
HAL Id: hal-02133680
https://hal.science/hal-02133680

Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VerifCar: a framework for modeling and model checking
communicating autonomous vehicles
Johan Arcile, Raymond Devillers, Hanna Klaudel

To cite this version:
Johan Arcile, Raymond Devillers, Hanna Klaudel. VerifCar: a framework for modeling and model
checking communicating autonomous vehicles. Autonomous Agents and Multi-Agent Systems, 2019,
33 (3), pp.353–381. �10.1007/s10458-019-09409-x�. �hal-02133680�

https://hal.science/hal-02133680
https://hal.archives-ouvertes.fr

VERIFCAR: A framework for modeling and model
checking communicating autonomous vehicles

Johan Arcile1, Raymond Devillers2, and Hanna Klaudel1

1 IBISC, Univ Evry, Université Paris-Saclay, 91025 Evry, France,
{johan.arcile,hanna.klaudel}@univ-evry.fr

2 ULB, Bruxelles, Belgium, rdevil@ulb.ac.be

Abstract This paper presents a framework, called VERIFCAR, devoted to the
validation of decision policies of communicating autonomous vehicles (CAVs).
The approach focuses on the formal modeling of CAVs by means of timed auto-
mata, allowing a formal and exhaustive analysis of the behaviors of vehicles.
VERIFCAR supports a parametric modeling of CAV systems as a network of
timed automata tailored for verification and limiting the well-known state space
explosion. As an illustration, VERIFCAR is applied to check robustness and ef-
ficiency, as well as to asses the impact of communication delays on the decision
algorithms of CAVs, on well chosen case studies representing real-life critical
situations.

Keywords: Timed Automata, Formal Verification, Model Checking, Communicating
Autonomous Vehicles

1 Introduction

Autonomous vehicles are rational sophisticated entities (sometimes called agents) that,
as the term already suggests, act autonomously across open and distributed environ-
ments. They may have different perceptions of the environment because of the informa-
tion they possess, and differing interests in terms of the goal to be accomplished. Inter-
vehicle communications affect perceptions and, in turn, individual decisions and be-
haviors. A system of communicating autonomous vehicles (CAV system) is then both
a multi–agent system [32] and a real-time system [2]. More precisely, a CAV system
is a network of vehicles that communicate with their neighbors to fulfill a goal as fast
as possible while complying to the traffic laws and avoiding crashes. Moreover, the
correctness of such a system also requires to respect a set of time constraints.

Through some level of abstraction, computer simulations enable one to model the
behavior of vehicles in a chosen environment so that various kinds of scenarios may be
studied [6,28,33]. However, when vehicles present non-deterministic behaviors, simu-
lation tools are generally not exhaustive since each simulation corresponds to a single
path in the graph of all the possible behaviors. This is especially true in the context of
communicating agents, where agents interact during non-deterministic time intervals,
adding a new kind of non-determinism to the usual one, offering various possible ac-
tions at some point. It is therefore appealing to formally verify the core CAV behaviors
in order to be confident in the integration of autonomous vehicles into the road traffic.

2 Johan Arcile et al.

Formal modeling and verification of CAV systems require not only the definition
of both the vehicle states and the road (the environment) but also a specification of
interactions between vehicles and an expressive query language to check properties.
Ideally, the resulting model of a CAV system should be accurate enough to capture the
spatial and time aspects of the original system and should also provide a formal basis for
the verification of properties like robustness to faults, effectiveness of maneuvers or the
impossibility of collisions (safety), and for the calibration and assessment of decision
policies. The language for stating properties should be expressive enough for the needs
and appropriate for applying automatic verification techniques and tools.

A widely used automatic technique for system verification is model checking [10].
It provides algorithmic means for determining whether an abstract model – represent-
ing a hardware/software/mixed project (in our case a CAV system) – satisfies a formal
specification (property) expressed as a temporal logic formula. Moreover, if the prop-
erty does not hold, the method usually identifies a counterexample run that shows the/a
source of the problem.

The main objective of this paper is to present a way to perform formal modeling and
model checking of CAV systems, focusing on the impact of various types of commu-
nications on vehicles’ safety and traffic fluidity. More specifically, we present a frame-
work, called VERIFCAR, composed of a scalable model of a CAV system optimized for
formal verification together with a method of calculating indicators allowing to evaluate
the quality of a given autonomous vehicle decision policy. The framework is designed
in particular to be exhaustive on the non-determinism induced by the latency, commu-
nication delays and concurrency features. To show the usefulness of our approach, we
present various examples of impacts the communications may have on safety, efficiency
or traffic fluidity.

The underlying modeling formalism that we use in VERIFCAR to specify the be-
havior of CAVs is a model of Timed Automata [2], which is a standard supported by
several verification tools, e.g., the model checker UPPAAL [29]. The timed automata
formalism is the most well-established model for the specification and verification of
distributed real-time system designs. Among many advantages, it allows:

– to create a clear and concise abstract model of the considered CAV systems;
– to assess the robustness of a vehicle decision policy through a fault injection; and
– to apply model checking algorithms and tools, in particular the algorithms designed

for timed properties expressed in the temporal logic TCTL [1].

To the best of our knowledge, this kind of formal approach does not seem to have
been exploited up to now, except in our recent conference communication [4], of which
the present paper is an extended and improved version.

The structure of the paper is as follows: Sections 1 and 2 introduce the motivation
and objectives of this paper, and connect them with the related work in the field. Sec-
tion 3 defines our CAV systems at an abstraction level adapted to our issues. Section 4
introduces our framework VERIFCAR as a parametric network of timed automata syn-
chronizing through broadcast inter-vehicle communications. Two more elaborate com-
munication schemes (negotiations and communications via road infrastructure) are also
considered. Section 5 recalls briefly the temporal logic used in our framework and the
verification process, including the indicators chosen for the verification purposes and

VERIFCAR model checking of communicating autonomous vehicles 3

the way they can be computed during model checking. Section 6 justifies our choices
of parameters and variables to describe the system, together with a discretization re-
quired for verification, allowing the reduction of the resulting state space according to
a desired precision. Section 7 shows several examples of how VERIFCAR may be used
to study the behavior of autonomous vehicles in presence of inter-vehicle communica-
tions, with or without some forms of negotiation or vehicle-infrastructure communica-
tions. It includes a discussion on how a practitioner should use VERIFCAR. Section 8
concludes the paper by summarizing the contributions and highlights possible exten-
sions of VERIFCAR allowing to ease its usage and to tackle more complex problems.
Finally, an appendix details some algorithm evoked in the text.

2 Related work

The decision policies of CAVs can potentially impact safety, traffic fluidity and energy
consumption. They often rely in practice on trajectory planning algorithms studied in
3D simulation, often in conjunction with on-road experiments [19,21,15,23,16]. While
the reliability of such systems is a key concern of policy-makers [17], the formal veri-
fication of decision policies of CAVs appears to be under-explored.

Among the approaches dealing with formal verification in the context of autonom-
ous vehicles, some use timed models, which seem suitable for studying non-determinism
induced by message delays and latency in vehicles’ communications. This is the case
for example in [14], which aims at verifying the functional layer of mobile robots, i.e.,
the low-level layer which interacts directly with sensors and actuators and transmits
information to the decision layer. For this reason, it does not need to model several
agents evolving in a given environment. Another example is [18], which addresses the
soundness of vehicle platooning (enabling vehicles to travel as a group on the roads).
It focuses on properties of the vehicle platoon, for instance, correct joining and leav-
ing, and considers the representation of vehicles relatively to the platoon. Both these
approaches focus on specific properties and their optimized models are not complete
enough for our needs.

In [25] hybrid systems are used to model autonomous vehicles. With this form-
alism, combining both continuous state variables and discrete operating modes, their
model achieves a realistic representation of vehicles physics, similar to those which
may be found in simulations (slip angle, yaw rate, etc.). However, such a realism leads
to low performances during the verification phase, as shown in the presented case study.
Indeed, for a system with only two vehicles and a single one applying a decision policy
generating limited non-determinism (n paths for n time steps) and the absence of com-
munications between vehicles, the model checker dReach [20] already takes a few
minutes for a full exploration of the state space.

Another work, concerning train controllers modeled by hybrid systems [26], pro-
poses a similar representation of agents, taking into account their velocity and acceler-
ation in order to model a realistic physical movement. Here, communications between
trains are possible, but the state explosion phenomenon is even more present, since a
simple case with two trains takes more than half an hour to give results.

4 Johan Arcile et al.

The closest work to ours seems to be [27], involving robots evolving in a two dimen-
sional grid and modeled with a formalism based on timed automata. The mobile robots
are represented as agents evolving in a physical environment but at a very high level
of abstraction and only basic actions can be performed (such as moving to an adjacent
cell). In particular, the model does not include velocity or acceleration values, which
are crucial for the realism of vehicles on a road. Furthermore, agents cannot commu-
nicate with each other, making it impossible to study the non-determinism induced by
communications on a CAV system.

3 General view of a CAV system

The systems of CAVs we consider are composed of several lanes forming a portion of a
motorway on which several vehicles can move in the same direction, each one realizing
some goal. Each vehicle is defined by a set of constants such as its length or braking
capacities. We assume that the vehicles are provided with various perception sensors
allowing to observe the behavior of their neighbors. As our approach focuses on the im-
pact of communications on decisions, we assume these sensors are perfect, in the sense
that the information obtained from them is always accurate and immediate. Vehicles are
also able to communicate and receive pieces of information, which are not directly ob-
servable, such as the planned lane change of the other vehicles. These communications
are timed in order to realistically represent the delays between emissions and receptions
of data. The behavior of each vehicle consists in repeating endlessly, at its own constant
frequency:

– a computation allowing to make a decision on the immediate action to be performed
(i.e., execution of the decision algorithm) in the form of an acceleration (speed
increase, braking, no change) and a direction (left, right, no change), followed by

– the communication of its intention (in the form of the trajectory it wishes to follow)
to all vehicles able to receive this information. Received information coming from
the other vehicles is stored in the database of the vehicle and used when running
the decision algorithm.

The road. In our framework, we consider a road section composed of one or more
unidirectional lanes the vehicles move on, and we store at any time the coordinates
(position) of each vehicle on it. The current position (x,y) (as well as the initial one) is
expressed as the distance from the beginning of the road section (x) and from one of the
road borders (y). Due to verification purposes requiring discrete value domains, these
distances are expressed using discrete values, but precise enough to satisfactorily model
the vehicle progression on the road (see Section 6 for more details on the discretization
aspects). As a consequence, the position of a vehicle is a point on a two-dimensional
orthogonal grid on which the longitudinal and lateral gaps between adjacent points may
be different.

The vehicles. Each vehicle is approximated on this orthogonal grid by a rectangle with
a given length and width, centered on its position (x,y) as illustrated in Fig. 1. Its state

VERIFCAR model checking of communicating autonomous vehicles 5

Figure 1. A portion of a road discretised in x-coordinate with a granularity Granx and in y-
coordinate with Grany with a moving vehicle on position (x,y).

is thus described by a record containing its position (the rectangle’s center), its cur-
rent longitudinal and lateral speeds, its longitudinal acceleration (in a given range from
negative to positive values) and its knowledge about other vehicles (for example in the
form of timed trajectories). Note that the types3 of these variables are critical and have
to be chosen with care as they directly impact both the size of the state space and the
modeling precision. This topic will be discussed in Section 6. Since we are not aiming
at checking the control of vehicles (i.e., the module responsible for producing a traject-
ory according to the decision choices), we abstract from the physical laws involved in a
maneuver such as rotation or inertia. Hence, the rectangle representing the vehicle never
rotates and the direction change is applied directly on the lateral speed value. In other
words, turning the steering wheel impacts the speed value that will make the rectangle
move on the y axis, while its longitudinal speed still makes it move on the x axis.

The decision. The vehicle decision algorithm follows a given decision policy. The latter
may define in particular parameters such as safety distances to be respected in function
of the speed. In our experiments, we use a policy common to all vehicles, but this
limitation may easily be dropped. In order to make a decision, the algorithm takes into
account its own state information including what it knows about its neighborhood (for
example, a representation of timed trajectories of other vehicles) as well as its own route
(goal). A route of the vehicle is defined as a sequence of positions the vehicle has to
reach. More precisely, we consider a sequence of sets of positions to be reached, with
the requirement to reach at least one position of each set. These sets may contain several
adjacent lateral positions at the same distance from the origin. Concretely, it allows one
to define the route as a parameter that will impact the decision choices according to the
exit the vehicle wants to take.

Environment update At a constant frequency, the longitudinal speed and position of
each vehicle is updated according respectively to the acceleration of the vehicle and

3 A type corresponds here to a range of integers

6 Johan Arcile et al.

longitudinal and lateral speeds. We call that process the environment update, as it up-
dates the state of all agents on the system simultaneously. The environment update fre-
quency should be higher than the frequency of the decision algorithm of each vehicle.
This is useful in order to avoid that there is no update between two decisions of the
same vehicle, which would mean the first one had no impact on the state of the vehicle.
In general, in order to represent the actions of the vehicles in a realistic way, the envir-
onment update frequency should be as high as possible. However, the size of the state
space grows exponentially with the increase of this frequency.

Timed trajectories. The decision algorithm aims at predicting future conflicts between
vehicles, and choosing the most suitable maneuver regarding their needs. We provide
for this purpose predicted trajectories but other specific algorithms might be used.

The predicted trajectories of vehicles are timed abstractions represented as sequences
of positions the vehicle will reach at some dates up to some time horizon (typically
10 s), as shown in Fig. 2. They are meant to represent the intention of a vehicle at a
given moment and can be communicated to other vehicles. In order to optimize memory
space, these trajectories are never stored but they are computed on demand from the in-
formation of a vehicle and their neighbors, which has to be as compact as possible. To
do so, we encode these trajectories with two variables with a limited range of possible
values:

– The lane the vehicle is currently aiming at.
– The time delay planned by the decision algorithm before starting a lane change (if

any).

The latter delay is expressed using a gap and a maximum duration. For instance, a gap of
100ms and a maximum duration of 5 seconds for the time delay would give 51 possible
values ([0.0,0.1,...,4.9,5.0]) for the time delay variable. To indicate the next lane change,
this yields 103 possibilities: 51 possibilities for a left change, 51 for a right change and
1 for no lane change.

Figure 2. A two lanes road section where a vehicle (dashed rectangle) is centered in (4,2) and its
predicted timed trajectory (6,2);(8,2);(10,3);(12,4);(15,5);(18,5);(21,5) for seven next time
periods is shown by gray dots (the progression in x varies in function of the speed).

In the real life, the predicted trajectories would of course be much more accurate but,
as in our modeling the timed precision of the environment depends on the environment

VERIFCAR model checking of communicating autonomous vehicles 7

update frequency, it is of no use to represent states which could never be observed,
neither by the vehicles nor by the environment. As a consequence, we base our timed
trajectories on the environment update frequency.

Cooperation aspects. As we aim to model cooperative vehicles, in addition to the
vehicle-to-vehicle information exchange, we propose to study two other forms of com-
munications that are likely to be used in the future for CAVs: negotiation and infra-
structure-based decision. These aspects are novel with respect to our previous work [4].

Negotiation is modeled as a distributed algorithm in which agents can interact with
each other, each agent trying to impact other agents for its personal benefit. Typically,
it can be the case that a vehicle “requests” another one to wait for some time before
doing an action in order to minimize the negative impact that this action may have on
the safety and/or fluidity of the traffic. The decision algorithms take into account such
information using broadcast communications.

Infrastructure-based decision consists in using terminals along the road, which ob-
serve the moves and intentions of vehicles, compute and send orders to vehicles, con-
trolling traffic in a centralized way. Here, such terminals are modeled in the same way
as the vehicles, i.e., as agents which receive data broadcasted by vehicles and compute
the orders to be sent at a given frequency.

Note that we designed a decision algorithm for CAV systems with several variants,
with and without taking into account the above cooperation aspects. We needed them
in order to illustrate our approach, make various experiments, and show how easily our
modeling choices allow to modify the environment of the system. However, it must be
understood that the present paper focuses on the modeling of such systems, to show
how to assess the robustness of a given decision policy, but does not have any ambition
to present and promote a concrete and efficient decision algorithm.

4 VERIFCAR: a timed automata based framework for CAVs

Communication delays between emission and reception of data might be one of the
most critical and yet unpredictable parameters in the context of CAVs. Our objective
is to make it possible to study the non-determinism induced by such communication
delays. The timed automata formalism provides an efficient way to model such sys-
tems, leading to several tools that have proved their usability for verification, such as
UPPAAL [29].

We present in this section our framework, called VERIFCAR, implementing the
modeling ideas introduced in the previous section, using the timed automata formal-
ism. The model will be expressed as a network (a set) of timed automata synchronizing
using broadcast communications. The states of each automaton are called locations.
One may travel between locations following a timed schedule constrained by the la-
bels of the visited locations and those of the crossed transitions (arcs). Some locations
are urgent, meaning that the time may not evolve when the corresponding automaton
is there. To express timed information, special variables called clocks evolving with
time are introduced. They can be reset and can be used in Boolean formulas defining
invariants on locations or guards on transitions.

8 Johan Arcile et al.

The functioning of the automata is as usual, i.e., each automaton starts from its
initial configuration (initial location and all clock values equal to zero), it may stay in
a location when its invariant (a predicate labeling the location) is true, and a transition
may occur when its guard (a predicate labeling the transition) is valid (and so is the
invariant of the destination location).

Invariants and guards may use constants (usually in the form of parameters) and
variables, either being global or specific to an automaton (like a component of a vector
indexed for example by a vehicle i).

All clocks are assumed to progress together. A broadcast channel k has an emitter,
denoted k!, and a receptor, denoted k?, each one associated with at least one transition.
When a transition with an emitter is crossed, all available transitions in the network
with a reception on the same channel must be crossed simultaneously (meaning that no
other actions can happen in between and clocks value cannot change).

4.1 VERIFCAR components and their roles

Let n be the number of agents in our system. Our model thus comprises n+1 automata:
the environment automaton A0, and the agents automata Ai for 1 ≤ i ≤ n. Agents can
be either communicating vehicles or a communicating infrastructure (typically a set of
road side units). Besides a set of constant parameters, the data structure of the model is
encoded as a set of sub-structures, each of them modeling the state of a single vehicle.
All the variables that must be known about that particular vehicle (position, speed,
knowledge about the environment, etc.) are members of such a sub-structure. Note that
in the timed automata formalism, the variables need to be integer numbers. Along with
this data structure, we define n+1 clocks Ci, for 0 ≤ i ≤ n, and a broadcast channel k.
We also consider three functions :

– update(), which updates the state of all agents, i.e., their longitudinal and lateral
position, speed and acceleration;

– decision(i), which computes the next acceleration and direction to be applied for
agent i;

– communicate(i), which sends information about agent i intentions to other agents.

The templates of the VERIFCAR model are then depicted in Fig. 3.
Agent automaton Ai (for 1 ≤ i ≤ n) is associated with clock Ci. The role of this

automaton is to trigger both the decision of agent i and the communication of this agent
to other agents. It is composed of three locations s0, s1 and s2. Location s0 is the ini-
tial one: it is an urgent location (meaning that it must be left as soon as possible) and
has an outgoing transition to s1, which sets Ci to its initial value (defined as a para-
meter of the agent). Location s1 is associated with an invariant Ci ≤ freqi where freqi
is a parameter defining the time interval between two decisions for agent i. There is a
transition from s1 to s2 with a guard Ci ≥ freqi, which triggers the function decision(i)
and resets Ci. This allows for the decision to occur exactly every freqi time units. The
transition is also associated with the broadcast channel receptor k?, whose role will be
explained later. Location s2 is associated with an invariant Ci ≤MIN_comm_delayi and
has an outgoing transition to s1 with a guard Ci ≥MAX_comm_delayi, which triggers

VERIFCAR model checking of communicating autonomous vehicles 9

s0 s1 C0 ≤ S
update()

C0 ≥ S

C0 := 0;update();k!

C0 < S∧C1 ≥ freq1

k!

C0 < S∧
∧n−1

i=1 Ci < freqi∧Cn ≥ freqn

k!

..

.

A0

s0 s1

Ci ≤ freqi

s2

Ci ≤MIN_comm_delayi

Ci := init_clocki Ci ≥ f reqi;k?

Ci := 0;decision(i)

Ci ≥MAX_comm_delayi

communicate(i)
Ai

Figure 3. VERIFCAR: timed automata templates A0 (for the environment) and Ai (for the agent i).
The initial locations are urgent and have double borders.

the function communicate(i), where [MIN_comm_delayi,MAX_comm_delayi] is the
non-deterministic time interval between data emission and reception by other agents.
This model allows to reuse a single clock for two timed operations (decision and com-
munication). However, it requires that freqi is greater or equal to MAX_comm_delayi.
This should not be an issue since latency delays in vehicle-to-vehicle protocols are ex-
pected to be less than 100ms [31,8,7] while decision modules cited in the literature
often use a 10Hz frequency [13,22]. Note that the automaton is the same for vehicles
and infrastructures, but the data structure and the actions performed by decision and
communication are different.

Automaton A0 is associated with clock C0. Its role is to update on a regular time
basis (given as parameter S) the state of all agents. It is composed of two locations
s0 (initial) and s1. Location s0 is an urgent location and has an outgoing transition to
s1, which triggers the function update(). This is used to make the first update that
initializes the state of all agents. Location s1 is associated with an invariant C0 ≤ S
and has a looping transition with a guard C0 ≥ S, which triggers the function update()
and performs a reset of clock C0. This allows for the regular update of the system’s

10 Johan Arcile et al.

state. This transition is also associated with the broadcast channel emitter k!. As the
update emulates the continuous movement of objects, it should always have priority
on all decision transitions available at the same time4. Otherwise, it would create paths
in the state space, which only exist because of the loss of information due to the used
abstractions. The role of the broadcast channel k is to deal with a form of irrelevant
non-determinism: all transitions triggering the decision process are associated with a
broadcast channel receptor k? so that, in case of concurrency, the update always has to
be triggered first.

Furthermore, thanks to the nature of the broadcast channel we use, all decision pro-
cesses available in the same time unit will be triggered simultaneously, avoiding useless
intermediary states in the system with local non-determinism without any impact on the
system. Indeed, the decision made by an agent i is known by other agents only after i
communicates, or by seeing the behavior change, which occurs after the update fol-
lowing the decision. Therefore, the order in which competing transitions triggering the
decision process are executed is irrelevant.

These transitions must now wait for k! to be triggered, but are not necessarily syn-
chronized with the update sampling defined by S. A solution to this issue would be to
add on A0 a looping transition on s1 with a guard C0 < S∧

∨n
i=1 Ci ≥ freqi that triggers

k!. However, the disjunction operator
∨

is not supported by the tool we use. To emulate
this behavior without introducing useless non-determinism, we added on A0 one loop-
ing transition per agent (hence n loops), so that for each i ∈ [1,n] there is a transition
from s1 to s1 with a guard C0 < S∧

∧i−1
j=1 C j < freq j ∧Ci ≥ freqi that triggers k!. This

particular modeling can be seen as a binary decision diagram. Indeed, if at least one
agent can perform its action, there exists i ∈ [1,n] such that decision(i) is available and
∀ j ∈ [1, i−1] decision(j) is not. Therefore, only one transition in A0 is available at any
moment, which induces a deterministic progression with this automaton.

5 VERIFCAR checking objectives and methodology

In order to use the chosen model checking tool for the VERIFCAR model, the queries
must be expressed in the computational tree logic (CTL) [12]. CTL queries are formed
of pairs of path quantifiers A or E (for Always and Exists, respectively) and path op-
erators G or F (for Globally and Finally, respectively). For instance, formula EF p
(respectively AF p) means that there exists at least one state satisfying property p on
at least one path (respectively on all paths) starting from the initial state, where p is an
atomic formula or an implementation of a (even complex) Boolean function. For ex-
ample, to check if there is a possibility that vehicle i reaches eventually lane number 2,
one may use a query of the form EF vehicle[i].lane = 2.

5.1 Indicators for the analysis

As already mentioned, the goal of VERIFCAR is to make it possible to assess and com-
pare decision algorithms for CAVs with respect to properties such as safety, efficiency,

4 It only occurs for decision transitions, not for communication ones, for which actions are
independent of the vehicles’ state, and therefore of the update function.

VERIFCAR model checking of communicating autonomous vehicles 11

Figure 4. Illustration of overlaps for x-axis (top) and y-axis (bottom). Faster vehicle A is in dark
gray while vehicle B is in light gray. The positions of the vehicles are shown at some chosen
dates, indicated in top left corner for A and top right corner for B. Dashed areas corresponds to
the overlap zones.

comfort or fairness. Here we provide a set of CTL queries to be used in our experi-
ments, presented in the next section, and we shall try to generalize them in order to get
an automated methodology.

Each of the mentioned aspects will be checked with various indicators. To check the
safety aspect, we propose a Time-to-Collision indicator (TTC), which gives, for a given
time t and two vehicles, the time before collision if both vehicles keep moving at the
same constant speed. TTC is a commonly used indicator in the literature [30,24] when
assessing safety for vehicles on a single lane. Here, we adapt it to a two-dimensional
space.

For two moving points on an axis, the instant tmeet when they coincide is given by
their present distance divided by the difference of their speeds. The algorithm comput-
ing the TTC we developed for our framework generalizes this idea for two vehicles of
some size moving without rotation on a two dimensional grid: see Appendix A.

When a vehicle is followed at some distance by a faster one, for both longitudinal
and lateral directions (i.e., on the x and y axes), we may define a time interval [tmeet , tmeet]
corresponding to the overlap of the two vehicles: tmeet is the instant where the closest
extremities (on the considered direction) coincide, and tmeet is the same for the most
distant extremities. The TTC is then obtained by comparing the time intervals obtained
for both directions:

12 Johan Arcile et al.

– If the two resulting time intervals are non-empty and intersect, the left border of
this intersection yields the TTC value. If that TTC value is zero, it means there is a
collision presently occurring between the vehicles.

– If there is no intersection between these intervals, there is no possible collision
presently expected, and by convention the TTC value is considered infinite.

As an example, consider the situation shown in Figure 4. Initially, vehicle A is
in position (3,6) with a longitudinal speed value of 5 and a lateral speed value of -2,
while vehicle B is in position (4,2) with a longitudinal speed value of 3 and a lateral
speed value of 0. The vehicles lengths and widths have a value of 2 units. The time
overlap on the x-axis is [−0.5,1.5] while the time overlap on the y-axis is [1,3]. The
intersection of these intervals ([1,1.5]) is the time window where vehicles overlap on
the two dimensional environment, see Figure 5. The left border value gives the TTC (in
this case TTC= 1).

Figure 5. Illustration of TTC computation based on longitudinal and lateral time intervals.

When one considers a whole trajectory, one can compute the smallest TTC, and
when considering all the trajectories, one gets a minimal and a maximal value for this
smallest TTC. The complexity of that computation is in constant time, which is very
interesting with respect to our concern to reduce the computation time.

Efficiency, comfort or fairness can be checked through indicators such as travel
time, deceleration or waiting time. One can chose to check either extrema, mean value,
or covariance between agents for such indicators. In general, it is possible to use in our
framework any of the usual indicators used in the literature, such as the ones depicted
in [9] (e.g. waiting time, fuel consumption, loss time, etc.).

5.2 Analysis methodology

Since we study complex scenarios involving non-determinism, different executions will
often lead to different states. Therefore, we should not consider a single value for a given
indicator but a set of possible values.

For each execution, there is a smallest value for some indicator indic. We call
indicmin the set of those smallest values (each for one execution). Let k df

= inf(indicmin)

VERIFCAR model checking of communicating autonomous vehicles 13

and k′ df
= sup(indicmin), then k is the smallest possible value that satisfies

QEF
min(k)

df
= EF indic≤ k

and k′ is the smallest possible value that satisfies

QAF
min(k

′)
df
= AF indic≤ k′.

It means EF indic≤ k−1 and AF indic≤ k′−1 must be false.
Similarly, we call indicmax the set of the greatest values of indic for the various

possible executions. Let k df
= inf(indicmax) and k′ df

= sup(indicmax), then n is the smallest
possible value that satisfies

QAF
max(k)

df
= AF indic≥ k

and m is the greatest possible value that satisfies

QEF
max(k

′)
df
= EF indic≥ k′.

It means AF indic≥ k+1 and EF indic≥ k′+1 must be false.
To find these extrema, we use the classical dichotomy algorithm in conjunction with

model checking queries. Let Q(n) be either QEF
min(n) or QAF

min(n) and [i, j] be the range
of possible values for n. Algorithm 1 describes the procedure to determine the smallest
possible value that satisfies Q(n). The maximal number of queries needed to find this
value is log2(j− i).

If Q(n) is either QEF
max(n) or QAF

max(n), we use the same algorithm while adding a
negation to the condition: if (¬ Q(u+v

2)) and return u instead of v.

Algorithm 1 Computation of the minimal value of indicator indic for which Q(n) is
true. [i, j] is the range of possible values for n, with i < j. It is assumed that Q is mono-
tonic, that Q(j) is true and Q(i) is not.

u← i
v← j
while u 6= v−1 do

if Q(u+v
2) then

v← u+v
2

else
u← u+v

2
end if

end while
return v

In addition to these numerical indicators, arrival orders of vehicles can give addi-
tional information on their behaviors. We define a Boolean function denoted before(x,y)
taking two vehicles x and y as arguments and evaluating to true on a state if x has
reached the end of the road and y has not. To find all the possible arrival orders, we
check for every pair of vehicles A and B the following queries: EF before(A,B) and
EF before(B,A). For each pair we have three possible results on the couple of queries:

14 Johan Arcile et al.

– Both are true, A arrives first in some executions and B arrives first in others.
– Only one query is true, the order never changes for the pair in all possible execu-

tions.
– None is true, both vehicles always reach the end of the road at the same time unit.

Thanks to these simple reachability queries, we manage to have a picture of the possible
behaviors that may occur. In some cases of highly non-deterministic behaviors, further
investigation might be useful to check arrival orders between more than two vehicles.
This case will be illustrated in Section 7.3.

6 Modeling choices, calibration and precision

In order the framework to be usable in practice, it is necessary to maintain a balance
between the realism of the representation and the efficiency of the model checking. That
implies having the smallest possible state space while losing the least amount of inform-
ation. Since the available tools that are able to formally verify such systems can only
handle integer data structures (basically: parameters, variables and arrays), we have
to propose a satisfactory discretization for the various physical quantities describing
the vehicles’ behaviors. Indeed, the complexity of the verification procedures rapidly
increases with the range of these integer variables, while the accuracy of the models
requests an adequate granularity.

Our discrete representation of the state of vehicles will thus be encoded with the
following discrete variables:

– its (longitudinal and lateral) positions x and y,
– its forward speed v with the corresponding forward acceleration a,
– and the direction of the vehicle D ∈ {−1,0,1}, corresponding respectively to a

lateral move to the right, no change and to the left.

With the exception of D, we will denote by Grana, Granv, Granx, Grany the granularity
of these quantities, i.e., the gap between two consecutive values (this allows to normal-
ize the data as integers), and by N (with the corresponding subscripts) the size of the
needed data structure, called a range.

The updates of the forward speed and position values after a period are expressed by
the usual formulas. However, as our objective is to be able to efficiently perform model
checking, we need our modeling to be parametric, making it possible to preserve an
adequate balance between the size of the state space to be analyzed and the desired level
of realism. The latter directly depends on the period at which the system is observed,
called the sample. Thus, the following parameters and constants will be used to describe
the system:

– S is the sample period, in seconds (written as s);
– L is the length and R is the width of the road segment, in meters (written as m);
– Vmin is the min and Vmax is the max value of (longitudinal) speed expressed in meters

per second (written as m/s);
– Amin is the min and Amax is the max value of acceleration expressed in meters per

second squared (written as m/s2);

VERIFCAR model checking of communicating autonomous vehicles 15

– Grana is the granularity of the acceleration expressed in meters per second squared;
– W is the lateral speed during a lane change, expressed in meters per second.

As a consequence, the acceleration range is then Na = 1+(Amax−Amin)/Grana,
assuming that 0 is one of the possible accelerations and that Amax/Grana as well as
Amin/Grana are integers. The acceleration is then expressed as a = A ·Grana, the lon-
gitudinal speed as v = V ·Granv, the longitudinal position as x = X ·Granx, and the
lateral position as y = Y ·Grany, where A, V , X , Y are integers (normalized variables
without dimensions). The interest of introducing those dimensionless variables will be
to simplify the formulas for state updatings, when granularities are chosen adequately.

Then, the granularities and ranges for the longitudinal and lateral positions and
speeds may be computed, as well as their normalized updates after one sample S:

For the longitudinal speed, the update after one sample is

v′ = v+a ·S.

In normalized variables this gives V ′ =V +(A ·S ·Grana)/Granv for a given granularity
Granv, and V ′ =V +A if we take the granularity Granv =Grana ·S. The main advantage
of the latter is that it does not introduce new losses and simplifies the formula. The
resulting range is Nv = 1+(Vmax−Vmin)/(Grana ·S), where we use a ceiling function
if the division does not provide an integer.

For the longitudinal position, the update after one sample is

x′ = x+ v ·S+a ·S2/2.

For a given granularity Gx, this leads in normalized variables to X ′ = X + ((V · S ·
Granv)+ (A ·S2/2 ·Grana))/Gx = X +(2 ·V +A)(Grana ·S2/2)/Gx. In order to avoid
additional losses, we should choose the granularity Gx = Grana · S2/2, which yields
X ′ = X + 2 ·V +A. However this granularity will usually be uselessly small (for in-
stance, if Grana = 1 and S = 10−1, we get a granularity of 5 mm), leading to a huge
range. In order to avoid a state space explosion during the verification process, we shall
thus approximate x with a precision of Granx = p ·Gx, with an adequate parameter
p. Hence, the normalized update of x becomes X ′ = X + (2V +A)/p (rounded) and
the corresponding range is Nx = L/Granx. In order to choose a suitable p, we may
observe that Granx is the maximal longitudinal loss of precision we may face during a
sample. Hence, we may introduce the normalized maximal loss of precision5 during one
second Normx = Granx/S = p ·Granv/2. The value of Normx may be fixed independ-
ently from the constants of the system and we get the corresponding Granx = Normx ·S
and p = 2 ·Normx/Granv.

For the lateral position update after one sample we have

y′ = y+W ·S ·D

with a corresponding granularity Grany =W ·S since W is a constant (the lateral speed
when there is a lateral move) and the direction of the vehicle D ∈ {−1,0,1}, corres-
ponding respectively to a lateral move to the right, no change and to the left. The range

5 Actually twice the loss of precision, thanks to rounding.

16 Johan Arcile et al.

of the direction is thus ND = 3, while the range of the lateral position is Ny = R/Grany.
In the normalized variables, this becomes Y ′ = Y +D.

The size of the state space due to the variables is then obtained by multiplying
all the above ranges, for each vehicle, hence it behaves like O(αn), where n is the
number of vehicles and α = Na ∗Nv ∗Nx ∗ND ∗Ny. Clocks also take part to the state
space, so that the size of the full state space is obtained by multiplying the above by an
additional exponential, which relies in an intricate way on the number of intersections
and differences of the various time intervals (some may be reduced to a single value)
occurring in the guards and invariants of the system, as detailed in [3].

Fortunately, the formal tools do not necessarily construct the whole state space to
analyze such systems. Of course, the complexity of the verification procedures also
depends on the degree of non-determinism present in the specification and the difficulty
to solve the queries.

7 Analysis of CAV systems with VERIFCAR.

In this section, we will illustrate the process of studying the decisions of CAVs with
VERIFCAR. We focus on two non-deterministic scenarios, which are well suited to ex-
hibit how communication parameters (and especially temporal ones) are involved in the
behavior of the vehicles. First, we point out the impact of communication delays on
the non-determinism of the system, i.e., delays between the broadcast and the recep-
tion. Then, by injecting faults in the operation of emitters and receptors, we study the
robustness of a given decision policy facing such failures. Finally, we compare three
decision policies: using only vehicle-to-vehicle communications, using negotiation and
using communications via intelligent road infrastructures, for safety and efficiency, i.e.,
the time that the vehicles need to reach their goal.

The results of our experiments, obtained using the queries introduced in Section 5,
are reported in the tables below with the following meaning:

– The arrival order between two vehicles tells which one arrives first. In case of non-
determinism, this may give a better insight on the vehicles behaviors than travel
times alone, as this shows if a vehicle is able or not to overtake another one.

– The travel times of a vehicle (i.e., the instant when the vehicle leaves the road por-
tion) show the minimal and maximal possible values for all the possible scenarios.

– The worst TTC for two vehicles is the minimal time-to-collision value for some
trace. For all the possible traces starting from the same initial state, a minimal and
a maximal value of the worst TTC are computed. The minimal one corresponds to
the most dangerous scenario and the maximal one to the safest scenario.

The scenarios we use in the experiments involve three vehicles evolving on a three-
lane motorway section of L = 500 m long and R = 10.5 m large with two lanes (left
and right) and a junction lane which starts at the beginning of the section, joins the
right lane after 200 m and ends 200 m later. The constraints defining the velocity of
the vehicles are Vmin = 0 m/s and Vmax = 40 m/s (= 144 km/h); Amin = −5 m/s2 and
Amax = 3 m/s2, and W = 1 m/s. We fix Grana = 1 m/s2 and the environment sample
S = 0.1 s (10 Hz). Such an S allows to monitor the system’s behavior in a satisfactory

VERIFCAR model checking of communicating autonomous vehicles 17

way and such a Grana yields a sufficient number of acceleration choices for the decision
algorithms of vehicles. One may notice that it is a wise choice as it also leads to good
integer divisions in the formulas we expressed in Section 6. With such parameters and
the granularity guaranteeing no further loss of information, i.e., Gx = 0.005 m, the
complexity of the data structure per vehicle is of the order of 1011 and it becomes
(1011)3 for our 3 cars scenario, which might be problematic for the verification tools.
We then fix a reasonable normalized accuracy Normx = 1 (meaning the loss of precision
on the longitudinal position of the vehicle in one second is always less than 1 meter,
down to 0.5 meters thanks to rounding) and get p = 2 · q/Granv = 20. Therefore, the
granularity on x becomes Granx = p ·Gx = 0.1 m and this approximation allows to
divide the state space by p3 = 8000 while not significantly impacting the behavior of
the model.

7.1 Decision algorithm

The objective of our decision algorithm is that a vehicle follows its route as fast as
possible while complying to the code rules and avoiding collisions with other vehicles.
The decision algorithm is local (i.e., each vehicle runs its decision on its own) and takes
as an input the global knowledge the vehicle possesses on itself and on other vehicles.
It computes timed trajectories of its neighbors, allowing in turn to compute as an output
its own new acceleration and direction. The algorithm has to avoid future collisions
with vehicles in front of the vehicle, but not behind it as long as there is no immediate
danger (the vehicles in front have priority with respect to the ones behind). The expected
emergent behavior is that vehicles adapt to the actions of those who precede them.

Algorithm 2 proposes a high level version of the main decision function where
[MinAcc,MaxAcc] are all possible acceleration values, [1,NbLanes] are all possible
lanes and [0,MaxDelay] are all possible delay values. The decision function tries to
find a suitable trajectory with the following objectives (by order of priority):

– going as fast as possible,
– being as close as possible to the lane defined by its route,
– delaying as little as possible its direction changes

Intuitively, a non-zero delay means that the vehicle needs to change lane, but its best
option is to do it later: the decision is thus to go straight until the next decision is taken.

The full implementation, together with all source material, can be found at https:
//forge.ibisc.univ-evry.fr/jarcile/VerifCar/. This algorithm has
been implemented for the case studies and is given for a better understanding of the
present section, but should not be considered as one of our main contributions: our goal
is to illustrate the methodology, not to promote a clever decision making algorithm.

7.2 Impact of vehicle-to-vehicle communication on the behavior of CAVs

In this section, we focus on a decision process not involving cooperation (without nego-
tiation nor infrastructure). Thus, each vehicle broadcasts its planned trajectory without
trying to impact explicitly the behaviors of the other vehicles. Of course, it also receives
the information from its neighbors and uses it in its decision process.

18 Johan Arcile et al.

Algorithm 2 High level pseudo-code for the decision function
Compute the set of timed trajectories of vehicles in front
Define the lane L to reach w.r.t. the route
for Acceleration←MaxAcc to MinAcc do

for Lane ∈ [1,NbLanes], starting from L and exploring the neighborhood of L do
for Delay← 0 to MaxDelay do

if Chosen behavior does not generate conflict with vehicles in front then
if Delay = 0 (Waiting not needed) then

Define Direction w.r.t. the chosen Lane
else

Direction← 0 (Vehicle goes straight because it is waiting)
end if
Return new Acceleration and Direction values

end if
end for

end for
end for
Emergency behavior

We use Scenario 1, in which initially vehicle A is on the right lane at position 50 m
with a speed of 20 m/s, vehicle B is on right lane at position 0m with a speed of 35 m/s
and vehicle C is on the junction lane at position 20 m with a speed of 28.2 m/s. All the
vehicles aim to reach the right lane at the end of the road portion, cf. Figure 6.

Figure 6. Initial position and possible trajectories of CAVs in Scenario 1.

We assume that vehicle-to-vehicle communications in the default case take between
30ms and 40ms. All the decisions of vehicles have an activation frequency of 10 Hz. In
order to avoid unrealistic synchronous behaviors of vehicles, the clocks of agents A, B
and C are initialized respectively to 0 ms, 30 ms and 70 ms. This kind of lag between
clocks (which is a real life situation where vehicles do not synchronize their clocks)
induces non-determinism as a vehicle might take a decision after or before receiving
a critical information. Note that since all vehicles have the same decision activation
frequency, a scenario where clocks would be initialized with the same value would
have a deterministic behavior, as the reception of data would always happen between

VERIFCAR model checking of communicating autonomous vehicles 19

two given decisions, no matter the moment it happened in the communication delay
interval.

Indicator
Variant of communication delay

[30,40]ms [40,40]ms [0,90]ms

Arrival order
A vs B B B B
A vs C C C C
B vs C B|C B B|C

Travel time [s]
A (13.1,13.2) (13.1,13.1) (13.0,13.2)
B (12.7,13.0) (12.7,12.7) (12.7,13.0)
C (12.6,12.8) (12.8,12.8) (12.6,12.8)

Worst TTC [s]
A and B (1.03,2.90) (2.90,2.90) (1.03,2.90)
A and C (∞,∞) (∞,∞) (2.80,∞)
B and C (1.50,∞) (∞,∞) (1.50,∞)

Full state space exploration [s] 11 4 53

Table 1. Comparison of arrival order, travel time and TTC in Scenario 1 for three variants of
communication delay intervals. For arrival order, X vs Y in column 2 indicates that we check
who between X and Y is faster, while the winner is indicated in columns 3-5. For travel time and
TTC, the pairs in columns 3-5 correspond to the resulting inf and sup values.

Impact of communication delays In Table 1, one can see the differences on Scenario 1
when using various time intervals for the communication delays. The full state space
exploration indicates the time corresponding to build and fully explore the state space
once, i.e., for a single UPPAAL run. Some indicators such as Travel time or Worst TTC
require dichotomy searches, and so several UPPAAL runs, however the number of such
runs does not rely on the size of the state space and is generally small. Furthermore,
the state space is memorized and not all runs need to fully explore it. For example, the
computation of the travel time (which is the most costly of the indicators we considered,
in terms of computation time) takes about 45 s to obtain the inf and sup values of the
travel time when the full exploration time equals 11 s; similarly, it is about 180 s when
the full exploration time equals 53 s, corresponding roughly to the same magnitude
(factor 4).

The default case, where the communication delay is in [30,40] ms, illustrates a non-
deterministic behavior since several indicators show different possible values, meaning
there exists different paths leading to different results. By comparing the travel time
values, we can see that travel time for A is always longer than for B or C, meaning it
will always be behind the other two at the end of the road. This is confirmed by the
arrival order indicator. The inf Travel time value for B is between the inf and sup travel
time values of C. However, the inf and sup values for B are greater than respectively

20 Johan Arcile et al.

the inf and sup values for C. Therefore, it could be the case that B is always behind C.
This can be checked thanks to the arrival order between B and C, which indicates that
there exist paths where B is before C at the end of the road and some paths where it is
the opposite. Finally the worst TTC value gives us indications about safety (an ∞ value
means there was never any danger of collision, otherwise a low value means we were
close to a collision). It is useful when analyzing the impact of decision parameters, or
comparing decision policies.

Here, in addition to the default case, we check two variants of the communication
delays: one where we reduce the interval to [40,40] ms (deterministic delays), and one
where we extend it to [0,90]ms. As expected, all the inf and sup values obtained when
we reduce the interval are bounded by the values for the default case, whereas when
we extend the interval, all the values for the default case are bounded by the new inf
and sup values. This is consistent with the time needed to fully explore the resulting
state space, which increases proportionally to the interval, as indicated by the last row.
More precisely, the [40,40] ms interval seems to result on a deterministic scenario with
only one path. It is worth to be mentioned that using a single possible delay value
greatly reduces the non-determinism, but does not necessarily suppress it. Actually,
there might still be states where there is concurrency between actions. For instance, if
both a communication and a decision are available at the same time, the order in which
the actions are performed may lead to different states.

Indicator
A’s receptor disabled B’s receptor disabled

LSD = 0.5m LSD = 1m LSD = 0.5m LSD = 1m

Arrival order
A vs B B B B B
A vs C C C C C
B vs C C C B|C B|C

Travel time [s]
A (13.3,13.3) (13.4,13.4) (13.3,13.3) (13.3,13.3)
B (13.0,13.0) (13.0,13.0) (12.7,12.9) (12.7,12.9)
C (12.6,12.6) (12.6,12.6) (12.6,13.0) (12.6,13.0)

Worst TTC [s]
A and B (3.00,3.00) (3.00,3.00) (0.00,0.00) (2.80,2.80)
A and C (∞,∞) (∞,∞) (2.86,∞) (5.04,∞)
B and C (1.50,1.50) (1.50,1.50) (0.15,∞) (0.40,1.35)

Full state space exploration [s] 5 5 10 11

Table 2. Comparison of arrival order, travel time and TTC on Scenario 1 with disabled commu-
nication receptors and variations of lateral safety distance (LSD). The other notations are as in
Table 1.

Assessing robustness of decision through fault injection Table 2 and Table 3 show
the results of model checking with fault injection, by disabling the receptor or the emit-
ter, respectively, on one of the vehicles. Note that the vehicle sensors are still working,
meaning the vehicle gets all other perceptible information (such as position, speed,

VERIFCAR model checking of communicating autonomous vehicles 21

Indicator
A’s emitter disabled B’s emitter disabled

LSD=0.5 m LSD=1 m LSD=0.5 m LSD=1 m LSD=1.6 m

Arrival order
A vs B B B B B A
A vs C A A C C A
B vs C B B B|C B|C B

Travel time [s]
A (13.3,13.3) (13.3,13.3) (13.4,13.4) (13.4,13.4) (13.0,13.0)
B (12.7,12.7) (12.7,12.7) (12.7,13.1) (12.7,13.1) (13.1,13.1)
C (13.5,13.5) (13.5,13.5) (12.6,12.8) (12.6,12.8) (13.4,13.4)

Worst TTC [s]
A and B (0.00,0.00) (2.80,2.80) (0.30,0.30) (2.09,3.00) (1.50,1.50)
A and C (2.06,2.06) (2.06,2.06) (∞,∞) (∞,∞) (2.22,2.22)
B and C (∞,∞) (∞,∞) (0.00,∞) (0.00,∞) (4.30,4.30)

Full state space exploration [s] 6 6 12 12 10

Table 3. Comparison of arrival order, travel time and TTC on Scenario 1 with disabled commu-
nication emitters and variations on the length of lateral safety distance (LSD). The notations are
as in Table 1.

acceleration, etc...) of other vehicles. The non-perceptible information concerns the in-
tention of the vehicles (their planned trajectories).

When we disable the receptor on vehicle A, the behavior seems deterministic, with
C always being first at the end of the road. When we disable the receptor on vehicle B,
the behavior is close to the default case; however one can observe that the worst TTC
between A and B becomes 0.0 s meaning that there is a collision between these two
vehicles. Also, a state where worst TTC between B and C is 0.15 s can be reached,
indicating a serious danger. It may be due to the lack of information vehicle B has on
other vehicles intention when doing its overtaking. To force B to be more careful, we
increase the lateral safety distance (LSD) in the decision process (initially at 0.5m) to
1m. This is intended to increase safety at the expense of efficiency. In the case of the
disabled receptor on vehicle A, one can indeed see there is a slight loss of efficiency
(vehicle A now takes slightly longer to reach the end of the road). In the case of the
disabled receptor on vehicle B, we do not observe a loss of efficiency, but an overall
increase of the minimal worst TTC value, including the null ones.

The same checks are performed while disabling the data emitter instead of the
receptor. When disabling the emitter on vehicle A, we observe a collision between
vehicles A and B, which no longer occurs with the LSD of 1 m. When disabling the
emitter on vehicle B, we get a worst TTC of (0.00,∞), meaning there is both a path
leading to a collision between vehicles B and C, and another one without any danger.
The increase of LSD to 1 m does not prevent the collision. This motivates us to search
the minimal increase of LSD needed to deal with this collision. To do so we proceeded
by dichotomy, like for other indicators. As a result we obtained that we need a minimum
LSD of 1.6m, which does avoid collision but at the cost of a great loss of efficiency.
Indeed, in that scenario, one can observe that none of the vehicles can now overtake
vehicle A (the slow one), leading to the worst overall efficiency in our results.

22 Johan Arcile et al.

7.3 Impact of cooperation on the behavior of vehicles

In this section, we study the decision policy implementing the forms of cooperation
defined in Section 3, namely negotiation and infrastructure. We first describe how they
have been implemented.

Implementation of negotiations In this case, each vehicle will try to negotiate whenever
its wished trajectory is in conflict with the predicted trajectory of some other vehicle
and whenever that vehicle is changing lane. Basically, it happens when a slower vehicle
changes lane in front of another one. To keep the state space as small as possible, the re-
quest for negotiation (or its absence) is simply indicated by broadcasting a Boolean vari-
able. When the targeted vehicle receives the information, it delays its intention (stop-
ping its maneuver for a while) if this delay does not impact the maneuver it is actually
performing and allows the faster vehicle to overtake it. The objective is that none of
the vehicles should slow down. And indeed, if we consider Algorithm 2, the vehicle
initiates the negotiation after getting new acceleration and direction values, while the
target vehicle computes the decision regarding the request, after having found a safe
trajectory for itself.

Implementation of infrastructures The road terminal in our infrastructure-based de-
cision performs the following actions at a fixed frequency: First, it computes the pre-
dicted and wished trajectories for all vehicles, using the information received from the
broadcasted data. Then, it identifies conflicts between vehicles, i.e., situations where
the predicted timed trajectory of a vehicle is in conflict with the wished trajectory of
another one. Then, it decides which actions should be applied to each vehicle in order
to maximize the sum of the accelerations of the vehicles. Finally, the terminal sends
to each chosen vehicle the corresponding orders. The impact on Algorithm 2 is that,
instead of trying to be as close as possible to the maximal acceleration and to the dir-
ection matching the route of the vehicle, it now tries to be as close as possible to the
acceleration and direction values sent by the terminal.

Testing scenario Our aim is to compare the above decision policies, namely:

– the base variant of decision without negotiation nor infrastructure (and without
fault),

– the variant using negotiation;
– the variant using an intelligent road infrastructure.

We will use for that the Scenario 2 (cf. Figure 7) which is as follows. Initially, vehicle
A is on the right lane at position 0 m with a speed of 30 m/s, vehicle B is on the left lane
at position 30 m with a speed of 15 m/s and vehicle C is on the junction lane at position
40 m with a speed of 20 m/s. They all aim to be on the right lane at the end of the road
portion.

We assume that communications from the terminal to other agents take between 50
ms and 100 ms and communications from vehicles to other agents take between 30 ms

VERIFCAR model checking of communicating autonomous vehicles 23

Figure 7. Initial position and possible trajectories of CAVs in Scenario 2.

and 40 ms. The terminal decision has an activation frequency of 2 Hz and its clock is
initialized at 0 ms. The decision of each vehicle has an activation frequency of 10 Hz.
We also consider two variants, where the agent clocks are given different initial values.
In initialization variant 1, clocks of agents A, B and C are initialized respectively after
70 ms, 30 ms and 0 ms, while in initialization variant 2, clocks of agents A, B and C
are initialized respectively at 0 ms, 30 ms and 70 ms.

Scenario
Init. variant 1 Init. variant 2

Base Negotiation Infrastructure Default case Negotiation Infrastructure

Arrival order
A vs B B A|B A B A A
A vs C C A|C A C A|C A
B vs C C C C C C C

Travel time
A (14.6,14.6) (13.0,15.9) (13.2,13.3) (14.6,14.6) (13.0,13.6) (13.2,13.4)
B (14.4,14.4) (14.4,14.4) (14.4,14.4) (14.4,14.4) (14.4,14.4) (14.4,14.4)
C (13.2,13.2) (13.2,13.2) (13.8,13.8) (13.2,13.2) (13.2,13.2) (13.8,13.8)

Worst TTC
A and B (0.90,0.90) (0.00,1.56) (1.40,1.44) (0.95,0.95) (0.60,∞) (1.36,1.41)
A and C (∞,∞) (1.14,∞) (∞,∞) (∞,∞) (1.14,∞) (∞,∞)
B and C (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Full state space exploration [s] 5 379 27 3 299 36

Table 4. Comparison of arrival order, travel time and TTC for default case decision, decision with
negotiation and decision with infrastructure on the two initialization variants of Scenario 2.

Table 4 shows the results obtained for Scenario 2. First, let us consider initialization
variant 1. Our default case decision policy seems to lead to a deterministic behavior,
where C manages to reach the right lane ahead of vehicle B while A has to brake to
avoid a collision with vehicle B. This can be confirmed by looking at the worst TTC
between A and B, which is less than 1 second. When adding the negotiation aspect,
one can observe a change in the behavior, which is now non-deterministic. While the
travel times for B and C have not changed and are all the same (a unique value) for
all possibles executions, this is no longer the case for A, for which the minimal travel
time is now shorter than for other vehicles while its maximal travel time has increased.
The arrival orders give us the information that vehicle A can sometimes arrive ahead
of B (respectively C), sometimes not. This information is not sufficient to get a perfect
picture of the possible scenarios. As C always arrives before B, one can be sure that

24 Johan Arcile et al.

arrival orders, where A arrives as the first or the last are possible. However, to know if
A can arrive between B and C one should check the following property: before(C,A) →
before(B,A), which means6 that when A is not first, it must be last, and therefore a case
where it arrives between the two other vehicles is not possible. Here, the above property
is false, and the model checker is able to give us traces where vehicle A arrives between
C and B.

Concerning safety, one can see that the worst TTC between A and B can be zero,
meaning that there are possible scenarios. with a collision between these two vehicles.
The potential gain in overall travel time is thus paid here by a lack of safety.

Finally, when using an infrastructure-based decision policy, one can observe that
vehicle A always arrives first and vehicle C manages to reach the right lane ahead of
vehicle B, as previously. The comparison between the travel times shows us that with
the infrastructure, the efficiency is not as good as with negotiation in the best case
(vehicle A and C being slower), however the non-determinism is not significant (unlike
with negotiation where there exists a possibility of collision) and the worst TTC is even
better than for the default case decision policy.

Looking at the results obtained with initialization variant 2, one can see there are
almost no differences for default case and infrastructure based decision policies. How-
ever, in this scenario, the negotiation does not lead to collision anymore. Vehicle B now
always arrives as the last, vehicle A and C being either first or second. The worst TTC
is smaller than for the default case but we gain in overall efficiency.

Considering the state space exploration time, one can see that the non-determinism
induced by negotiation in this particular example can lead to a huge time increase (about
a hundred times longer) when compared to our default case. Note that this is not due to
the negotiation itself but to the non-determinism. Finally, infrastructure-based decision,
despite showing a deterministic behavior, takes longer than the default case for the state
space exploration (about 10 times longer). This is due to the fact that the road infrastruc-
ture is implemented as yet another agent, which impacts the size of the resulting state
space. As one can see, the time needed to perform the verification process is however
maintained quite short thanks to our modeling choices.

7.4 Limitations and parameter management

Through several additional experiments, we also evaluated the impact of our main para-
meters on the computation time of UPPAAL. To study this impact, we measured the
full exploration time while varying several scenarios with non-deterministic behaviors.
Overall results are given in Table 5. The environmental parameters, such as the length
of the road portion, the size of the variables used for timed trajectories or to represent
vehicles behaviors, show a linear impact on the computation time, even with complex
scenarios. This is also true for the normalized maximal loss of precision Normx. For
instance, for a scenario with a full exploration time of more than 20 minutes when no
further approximation is performed7 the use of a value Normx=1 m/s allows to reduce

6 The operator→, called "leads to", supported by the UPPAAL model checker is equivalent to
AG (¬ before(C,A)∨AF before(B,A)).

7 i.e., when Normx = Granv/2: in this example Normx = 0.05 m/s.

VERIFCAR model checking of communicating autonomous vehicles 25

this time to about 6 minutes. These results indicate that we can increase the accuracy of
the modeled environment with limited cost.

In contrast, we are limited in the degree of realism, especially for scenarios in-
volving a lot of non-determinism, where variations on the sampling period S and de-
cision frequency show an exponential impact on the computation time. In particular,
since the frequency induced by the sampling period is required to be smaller than or
equal to any other frequency in the system, the use of a given decision frequency im-
plies to scale accordingly the sampling period. Therefore, increasing the decision fre-
quency of vehicles in a system can lead to a state space explosion. However, it is still
possible to manage to go up to 20 Hz with a reasonable computation time (a few hours)
for complex scenarios involving a lot of non determinism, which as discussed in Sec-
tion 4 is enough for decision modules mentioned in the literature. For simpler scenarios,
however, a higher decision frequency can be used.

Normx[m/s] Grana[m/s2] L[m] Delay range S[s] freqi i ∈ [1,n][Hz]
Value 0.5 0.1 0.05 0.5 0.2 0.1 750 1000 100 500 0.05 0.02 0.01 20 33.3
Time [s] 11 11 11 16 17 52 15 18 14 31 16 58 90 45 166

Normx[m/s] Grana[m/s2] S[s] freqi i ∈ [1,n][Hz]
Value 0.5 0.1 0.05 0.5 0.2 0.05 0.03 20
Time [m] 11.1 15.6 20.6 9.1 18.2 19.0 113.6 500.3

Table 5. Top: Full exploration time (in seconds) for Scenario 1 with altered parameters. For com-
parison, the full exploration of the default case takes 11 seconds. Bottom: Full exploration time
(in minutes) for initialization variant 1 of Scenario 2 using negotiation, with altered parameters.
For comparison, the full exploration of the default case takes 6.3 minutes.

Finally, it must be observed that the number of vehicles does not necessarily impact
the computation time: it is the resulting non-determinism of the evolutions that does,
much more than the increased number of variables. This is illustrated in Table 6, where
vehicles have been added to the previously studied cases, with various random position
and speed values. A look at the smallest exploration times indicates that the increasing
size of the data structure seems to have a linear impact on the system. On the other hand,
one can see that the generated state space can be drastically different between systems
with the same number of vehicles but with different initial parameters.

Note that the maximum reasonable number of vehicles is therefore mainly case-
related. Indeed, adding vehicles can sometimes reduce the non-determinism of the sys-
tem and sometimes increase it. This result in particular indicates that our framework
could hardly support erratic human-like drivers (i.e. decision algorithm with random
choices) but is well suited for checking interaction behaviors between autonomous
vehicles characterized by well-defined decision protocols.

To study the behavior resulting from the use of a given decision algorithm, one
should implement it within the UPPAAL language, which only supports discrete vari-

26 Johan Arcile et al.

Scenario 1 Scenario 2 (negotiation) Init. variant 1
Number of added vehicles 1 2 3 4 5 1 2
Smallest Time [s] 13 24 30 40 52 347 505
Longest Time [s] 17 50 151 142 167 817 1798

Table 6. Full exploration time for Scenario 1 and variant 1 of Scenario 2 using negotiation, while
vehicles are added with random initial position and speed values. A few random initializations
are performed each time and the smallest and longest observed exploration times are given.

ables. Therefore, scaling variables and the use of rounding on divisions is recommended
to avoid or at least reduce error accumulations. Also, if there are variables needed for
the decision or communication protocol, they should be added in the data structure.
Their ranges must be defined, and it is recommended to keep those ranges as small as
possible. The main limitation arises from "time-sensible" parameters, mainly the fre-
quency of decision making, which can hardly exceed 20 Hz. However, as mentioned
previously in Section 4, this limitation seems fair enough to model most of the decision
protocols described in the literature. Concerning calibration, we need to find a balance
between the precision on the longitudinal position (i.e., the normalized maximal loss
of precision parameter, Normx) and the frequency of the updates. The former allows to
decrease the computation times at a cost in precision and the latter to gain accuracy on
the system’s monitoring at the cost of increasing computation times. In order to estim-
ate an acceptable loss of precision, one may first proceed by simulation, which can also
be done with UPPAAL. One may study a given indicator using several Normx values,
then compare them to the result obtained with the Normx that guarantees no loss of in-
formation (i.e., with p = 1 if we refer to section 6). The user has to choose the greatest
Normx for which the observed error is still acceptable (this may require an expertise in
the domain).

Finally, we summarize all the assumptions and abstractions that are inherent to
VERIFCAR:

– Sensors are perfect (accurate and immediate);
– Decision is taken on a constant accurate frequency;
– Communication latency occurs in a defined and finite time interval;
– Frequency of decision for a given vehicle is greater or equal to the maximal com-

munication latency for the same vehicle;
– Physical laws are simplified (rotation, friction, inertia do not exist);
– Environment is flat (only two dimensions are considered).

8 Conclusion

We presented VERIFCAR, a framework based on timed automata and dedicated to mod-
eling and verifying CAVs. VERIFCAR is suitable for studying the behavior of CAVs at a
rather high level of abstraction and addresses questions of safety, efficiency and robust-
ness with a specific focus on the impact of latencies, communication delays and failures

VERIFCAR model checking of communicating autonomous vehicles 27

on the behavior of CAVs. It is particularly well adapted for the exhaustive analysis of
critical situations involving a few number of vehicles, such as overtaking, insertion
lanes, crossroads or traffic roundabouts.

VERIFCAR builds on general concepts borrowed from [4] to model such systems
of CAVs but brings several novel ideas and improvements. First, it implements a totally
different timed automata model, using broadcast synchronizations instead of hand-
shake, which greatly simplifies the automata and contributes to speed up the verific-
ation processes. Thanks to suitable discretization and approximations, the exhaustive
techniques of model checking can be used while limiting the state explosion phenom-
ena. Next, it supports two additional forms of cooperation: negotiations between CAVs
and communications with an intelligent road infrastructure. Finally, it provides pertin-
ent indicators for the analysis of behaviors, together with a computation methodology
using model checking. As shown in a companion paper [5], this method can be used
jointly with simulations, contributing to give more insight on the studied systems.

As an illustration, we applied VERIFCAR to assess and compare decision policies
for CAV systems on well chosen scenarios. To do so we implemented decision al-
gorithms (including negotiations and infrastructure), computed the associated indic-
ators and discussed the obtained results. We also checked the robustness through faulty
environments, pointing out vulnerabilities and thus illustrating how VERIFCAR could
be used to detect and thwart those vulnerabilities. All source material is available at
https://forge.ibisc.univ-evry.fr/jarcile/VerifCar/.

As a future work, we plan to implement interfaces for VERIFCAR in order to allow
an automated generation of models and indicators. Also, in order to verify more com-
plex situations (with more vehicles, more complex road configurations, more involved
interactions, etc) while facing successfully the classical explosion problems, we could
consider abstraction techniques (like in [11]) and dedicated verification algorithms to
reduce the computation time.

Finally, we plan to check if the techniques we developed to perform efficient model-
ing and model checking may be transposed to other application domains, different from
CAV systems.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real-time. Information and
Computation, 104(1):2–34, 1993.

2. R. Alur and D. Dill. Automata for modelling real-time systems. In Proceedings of the
International Colloquium on Automata, Languages and Programming (ICALP’90), volume
443 of LNCS, pages 322–335. Springer-Verlag, 1990.

3. R. Alur and D. Dill. A theory of timed automata. Theoretical computer science, 126(2):183–
235, 1994.

4. J. Arcile, R. Devillers, H. Klaudel, W. Klaudel, and B. Woźna-Szcześniak. Modeling
and checking robustness of communicating autonomous vehicles. In Sigeru Omatu, Sara
Rodríguez, Gabriel Villarrubia, Pedro Faria, Paweł Sitek, and Javier Prieto, editors, Distrib-
uted Computing and Artificial Intelligence, 14th International Conference, pages 173–180.
Springer International Publishing, 2018.

28 Johan Arcile et al.

5. J. Arcile, J. Sobieraj, H. Klaudel, and G. Hutzler. Combination of simulation and model-
checking for the analysis of autonomous vehicles’ behaviors: a case study. In Multi-Agent
Systems and Agreement Technologies. Springer International Publishing, 2018.

6. F. Bai and H. Krishnan. Reliability analysis of DSRC wireless communication for vehicle
safety applications. In IEEE Intelligent Transportation Systems Conference, pages 355–362,
Sept 2006.

7. K. Bilstrup, E. Uhlemann, E. G. Strom, and U. Bilstrup. Evaluation of the ieee 802.11p mac
method for vehicle-to-vehicle communication. In IEEE Vehicular Technology Conference,
pages 1–5, Sept 2008.

8. S. Biswas, R. Tatchikou, and F. Dion. Vehicle-to-vehicle wireless communication protocols
for enhancing highway traffic safety. IEEE Communications Magazine, 44(1):74–82, Jan
2006.

9. R. J. Blokpoel, D. Krajzewicz, and R. Nippold. Unambiguous metrics for evaluation of traffic
networks. In IEEE Intelligent Transportation Systems Conference, pages 1277–1282, Sept
2010.

10. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
11. R. Devillers and H. Klaudel. Abstraction strategies for computing travelling or looping

durations in networks of timed automata. In Martin Fränzle and Nicolas Markey, editors,
14th International Conference, FORMATS 2016, Proceedings, volume 9884 of LNCS, pages
140–156. Springer, 2016.

12. E. Allen Emerson. Handbook of theoretical computer science (vol. b). chapter Temporal and
Modal Logic, pages 995–1072. MIT Press, Cambridge, MA, USA, 1990.

13. C. Urmson et al. Autonomous driving in urban environments: Boss and the urban chal-
lenge. Journal of Field Robotics Special Issue on the 2007 DARPA Urban Challenge, Part I,
25(8):425–466, June 2008.

14. M. Foughali, B. Berthomieu, S. Dal Zilio, F. Ingrand, and A. Mallet. Model Checking Real-
Time Properties on the Functional Layer of Autonomous Robots. In International Confer-
ence on Formal Engineering Methods (ICFEM 2016), Tokyo, Japan, November 2016.

15. A. Furda and L. Vlacic. Enabling safe autonomous driving in real-world city traffic us-
ing multiple criteria decision making. IEEE Intelligent Transportation Systems Magazine,
3(1):4–17, Spring 2011.

16. S. Glaser, B. Vanholme, S. Mammar, D. Gruyer, and L. Nouveliere. Maneuver-based traject-
ory planning for highly autonomous vehicles on real road with traffic and driver interaction.
IEEE Transactions on Intelligent Transportation Systems, 11(3):589–606, Sept 2010.

17. K.D. Stanley P. Sorensen C. Samaras J.M. Anderson, N. Kalra and T. A. Oluwatola.
Autonomous Vehicle Technology. A Guide for Policymakers. Research Reports. RAND Cor-
poration, 2016. ISBN: 978-0-8330-8398-2.

18. M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S. M. Veres. Formal verification of
autonomous vehicle platooning. Science of Computer Programming, 148:88 – 106, 2017.
Special issue on Automated Verification of Critical Systems (AVoCS 2015).

19. C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka. Real-time motion planning methods
for autonomous on-road driving: State-of-the-art and future research directions. Transporta-
tion Research Part C: Emerging Technologies, 60:416 – 442, 2015.

20. S. Kong, S. Gao, W. Chen, and E. Clarke. dreach: δ -reachability analysis for hybrid systems.
In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 200–205, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

21. Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How. Real-time motion
planning with applications to autonomous urban driving. IEEE Transactions on Control
Systems Technology, 17(5):1105–1118, Sept 2009.

VERIFCAR model checking of communicating autonomous vehicles 29

22. J. Levinson and S. Thrun. Robust vehicle localization in urban environments using probab-
ilistic maps. In IEEE International Conference on Robotics and Automation, pages 4372–
4378, May 2010.

23. M. Likhachev and D. Ferguson. Planning long dynamically feasible maneuvers for autonom-
ous vehicles. The International Journal of Robotics Research, 28(8):933–945, 2009.

24. M. Minderhoud and P. Bovy. Extended time-to-collision measures for road traffic safety
assessment. Accident Analysis & Prevention, 33(1):89 – 97, 2001.

25. M. O’Kelly, H. Abbas, and R. Mangharam. APEX : Autonomous vehicle plan verification
and execution. In SAE World Congress, 2016.

26. A. Platzer and J.-D. Quesel. European train control system: A case study in formal veri-
fication. In Karin Breitman and Ana Cavalcanti, editors, Formal Methods and Software
Engineering, pages 246–265, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

27. M. M. Quottrup, T. Bak, and R. I. Zamanabadi. Multi-robot planning : a timed automata ap-
proach. In IEEE International Conference on Robotics and Automation, 2004. Proceedings.
ICRA ’04. 2004, volume 5, pages 4417–4422 Vol.5, April 2004.

28. M. Treiber and A. Kesting. Trajectory and Floating-Car Data, pages 7–12. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

29. Uppaal. http://www.uppaal.org/.
30. K. Vogel. A comparison of headway and time to collision as safety indicators. Accident

Analysis & Prevention, 35(3):427 – 433, 2003.
31. T. L. Willke, P. Tientrakool, and N. F. Maxemchuk. A survey of inter-vehicle communica-

tion protocols and their applications. IEEE Communications Surveys Tutorials, 11(2):3–20,
Second 2009.

32. M. Wooldridge. An introduction to multi-agent systems - Second Edition. John Wiley &
Sons, 2009.

33. S. Zhang, W. Deng, Q. Zhao, H. Sun, and B. Litkouhi. Dynamic trajectory planning for
vehicle autonomous driving. In IEEE International Conference on Systems, Man, and Cy-
bernetics, pages 4161–4166, Oct 2013.

A TTC Algorithm

Algorithm 3 formalizes the computation of the TTC value used in our experiments.
pxi (respectively pyi) is the longitudinal (respectively lateral) position of vehicle i, and
Long (respectively Lat) is the longitudinal (respectively lateral) gap below which there
is a collision. Similarly, vxi (respectively vyi) is the longitudinal speed (respectively
lateral speed) value of vehicle i. Long and Lat depend on each vehicle length and width:
typically, as the position is centered on the vehicle, Long will be the mean of the length
of the two vehicles, while Lat will be the mean of the width of the two vehicles.

This algorithm consists in computing the starting time Xin and the ending time Xout
of the longitudinal time overlap (respectively Yin and Yout for the lateral time overlap).
If no overlapping (either longitudinal or lateral) is ever going to occur, the starting
time will be given the value ∞ and the ending time will be set to 0. Afterwards, the
computation of TTC is performed by returning the smallest value in the intersection
between longitudinal and lateral time overlaps.

30 Johan Arcile et al.

Algorithm 3 Computes TTC between vehicles A and B
{Computation of Xin}

if (pxb ≥ pxa and vxb < vxa) or (pxa ≥ pxb and vxa < vxb) then
Xin =

|pxb−pxa|−Long
|vxa−vxb| {A and B getting closer to each other}

else if |pxb− pxa|< Long then
Xin = 0 {Already overlapping}

else
Xin = ∞ {Will never overlap}

end if
{Computation of Xout}

if (pxb ≥ pxa and vxb < vxa) or (pxa ≥ pxb and vxa < vxb) then
Xout =

|pxb−pxa|+Long
|vxa−vxb| {A and B getting closer to each other}

else if vxa 6= vxb then
Xout =

||pxb−pxa|−Long|
|vxa−vxb| {A and B moving away from each other}

else if |pxb− pxa|< Long then
Xout = ∞ {Already overlapping}

else
Xout = 0 {Will never overlap}

end if
{Computation of Yin}

if pyb ≥ pya and vyb < vya then
Yin =

pyb−pya−Lat
vya−vyb

{B on the left of A, getting closer to each other}
else if pya ≥ pyb and vya < vyb then

Yin =
pya−pyb−Lat

vyb−vya
{A on the left of B, getting closer to each other}

else if |pyb− pya|< Lat then
Yin = 0 {Already overlapping}

else
Yin = ∞ {Will never overlap}

end if
{Computation of Yout}

if pyb ≥ pya and vyb < vya then
Yout =

pyb−pya+Lat
vya−vyb

{B on the left of A, getting closer to each other}
else if pyb ≥ pya and vya 6= vyb then

Yout =
pyb−pya−Lat

vya−vyb
{B on the left of A, moving away from each other}

else if pya ≥ pyb and vya < vyb then
Yout =

pya−pyb+Lat
vyb−vya

{A on the left of B, getting closer to each other}
else if vya 6= vyb then

Yout =
pya−pyb−Lat

vyb−vya
{A on the left of B, moving away from each other}

else if |pyb− pya|< Lat then
Yout = ∞ {Already overlapping}

else
Yout = 0 {Will never overlap}

end if
{Computation of TTC}

if Xin ≤ Yin and Yin ≤ Xout then
return Yin {Lateral time overlap starting during longitudinal time overlap}

else if Yin ≤ Xin and Xin ≤ Yout then
return Xin {Longitudinal time overlap starting during lateral time overlap}

else
return ∞ {No intersection between time overlaps}

end if

