consider a player who creates a
“loser Sybil”; If the loser bids 2 and the true identity bids 3, the true identity wins
10000− 3 = 9777 in every game against the Sybil.

This manipulation is effective in generating high utility for the manipulator, but
it is simple to identify such players. The “losing” and “winning” identities enter their
strategies at roughly the same time, are matched often against each other, and one
always wins while the other always loses. We found 49 such manipulators, and they
were often successful: nineteen of the top twenty players were manipulators.

The fact that people exploited the rules of our system is perhaps an unsurprising
observation for crowdsourcing. We note that we did not see evidence of players en-
gaged in reciprocal behavior where they could collude achieve high scores by taking
turns as a low-bidding losing player. 5

In order to focus on our interest in how people learn to participate in crowdsourc-
ing contests, we exclude data from incomplete players, spammers and manipulators.
A total of 6,383 out of the 11,327 original games had at least one player who was not
in any of these categories. We call these 206 players non-manipulators and hence-
forth we restrict ourselves to studying only the performance of such players. The
average number of games played by these players was 74.8. About a third of the
players (67) played at least 70 games, and 31 of them played at least 100 games.

As they attempt to exploit the rules of the system, spammers and manipulators are
arguably more sophisticated than non-manipulators. Thus, a limitation of our results
is that we may underestimate the performance of the average participant because we
have excluded those who would have been high performers. However, our data still
reflects a substantial number of participants from a real crowdsourcing system, and
thus we believe it is at least representative of a significant fraction of crowdsourc-
ing participants. Finally, we are aware of the fact that our definition for ruling out
spammers rules out some bids that have proven to perform well against the empirical
distribution of bids, discussed in Section . We have thus repeated the key parts of

4 We note that players who follow the mixed-strategy of the Nash equilibrium are extremely unlikely to
be labeled as spammers. The symmetric mixed-strategy under the Nash equilibrium is choosing a bid uni-
formly at random over the range, making each possible strategy have a very small probability. In particular,
for a player who selects bids uniformly at random, the probability of selecting the specific precluded bids
in over 25% of the games is very low. This means that our spammer-detection rule is very unlikely to have
a “false-positive”, and mistakenly labeling a player who is using the Nash mixed-strategy as a spammer.

5 Notably, such collusive strategies are predicted by a different game theoretic analysis of this as a
repeated game setting, showing another way human behavior differs from idealized mathematical models
in crowdsourcing contests.
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our analysis with the spammers included. This results of that analysis (which can be
found in the appendix) are very similar to the results we report in Section and Sec-
tion , so we believe our conclusions are somewhat robust to the choice of mechanism
for dealing with spammers and manipulators.

Average Revenue And Bid Distribution

Similarly to [22], we find that most players tend to overbid, yielding the auctioneer
a higher revenue than what would be achieved in equilibrium. The average revenue
(sum of bids) in games with at least one non-manipulator and no spammers was
13,730. We ranked the bids by the number of their occurrences. Ignoring spammers
and manipulators, the top-ten bids were (9000, 8000, 7000, 6000, 5000, 9900, 9999,
4000, 3000, 9990) with respective occurrence counts (1183, 932, 606, 589, 537, 510,
497, 382, 307, 286). The average number of distinct bids per player is 34.9.6 It is
thus apparent that most players have a preference for a relatively small set of bid
values, most notably multiples of 1,000, which we refer to as “focal points.” This is
strengthened after considering the distribution of the unit digits of the bids, which
shows that 75.7 percent of the bids had 0 as their unit digit, followed by 8.52 percent
and 7.18 percent for the digits 1, and 2, respectively.

We analyzed the average distribution of bids of non-manipulators . For each
player j, we compute a vector f (j) = (f

(j)
1 , . . . , f

(j)
m ), such that f (j)i denotes the

fraction of occurrences of bids of value i. Normalizing each player’s frequency vec-
tor prevents the distortion of the analysis due to players who played significantly
more games than others. We define the average cumulative distribution as follows:
f = 1

|j:j is not a manipulator|
∑

j:j is not a manipulator f
(j).

This bid distribution is given in Figure 1.
A sizeable portion is concentrated in the higher values, indicating an overall ten-

dency to overbid. However, a substantial amount of bids are also concentrated in the
low range [0, 1000]. This shows that people focus their attention on extreme points,
perhaps viewing them as “safe bets”. Also, the bids tend to concentrate around mul-
tiples of 1000. This may suggest a reasoning process, in which some players initially
narrow down the strategy space to only a few candidate bids.

We analyzed the average bid, over the course of 100 games. We grouped games
into periods of length 4, so that period t’s average bid corresponds to bids submitted
with games 4 · t− 3, · · · , 4 · t. The average bid over time is shown in Figure 2, where
the bars for each step show the standard error in the corresponding set of bids. A
striking aspect is the sharp initial increase in the average bid. Further, it seems that
the average bids, despite fluctuations, tend to concentrate around values that are well
above 6,000 doubloons, reflecting players’ persistent tendency to overbid. From the
perspective of the organizer of a crowdsourcing contest, this may actually be a good
thing because it means that participants are exerting higher effort than theory predicts.

To get a refined view of focal points, we clustered players’ bid distributions
(binned into ten equal size bins, ([0, . . . , 1000], [1001, . . . , 2000], . . . , [9001, . . . , 10000])

6 Note that the uniform distribution over the bids gives an expected number of distinct bids of 70.
Shortly, we provide two more precise comparisons with the uniform distribution.
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Fig. 1: Average player cumulative distribution of bids.
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Fig. 2: Average bid per time period.
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using the k-means algorithm. Intuitively, each cluster represents a group of players
who bids in each bin with similar frequencies. Figures 3 and 4 show the bid his-
tograms for two such clusters, selected to illustrate the variety of focal points. The
x-axis is the bin number, and the y-axis is the number of times each bid range (bin)
was played, and the histogram of each player is represented as a line. The figures
show that despite the overall distribution observed in Figure 1, there was a significant
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Fig. 3: Cluster 1 (47 players) player bid distributions
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Fig. 4: Cluster 2 (45 players) player bid distributions
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variance in the agents’ focal points. For example, the players in Figure 3 follow a
bimodal distribution that resembles the overall distribution of Figure 1, but players in
Figure 4 show a monotonically increasing tendency to bid in higher values, save for
the highest bin.

Our results show that very few players behaved consistently with the bids under
the Nash equilibrium solution. To show this, we used the χ2 Goodness-of-Fit test,
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examining the similarity of the bid distribution of a player with the bid distribution
of the Nash equilibrium. To deal with the sparseness of the bid lists, we divided the
10, 000 bids into 10 equal-size bins. Using a statistical significance level of p = 0.05,
there were only 9 players whose bid distribution was close enough that we could not
reject the hypothesis it matched the Nash equilibrium distribution (i.e. uniform) with
at least that significance level. Thus, the test shows that almost all players had a bid
distribution that deviates from the Nash equilibrium behavior of bidding uniformly
at random (with strong statistical significance). Since players may need to gain ex-
perience before adopting ideal play, we repeated this test using only the last 30 bids
submitted by each player. This resulted in an increase to 29 players for whom we
could not reject the uniform strategy behavior, which we believe is primarily due to
the reduced amount of data rather than an actual change in behavior. Furthermore,
this is still as substantial minority of players (less than 15%).

Empirical Analysis of the Utilities

Given the empirical distribution of the bids submitted by non-manipulators, we com-
puted the average utility of each bid. The optimal bid (i.e., the best-response to the
empirical distribution) is 112, which yields an average utility of 564. A plot of the
distribution of the average utility as a function of a fixed bid is given in Figure 5.

Fig. 5: Average utility against the empirical bid distribution
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The figure shows that low bids, in the range [0, 1000], tend to do well against the
bids of our human participants, and yield an expected positive payoff. We note that
most non-manipulators did not make positive average payoffs: the average utilities
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Fig. 6: Utilities of non-manipulating players
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ranged between −5,122 and 2,393, with median −2,274 and average −2,010. This
contrasts the expected payoff of 0 under Nash equilibrium bids. The distribution of
the average utilities is given in Figure 6.

Note that because the maximum possible bonus payment was 2 dollars, the av-
erage payoff of −2k doubloons translated into only a 20 cent loss, relative to the
expected utility in the Nash equilibrium. This may be small enough that some play-
ers did not consider it significant, but is not trivial relative to common Mechanical
Turk payments.

Learning From Experience

We now examine how players adapt their strategies and learn from experience. We
show that although players do modify their behavior based on their experience in
previous games, most players seem to follow a very simple learning heuristic: they
increase their bids after losing and decrease them after winning. We contrast this
with known simple machine learning approaches, and show that such algorithms can
easily outperform humans in our all-pay auction game.

Effects of game outcomes

The results in the Section indicate that the Nash equilibrium mixed-strategy is a poor
predictor of human behavior in all-pay auctions. Many settings exhibit a discreprency
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between equilibrium strategies and actual human behavior 7, with some researchers
focusing on human behavior as a form of bounded-rationaliy (see [9] for a detailed
discussion). For instance, in some settings, given a recent interaction with another
player, it is easy to identify an alternative strategy that would have yielded a better
ourcome. Clearly, in a future interaction an opponent may also adjust their behavior
based on their own experience from the past interaction. Varoius models have been
suggested regarding how humans reason in such settings. One of the simplest is some
version of best or better reply dynamics, where players attempt to respond to the
most recent strategy they have seen from their opponent. More generally, this logic is
captured by models such as k-level iterative reasoning [36, 2, 3]

Consider the case of two players in an all-pay auction, who are about to bid b1 and
b2 respectively, and assume without loss of generality that b1 > b2. Can player 1 do
any better than her current bid, assuming that player 2 would bid b2? Clearly she can
lower her bid to b′1 such that b2 < b′1 < b1, and this would still result her still winning,
but paying a lower amount. Similarly, player 2 is currently not winning anything, and
can increase her bid to b′2 > b1 (but less than the maximal value 10, 000), and as a
result win the auction and switch from a negative utility to a positive utility.

The above discussion illustrates how players might reason about changing their
bids following a previous interaction. Assuming that they are going to face the same
bid as in the past interaction (i.e. not taking into account that other players are also
learning), a player who won the auction would lower their bid, and a player who lost
the auction would raise their bid. 8 Thus, our hypothesis regarding players is that they
react differently to wins and losses (in particular, in the above discussion players are
more prone to increase their bid after losses and to decrease it after wins).

An alternative hypothesis is that players’ bids are independently and identically
distributed random variables (such as would be the case if they were simply choosing
their bids from the Nash equiblibrium), resulting in bids following a win taking the
same distribution as bids following a loss. To examine this issue, we performed an
initial binning of the bids into ten equal size bins, and for each bin we examined the
bids falling in that bin. We partitioned them into two groups: bids submitted by a
player after winning the game, and bids submitted after losing a game. We observed
that bids submitted after losing a game tend to be higher than those submitted after
winning a game (i.e. they tend to fall into a higher bin). Let Tj be the total number
of games played by player j, and S(j) = {b(j)1 , . . . , b

(j)
Tj
} denote the bins of the

bids j has submitted (b(j)i ∈ {1, . . . , 10}, ∀i = 1, . . . , Tj). For each player j, let
W (j) = {i : player j wins in game i }, and L(j) = {1, . . . , Ti} \W (j). We partition
an agent’s set of bids based on both the the outcome of the previous game, and the bins
to which their previous bids belonged to: A(j)

` = {b(j)t : (t− 1) ∈ W (j) and b(j)t−1 =

`}, and similarly B(j)
` = {b(j)t : (t− 1) ∈ L(j) and b(j)t−1 = `}, for ` = 1, . . . , 10. By

separating the subsequent bins indices based on their predecessors, we account for

7 In particular, such settings include auctions, especially when the winner is simply the highest bid-
der, rather than ones where the probability of winning is higher for the highest bidder [11], and Blotto
games [23, 10].

8 A player who lost the auction can also lower their bid in an attempt to improve the negative utility
they incur, but achieving a positive utility requires increasing the bids so as to win the auction.
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cases where the preceding bids are likely to lead to similar responses, regardless of
the outcome of the previous games. For instance, a bin 1 bid is likely to be followed
by a higher bin bid, regardless of whether or not the game was won or lost. Lastly,
we let A` =

⋃
j A

(j)
` , B` =

⋃
j B

(j)
` , for ` = 1, . . . , 10.

Our focus in the paper is on the learning process of people in the all-pay envi-
ronment, which violate the premises of a static, non-learning, behaviour assumption
taken by many statistical tests, such as the Mann-Whitney U-test. However, we do
note that for the vast majority of bins in which a player’s bid occurs in round i, fol-
lowing a loss the bid for round i+1 tends to fall in a higher bin, and following a win
the next bid tends to fall in a lower bin. In other words, no matter what a player has
bid in a previous round, they are likely to increase it in the next round if they lose,
and decrease it if they win.

The result above indicates that the data is not consistent with players behaving
the same after a win or a loss. However, we do not claim that players only take into
account the result of the one last interaction they’ve experienced. To the contrary, we
devote a section below to investigating various models of how players learn in all-pay
auctions (not just from the single last interaction). Further, we note that the analysis
above checked for the effects on the entire set of player bids, but does not characterize
the behavior of individual players. To test individual player effects, we investigated
the change in bid value following either a loss or a win. First, following loss (resp.
won) games, we found that, on average, players submit an identical bid following a
win (resp. loss), 13.6% (resp. 16.6%) of the time. This shows that players mostly tend
to change their bids from turn to turn. Next, conditional on a change in the bid relative
to the previous one, we measure the number of players who lower their bids in more
than 2/3 of their games played after winning. We found 93 players matching this
criterion (only a single player raised his bids in more than two-thirds of these won
games). Similarly, 135 players raised their bids in at least a 2/3 of their games played
after losing (conditioned on a change in bid) and only two players lower their bids in
more than two thirds of such lost games). A natural interpretation is straightforward:
a player may infer that a losing bid has a higher probability of losing, which causes
him to increase his bid. Experiencing a win may encourage a player to try to lower
bids, in the hope of still winning while keeping more money.

On the Additional Value of Knowing the Bids in Previous Rounds

Our analysis above indicates that knowing whether a player won or lost in the previ-
ous round is predictive of whether they choose a higher bid for this round. Consider
a player x who had participated in a game with player y at round t − 1, and denote
by Wt−1 the variable indicating whether x won or lost (i.e. Wt−1 = 1 if x won,
and Wt−1 = 0 otherwise). Denote by xbidt−1 the bid that x had used, and by ybidt−1 the
bid that y had used. Further, denote by It the variable indicating whether x increases
their bid between round t − 1 and round t, i.e. It = 1 if xbidt > xbidt−1. Our analysis
shows that a loss is predictive of a bid increase (i.e.Wt−1 is correlated with It). How-
ever, do players base their decision regarding raising or lowering the bid on whether
they won the previous round (Wt−1), or do they also take the bids used in that round
(xbidt−1, y

bid
t−1) into consideration?
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One could in principle answer the above question by conducting a controlled ex-
periment or by asking players to explain the reasoning behind their chosen bids across
rounds, but these are very expensive to run. As an alternative, we may ask whether
the actual bids in the previous round are more predictive of a bid increase than only
knowing whether the player won or lost the previous round. Clearly, knowing the
exact bids used in a round (xbidt−1, y

bid
t−1) is more informative than knowing who won

the round (Wt−1) — the winner variable Wt−1 is a deterministic function of the bid
variables xbidt−1, y

bid
t−1, sinceWt−1 = 1 if xbidt−1 > ybidt−1 andWt−1 = 0 otherwise. How-

ever, does knowing the previous bids (xbidt−1 > ybidt−1) allow us to predict It (whether
player x would raise their bid) better than we could when we only knew whether the
player won or lost the previous round (Wt−1)?

We examine the above question by training logistic regression models to predict
bid increases (the variable It). The baseline model uses Wt−1 as the sole feature,
whereas the second model uses the feature Wt−1 as well as the features xbidt−1, y

bid
t−1.

We use the R2 as our measure for the quality of the model’s predictions. We train
the models on the data from all the players across all rounds, and apply a 10-fold
cross validation. The baseline model, which only uses Wt−1 as a predictor, achieves
R2 = 0.35, and the model which also uses the bids xbidt−1, y

bid
t−1 achieve R2 = 0.33.

In other words, using the bids as additional features does not increase the predictive
performance. 9

These results indicate that knowing the actual previous bids does not increase
predictive power beyond knowing only whether the player previously won or lost, at
least for a logistic regression model. We believe that this provides some evidence that
our ability to predict whether a player is likely to increase their bid in the next rounds
stems mostly from knowing whether they won or lost the previous auction (at least
for simple linear models).

We note that while we grounded the intuition behind our analysis in players low-
ering bids after winning and raising them after losing, one can also state them in a
way that relates to imitating the opponent or choosing bids that are closer to those
chosen by the opponent. In other words, a different conjecture is that players tend
to increase bids after observing higher bid by the opponent and decrease bids after
observing lower bid by the opponent. As the winner in the auction is the player with
the higher bid and the loser is the player with the lower bid, Choosing a bid closer
to the bid chosen by the opponent would result in the winner lowering their next bid,
and the loser choosing a higher bid. Thus the data is consistent with such “imitation
based learning”, and further research is needed to determine the reasoning behind the
participants’ choice of bids. For instance, future research could present participants
with questionnaires regarding why they chose the bids they chosen in various auction
rounds.

9 We have also tried using only the bid difference dt−1 = xbidt−1− ybidt−1 as a feature (i.e. using the two
features Wt−1, dt−1, which achieves R2 = 0.34, still lower than the baseline model.
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Limited and perfect recall response models

Our results show that players tend to increase bids after losing and decrease after
winning. This is a plausible decision process, but it is also possible that players use a
more complex learning dynamic that results in this behavior as a side effect. A natural
more complex model of adaptive behavior is one where players make bids based on
a (possibly limited-recall) view of previous opponent bids. Such models have a long
history in the study of learning in games [41]. However, we show that the players’
behavior is consistent only with the simple adaptive behavior model, not with the
more complex one.

For a player j, let S(j) = {b(j)1 , . . . , b
(j)
Tj
} be the set of Tj submitted bids. Let

O(j) = {o(j)1 , . . . , o
(j)
Tj
} be the set of corresponding opponent bids in each of player

j’s games. For a window length d, let αd
ji be the fraction of the previous d opponent

bids defeated by player j’s i’th bid: αd
ji =

1
Ti
{o(j)i′ : o

(j)
i′ < b

(j)
i and i− d ≤ i′ < i}.

Let αd
j be the mean value of the αd

ji values. Testing for d = 1, 2, 3, 4 and d = ∞,
i.e., perfect recall, player j is considered a d-level responder, if αd

j > θ, for a given
threshold value θ.

Checking the above criterion for all non-manipulators using a threshold of θ =
0.6, accounts for 115 of the players (over half the non-manipulators). Increasing θ to
0.7 results in a decrease in the number of the players to sixty (about a third). Note
however, that this does not mean that even these players are following such a strategy.
Random play would satisfy θ = 0.5, so even a slight bias would be enough to explain
these results. Indeed, the adaptive behavior discussed in the previous section provides
exactly such a bias.

Furthermore, this heuristic does not take into account the average utilities, with re-
spect to the d opponent bids: it assumes players simply play in order to win, not neces-
sarily optimizing their bids in order to increase their resulting revenue. To strengthen
this point, we measure each agent’s average utility against the previous d opponent
bids. An agent’s bid is a p-approximate best-response if his average utility against the
previous d opponent bids is at least a p fraction of the optimal average such utility.
Agent i is considered a p-approximate best-responder if at least a fraction θ of his
bids are p-approximate best-responses. With a mild threshold θ = 0.6, and checking
over d =∞, 1, 2, 3, 4, we found that only twelve players were 0.3-approximate best-
responders (ten of which previously classified as d-level responders). Note that d = 1
corresponds to approximate best-response dynamics and d = ∞ corresponds to ap-
proximate fictitious play, both well-known simple learning heuristics. Thus, while
player behavior appears consistent with simple updates with the goal of winning at
reasonable cost, it does not appear to be consistent with simple learning dynamics
that assume players optimize their utility.

Learning Algorithms

We showed that players adapt their play based on their histories, but their behavior
does not appear to be consistent with standard simple learning dynamics from the lit-
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erature such as best-response dynamics or fictitious play. We now examine how play-
ers perform as learners. We introduce a novel methodology to do so. We showed that
the average player score was roughly −2000. This gives us benchmark to compare
the performance of humans as learner, against standard learning algorithms from the
literature. We show that humans perform significantly worse than all but the weakest
learning algorithms. Thus, not only do players not play equilibrium strategies or use
standard learning heuristics, they also do not effectively improve their performance
over time.

Our tests are performed by running the learning algorithms on the sequence of
opponent bids observed by a non-manipulating player (we report averages based on
a sample of 100 players). We note that most of these players played against many
different opponents, so we believe introducing an agent based on a learning algo-
rithm would not have significantly affected the opponents’ bids (as each would only
encounter the agent very few times). We further note that simulating how various
approaches perform on small size sample of 100 random player bids avoids the risk
of overfitting: each algorithm may only update its bids by observing a tiny fraction
of the entire bid population, similarly what the human participants do as they adjust
their bids in our experiment. In other words, agents are never exposed or trained on
the entire bid distribution (or entire human dataset), but rather the data available to
them is the same small sample data available to a single human participant.

Multiplicative Weights

We begin with the celebrated Multiplicative Weights update (MWU) algorithm for
on-line learning [18], which works as follows (see [4]). Starting from uniform weights
wi(1) = 1 for every bin i, on each step t the algorithm selects a bid from the set of
candidate bids C = { i·10,000B }Bi=1, with probability proportional to its current weight
(w(t)). Given the observed opponent bid, compute the normalized utilities of the can-
didate bids: {ui}Bi=1 (note the possible payoffs are in the range [−(m−1),m−1]), and
update the weights, so that the weights of high-payoff and low-payoff bids increases
and decreases accordingly. Specifically, if ui ≤ 0, set wi(t+1) = wi(t) · (1−λ)−ui ,
and otherwise wi(t + 1) = wi(t) · (1 + λ)ui . The amount by which weights are
updated, λ, is called the “learning rate”.

For each sampled bid sequence, we tested the algorithm with varying values of
the learning rate λ and number of candidate bids. We reran the algorithm for each
sequence 100 times, to minimize sampling errors.

We ran the algorithm for B = 10 and B = 100, while increasing λ in increments
of 0.05. The mean utility for each combination of B and λ is displayed in Table 1
(the largest standard error was 12.21). As the results demonstrate, even with a very
limited set of bids, by using a high learning rate the algorithm obtains a slightly
positive average payoff, considerably higher than the mean utility of human players.
Moreover, by increasing B to 100, and setting λ = 0.9, the algorithm is able to
make an even higher payoff, on average. Thus, the performance of MWU is much
better than that of a typical player. We expect that this would be also true of other
established “good” learning algorithms. Note that for λ = 0, the algorithm plays
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Table 1: Mean payoffs for varying B and λ
λ 0 0.05 0.1 0.15 0.2
B = 10 −1577 −1194 −871 −647 −472
B = 100 −1758 −1374 −1048 −800 −591
λ 0.25 0.3 0.35 0.4 0.45
B = 10 −342 −243 −163 −95 −48
B = 100 −425 −300 −183 −101 −21
λ 0.5 0.55 0.6 0.65 0.7
B = 10 3 33 61 80 104
B = 100 44 98 149 194 222

λ 0.75 0.8 0.85 0.9 0.95
B = 10 121 133 141 146 142
B = 100 262 292 316 340 350

the (discretized) Nash equilibrium strategy, which is poor overall given the human
tendency to overbid, but still does better than the average human.

Limited-recall based responses

Previously, we saw that players tended to play in such a way that they beat their
previous opponent(s), but were not best responding. We now test how well they would
have done had they executed either of these strategies consistently. This represents a
simpler form of learning than MWU. In both cases, we let the set of candidate bids
be C = {1,000 · i}10i=1. For a window length d define the following two strategies:

– Limited-recall based minimal bid (LRMB): For a fraction θ = 0.75, select the
minimal bid that wins against at least a θ-fraction of the last d opponent bids.

– Limited-recall best response (LRBR): Submit the optimal bid (on average) against
the previous d opponent bids. Testing this heuristic on each non-manipulator’s
sequence of opponent bids.

The pseudo-code for the LRMB and LRBR is given as Algorithm 1 and Algo-
rithm 2.

Input: m – reward, B – number of bins, T – number of games, θ – fraction, d – window length
Candidate bids: C = {m

B
· i}Bi=1.

Step t = 1: select a random bid b1 ∈R C.
foreach step t = 2 to T do

`1 = max{1, t− d}
`2 = t− 1
Let Ot = {o`1 , . . . , . . . , o`2} be the previously observed opponent bids.

Set: bt = argminb∈C{ |{o∈Ot:b>o}|
|Ot|

≥ θ}
end

Algorithm 1: Limited Recall, Minimal Bid (LRMB)

Table 2 contains the average payoffs obtained by the two heuristics for the players
sequences of observed opponent bids. The table shows that both of these relatively
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Input: m – reward, B – number of bins, T – number of games, θ – fraction, d – window length
Candidate bids: C = {m

B
· i}Bi=1.

Let u(a, b) denote the utility of a player bidding a against an opponent bid of b.
For a given set of bids O, let u(a,O) = 1

|O|
∑

o∈O u(a, o) denote bid a’s average payoff against
the bids in O.

Step t = 1: select a random bid b1 ∈R C.
foreach step t = 2 to T do

`1 = max{1, t− d}
`2 = t− 1
Let Ot = {o`1 , . . . , . . . , o`2} be the previously observed opponent bids.
Set: bt = argmaxb∈C{u(b,O)}

end
Algorithm 2: Limited Recall, Best Response (LRBR)

simple limited recall heuristics do worse than MWU, but perform better than the
typical player. Although there was a considerable variance in results (with the largest
standard error being 76.17), this illustrates that for this particular domain, the learning
behavior of people under-performs even relatively simple algorithms.

d ∞ 1 2 3 4

LRMB −230.1 −545.8 −103.9 79.5 −331.1

LRBR 210.5 −544.8 36.9 172.8 270.9

Table 2: Average payoffs of limited-recall heuristics

A simple incremental response

Our final approach mimics the simplistic outcome-driven change in the bids that we
observed in the previous section. This heuristic increments (decrements) the previous
bid by 1,000 (within the limits) following a loss (win). Testing this on the players’ se-
quences of observed opponent bids yielded a mean payoff of−2,308, with a standard
error of 89.2. This performance is comparable with the actual mean payoff obtained
by our players, and as this is particularly a simple adaptive dynamic, this suggests
that whatever approach players are taking, they are in general quite weak learners.

Of course, as discussed this conclusion does exclude arguably the most rational
players, those who attempted to exploit the rules of the task, but still is representative
of a substantial number of participants.

Conclusion

We empirically studied the behavior of crowdsourcing workers in an all-pay auc-
tion, which is a standard model for crowdsourcing contests. Our results show that
human bids substantially deviate from the mixed strategy Nash-equilibrium bids. For
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the crowdsourcing contest designer, our analysis shows that a bimodal distribution
of effort should be expected, with some very high effort and some very low effort.
Our analysis also suggests that that contests tend to generate more effort than what
would be exerted under Nash-equilibrium behavior. Given the weak performance of
participants as learners in our game, it may be important to educate participants about
the strategic implications of using contests for crowdsourcing.

We point out some limitations of our experiments. Despite the popularity of the
Mechanical Turk platform, the behavior of its users may not extend to general crowd-
sourcing settings. In particular, our population may have contained users who did not
make an effort to understand the game, but rather played to quickly win the base
payment only. As a result, one could try alternative methods of payment, used in pre-
vious studies such as an initial endowment (instead of a base payment), or letting the
players perform a tedious task, using the time they dedicated to it as their ‘bid’.

Another limitation of this work is our perpective of viewing players as rational
expected-utility maximizers. Our results indicate that if humans are attempting to
maximize their expected monetary gain in the all-pay auction, there exist alterna-
tive learning algorithms that could achieve a higher performance. However, this only
holds true for our monetary payoff function; if participants are risk-averse, they would
be optimizing for a good trade-off between the expected payoff and the variance in
payoffs. Similarly, if participants care only about winning or losing the auction (rather
than the monetary gain), their true utility is different from the one we focus on in our
analysis. Alterrnatively, if participants care about their payoff relative to that of other
players (rather than their absolute gain), they would be optimizing for a different
function (for a discussion of such alternative functions humans might be optimizing
for see recent work on contests [35, 30]). Thus, an interesting line of future research
is examining whether human behavior is more consistent with strong learning under
such different utility functions.

Some other questions are also open for future research. A learning-theoretic model
where the agents have limited learning capacities may give some theoretical traction
to our results. Also, one can test the performance of learning algorithms against hu-
man opponents, and study their responses, as has been done in similar games [23].
One could also study the effect of social ties on the strategies of the users, or the
effect of varying the rewards on players’ behaviors. Finally, our approach of evaluat-
ing the ability of humans as learners by comparing their score to a range of learning
algorithms would be interesting to apply to other settings.
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Including Spammers: Revised Results

In this appendix section, we revisit our findings without the exclusion of the so-called Spammers (the
85 players whose at least 25% of their bids were taken from the set {0, 1, 1000, 9,999}). Recall that in
total, there are 340 players who played a total of 11,327 games. The average revenue over all games, was
11, 832 (previously 13, 730).

Figure 7 shows the average player bid distributions, which is quite close to that in the original analysis
(though of course including more “spam” bids).

Fig. 7: Average player distribution of bids (with spamming users).
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Figure 8 shows the average bid per time period (and again, the results are similar to those occuring
with spammers, although unsuprisingly there are more players who do not adjust their bid when including
spammers, as these are by definition players who use the same bids frequently).

Figure 9 and Figure 10 show key clusters when including spammers in the clustering analysis. Again,
the results are qualitatively similar to the original analysis.

Figure 11 shows the average utility of bids against the empirical bid distribution. The figure is very
similar to that in the original analysis. In other words, although best-responses against “spam” bids do
well against the bids taken only from spammers, the overall best responses (when reacting to the general
population of all players, including both spammers and non-spammers) are very similar to what we found
in the original analysis. Figure 12 shows the utility distribution of players, which is again very similar to
the distribution found in our original analysis.

To conclude, repeating the analysis carried in the main paper which not filtering our players who
frequently use the same “focal-bids” (but do filtering our uses who used fake profiles) does not yield sig-
nificantly different results. This indicates that our results are relatively robust to our choice of mechanism
for eliminating spammers.
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Fig. 8: Average bid per time period.
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Fig. 9: Cluster 1 (64 players) player bid distributions
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Fig. 10: Cluster 2 (43 players) player bid distributions
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Fig. 11: Average utility against the empirical bid distribution

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Bids

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

E
m

pi
ric

al
 u

til
iti

es



Title Suppressed Due to Excessive Length 27

Fig. 12: Utility distribution of players
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