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Abstract
Often because of limitations in generation capacity of power stations, many developing coun-
tries frequently resort to disconnecting large parts of the power grid from supply, a process
termed load shedding. This leaves households in disconnected parts without electricity, caus-
ing them inconvenience and discomfort. Without fairness being taken into due consideration
during load shedding, some households may suffer more than others. In this paper, we solve
the fair load shedding problem (FLSP) by creating solutions which connect households to
supply based on some fairness criteria (i.e., to fairly connect homes to supply in terms of
duration, their electricity needs, and their demand), which we model as their utilities. First,
we briefly describe some state-of-art household-level load shedding heuristics which meet
the first criteria. Second, we model the FLSP as a resource allocation problem, which we
formulate into twoMixed Integer Programming (MIP) problems based on theMultiple Knap-
sack Problem. In so doing, we use the utilitarian, egalitarian and envy-freeness social welfare
metrics to develop objectives and constraints that ensure our FLSP solutions results in fair
allocations that consider the utilities of agents. Then, we solve the FLSP and show that
our MIP models maximize the groupwise and individual utilities of agents, and minimize
the differences between their pairwise utilities under a number of experiments. When taken
together, our endeavour establishes a set of benchmarks for fair load shedding schemes, and
provide insights for designing fair allocation solutions for other scarce resources.
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1 Introduction

Energy is the key driver for growth in developing countries. However, many such coun-
tries face significant challenges in providing enough energy to power their industries and
communities [20]. To put this into perspective, the United Kingdom generates over 30 GW
of electricity [48] for a population of around 65 million people. Comparatively, Nigeria,
a developing country, generates under 8 MW for a population of over 170 million people
[33]. Furthermore, the demand for electricity is steadily growing in developing countries,
due to an increase in population, the modernization of poorer areas and an increase in the
number of digital appliances and devices using electricity within these countries. In addition,
while many of these countries do not have the means to channel the required investment
into developing their energy sectors, it is also generally cumbersome and time consuming to
increase the generation capacity of electric grids. As a result of these, the energy challenges
in developing countries will be ongoing for the near future.

Although there is a wide gap between the demand on the grid and its supply capacity (or
generation) in many developing countries, there is also the need to constantly maintain the
alternating current frequency of the power system at its operational value (50 Hz or 60 Hz).
The consequence of this in developing countries is that large parts of their electric networks are
repeatedly disconnected from supply. This measure of disconnecting parts of a grid network
fromsupply is termed load shedding.Load shedding reduces the strain on thegrid andprevents
it from collapsing. However, while load shedding results in the stability of grid operation, it
also results inmany homeswithin parts of the network being leftwithout electricity. The effect
of this is that the occupants of these homes are seriously discomforted and inconvenienced.
Furthermore, some homes bear the brunt of these effects because standard load shedding
techniques do not focus on fairly allocating electricity to homes, as much as they do on
maintaining a demand-supply balance. As such, while load shedding will remain a common
practice in developing countries for the near future, it is absolutely necessary to develop
solutions which reduce unfairness in the system. Such solutions will improve the general
availability of electricity, present a better platform for fighting poverty, increase the welfare
of individuals and enhance societal development.

Against this background, this paper presents load shedding solutions that consider the
heterogeneous electricity needs of households and uses these to fairly connect households to
supply. The solutions build on existing research in two key areas, which we discuss in detail
in Sect. 2. The first is in the area of resource allocation,1 where solutions which fairly allocate
resources within dynamic settings have been proposed. The second culminated in the design
and development of cheap smart meter retrofits specifically for use in developing countries
[3,21]. The retrofits provide functionalities upon which the load shedding problem can be
modelled into a resource allocation problem that implements load shedding at the household
level, such that their electricity needs at different times can be taken into account.

On account of this, we present a novel approach to load shedding. Firstly, we execute load
shedding at the household level, so that the electricity needs of households can be considered
in designing fair load shedding solutions. In addition, household-level load shedding reduces
waste and increases revenue by mitigating against overshedding that may arise when load

1 A resource allocation problem is a fair division problem whose solution involves finding an allocation of
limited resources between a number of interested entities, subject to the availability of the resource and how
interested the entities are in the resource [7].
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shedding is implemented at network level.2 We develop two sets of household-level solutions.
The first considers the length of time individual households are connected to electricity,
with the aim to keep these households connected to supply as equally as possible. The
second uses the agent model of households to formulate the fair load shedding problem into
Mixed Integer Programming (MIP) problems. The MIP models are designed to maximize
different requirements, while minimizing pairwise differences between the duration agents
are connected to supply, the level of satisfaction of their individual electricity needs, and the
level of supply to them. It is noteworthy that all our solutions ensure demand is as close to
supply as possible.

It should also be mentioned that this paper presents an approach that can be exploited
when simulating datasets in future. Our approach involves analyzing the factors which affect
the consumption of electricity in households, then using these to adapt a publicly available,
verifiable dataset of household consumption (for households in a developed country) to our
use case.3 We take this approach because we need a dataset to implement and evaluate our
load shedding solutions, as no dataset of household electricity consumption for developing
countries currently exists.

In addition, as will be seen in this paper, our approach presents a framework upon which
other fairness problems involving constrained utility maximization (or resource allocation)
may be generalized. Specifically, our approach dissects the general fairness problem in terms
of modelling user utilities, preferences or comfort levels, and using these utilities within a
constraint optimization solution that maximizes the utilities allocated to users (independently
and collectively) and minimizes the differences between their individual allocations. In order
to do so, we model some appropriate social welfare metrics into constraints which we use
withinmathematical programmingmodels of the fairness and efficiency (allocation) problem.

The rest of the paper is organized as follows. In Sect. 2, we explore the bodies of work
related to our research problem. We show how we create a relevant dataset and model house-
holds into agents in Sect. 3. We also describe our setting for the load shedding problem and
discuss our key assumptions therein. In Sect. 4, we present and evaluate four household-level
load shedding heuristics against some standard social welfare metrics. We also identify the
shortcomings of these heuristics within the same section. To overcome these shortcomings,
we model the fair load shedding problem into a constrained optimization problem in Sect. 5.
Using the same social welfare metrics (employed in Sect. 4), in Sect. 6, we evaluate and
compare the results of all our solutions. We conclude in Sect. 7.

2 Related work

A number of fair network-level load shedding techniques have been proposed [34]. The first
was a simple technique that focused on reducing the same percentage of load on all buses of
a power system (i.e., parts of a power system that are each made up of multiple households)
at the event of an overload. As such, when there is a grid deficit, their solution executes load
shedding by disconnecting equal amounts of load from all buses of the system in a simple
and fast manner. However, it also results in too much electric load being disconnected from
the grid. To mitigate against this, they proposed a more efficient technique that disconnects

2 Conventional load shedding approaches implement load shedding by disconnecting the supply to whole
buses or substations on the power network. This is always likely to result in more load than is required being
disconnected from supply.
3 We discuss this in detail in Sect. 3.
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the same percentage of load on only a subset of buses on the grid. The set of affected buses
includes all buses within a tree whose root is the bus of the initially failed line, and leaf
is a generator, a peripheral bus or a sink bus. In comparison with their first approach, this
results in more efficient load shedding, but reduces the size of the system being affected
by the measure. However, the implication is that, firstly, only the bus on which an overload
occurs, and some others around it, will always be affected by load shedding. As such, some
buses which constitute small loads around the overloaded bus may be affected. Secondly,
load is disconnected from overloaded buses at periods when they need electricity the most.
The consequence of this is that the cost of load shedding to homes running critical activities
within an overloaded bus (or buses around it) increases. As such, it is important to consider
electricity needs when developing load shedding solutions.

In line with this, the electricity needs (or preferences) of buses on the power system were
considered in [45]. In so doing, they designed a solution where load shedding depends on
interactions between intelligent agents, each representing a bus on the system. The agents
communicate with their neighbours and work out how much they can contribute to load
shedding exercises, based on their electricity needs. They also determine the associated
compensations for their contribution towards load shedding. In their solution, they minimize
both the amount of load disconnected from supply and the aggregate costs of load shedding
to the buses that participate in load shedding. Note that their solution is applicable to electric
grids where power buses are able to communicate and interact with each other, as is the
case in a smart grid. In addition, to be relevant to developing countries, there is a need to
develop solutions with lower complexities, as are atypical of solutions which deal with user-
determined (or dependent) preferences, incentives and non-compliance (as in [45]). This is
because preferences may vary over time significantly, models of incentives are not always
linear utility functions and consumers may not always behave rationally, thus increasing the
complexity of solutions.

Nonetheless, each bus on the network is made up of lines, while each line is made up of
multiple individual consumers (same in [34] above). As such, each bus is representative of a
collection of individual consumerswhich all have heterogeneous electricity needs. A fair load
shedding solution should take these heterogeneous needs into account in fairly implementing
load shedding, as in a resource allocation problem.

Thereupon, we first propose that the needs of households within buses or substations
should be considered when developing fair load shedding solutions. This is now possible
because of recent advancements in the design of smart retrofits specifically for use within
developing countries [3,21]. These retrofits employ Global System for Mobile Communica-
tions (GSM) technology for connecting individual meters and utilities, such that households
can be remotely disconnected fromand reconnected to supply. In addition, as a benefit of other
capabilities of the retrofits, the consumption history of households can be used to analyze the
needs of individual households, as well as to plan for load shedding ahead. Table 1 displays a
summary of the capabilities of the designed retrofits, all of which present a foundation upon
which electric grids in developing countries can evolve into smart grids.

Given this, in [32], we presented four heuristic algorithms an operator can employ to
fairly disconnect households from supply during load shedding in developing countries. Our
selection process was centred around ensuring that households are connected to electricity as
equally as possible, in terms of number of hours. We employed the utilitarian, egalitarian and
envy-freeness socialwelfaremetrics in assessing the performance of these solutions. Together
with our proposal for executing load shedding at the household level, our solutions also present
an avenue for maximizing revenue and in effect, minimizing waste and utilizing electricity
better. However, apart from providing solutions that connect households to electricity as
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Table 1 Summary of capabilities of a smart retrofitted meter [21]

Capabilities

1 Two-way communication via GSM

2 Secure transmission of energy consumption data

3 Display of usage statistics

4 Remote connection and disconnection

5 Tamper proof mechanism

6 Power quality measurements (such as voltage and phase angle)

7 Setting of thresholds

8 Outage notifications and tariff updates

equally as possible, we failed to take into account the heterogeneous needs of individual
customers. As such, our solutions would, time and again, result in homes being disconnected
from electricity when they need it the most (as in [34] above).

On account of this, the household-level Fair Load Shedding Problem (FLSP) can be
mapped to a fair resource allocation problem (defined in Sect. 1)where the resource that needs
to be divided among entities (i.e., households) is grid supply. Different resource allocation
problems have been solved on electric grids using the multiagent system (MAS) approach.
For example, in [5], the MAS approach was used to solve the resource allocation problem
of trading electricity within the smart grid. They showed that this approach produces better
results (in terms of fairness and efficiency) than other traditional (non-MAS-based) resource
allocation methods. In addition, a resource allocation problem, where charging slots were
allocated to electric vehicles (EVs) based on reports4 submitted by agents representing owners
of EVs,was solved in [15]. This particular problemwas solved in order to prevent overloading
the network when charging the EVs. The problem was extended in [47] by considering EVs
which have preferences that the system commits to fulfilling to an extent. Additionally,
agent-based coordination algorithms were used to solve the optimal dispatch problem of
allocating power outputs of intermittent power generators in [25], such that the electricity
generated by these renewable sources is optimally utilized. Note that there is a necessity
for self-interested participants to behave rationally and truthfully report their preferences in
all of the studies. However, in our FLSP, we centrally generate these preferences in order
to reduce the complexities and cost (in relation to those used in [15,25,47]) of eliciting the
information from household agents.

To solve the FLSP, we use insights from the knapsack packing problem. A knapsack
problem is one where a fixed-capacity knapsack is to be fitted with a set of items, each with
its weight and value (or profit), in such a way that the knapsack holds the items with the
highest values within its capacity [24]. This is often modelled as an optimization problem
and solved using linear programming (or MIP), where a combination of items are selected
to maximize the value of items packed into the knapsack, subject to the knapsack’s capacity
constraints. In this regard, the electric grid is analogous to a knapsack with a fixed supply
capacity at a given time and agents with varying electricity needs and usage values.

To solve the FLSP over different allocations, we consider another variant of the knapsack
problem, namely the multiple knapsack problem (MKP). A MKP differs from the classic
knapsack problem in that it hasm bins or knapsacks (wherem > 1) [6]. The number of periods

4 These reports indicate the periods within which the EVs will be available for charging. As such, they
represent user preferences.
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in which our FLSP will be solved is likened to the number of knapsacks within the MKP.
However, other considerations are necessary before a suitable MKP representation of the fair
load shedding problem can be developed. These considerations involve the introduction of
constraints that ensure fairness when solving the FLSP as a MIP. Before we describe how we
make these considerations, we first describe the methodology employed to generate a dataset
applicable to the problem in the section that follows.

3 Modelling household-level load shedding for developing countries

We focus on developing load shedding solutions for households. We do this because the
residential sector constitutes a large percentage of the demand on the grid. An example is
in Nigeria,5 where the residential sector accounts for 51.3% of grid demand [29]. As such,
effective household-level load shedding solutions will improve grid conditions and energy
situations. We simulate a dataset that will be used to solve the household-level load shedding
problem in the next section.

3.1 Simulating developing country energy consumption data

Our solutions need to be simulated, implemented and evaluated using a relevant real-world
household-level electricity consumption dataset of households in a developing country. How-
ever, to the best of our knowledge, no such dataset exists.6 Now, instead of creating or
simulating an entirely artificial dataset, we consider collecting verifiable, authenticated, read-
ily available household consumption data of homes in developed countries, then adapting
the data to one representative of a developing country.7 This is because an adapted real-word
dataset will preserve some of the consumption signatures and features typical to households.

A number of real-world household-level consumption datasets from developed countries
exist. However, we consider those collected from a multiple of households. As such, in
Table 2, we present a few of the datasets collected from over 20 households [27,50].

Our fair load shedding solutions should result in fair allocations over time. Therefore,
a suitable dataset for implementing and evaluating our fair load shedding solutions should
cover long periods. For this reason, the Tracebase [27,50] and PLAID [14] datasets are
inadequate. Consequently, we are left with other datasets which cover a month and over. In
further examining the remaining datasets, we consider a number of factors which affect the
consumption of electricity in households. These include appliance usage, temperature and
consumption habits. We discuss how these factors are used to determine our source of data
and simulation approach in the sections that follow.

5 We take Nigeria to be our representative developing country in this paper.
6 There is the iAWE dataset from India [50]. However, the dataset is collected from only one house. Only a
dataset collected from multiple households is useful for simulating, implementing and evaluating our fair load
shedding solutions.
7 We considered running a field trial to gather data of household consumption in Lagos, Nigeria. We had
two options in mind. The first option was to deploy the retrofit smart meters we described in Sect. 2 within
a network made up of a data collection centre and multiple households. Our data collection centre will then
receive data from these households using a GSM receiver module, and store the data on a memory. The second
option was to connect data collection kits to electric meters in multiple homes. These kits would collect the
electricity consumption data for such households using non-invasive AC current sensors, and store these on
micro-SD cards. We decided against the field trial majorly due to cost and time restrictions.
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Table 2 Publicly available household electricity consumption datasets of 20 or more households [27,50]

Dataset Number of Houses Data Point Location Data Length

1 Dataport Over 1200 Appliance USA Over 4 years

2 HES 251 Submeter United Kingdom 12 months (26 houses) &
1 month (225 houses)

3 Tracebase 158 Appliance Germany 1 day

4 RBSA 101 Submeter USA 27 months

5 PLAID 55 Appliance USA 5 s

6 OCTES 33 Submeter Finland, Iceland
and Scotland

4–13 months

7 EEU data 23 Submeter Canada 27 months

8 REFIT 20 Submeter United Kingdom 24 months

3.1.1 Appliance usage

Homes in developing countries do not have as many appliances as those in developed coun-
tries. To illustrate this, in 2010, the average consumption of an electrified household inNigeria
was 570 kWh [54]. In contrast, 11, 698 kWh of electricity was consumed by an electrified
home in the USA in the same year [54]. A reason for this is that, on average, homes in Nigeria
are poorer than those in the USA, which directly impacts on the appliances used within a
typical home in the country.

For this reason, any dataset adapted to the developing country context should be one
from which the consumption data of appliances commonly used in developing countries
can be extracted. Consequently, the HES [9], RBSA [51], OCTES [50], EEU (known as the
Electrical-end-use data) [19] and REFIT [27] datasets are inadequate as they were collected
at the submeter level. This leaves us with the dataset from Pecan Street Inc’s Dataport [36].
Thankfully, Dataport is the largest provider of disaggregated (i.e., appliance-level) customer
energy data [35], as seen from Table 2. In Fig. 1, we show the number of occurrences of
individual appliances on Dataport [35]. Therefore, we collect the time-series appliance-level
data from Dataport for the period of a year. We point out that the dataset on Dataport is
collected from households in the USA.

Thereafter, we discover from multiple studies that the appliances typically available in a
home in Nigeria include lighting, televisions, electric fans, DVD players, washing machines,
electric irons, air conditioners, refrigerators, sewing machine and water pumps [11,26,30,31,
44]. Hence, we extract the consumption data from the appliances which are common to both
countries from our Dataport dataset. These include the consumption data of air conditioners,
washingmachines, lighting and refrigerators. In the next section, we discuss howwe consider
temperature in simulating our representative dataset.

3.1.2 Temperature

In simulating our representative dataset, in this section, we consider the effect which tem-
perature has on the electricity consumed within a household. This consideration is one of the
reasons for the wide contrast between the electricity consumed in the USA and in Nigeria
(as stated above). Now, the location of a household determines the external temperature the
household becomes subjected to, while the external temperature influences the electricity
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Fig. 1 Number of appliance occurrences in households on Dataport (reproduced from [35])

Fig. 2 Average monthly temperature in Texas and Lagos

consumed in the home. Consequently, the temperature in the USA is such that a typical home
in the country spends energy on heating. For instance, in 2010, 41.5% of the average elec-
tricity consumed within a home in the USA was spent on heating, while 17.7% was spent on
water heating. In turn, about 16%of the average electricity consumedwithin homes inNigeria
is spent on cooling [55]. To factor this in, we consider the similarities between the monthly
temperature of Texas, USA and Lagos, Nigeria. We do this because many of the households
whose appliance usage data is collected from Dataport are situated in Texas, while Lagos is
largest city in Nigeria (and one of the largest in sub-Saharan Africa). Figure 2 shows how
the average monthly temperature of Lagos and Texas [16,17] are similar during summer in
Texas. On this ground, from our Dataport dataset, we extract the data from appliances used
within households in Texas during the 13 weeks of summer. By so doing, it is reasonable to
assume that the consumption of appliances extracted from our Dataport dataset will resemble
those typical of Lagos homes (particularly the air conditioning).

3.1.3 Consumption patterns

Furthermore, we consider the consumption patterns within typical households in both coun-
tries by examining their typical load profiles. To derive the typical load profile of a home in
the USA, we aggregate the data originally collected from Dataport and compute the average
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Fig. 3 The average load profile computed from our representative dataset. It shows that consumption reduces
overnight, increases through the day and peaks in the evening

hourly consumption of a household. We derive the typical load profile of a home in Nigeria
from [37]. Thereafter, we compute the load profile of our representative dataset (i.e., the
Dataport dataset adapted so far) and present it in Fig. 3. Following these, we discover that
the average load profiles for the USA and Nigeria are similar to that in Fig. 3. This depicts
that occupants of households in both countries tend to consume less during hours of the night
(i.e., from 12AM to 6AM). It also suggests an increase in activities that require electricity
in the mornings (i.e., from 7AM onward). In addition, it suggests that consumption peaks
between 6PM and 8PM in both countries. Given this similarity, we aggregate the appliance
consumption data of our representative dataset for each household. This makes up the overall
household electricity consumption of the households. In so doing, we end up with a dataset
that is representative of the household consumption of 367 typical Nigerian homes. Note that
our approach to the development of this dataset is similar to that in [12], where demograph-
ics data was used for data transformation. Having described how we created a representative
home consumption dataset for Nigeria, we will use it to formally model individual homes
as agents, and to express a generic model of the FLSP. First, we formally model individual
homes as agents in the next section.

3.2 Modelling households as agents

In this section, we model each household as an agent using the household consumption data
developed above.We take the following steps in doing this. First, we collect the actual hourly
consumption data for each household for up to four previous weeks, if the data is available.
In this regard, we end up with a vector of 168 (i.e., from 24 h × 7 days) values for each
week’s worth of data. We define this vector as Cw

i = (ct=1
i , . . . , ct=168

i ), where ci ∈ R>0

is the consumption of household i at the hour (t) during the week (w). Although no vector
is available during the first week, C1

i becomes available after the first week (i.e., on the
second week). In the same manner, (C1

i ,C
2
i ), (C

1
i ,C

2
i ,C

3
i ) and (C1

i ,C
2
i ,C

3
i ,C

4
i ) become

available on the third, fourth and fifth weeks respectively. From this point on, four vectors
will provide a moving window over 4 weeks of data for each household. For example, the
vectors (C4

i ,C
5
i ,C

6
i ,C

7
i ) will make up the consumption data over 4 weeks on the eighth

week. Note that we consider weekly periods based on the assumption that the correlation
between the electricity consumed on the same day of a week over weeks (e.g., between
Sundays) is likely to be higher than those between different days of the week (e.g., between
Sundays and Mondays). As such, the consumption patterns of a typical household will likely
differ on different days of the week [10,51], as their activities may differ and be particular
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A

B

C

Fig. 4 Weekly consumption data of four prior weeks (a), hourly averages and errors of 4-week data (b), and
comfort (c)

to these days. Consequently, when computing the consumption profile of a household, it
becomes necessary to consider its typical consumption pattern during each day of the week
[51]. Figure 4a shows an example of the data collected for a household over all 168 hours on
the fifth week.

Second, we model each household’s consumption profile using the electricity it consumes
in each hour of the week. We do this by computing the average hourly consumption and the
standard deviation from this average over all 168 data points in the available vectors. Then,
for each household i , the consumption profile is modelled as a vector, ζi , of values drawn
from the normal distribution of the mean and variance as shown in Eq. 1.8

ζi = (N (μt=1
i , σ t=1

i ), . . . ,N (μt=168
i , σ t=168

i )
)

(1)

where ζi is the vector of the hourly consumption of i over the week, with the consumption for
each hour drawn from a normal distribution of mean μt

i (i.e., μ
t
i = ∑4

w=1 c
w,t
i ) and variance

σ t
i (i.e., σ t

i = ( ∑4
w=1(c

w,t
i − μt

i )
2
)
/4). We show the consumption profile of our example

household in Fig. 4b. Note that, as a result of replacing the oldest vector used in calculating
the 168 hourly averages with the newest (when available), we are able to capture any changes
in the consumption patterns of a household. In other words, our vector of averages take into
account the effects of changes in season, appliance usage or habits.

Finally, we normalize the vector ζi , so that the consumption profiles of all households fall
within the range (ε, 1), where ε ∈ R>0 is a very small number. With this, we create a vector
of comfort for each household, and finalize the modelling of households as agents. We define
this comfort vector, Δi , for an agent i , as:

8 By drawing from this normal distribution of our hourly consumption values over weekly periods, we may
end up with a negative value of consumption. To avoid this (as it is unrealistic to have a negative consumption),
we take an absolute value of any negative consumption value that is drawn from the distribution.
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Δi = ζi

max
t

{ζi } = (
δt=1
i , . . . , δt=168

i

)
(2)

where Δi is a vector of values δti ∈ R>0. Consequently, Δi represents the preference agent i
has for electricity during all hours in a week. A value close to 1 within the vector represents
an hour during which an agent has a high need for electricity in the week. On the other hand,
a value close to ε reflects the agent’s low need for electricity at that hour of the week. The
comfort profile of our example agent is shown in Fig. 4c.

Our formulation provides two benefits. (i) It represents a vector of utilities9 of each agent
in terms of the electricity needs of agents. This vector is formulated in such a way that the
utility of an agent is the highest during the hour it needs electricity the most, and the lowest
during the hour it needs electricity the least. As such, an agent receives higher comfort utilities
if it is connected to electricity at hours it needs more electricity. (ii) With this formulation,
the electricity needs of agents can be uniquely quantified and interpersonally compared10 at
the same time, without considering how much electricity the agents consume with respect to
others. For example, values of 1 within the comfort vectors of two different agents represent
the hours in a week that both agents need the most electricity. It is worthy of mention that
we use the term “comfort” to qualify this vector because, the more an agent is connected
to supply during hours with higher δt values, the more it benefits (or derives comfort) from
electricity.

Note that our comfort formulation: (i) is an independent, linear utility function for each
agent, (ii) is one that is relevant to developing countries where, in reality, there is limited
information (such as appliance-level consumption, internal and external temperature data,
occupancy information from sensors etc.) that can be used to formulate comfort with more
sophisticated approaches, and (iii) can be used to design our fair load shedding solutions to
provide results similar to those of incentive compatible mechanisms.11 In making our solu-
tions incentive compatible, agents can receive their highest utilities by consuming electricity
in their usual manner.12 We express the FLSP in the next section.

3.3 The fair load shedding problem (FLSP)

Herein, we formally define the load shedding problem, based on the data and comfort model
above. Our definition will be applicable to the rest of this paper.

We define I as a set of n agents, where each agent is denoted as i . Also,we derive the hourly
estimated consumption (or demand) of each agent, c̃ti , at hour (t) from the representative data,
as would be necessary when planning load shedding ahead. We do so by drawing from the
normal distribution c̃ti ∼ N (cti , 0.05).

13 The aggregated hourly estimated demand of the set
of agents represents the hourly load on the system. We denote this hourly load as lt ∈ R>0,

9 The utility of an agent is a numerical value that is used to represent the preference of the agent for the
resource, such that agent i receives a utility of ui (P) from an allocation P [7]. This utility is a mapping from
the consumption of agents.
10 Comparison between agents is possible because all agents’ comfort values are on the same scale of ε to 1,
not minding how much the electricity they demand (or consume) differ.
11 Incentive compatible mechanisms are known to reward agents which act according to their preferences
with the best outcomes for such actions [42].
12 We design our fair load shedding solutions in this manner in Sect. 5.
13 We state later in Sect. 3.4 that we use accurate predictions of household consumption to solve the FLSP.
For this reason, we specifically take σ as 0.05 to produce consumption estimates that are close to the actual
consumption of homes. However, we evaluate our solutions under higher levels of uncertainty in Sect. 6.4.
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where lt = ∑n
i=1 c̃

t
i . Similarly, the hourly estimated supply capacity available for meeting

the demand of agents in I is represented as gt ∈ R>0.14 Now, in a developing country, it is
often the case that lt is greater than gt . In this event, there is a deficit, dt (i.e., dt = lt − gt ),
on the system and the demand of all agents cannot be met. System operators then have to
resort to load shedding in order to maintain a balance between demand (lt ) and supply (gt )
and keep the system in operation (as discussed in Chapter 1). In executing load shedding,
we define a piece-wise variable Λt

i , which takes the value 1 if i is connected to electricity at
t , and 0 otherwise. As such, an agent is either connected to supply or not. Now, we briefly
discuss the assumptions upon which our pre-planned solutions are based.

3.4 Key assumptions

In solving the fair load shedding problem, we use day-ahead hourly estimates of demand
and supply to plan for load shedding a day ahead. Our solutions result in the selection of
households to be disconnected from supply in a way that ensures fairness and grid stability.
As such, we classify our solutions as planned, day-ahead, household-level load shedding
options. We make the following assumptions in solving our problem in this manner:

1. Household-level load control We assume that the retrofits which provide the means
for household-level load control are generally available in homes within distribution
networks in developing countries. This is necessary because our solutions warrant the
execution of load shedding at the household level. We can make this assumption because
household-level load control is possiblewith the smartmeter retrofits discussed in Sect. 2.

2. Household consumption estimatesWe assume that we receive (or compute) near-accurate
estimates from homes (hence the level of uncertainty in deriving c̃ti ). We can make
this assumption because it is possible to receive (or estimate) near-accurate household
consumption estimates using elicitation approaches such as prediction-of-use games (see
[53]) and scoring rule-based mechanism (see [41]), and with the tools (such as in [43])
and techniques (such as in [49]) for estimating household demand.

3. Spinning reserveWe assume that the sum of available supply and emergency power will
always suffice for any uncertainties in demand estimates. We can make this assumption
because generators ensure that they have a spinning reserve available, as they are unable
to always predict consumption. This is the case in South Africa, another developing
country, as depicted by the “reserve margin” shown in Fig. 5. In addition, while some
households may consume more than their estimates, others may consume less than their
estimates. Such estimation errors may cancel themselves out. Furthermore, we assume
that the spinning reservewill cater for any power flowconcerns (e.g., transmission losses).

4. Comfort vectorWeassume that comfort is independent of load shedding events. Although
we design solutionswhich are able to factor in the effect of load shedding on consumption
after supply is restored (i.e., the rebound effect)15 in Sects. 5.2.2 and 5.2.3, it is necessary
to assume that consumers may not know in advance when load shedding events will
happen and so do not preemptively run some activities. As such, our comfort formulation
in this paper embodies the preference of agents for electricity, even when they may be
arbitrarily subjected to load shedding.

14 For our purposes, we take the value of gt for each day ahead as the average of the sum of hourly household
consumption estimates for that day (i.e., gt = (

∑24
t=1

∑n
i=1 c̃

t
i )/24).

15 The rebound effect, illustrated in [38], is the reaction of consumers to load management measures by
shifting their consumption to periods when electricity is more available.
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Fig. 5 Load shedding as implemented by the city of Johannesburg, indicating there is emergency reserve
power [8]

Based on these assumptions, in the next section, we first develop a number of heuristics
that disconnect households from supply during load shedding. Our heuristics are designed
with the objective to connect agents to supply for a similar number of hours, while ensuring
that demand matches supply. We also assess the performance of these heuristics and analyze
their results therein.

4 Household-level load shedding heuristics

In this section, we briefly summarize and evaluate the solutions presented in [32].16 In [32],
four heuristics (i.e., GA, CSA1, RSA and CSA2) which focus on the single objective to
minimize the maximum difference in the number of hours agents are connected to supply
(i.e., to minimize envy in terms of connections as specified in Sect. 3.3) were presented. This
objective is formulated as:

min{maxi, j (|Ni − N j |)} (3)

Specifically, GA tries to simulate the response of an operator to load shedding. It does so
by creating a few groups of agents, such that the sum of the estimated demand of the agents
in each group is enough to offset the deficit. Thereafter, it sums up the number of hours all
agents in each group have been connected to supply, then disconnects the group of agents
that have been connected to supply the most. The other heuristics (i.e., the CSA1, RSA and
CSA2) use a round-robin scheme to select agents in rounds over all load shedding events. In
this manner, when an agent is disconnected from supply, it will not be disconnected again
until all agents have been disconnected in that round.17 The CSA1 disconnects agents in each
round based on their consumption, the CSA2 disconnects agents in each round based on their

16 Please see [32] for a more in-depth description of these solutions.
17 A round is completed when each agent has been disconnected once. Depending on the deficits, a roundmay
either span over different load shedding implementations or terminate within the implementation it begins.
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Table 3 Utilitarian, egalitarian
and envy-freeness results in terms
of the number of hours agents are
connected to supply

Heuristic Utilitarian Egalitarian Envy-freeness

GA 631,498 1607 697

CSA1 646,971 1766 1

RSA 640,233 1758 1

CSA2 640,651 1745 1

Bold values indicate the best results in each of the columns

comfort, and the RSA is designed to be agnostic of the consumption or comfort of agents, so
that it randomly disconnects agents in each round.

In order to re-assess18 the performance of these heuristics, we point out that q is 2184 h
(as the representative dataset of hourly consumption developed in Sect. 3 is for a period
of 13 weeks). In evaluating these heuristics, we use the utilitarian, egalitarian and envy-
freeness metrics to evaluate these heuristics. The utilitarian criterion, as defined in [23], is
the sum of the individual utilities of all agents in a system. We adopt this definition, and
consequently adopt the utilitarian criterion as the total number of hours all n agents are
connected to electricity within q hours (i.e.,

∑n
i=1 Ni ). In addition, [23] also defines the

egalitarian criterion as the utility of the agent that is currently worst off. In our domain, we
adopt the egalitarian criterion as the number of hours the agent connected to electricity the
least within q hours was connected for (i.e., mini {Ni }). Finally, envy-freeness is a criterion
of fair division that allocates resources to agents in such a way that no agent envies the
allocation of another. However, we define this criterion differently. This is because, in our
case, agents do not have information of the allocation of others, making it impossible for the
standard definition of envy-freeness to be adopted. Instead, we define envy-freeness in terms
of the highest difference between the utilities of all pairs of agents, such that if the agents
were aware of their utilities, the overall envy within the agent-population will be minimal. As
such, the envy-freeness criterion is defined as maxi, j {|Ni −N j |}, representing the maximum
difference between the number of hours all pairs of agents are connected to supply for within
q . We present the results based on these social welfare metrics in Table 3.19

Table 3 shows how the four heuristics achieve a somewhat similar performance in terms of
how they connect agents to supply over the entire period that results from the data, as seen in
the Utilitarian column. However, the performance of CSA1 is better than those of others. The
same can be said of results shown in the Egalitarian column, where CSA1 connects the least
connected agent to supply the highest number of times. However, in the Envy-freeness col-
umn,20 CSA1, RSA and CSA2 all achieve a difference of one connection between the agents
they connect the most and least to supply. This is due to the round-robin scheme they employ.

Nonetheless, although three of our algorithms achieve their objective, some questions
arise. What if agent i is mostly connected to supply when the occupants are home (and, as
such, need electricity the more) but agent j is mostly connected to supply when they are away
(and, as such, need electricity the less)? Would an agent prefer to be connected to supply
when it needs electricity the more, even if it ends up being connected to supply for a fewer
hours? We believe the fairness scenarios posed by these questions are not addressed by these

18 The performance of the heuristics were assessed in terms of connections and comfort in [32], as in a chore
division setting. However, to conform with the results to be evaluated later in this paper, we reproduce the
results in [32] in terms of connections and comfort, as in a cake-cutting setting.
19 Note that the results presented in Table 3 are obtained from solving the fair load shedding problem once.
20 Note that the smaller the number is, the better the result in this column.
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heuristics. Therefore, to better achieve fairness, it is important that we model the FLSP as a
resource allocation problem that considers the electricity needs of agents. We do this in the
next section.

5 Optimizing fair load shedding

With the notion of comfort, we now have a number of objectives to work with, vis-à-vis the
number of hours agents are connected for, the comfort delivered to agents and the demand of
agents. Upon this background, in this section, we use the consumption and comfort values of
agents to model the FLSP as a constrained optimization problem.21 In so doing, we adapt the
utilitarian, egalitarian and envy-freeness social welfare metrics in terms of comfort, demand
and connections as objectives and constraints, and use these to design an MIP that allocates
electricity to individual households over a period.

5.1 The knapsackMIP formulation

We first model the objective of the fair load shedding problem with insights gained from the
knapsack problem for an hour (see Sect. 2). We take the values of the items in a knapsack
problem to be the comfort values of the agents. In addition, we take the weights of these items
to be the consumption (or demand) of each agent. As such, the capacity of the knapsack is
taken as the supply capacity of the grid. With these, we formulate FLSP for an hour, t , as:

max
n∑

i=1

δtiΛ
t
i ,

s.t.:
n∑

i=1

c̃tiΛ
t
i ≤ gt

(4)

where δti is the comfort value of i at t and Λt
i connects i to supply at t (i.e., Λt

i = 1) or
otherwise. This is an implementation of the utilitarian criterion in terms of comfort, in that
the summed utility of all agents is maximized [28]. It is subjected to the constraint that limits
the total electricity supplied to the available supply capacity, thereby implementing load
shedding. With this formulation, the comfort of all agents is maximized at t while keeping
the electricity supplied within the supply capacity. As such, theMIP ensures that electricity is
supplied to agents that need it more at t . However, this in no way considers fairness. Instead,
fairness considerations can only be incorporated into this problem when it is solved over
a number of hours [13]. For this reason, we extend this into a Multiple Knapsack Problem
(MKP) formulation in the next section.

5.2 TheMKPMIP formulation

Herein, each hour is modelled as a knapsack in theMKP formulation.With each agent having
different demands and different comfort values for different hours in a period made up of p
hours, the formulation in Eq. 4 becomes:

21 We believe the consumption and comfort values of agents provide the tools upon which our solutions can
become an algorithmic framework and methodology which may be generalized to other problems involving
constrained utility maximization, where the utilities can be suitably modelled (as we did with comfort) and
where the constraints involve notions of fairness.
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max
p∑

t=1

n∑

i=1

δtiΛ
t
i (O1),

s.t.:
n∑

i=1

c̃tiΛ
t
i ≤ gt ∀ t ∈ {1, . . . , p} (C1),

β2 ≥
p∑

t=1

Λt
i ≥ β1 ∀ i ∈ I (C2), (5)

p∑

t=1

δtiΛ
t
i ≥ β3 ∀ i ∈ I (C3),

p∑

t=1

c̃tiΛ
t
i ≥ β4 ∀ i ∈ I (C4)

As such, the comfort of all agents is maximized over p22 hours. The objective is also
an implementation of the utilitarian social welfare metric that is subjected to a number of
constraints. Constraint C1 ensures that the supply capacity is not exceeded for every hourly
solution to the MIP problem. C2 to C4 are constraints which we formulate to fulfill some
fairness criteria using the egalitarian and envy-freeness metrics. We describe these criteria
and constraints in the sections that follow.

5.2.1 Fairness criterion based on number of hours of connection

We begin by discussing a fairness criterion based on the number of hours individual agents
are connected to supply (one of the utilities of agents), as was the focus of our heuristics in
Sect. 4. This criteria is formulated as a constraint, C2. The constraint is constructed using
the egalitarian and envy-freeness metrics.

The egalitarian metric is described as the number of hours which the agent least connected
to supply is connected for. As such, we constrain our FLSP to ensure that there is a lower
bound, β1 ∈ {0, . . . , 24}, to the number of hours every agent will be connected to supply
within 24 h. The egalitarian criterion can be satisfied in terms of connections in that a high
value for β1 will ensure all agents are connected to supply for a minimum number of hours
within the day ahead.

In order to satisfy the envy-freeness criterion, we specify an upper bound, β2 ∈
{0, . . . , 24}, on the number of hours every agent will be connected to supply within 24 h.
Thereupon, we are able to limit the differences between the number of hours all pairs of
agents are connected to supply within 24 h. Furthermore, we use the hourly supply capacity
(gt ) and the demand of all agents (

∑n
i=1 c̃

t
i ) for each hour within the day-ahead to derive

the values for parameters β1 and β2. We do this using the set of computations shown in
Algorithm 1.

Algorithm 1 first finds the hours within the day ahead in which load shedding is necessary
(Line 1). For each of these hours, it then computes the average hourly estimated demand
of agents (Line 2). Thereafter, it divides the hourly supply capacity by the average hourly
estimated demand of agents during load shedding hours. This provides what we say is an
estimate of the total number of agents which can be connected to electricity in these hours
(Line 3). Next, it sums up these hourly estimates (Line 4). Thereafter, it divides this total

22 It is noteworthy that, because we look to plan for load shedding a day ahead, we take p to be 24 (h).
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Algorithm 1: Deriving an upper bound and a lower bound for the number of hours all
agents should be connected to supply the day ahead

Data: The number of agents in I , n; the hourly consumption of each agent, c̃ti ; the hourly supply
capacity, gt ; the hourly deficit, dt = lt − gt

1 F ⊆ t ∈ {1, . . . , 24} ∀ dt > 0 // Hours load shedding is necessary, F

2 c fμ =
(∑n

i=1 c̃
f
i

)
/n // Average hourly demand of agents in f ∈ F

3 π f = gt/c fμ // Estimated number of households connected in F

4 Π = ∑
f ∈F π f // Total estimated households connected hourly in F

5 Ni
μ = Π/n // Estimated average connections per agent in F

6 β1 = ⌊
Ni

μ

⌋ + 24 − |F | // Round down average day ahead connections per agent

7 β2 = ⌈
Ni

μ

⌉ + 24 − |F | // Round up average day ahead connections per agent

number of connections by the total number of agents, to obtain an average number of hours
each agent can be connected to supply during load shedding hours (Line 5). To compute an
exact number of whole hours agents can be connected to supply in the day ahead, it rounds
down (Line 6) and up (Line 7) the number computed in Line 5 plus the number of hours no
load shedding is necessary.

β1 and β2 are used in C2 to determine the number of hours which agents will be connected
to supply the day ahead. It should be noted that the values of these parameters are absolutely
dependent on the data used in solving the FLSP (i.e., the consumption of agents and the
supply capacity from our representative dataset). However, the above steps have generated
parameters that result in feasible solutions in this case and can be used in different scenarios
(i.e., for different datasets or system characteristics) as we show in Sect. 6.6. We discuss C3
and its associated fairness criterion in the next section.

5.2.2 Fairness criteria based on comfort

Next, we consider the comfort of each agent over each day’s period (another of the utilities of
agents, as we have previously mentioned). We use this consideration in formulating another
constraint, C3, based on the egalitarian and envy-freeness metrics. However, we do not have
a comfort capacity for computing bounds (as we did in Sect. 5.2.1, where bounds which
determine the number of hours that agents will be connected to supply daily are derived from
supply capacity). In addition, we do not have a single yardstick that we can equally base the
comfort of all agents on (as we did in Sect. 5.2.1, where all agents had the same 24 h in which
they can be connected to supply). Furthermore, the comfort of each agent for each hour is
a function of their consumption over 168 h of a week. By this, we mean that the comfort
enjoyed by two agents which consume the same amount of electricity in a day is unlikely to
be the same because we derive their comfort from their weekly historical consumption data
(as described in a Sect. 3.2). For this reason, we do not have the adequate information to
analytically determine lower and upper bounds for implementing the egalitarian and envy-
freeness metrics in terms of comfort.

To remedy this, we define a factor (or parameter), β3, which represents the percentage of
the summed comfort of each agent within a day as β3 = α3

∑p
t=1 δti ∀ i ∈ I . We set β3 as

a lower bound of the comfort that must be delivered to every agent daily. We do not select
an upper bound because the constraint C2 already ensures the solution to the MIP does not
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result in any agent being connected to supply all hours of the day. As such, there is no day
an agent enjoys all of its summed comfort.23 To this end, our MIP produces solutions that
satisfy the egalitarian and envy-freeness metrics as a result of the lower bound. With respect
to the egalitarian metric, the lower bound ensures all agents are delivered a minimum level of
their comfort daily. Whereas, the envy-freeness metric is satisfied with respect to the value
of parameter α3 which limits the difference between the comfort enjoyed by all agents.

In arriving at a value for α3, we provide a grid of values in the range 0 < α3 < 1 to our
solver.24 Using a binary search algorithm, we find values which result in feasible solutions
within the range. From these values, we then select a value, α3, which maximizes the solution
to the MIP.

In addition, we attempt to factor in the rebound effect (described in Sect. 3.4) herein. It is
necessary to do so because if i is disconnected from supply at t , it is likely to need electricity
more (than it would have if it was not disconnected) in the next hour, t + 1. This is because
some activities which consumers may have been deprived of at t are likely to become more
important at t + 1. In this regard, we take δt+1

i as a value randomly selected between the
computed comfort value for that hour and the maximum comfort value of the week (i.e.,
δt+1
i = {δt+1

i , 1}). We discuss an additional fairness criterion, modelled as constraint C4, in
the next section.

5.2.3 Fairness criteria based on electricity supply

We begin by pointing out that if an agent is delivered a certain level of its summed comfort
over a particular day, there is no guarantee that the agent will be supplied the same level of
its total demand that day. This is because comfort is derived from historical consumption
while demand is estimated. In addition, as stated in Sect. 5.2.2, comfort is derived from
weekly consumption. Therefore, it is necessary to also formulate another constraint, C4, that
delivers a minimum percentage of each agent’s daily demand (the third of the utilities of
agents). We formulate this lower bound as a percentage because all agents have different
demands over different hours such that no single amount of electricity supply will equally
satisfy them. In addition, as in Sect. 5.2.2, we do not have enough information fromwhich we
can analytically determine this lower bound. Likewise, we do not compute an upper bound
because our constraint in Sect. 5.2.1 already ensures that no agent is connected to supply all
24 h of a day as an effect of load shedding.

A lower bound presents a basis for which our MIP formulation can conform to the egal-
itarian and envy-freeness metrics. With respect to the egalitarian metric, the lower bound
ensures all agents are supplied a minimum level of their demand daily. It also determines
the maximum difference between the pairwise percentages of the daily total demand that is
supplied to the agents, such that the envy-freeness metric is satisfied to a degree determined
by the lower bound. We define this lower bound as β4 = α4

∑p
t=1 c̃

t
i ∀ i ∈ I . On this

ground, our FLSP is subjected to the constraint C4 in Eq. 5. As such, a minimum level of
demand is supplied to each agent daily and the differences between the supply shares of all
agents are reduced.

Similar to parameter α3, our solver arrives at a value for parameter α4 within the range,
0 < α4 < 1, such that the solution to the MIP is maximized. Also, α4 determines the value

23 Although this is dependent on data, our representative dataset (in Sect. 3.1) and problem formulation (in
Sect. 3.3) are such load shedding will be necessary during a number of hours daily and no agent is connected
to supply all hours of the day.
24 We use the standardmixed integer linear programming solver CPLEX to solve this constrained optimization
problem.
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of β4 (see above), and depends on the demand and supply capacity of the system.We attempt
to factor in the rebound effect herein also, because if i is disconnected from supply at t , it
is likely to consume electricity more (than it would have if it was not disconnected) in the
next hour, t + 1. This is due to appliances like refrigerators cycling on and home occupants
possibly running activities they were deprived of at t . In this regard, we take c̃t+1

i as a value
randomly selected between the computed consumption value for that hour and the maximum
consumption value in its consumption profile (i.e., c̃t+1

i = {c̃t+1
i ,max

t
{ζi }}).

When taken together, the solution of the FLSP MIP selects the agents to be connected to
supply at each hour within a day, such that comfort is maximized over the day. It ensures that
the electricity supplied to agents (being a function of comfort) is as high as possible without
exceeding the hourly supply capacity. It also ensures that the number of hours each agent is
connected to supply within the day, the percentage of the daily total comfort of each agent
and the percentage of the daily total consumption of each agent all satisfy the egalitarian and
envy-freeness metrics.

5.3 Maximizing supply: an optional MIP objective

Next, we consider the FLSP in the context of revenue maximization (instead of comfort
maximization). Hence, we formulate an objective which maximizes supply below:

max
p∑

t=1

n∑

i=1

c̃tiΛ
t
i (O2) (6)

The objective is likewise subjected to all constraints C1 to C4 to form another solution to
the FLSP.

Consequently, we offer a pair of solutions to the FLSP. These solutions present options
that can be utilized in different conditions and environments, depending on the desired objec-
tives and requirements. In highlighting these objectives and requirements, we describe these
solutions as:

1. The Comfort Model (CM): We present Eq. 5 as CM, being a solution that maxi-
mizes the comfort objective (or utility). In so doing, we think of an environment which
places a premium on supplying electricity to households based on their needs. The key
objectivewithin this environmentwould be tomaximize comfort. A considerationmay be
that, if a household has access to electricity when it needs it more, the household is likely
to maintain its consumption patterns. As a consequence, the feasibility of day-ahead fair
load shedding schemes is increased.

2. The Supply Model (SM): Likewise, we present Eq. 6 as the objective of SM,
being a solution that maximizes the supply objective (or utility). In so doing, we think
of an environment that places a premium on maximizing revenue. The objective within
the environment would be to maximize the access of households to electricity. A consid-
eration may be that a scheme such as this will result in the least waste and the highest
revenue, as we highlighted above.

We highlight that since both comfort (as in CM) and demand (as in SM) are related, each
of the models above maximizes the objective of the other to an extent. This is the sort of
compromise that exists when solving multi-objective problems. In addition, while both of
the models are individually less complex than a multi-objective model, they may produce
results which Pareto dominated those of their multi-objective counterpart. We evaluate the
results of these constrained optimization models in the section that follows.
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6 Evaluation of results

We assess the performance of our solutions in this section. In the case of our MIP solutions,
as previously stated, parameters α3 and α4 are derived using grid search within the ranges
0 ≤ α3 ≤ 1 and0 ≤ α4 ≤ 1 respectively. This results in parameters theα3 = 0.78;α4 = 0.75
for CM, and α3 = 0.8;α4 = 0.8 for SM. On this ground, CM aims to supply 78% of agents’
daily comfort and 75% of agents’ daily demand to the agents daily. Furthermore, SM is
designed to supply 80% of agents’ daily comfort and 80% of agents’ daily demand to the
agents daily. In addition, β1 and β2 are 21 and 22 respectively within both models. We run
nine independent simulations of our models to consider how they perform on the average.
We present these average results under different experiments in the sections that follow.

6.1 Fairness and efficiency in terms of connections

In this section, we evaluate the performance of all our load shedding solutions with respect to
the number of hours they connect agents to supply individually (i.e., the egalitarian and envy-
freeness social welfare metrics) and collectively (i.e., the utilitarian social welfare metric) on
the average herein over q (i.e., 2184) hours. We present the average results obtained by each
solution after a number of independent implementations, along with their standard deviations
(in parenthesis) in Table 4.

Within the Utilitarian column in Table 4, we see that CM connects the entire population of
agents to supply more hours than the other solutions on the average. Its performance is 1.04%
better than that of SM, which performs second best. The performances of the heuristics under
this consideration are in line with our discussions in Sect. 4, but we highlight that the best
performing heuristic under this consideration (i.e., CSA1) connects agents to electric supply
10.75% less than CM on the average. Whereas, RSA, CSA2 and GA obtain results that are
11.43%, 11.86% and 13.90% worse than that of CM respectively.

As seen in the Egalitarian column, CM and SM result in every individual agent being
connected to supply for longer periods. As such, they connect the worst off agents to supply
for longer than the heuristics do. This is so because of constraint, C2, which ensures every
agent is connected to supply for at least 21 h daily.

Furthermore, because of the round-robin scheme utilized by CSA1, RSA and CSA2, they
connect agents to supply with pairwise differences that are lower than those of CM and SM, as
shown within the envy-freeness column. However, the effect of this is that CSA1, RSA and
CSA2 connect the agents most connected to supply for 1765, 1754 and 1747 h respectively

Table 4 Results of MIP models and heuristics in terms of hours of connection to supply on the average, along
with their standard deviations (SD) within parenthesis

Solution Utilitarian (SD) Egalitarian (SD) Envy-freeness (SD)

CM 717,031 (3950) 1920 (3.24) 123 (2.09)

SM 709,676 (3878) 1922 (3.41) 71 (2.04)

GA 629,534 (4178) 1609 (4.69) 695 (3.28)

CSA1 647,439 (3063) 1764 (2.27) 1 (0.00)

RSA 643,504 (4094) 1753 (4.33) 1 (0.00)

CSA2 641,002 (3154) 1746 (2.38) 1 (0.00)

Bold values indicate the best results in each of the columns
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Table 5 Results of MIP models and heuristics in terms of comfort delivered on the average, along with their
standard deviations (SD) within parenthesis

Solution Utilitarian (SD) Egalitarian (SD) Envy-freeness (SD)

CM 303,217 (3447) 0.81 (0.01) 0.13 (0.02)

SM 292,135 (3802) 0.83 (0.01) 0.09 (0.02)

GA 291,021 (5198) 0.38 (0.04) 0.56 (0.03)

CSA1 291,909 (3201) 0.67 (0.02) 0.25 (0.02)

RSA 268,564 (5106) 0.65 (0.04) 0.28 (0.03)

CSA2 270,262 (3112) 0.64 (0.02) 0.28 (0.02)

Bold values indicate the best results in each of the columns

(i.e., the egalitarian value added to the envy-freeness value). These are all much lower than
the number of hours which the MIP models connect the worst off agents to supply (1920 for
CM and 1922 for SM). On account of this, although the MIP models result in the difference
between the utilities (in terms of hours of connection) obtained by agents being higher, they
also result in all agents obtaining higher utilities all round (i.e., they Pareto dominate the
heuristics under this consideration). Next, we evaluate the performance of our solutions in
terms of comfort.

6.2 Fairness and efficiency in terms of comfort

We developed the notion of comfort in order to consider the preference (or electricity needs)
of agents when allocating electricity. Now, we evaluate the results obtained by all our load
shedding solutions using the utilitarian, egalitarian and envy-freeness social welfare metrics.
On the one hand, the results obtained by our MIP model under the utilitarian metric can be
directly presented in this evaluation, being an addition of the comfort delivered to all agents
during q hours. On the other hand, their results under the egalitarian and envy-freeness
metrics are dependent on the comfort delivered to individual agents in q hours. These results
should not be presented without first developing a unifying scale for all agents, since the total
comfort values of agents within q hours are different.25 It was why we defined β3 as a lower
bound of percentages of each agent’s summed comfort to be delivered to the agent within a
period in Sect. 5.2.2, as opposed to specifying a single value of comfort to be delivered to all
agents. Therefore, we provide a unifying scale for assessing the results of our solutions. In
so doing, we define the Agent Comfort Share (ACS), δ∗

i , as the total comfort enjoyed by each
agent in q hours, divided by its total comfort over q hours (i.e., δ∗

i = ∑q
t=1 δtiΛ

t
i/

∑q
t=1 δti ).

To this end, we present the results obtained by each solution after a number of independent
implementations, along with their standard deviations (in parenthesis) in Table 5.

The Utilitarian column shows the sum of the comfort enjoyed by all agents within q hours.
Of all fair load shedding solutions, CM delivers the maximum comfort to all agents under this
metric. This is as expected, with the objective of the model being to maximize comfort. The
next best performing solution in this category is SM, with CSA1 and GA also performing well.

It is under the egalitarian and envy-freeness metrics that ourMIP solutions are expected to
obtain results which are in linewith their purpose.We beginwith the egalitarianmetric, where
the Egalitarian column displays the ACSs of the agents with the minimum ACSs. Table 5

25 As such, any solution that delivers an equal amount of comfort to all agents does not necessarily distribute
comfort evenly.
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shows how SM delivers the highest ACS to the worst off agent (in terms of their ACSs) after
all load shedding periods. In turn, the result obtained by CM is only 2.47% worse than that
of SM. It is worse because its comfort constraint factor is lower than that of SM (α3 is 0.78%
for CM and 0.80% for SM). Nonetheless, CM and SM deliver 81% and 83% of the ACSs of
the agents with the minimum respectively, so that they both satisfy constraint C3. However,
CSA1, which performs better than other heuristics, only delivers 67% of its ACS to the worst
off agent. These results show that our MIP solutions both consider and satisfy the individual
electricity needs of agents by supplying electricity to them when they need it the most.

Next, we assess the results of the fair load shedding solutions under the envy-freeness
metric. Notably, even though CSA1, RSA, and CSA2 heuristics connect agents to electric
supply a very even number of hours, they still fail to distribute comfort as evenly as any of the
MIP models. Instead, SM evenly distributes comfort the best, with the maximum difference
between the ACR delivered to all agents only 0.09. In turn, the best performing heuristic (i.e.,
CSA1) obtains a result that is 177.78% worse than SM’s. Contrariwise, the result obtained
by CM, is 5.92% worse than SM’s, owing to CM’s weaker constraint.

In summary, CM and SM both outperform the four heuristics under the utilitarian metric,
deliver more comfort to all agents than any of the heuristics with respect to the egalitarian
metric, and distribute comfort more evenly than any of the heuristics, with respect to the envy-
freness metric. We show in the next section how our MIP models compare to the heuristics
when considering the amount of electricity supplied to individual agents.

6.3 Fairness and efficiency in terms of supply

We assess the performance of all fair load shedding solutions based on the amount of elec-
tricity supplied in this section. In the Utilitarian column, we show the sum of electricity (in
kWh) supplied to all agentswithinq hours.However, aswith the egalitarian and envy-freeness
results presented in Sect. 6.2, we formulate a basis upon which the electricity supplied to
meet the heterogeneous demand of each agent can be compared. This is because the sum
of electricity supplied to agents within q hours are different, being the reason for defining
β4 as a lower bound of percentages of each agent’s summed demand. We formulate our
basis for comparison as the Agent Supply Rate (ASR), c∗

i , which we define as the summed
electric demand supplied to each agent in q hours, divided by its total electric demand over
q hours (i.e., c∗

i = ∑q
t=1 c

t
iΛ

t
i/

∑q
t=1 c

t
i ). We present the average results obtained by each

solution following a number of independent simulations, along with their standard deviations
(in parenthesis) in Table 6.

Table 6 Results of MIP models and heuristics in terms of electricity supplied on the average, along with their
standard deviations (SD) within parenthesis

Solution Utilitarian (SD) Egalitarian (SD) Envy-freeness (SD)

CM 1,340,015 (8299) 0.78 (0.01) 0.17 (0.02)

SM 1,347,801 (8304) 0.83 (0.01) 0.11 (0.02)

GA 1,297,020 (11264) 0.35 (0.04) 0.58 (0.03)

CSA1 1,296,939 (7564) 0.66 (0.02) 0.28 (0.02)

RSA 1,344,945 (11284) 0.68 (0.03) 0.25 (0.03)

CSA2 1,345,537 (7388) 0.63 (0.03) 0.30 (0.02)

Bold values indicate the best results in each of the columns

123



Autonomous Agents and Multi-Agent Systems (2020) 34 :12 Page 23 of 35 12

The Utilitarian column in Table 6 shows how SM supplies the most electricity to all agents
over q hours. This is expected as the objective of the model is to maximize electric supply.
In fact, both MIP models outperform all heuristics under the utilitarian metric. However, the
results of the heuristics are between 3.63% (for CSA2) and 3.92% (for CSA1) worse than
that of SM on the average.

It is under the other metrics that ourMIP solutions are expected to obtain results which are
in line with their purpose.We begin with the egalitarian metric, where the Egalitarian column
displays the ASSs of the worst off agents (in terms of their ASSs). The column shows that
SM delivers the most ASS of all worst off agents, due to its higher supply constraint factor
(i.e., α4). RSA, being the best performing heuristic, performs 22.01% worse than SM. In
turn, the result obtained by CM is only 6.41% worse than that of SM. CM performs this worse
because its supply constraint factor is much lower than that of SM (α4 is 0.75% for CM and
0.80% for SM). Nonetheless, CM and SM deliver 78% and 83% of the ASSs of the worst off
agents respectively, so that they both satisfy constraint C4. In turn, RSA only delivers 68%
ASS to the worst off agent. This shows that our MIP solutions both consider and satisfy the
individual demand of agents by supplying electricity to them based on their demand.

Finally, we assess the results of the fair load shedding solutions under the envy-freeness
metric. It is noteworthy that although the round-robin heuristics connect agents to electric
supply a very even number of hours, they still fail to meet the demand of agents as evenly as
any of the MIP models. Instead, SM evenly distributes comfort the best, with the maximum
difference between the ASR delivered to all agents only 0.11. In turn, the best performing
heuristic, RSA, obtains a result that is 127.27% worse than SM’s. Contrariwise, the result
obtained by CM is 54.55% worse than SM’s, owing to CM’s weaker constraint.

In summary, the MIP models outperform the four heuristics under the utilitarian, egalitar-
ian and envy-freeness metrics in terms of electricity supply. These MIP models specifically
fulfill their purpose by meeting the demand of each agent more than any of the heuristics,
with respect to the egalitarian metric. They also satisfy the demand of all agents more evenly
than any of the heuristics, with respect to the envy-freness metric. To show how our models
react to poorer estimates of demand, we solve the FLSP using the data of consumption with
different levels of uncertainty and evaluate the results in the section that follows.

6.4 Implementation with different levels of uncertainty

We have so far evaluated our solutions based on accurate estimates of consumption (where
σ = ±0.5). Although we assume that these accurate estimates are available, we yet evaluate
their performance under different levels of uncertainties in our estimates of consumption. For
this reason, we run simulations using six additional levels of uncertainty, by drawing from
each of the normal distributions26 c̃ti ∼ N (cti , 3σ),27 c̃ti ∼ N (cti , 2.5σ), c̃ti ∼ N (cti , 2σ),
c̃ti ∼ N (cti , 1.5σ), c̃ti ∼ N (cti , σ ) and c̃ti ∼ N (cti , 0.5σ) for each level of uncertainty. We
also keep the supply capacity constant (as in Sect. 3.3) through all simulations. Note that for
all these levels of uncertainty, we compute different constraint factors (i.e., different values
for β1, β2, α3 and α4) for our MIPs, which we show in Table 7. Now, we briefly evaluate
the performance of our solutions under these different levels of uncertainty with respect to

26 Note that whenever we draw a negative value of consumption from the distribution, we take an absolute
value of that value.
27 This is our highest level of uncertainty, being that we expect 99.73% of consumption values to lie within
three standard deviations from cti .
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Table 7 MIP constraint factors under different levels of uncertainty in prediction of consumption, and constant
supply capacity

± 3σ ± 2.5σ ± 2σ ± 1.5σ ± σ ± 0.5σ σ = ± 0.5

CM β1 21 21 21 21 21 21 21

β2 22 22 22 22 22 22 22

α3 0.78 0.78 0.78 0.78 0.78 0.78 0.78

α4 0.67 0.69 0.70 0.71 0.74 0.75 0.75

SM β1 21 21 21 21 21 21 21

β2 22 22 22 22 22 22 22

α3 0.80 0.80 0.80 0.80 0.80 0.80 0.80

α4 0.71 0.73 0.74 0.77 0.79 0.79 0.80

how they connect agents to supply, the comfort they deliver, and the electricity they supply
to agents against their actual demand.

6.4.1 Connections to supply under different levels of uncertainty

We display the average number of hours our solutions connect agents to supply individually
(with respect to the egalitarian and envy-freeness metrics) and collectively (with respect to
the utilitarian metric) under different levels of uncertainty in Fig. 6.

Fig. 6 Average number of connections to supply under different levels of uncertainty
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Figure 6 shows howour solutions produce results that are increasingly inconsistent asmore
uncertainties are introduced into consumption. However, the number of agents they connect
to supply does not show any consistent pattern. This is because the errors in consumption
(predicted during our simulations) seem to cancel themselves out, such that the average
number of agents our solutions connect to supply do not change in any pattern over all levels
of uncertainty. These hold under the utilitarian, egalitarian and envy-freeness considerations.

6.4.2 Comfort delivered under different levels of uncertainty

We display the average comfort our solutions deliver to agents individually (with respect
to the egalitarian and envy-freeness metrics) and collectively (with respect to the utilitarian
metric) under different levels of uncertainty in Fig. 7.

As in Sect. 6.4.1, Fig. 7 shows how our solutions produce results that are increasingly
inconsistent as more uncertainties are introduced into consumption, due to more varied
consumption data being generated under higher levels of uncertainty. This holds under the
utilitarian, egalitarian and envy-freeness considerations. Furthermore, the comfort our solu-
tions deliver to agents collectively (under the utilitarian considerations) does not show any
particular trend. This is due to comfort being formulated from historical (actual) consumption
and not predicted consumption. However, our MIP models deliver slightly higher levels of
comfort to theworst of agents as uncertainties reduce. This is so because the supply constraint
factors they compute (see Table 7) are lower under higher levels of uncertainty, such that
they impact on their egalitarian-comfort results. Contrariwise, our heuristics do not show
any particular pattern under the egalitarian consideration. While the differences between the

Fig. 7 Average comfort delivered under different levels of uncertainty
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comfort delivered to the worst and best off agents by our MIP solutions slightly reduce with
uncertainties (under the envy-freeness consideration), the results produced by our heuristics
show no such patterns.

6.4.3 Electricity supplied under different levels of uncertainty

We display the average amount of electricity our solutions supply to agents individually
(with respect to the egalitarian and envy-freeness metrics) and collectively (with respect to
the utilitarian metric) under different levels of uncertainty in Fig. 8.

Herein also, Fig. 8 shows how our solutions produce results that are increasingly inconsis-
tent as more uncertainties are introduced into consumption, due to more varied consumption
data being generated under higher levels of uncertainty. This holds under the utilitarian, egal-
itarian and envy-freeness considerations. Furthermore, the electricity our solutions supply to
agents collectively (under the utilitarian considerations) does not show any particular trend.
This is due to the errors in predicted consumption which seem to cancel themselves out, such
that the average sum of electricity supplied to agents fail to display any particular pattern over
all levels of uncertainty. However, our MIP models supply higher amounts of electricity to
the worst of agents as uncertainties reduce. This is mainly due to the supply constraint factors
they compute as in Table 7. Contrariwise, our heuristics do not show any particular pattern
under the egalitarian consideration. While the differences between the electricity supplied
to the worst and best off agents by our MIP solutions consistently reduce with uncertainties
(under the envy-freeness consideration), the results produced by our heuristics show no such

Fig. 8 Average electricity supplied under different levels of uncertainty
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patterns. To show that our models can be used within different settings, we show the results
obtained by solving the FLSP on other datasets in the next section.

6.5 Implementation with other datasets

To show further that our solutions generalize within the load shedding setting (and may
generalize within other constrained utility maximization settings), we now show results of
solving the FLSP with two other datasets: (i) the original dataset of homes in the USA (see
Sect. 3) in Sect. 6.5.1, and (ii) a simulated dataset of 1000 homes based on the dataset of
homes in Nigeria (see Sect. 3) in Sect. 6.5.2. Note that we return to computing predicted
consumption from the normal distribution c̃ti ∼ N (cti , 0.05), as in all our evaluations.

6.5.1 Dataset of USA homes

In this section, we show the results of solving the FLSPwith the original dataset of household
consumption of homes in the USA (from which we simulated the dataset in Sect. 3). This
Pecan Street dataset is for 414 homes over 13 weeks (i.e., Q hours). We model all homes
as agents by formulating their comfort profiles as we did in Sect. 3.2. Thereafter, we find
parameters β1, β2, α3 and α4 to be 21, 22, 0.78 and 0.72 respectively for CM. We also find
parameters β1, β2, α3 and α4 to be 21, 22, 0.79 and 0.78 respectively for SM. We solve the
FLSP and show the results in Table 8.

Table 8 shows how our solutions perform in line with our evaluations in Sects. 6.1–6.3,
albeit under a different setting. This suggests that our solutions are applicable within other
applicable settings with unique characteristics.

6.5.2 Dataset of multiple homes in developing countries

Herein, we show the results of solving the FLSPwith the dataset of 1000 homes in developing
countries. In Sect. 3, we generated the hourly consumption data of 367 homes in developing
countries over 3 months. In order to see how our solutions scale and generalize, we generate
the data of 1000 homes from the dataset for the same duration.28 Thereafter, we model all
homes as agents by formulating their comfort profiles as we did in Sect. 3.2. Then, we find
parameters β1, β2, α3 and α4 to be 21, 22, 0.80 and 0.76 respectively for CM. We also find
parameters β1, β2, α3 and α4 to be 21, 22, 0.82 and 0.82 respectively for SM. We solve the
FLSP and show the results in Table 9.

As in Sect. 6.5.1, Table 9 also shows how our solutions perform in linewith our evaluations
in Sects. 6.1–6.3 under a different setting. This suggests that our solutions are applicable
within other applicable settings with unique characteristics. We conclude this section by
discussing the time complexities of all load shedding solutions in the next section.

6.6 Computation complexities of load shedding solutions

Our heuristics are polynomial time algorithms that mainly depend on the number of agents
(i.e., O(n) for GA, O(n log n) for CSA1, O(n) for RSA and O(n log n) for CSA2, where
n is the number of agents). In turn, our MIP solutions are built upon a MKP formulation

28 We do this by drawing from a normal distribution with the consumption of homes in the dataset of Sect. 3
as the mean.

123



12 Page 28 of 35 Autonomous Agents and Multi-Agent Systems (2020) 34 :12

Ta
bl
e
8

R
es
ul
ts

of
M
IP

m
od

el
s
an
d
he
ur
is
tic

s
in

te
rm

s
of

th
e
av
er
ag
e
nu

m
be
r
of

ho
ur
s
of

co
nn

ec
tio

n
to

su
pp

ly
,
av
er
ag
e
co
m
fo
rt
de
liv

er
ed

an
d
av
er
ag
e
el
ec
tr
ic
ity

su
pp

lie
d

(f
ol
lo
w
in
g
a
nu
m
be
r
of

im
pl
em

en
ta
tio

ns
w
ith

th
e
da
ta
se
to

f
U
SA

ho
m
es
),
al
on
g
w
ith

th
ei
r
st
an
da
rd

de
vi
at
io
ns

(S
D
)
w
ith

in
pa
re
nt
he
si
s

C
M
(S
D
)

S
M
(S
D
)

G
A
(S
D
)

C
S
A
1
(S
D
)

R
S
A
(S
D
)

C
S
A
2
(S
D
)

C
on
ne
ct
io
ns

U
til
ita
ri
an

81
0,
35

5
(4
11

2)
80

1,
09

4
(4
00

6)
71

2,
85

9
(4
40

0)
72

5,
41

4
(2
97

9)
72

2,
26

4
(4
42

8)
71

9,
68

3
(3
31

9)

E
ga
lit
ar
ia
n

19
23

(3
.2
7)

19
26

(3
.4
4)

16
03

(4
.6
0)

17
52

(2
.3
0)

17
44

(4
.2
6)

17
38

(2
.3
0)

E
nv
y-
fr
ee
ne
ss

14
5
(2
.3
7)

97
(2
.8
5)

72
3
(3
.3
4)

1
(0
)

1
(0
)

1
(0
)

C
om

fo
rt

U
til
ita

ri
an

33
9,
62

2
(3
98

7)
32

6,
12

5
(4
03

6)
32

5,
99

9
(4
99

3)
32

6,
96

1
(3
08

4)
30

0,
85

6
(4
98

6)
30

2,
70

4
(3
49

2)

E
ga
lit
ar
ia
n

0.
81

(0
.0
1)

0.
82

(0
.0
1)

0.
40

(0
.0
5)

0.
68

(0
.0
3)

0.
67

(0
.0
5)

0.
65

(0
.0
2)

E
nv
y-
fr
ee
ne
ss

0.
12

(0
.0
2)

0.
10

(0
.0
3)

0.
57

(0
.0
3)

0.
27

(0
.0
3)

0.
30

(0
.0
4)

0.
31

(0
.0
3)

Su
pp

ly
U
til
ita

ri
an

3,
35

3,
70

1
(1
6,
44

7)
3,
37

0,
18

9
(1
6,
72

2)
3,
26

1,
20

6
(2
0,
58

7)
3,
26

0,
99

7
(1
4,
19

7)
3,
26

8,
86

6
(2
0,
54

7)
3,
27

0,
24

9
(1
4,
22

8)

E
ga
lit
ar
ia
n

0.
75

(0
.0
1)

0.
81

(0
.0
2)

0.
42

(0
.0
4)

0.
67

(0
.0
1)

0.
69

(0
.0
3)

0.
65

(0
.0
3)

E
nv
y-
fr
ee
ne
ss

0.
17

(0
.0
2)

0.
11

(0
.0
3)

0.
55

(0
.0
4)

0.
28

(0
.0
2)

0.
28

(0
.0
2)

0.
30

(0
.0
3)

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
re
su
lts

in
ea
ch

of
th
e
co
lu
m
ns

123



Autonomous Agents and Multi-Agent Systems (2020) 34 :12 Page 29 of 35 12

Ta
bl
e
9

R
es
ul
ts

of
M
IP

m
od

el
s
an
d
he
ur
is
tic

s
in

te
rm

s
of

th
e
av
er
ag
e
nu

m
be
r
of

ho
ur
s
of

co
nn

ec
tio

n
to

su
pp

ly
,
av
er
ag
e
co
m
fo
rt
de
liv

er
ed

an
d
av
er
ag
e
el
ec
tr
ic
ity

su
pp

lie
d

(f
ol
lo
w
in
g
a
nu

m
be
r
of

im
pl
em

en
ta
tio

ns
w
ith

th
e
da
ta
se
to

f
10

00
ho

m
es

in
de
ve
lo
pi
ng

co
un

tr
ie
s)
,a
lo
ng

w
ith

th
ei
r
st
an
da
rd

de
vi
at
io
ns

(S
D
)
w
ith

in
pa
re
nt
he
si
s

C
M
(S
D
)

S
M
(S
D
)

G
A
(S
D
)

C
S
A
1
(S
D
)

R
S
A
(S
D
)

C
S
A
2
(S
D
)

C
on
ne
ct
io
ns

U
til
ita
ri
an

1,
95

3,
67

6
(7
31

8)
1,
93

3,
67

3
(7
33

0)
1,
73

5,
45

1
(8
34

4)
1,
76

6,
10

3
(6
48

3)
1,
75

5,
48

0
(8
29

6)
1,
74

6,
60

8
(6
60

9)

E
ga
lit
ar
ia
n

19
22

(3
.3
1)

3.
31

(3
.4
6)

16
10

(4
.6
8)

17
66

(2
.1
9)

17
55

(4
.4
2)

17
46

(2
.3
6)

E
nv
y-
fr
ee
ne
ss

10
8
(1
.8
6)

57
(1
.5
4)

68
1
(3
.1
1)

1
(0
)

1
(0
)

1
(0
)

C
om

fo
rt

U
til
ita

ri
an

82
6,
21

2
(7
76

9)
79

8,
27

1
(7
83

7)
79

3,
04

7
(1
09

49
)

79
5,
42

7
(7
48

7)
73

1,
82

0
(1
08

95
)

73
6,
45

5
(7
02

5)

E
ga
lit
ar
ia
n

0.
83

(0
.0
1)

0.
85

(0
.0
2)

0.
41

(0
.0
5)

0.
69

(0
.0
2)

0.
67

(0
.0
3)

0.
67

(0
.0
2)

E
nv
y-
fr
ee
ne
ss

0.
11

(0
.0
2)

0.
8
(0
.0
2)

0.
53

(0
.0
2)

0.
24

(0
.0
2)

0.
27

(0
.0
3)

0.
26

(0
.0
2)

Su
pp

ly
U
til
ita

ri
an

3,
65

6,
51

0
(1
7,
95

2)
3,
67

1,
97

6
(1
8,
07

6)
3,
55

7,
64

4
(2
3,
79

9)
3,
55

5,
75

3
(1
6,
36

8)
3,
56

3,
82

1
(2
4,
25

2)
3,
56

7,
18

8
(1
5,
47

7)

E
ga
lit
ar
ia
n

0.
79

(0
.0
2)

0.
85

(0
.0
1)

0.
42

(0
.0
4)

0.
67

(0
.0
2)

0.
70

(0
.0
2)

0.
66

(0
.0
3)

E
nv
y-
fr
ee
ne
ss

0.
14

(0
.0
2)

0.
09

(0
.0
3)

0.
52

(0
.0
4)

0.
25

(0
.0
2)

0.
23

(0
.0
2)

0.
27

(0
.0
3)

B
ol
d
va
lu
es

in
di
ca
te
th
e
be
st
re
su
lts

in
ea
ch

of
th
e
co
lu
m
ns

123



12 Page 30 of 35 Autonomous Agents and Multi-Agent Systems (2020) 34 :12

Fig. 9 The average runtimes of all load shedding solutions after nine executions

that has a non-polynomial time complexity. However, we solve our MIP using the CPLEX
optimization package within the Python environment. CPLEX solves integer programming
problems using efficient algorithms and relaxations.29 We illustrate this by solving the FLSP
for different populations of agents drawn from our main evaluation dataset,30 and with other
test datasets (i.e., datasets used in Sects. 6.5.1 and 6.5.2). We show the time taken to arrive
at all solutions. It should be noted that, for all these datasets (with c̃ti ∼ N (cti , 0.05)), our
solver arrives at different factors (i.e., different values for β1, β2, α3 and α4) for both MIPs.
This further suggests that our approach is applicable within many cases (i.e., different dataset
or environments) with different system characteristics.31 We implement all load shedding
solutions with these datasets and show their average execution times in Fig. 9.

As can be seen in Fig. 9, the execution time of the MIPs grow polynomially and does
not entirely depend on the population of agents. This is depicted by results which show that
some MIPs with higher agent population are solved in less time than others (e.g., CM with
240 and 367 agents that have lower runtimes than the MIPs with 210 and 330 respectively,
and SM with 150 and 210 agents that have lower runtimes than the MIPs with 120 and 180
respectively). To understand why this may have occurred, we present the constraint factors
used to solve our MIPs in Table 10.

Table 10 suggests that the periods taken to execute our MIPs were also affected by their
constraints (notably because the constraint factors used within the settings of 240 and 367
agents are lower than those used within the settings of 210 and 330 agents respectively by CM,
and the constraint factor used within the settings of 150 and 210 agents are lower than those
used within the settings of 120 and 180 agents respectively by SM). As such, the runtimes of
our MIP solutions depend on their constraints. Additionally, their complexities will increase

29 Refer to the CPLEX Optimization Studio User’s Manual [18].
30 These populations (or datasets) are taken from the original developing country dataset simulated in Sect. 3.
31 By this wemean that, for each dataset, we take the steps in Sect. 3.3 to compute the hourly supply capacities
and estimates of agent demands. As such, we develop a number of applicable settings, each with its unique
characteristics.
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Table 10 MIP constraint factors under different settings (i.e., different population of agents)

30 60 90 120 150 180 210 240 270 300 330 367 414 1000

CM β1 20 20 21 21 21 21 21 21 21 21 21 21 21 21

β2 21 21 22 22 22 22 22 22 22 22 22 22 22 22

α3 0.70 0.71 0.72 0.74 0.75 0.75 0.76 0.75 0.76 0.79 0.80 0.78 0.78 0.80

α4 0.73 0.73 0.74 0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.72 0.76

SM β1 20 20 21 21 21 21 21 21 21 21 21 21 21 21

β2 21 21 22 22 22 22 22 22 22 22 22 22 22 22

α3 0.72 0.72 0.74 0.75 0.75 0.76 0.77 0.78 0.79 0.79 0.80 0.80 0.79 0.82

α4 0.77 0.78 0.79 0.80 0.79 0.81 0.80 0.80 0.80 0.79 0.80 0.80 0.78 0.82

with the number of hours we optimize over (which we maintain as 24 h in solving the FLSP
a day ahead in this paper), and the number of variables in our formulation.

7 Conclusion

We summarize this paper in this section and discuss the open challenges that still exist.
Specifically, in Sect. 7.1, we summarize the main body and results of this report while, in
Sect. 7.2, we discuss the future lines of work that build on our solutions.

7.1 Summary of work

In this paper, we introduced, formulated and provided a number of solutions to the load
shedding problem. To implement our proposal, we simulated data that was representative of
households in developing countries.We did this from publicly available datasets of electricity
consumed by households in developed countries. Specifically, we collected appliance-level
consumption data of households in the USA fromPecan Street Inc’s Dataport. Then, based on
findings about appliances commonly used in both Nigeria (a typical developing country) and
the USA [11,26,30,31,44], the temperature in cities of both countries and their consumption
patterns [16,17,37], we developed the appliance-level data into household consumption data
for households in a developing country. Thereafter, we modelled households into agents,
each with its preference (or need) for consuming electricity. In so doing, we created a notion
of comfort that resulted in some computed values which embody the electricity needs of
households.

Following this, we developed four heuristic algorithms that considered different criteria
for disconnecting agents from supply. All heuristics had the objective to connect agents to
supply as evenly as possible, in terms of number of hours.We evaluated their results using the
utilitarian, egalitarian and envy-freeness social welfare metrics. Thereafter, we highlighted
the shortcoming of the heuristics, in that they fail to consider the agents’ preference (or needs)
for electricity.

On this ground, we modelled the fair load shedding problem (FLSP) as two mixed integer
programming (MIP) problems built upon a multiple knapsack problem formulation. The first
had the objective to maximize the overall comfort of agents and the other had the objective
to maximize overall supply to agents (both with respect to the utilitarian metric). Using the
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egalitarian and envy-freeness metrics, we developed a number of constraints which ensure
that the number of hours individual agents are connected to supply, and the comfort delivered
and electricity supplied to these individual agents, are as high and as equal as possible. We
also included another constraint that executed load shedding when necessary, thus resulting
in a balance between supply and demand.

Following this, we evaluated the performance of all six load shedding solutions (i.e., the
four heuristics and the two MIPs). We performed the evaluations with respect to the number
of hours agents were connected to electricity, the comfort delivered to agents individually and
collectively, and the electricity supplied to agents individually and collectively. We showed
how the MIP solutions outperformed the heuristics under these three key evaluations.

When taken altogether, our approach presents a framework uponwhich other fairness prob-
lems involving constrained utility maximization (or resource allocation) may be generalized.
Our solutions also serves as benchmarks for designing future load shedding solutions, as well
as solutions for allocating other scarce resources (e.g., water allocation problems addressed
by [40,46]).

7.2 Future work

We made some assumptions in developing our household-level fair load shedding solutions.
One of these is that we receive near-accurate estimates from homes, based on which we
took the estimates of household consumption as values drawn from a normal distribution of
the electricity they actually consume. However, it will be useful to design solutions which
incorporate the computation of these estimates in the future.

In addition to this, cost effective elicitationmechanisms applicable to developing countries
may be designed to improve the accuracy of our comfort formulation. Such an elicitation
mechanism may consider the needs of individual consumers in homes. An example is an
occupant who needs an electric respiratory aid in the home for managing and treating sleep
apnea or another who needs electricity to prepare for an upcoming examination. To be cost
effective and applicable, such may elicit information (maybe through text messages) from
homes in a bother-free manner (as has been studied in [22,52]). this case, it is necessary to
appropriately incentivize the true reporting of the information.

Furthermore, approaches like “soft load shedding” (see [2]) are being developed to mit-
igate against the rebound effect (described in Sect. 3.4), and may be incorporated into our
solutions in the future. In addition, it is important to consider that households which are
arbitrarily subjected to load shedding may advance their consumption to periods when elec-
tricity is available. As such, future fair load shedding solutions should also consider the
effect load shedding has on prior consumption. Although we made the attempt to consider
the rebound effect in this work, our comfort formulation may be further improved to ensure
it still embodies the preference of agents for electricity, even after load shedding influences
their consumption.

We produced hourly solutions which are applicable because electricity billing is on an
hourly basis (i.e., in kWh). Additionally, many energy, resource allocation and scheduling
problems are solved in hourly or half-hourly time slots (e.g., in [1]). Likewise,RTPs are hourly
(or half-hourly) pricing schemes that contribute to grid stability. However, in the future, our
solution can be implemented using per minute data. This will be more computationally
intensive, as suggested in Sect. 6.6. Nonetheless, to ensure the computational cost of using
per minute data remains tractable, future solutions may solve the FLSP incrementally (e.g.,
one hour at a time), and employ approximation and relaxation techniques. Note that the
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computation complexity of such FLSP solutions is not a deterring factor, as they are not
designed to be implemented at real-time. In addition, solutions that use perminute data should
produce more accurate results (from using more accurate comfort values and estimates of
consumption).

Finally, ourwork can be designed to fit alongside other loadmanagementmeasures such as
demand side management (DSM) (read more about DSM in [38]). As such, it is necessary to
design incentives that encourage consumers to manage their consumption appropriately, and
to have an understanding of how they will react to such incentives. In addition, with the right
coordination mechanisms, our work can cope with the introduction of distributed renewable
sources and storage on the grid [4]. However, it will be necessary to accurately predict demand
(and supply, especially in the case of distributed renewable sources and storage) before our
solutions can be effective when incorporated with these smart grid technologies [39].

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

1. Alam, M., Gerding, E. H., Rogers, A., & Ramchurn, S. D. (2015). A scalable, decentralised multi-issue
negotiation protocol for energy exchange. In International joint conference on artificial intelligence
(IJCAI).

2. Aslam, T., & Arshad, N. (2018). Soft load shedding: An efficient approach to manage electricity demand
in a renewable rich distribution system (pp. 101–107). https://doi.org/10.5220/0006774001010107.

3. Azasoo, J., & Boateng, K. (2015). A retrofit design science methodology for smart metering design in
developing countries. In 15th international conference on computational science and its applications.

4. Chalkiadakis, G., Robu, V., Kota, R., Rogers, A., & Jennings, N. R. (2011). Cooperatives of distributed
energy resources for efficient virtual power plants. Proceedings of the 10th conference on autonomous
agents and multiagent systems—Innovative applications track (AAMAS 2011) (IFAAMAS) (pp. 787–794).

5. Chao, H. L., & Hsiung, P. A. (2016). A fair energy resource allocation strategy for micro grid.Micropro-
cessors and Microsystems, 42, 235–244.

6. Chekuri, C., & Khanna, S. (2000). A ptas for the multiple knapsack problem. In Proceedings of the
eleventh annual ACM-SIAM symposium on discrete algorithms, SODA’00 (pp. 213–222). Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA.

7. Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Padget, J., Phelps, S.,
RodrÌguez-Aguilar, J. A., & Sousa, P. (2006). Issues in multiagent resource allocation. Informatica, 30,
3–31.

8. City Power Johannesburg: The Five Stages of Load Shedding (2014). https://www.citypower.co.za/
customers/Pages/Infographic.aspx.

9. Department for Environment, Food and Rural Affairs: Household Electricity Study (2011).
10. Do, L., Lin, K. H., &Molnár, P. (2016). Electricity consumptionmodelling: A case of germany. Economic

Modelling, 55, 92–101.
11. Emodi, N., Emodi, C., Murthy, G., Procaccia, A., & Emodi, A. (2017). Energy policy for low carbon

development in nigeria: A leap model application. Renewable and Sustainable Energy Reviews, 68, 247–
261.

12. Fabini, D. H., Baridó, D. P. D. L., Omu, A., & Taneja, J. (2014). Mapping induced residential demand for
electricity in Kenya. In Proceedings of the Fifth ACM symposium on computing for development, ACM
DEV-5’14 (pp. 43–52). ACM, New York, NY, USA.

13. Freeman, R., Zahedi, S., & Conitzer, V. (2017). Fair and efficient social choice in dynamic setting (pp.
4580–4587). https://doi.org/10.24963/ijcai.2017/639

14. Gao, J., Giri, S., Kara, E. C., &Bergés,M. (2014).The plug load appliance identification dataset (PLAID),
a public dataset of high resolution for load identification research. http://plaidplug.com.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5220/0006774001010107
https://www.citypower.co.za/customers/Pages/Infographic.aspx
https://www.citypower.co.za/customers/Pages/Infographic.aspx
https://doi.org/10.24963/ijcai.2017/639
http://plaidplug.com


12 Page 34 of 35 Autonomous Agents and Multi-Agent Systems (2020) 34 :12

15. Gerding,E.H.,Robu,V., Stein, S., Parkes,D.C.,Roggers,A.,& Jennings,N.R. (2011).Onlinemechanism
design for electric vehicle charging. 10th international conference on autonomous agents and multiagent
systems (AAMAS 2011) (IFAAMAS) (pp. 811–818).

16. Holiday Weather: Austin: Annual Weather Averages (2018). https://www.holiday-weather.com/austin/
averages/.

17. Holiday Weather: Lagos: Annual Weather Averages (2018). https://www.holiday-weather.com/lagos/
averages/.

18. IBM: IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, Version 12 Release
6 (2015). https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.studio.help/pdf/
usrcplex.pdf. https://goo.gl/1ZWRJM.

19. Johnson, G., & Beausoleil-Morrison, I. (2017). Electrical-end-use data from 23 houses sampled each
minute for simulating micro-generation systems. Applied Thermal Engineering, 114, 1449–1456.

20. Kaygusuz, K. (2012). Energy for sustainable development: A case of developing countries. Renewable
and Sustainable Energy Reviews, 16(2), 1116–1126.

21. Keelson, E., Boateng, K., & Ghansah, I. (2014). A smart retrofitted meter for developing countries.
International Journal of Computer Applications, 90, 40–46.

22. Le, T., Tabakhi, A. M., Tran-Thanh, L., Yeoh,W., & Son, T. C. (2018). Preference elicitation with interde-
pendency and user bother cost. In Proceedings of the 17th international conference on autonomous agents
and multiagent systems, AAMAS’18 (pp. 1459–1467). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC (2018). http://dl.acm.org/citation.cfm?id=3237383.3237918.

23. Leite, J., Alferes, J., &Mito, B. (2009). Resource allocationwith answer-set programming. InProceedings
of the 8th international conference on autonomous agents and multiagent systems.

24. Lust, T., & Teghem, J. (2010). The multiobjective multidimensional knapsack problem: A survey and a
new approach. CoRR. arXiv:1007.4063.

25. Miller, S., Ramchurn, S. D., &Rogers, A. (2012). Optimal decentralised dispatch of embedded generation
in the smart grid. In AAMAS 12 international conference on autonomous agents and multiagent systems.
ACM.

26. Monyei, C., Adewumi, A., Obolo, M., & Sajou, S. (2018). Nigeria’s energy poverty: Insights and impli-
cations for smart policies and framework towards a smart nigeria electricity network. Renewable and
Sustainable Energy Reviews, 81, 1582–1601.

27. Murray, D., Liao, J., Stankovic, L., Stankovic, V., Hauxwell-Baldwin, R., Wilson, C., Coleman, M.,
Kane, T., & Firth, S. (2015). A data management platform for personalised real-time energy feedback. In
Proceedings of the 8th international conference on energy efficiency in domestic appliances and lighting.
IET.

28. Myerson, R. (1981). Utilitarianism, egalitarianism, and the timing effect in social choice problems.Econo-
metrica, 49, 883–897.

29. Nwachukwu, M., Ezedinma, N., & Jiburum, U. (2014). Comparative analysis of electricity consump-
tion among residential, commercial and industrial sectors of the Nigeria’s economy. Journal of Energy
Technologies and Policy, 4, 7–13.

30. Oji, J., Idusuyi, N., Aliu, T., Petinrin, M., Odejobi, O., & Adetunji, A. (2012). Utilization of solar energy
for power generation in Nigeria. International Journal of Energy Engineering, 2, 54–59.

31. Oluwadamilola, O., Harrison, G., & Weijde, H. (2015). Modelling electricity and cooling load profiles
for domestic customers in Nigeria. http://www.wemcouncil.org/ICEMs/ICEM2017_PRES/ICEM2017_
Poster_62_Oluwadamilola.pdf.

32. Oluwasuji, O., Obaid, M., Zhang, J., & Ramchurn, S. (2018). Algorithms for fair load shedding in
developing countries. In Proceedings of the 27th international joint conference on artificial intelligence.

33. Oyedepo, S. (2012). Energy and sustainable development in Nigeria: The way forward. Energy, Sustain-
ability and Society, 16(5), 2583–2598.

34. Pahwa, S., Scoglio, C., Das, S., & Schulz, N. (2013). Load-shedding strategies for preventing cascading
failures in power grid. Electric Power Components and Systems, 41(9), 879–895.

35. Parson, O., Fisher, G., Hersey, A., Batra, N., Kelly, J., Singh, A., Knottenbelt, W., & Rogers, A. (2015).
Dataport and nilmtk: A building data set designed for non-intrusive load monitoring. In IEEE global
conference on signal and information processing (GlobalSIP).

36. Pecan Street Inc.: Dataport: More than the Largest Source of Energy Data andWater Data (2018). https://
dataport.cloud.

37. Prinsloo, G., Dobson, R., & Brent, A. (2016). Scoping exercise to determine load profile archetype
reference shapes for solar co-generation models in isolated off-grid rural African villages. Journal of
Energy in Southern Africa, 27(3), 11–27.

38. Ramchurn, S.D.,Vytelingum,P., Rogers,A.,& Jennings,N. (2011).Agent-based control for decentralised
demand side management in the smart grid. In The 10th international conference on autonomous agents

123

https://www.holiday-weather.com/austin/averages/
https://www.holiday-weather.com/austin/averages/
https://www.holiday-weather.com/lagos/averages/
https://www.holiday-weather.com/lagos/averages/
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.studio.help/pdf/usrcplex.pdf
https://goo.gl/1ZWRJM
http://dl.acm.org/citation.cfm?id=3237383.3237918
http://arxiv.org/abs/1007.4063
http://www.wemcouncil.org/ICEMs/ICEM2017_PRES/ICEM2017_Poster_62_Oluwadamilola.pdf
http://www.wemcouncil.org/ICEMs/ICEM2017_PRES/ICEM2017_Poster_62_Oluwadamilola.pdf
https://dataport.cloud
https://dataport.cloud


Autonomous Agents and Multi-Agent Systems (2020) 34 :12 Page 35 of 35 12

and multiagent systems—Volume 1, AAMAS’11 (pp. 5–12). International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC.

39. Ramchurn, S. D., Vytelingum, P., Rogers, A., & Jennings, N. R. (2012). Putting the ‘smarts’ into the
smart grid: A grand challenge for artificial intelligence. Communications of the ACM, 55(4), 86–97.

40. Read, L., Madani, K., & Inanloo, B. (2014). Optimality versus stability in water resource allocation.
Journal of Environmental Management, 133, 343–354.

41. Robu, V., Kota, R., Chalkiadakis, G., Rogers, A., & Jennings, N. R. (2012). Cooperative virtual power
plant formation using scoring rules. In Proceedings of the 11th international conference on autonomous
agents and multiagent systems—Volume 3, AAMAS’12 (pp. 1165–1166). International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC.

42. Rose, H., Rogers, A., & Gerding, E. H. (2012). A scoring rule-based mechanism for aggregate demand
prediction in the smart grid. AMMAS Proceedings of the 11th international conference on autonomous
agents and multiagent systems (pp. 661–668).

43. Sakah, M., de la Rue du Can, S., Diawuo, F. A., Sedzro, M. D., & Kuhn, C. (2018). A study of appliance
ownership and electricity consumption determinants in urban Ghanaian households. Sustainable Cities
and Society, 44, 559–581.

44. Salmon, C., &Tanguy, J. (2016). Rural electrification and household labor supply: Evidence fromNigeria.
World Development, 82, 48–68.

45. Shi, B., &Liu, J. (2015). Decentralized control and fair load-shedding compensations to prevent cascading
failures in a smart grid. International Journal of Electrical Power and Energy Systems, 67, 582–590.

46. Song, W., Yuan, Y., Jiang, Y., Lei, X., & Shu, D. (2016). Rule-based water resource allocation in the
central Guizhou province, China. Ecological Engineering, 87, 194–202.

47. Stein, S., Gerding, E., Robu, V., & Jennings, N. (2012). A model-based online mechanism with pre-
commitment and its application to electric vehicle charging (pp. 4–8).

48. Stolworthy, M. (2018). UK electricity national grid demand and output per production type. http://
gridwatch.co.uk.

49. Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting—A review. Renewable
and Sustainable Energy Reviews, 16(2), 1223–1240.

50. The NILM wiki: NILM datasets (2014). http://wiki.nilm.eu/datasets.html.
51. Truong, N., Tran-Thanh, L., Costanza, E., & Ramchurn, S. (2013). Towards appliance usage prediction

for home energy management. In Proceedings of the fourth international conference on future energy
systems.

52. Truong, N. C., Baarslag, T., Ramchurn, G., & Tran-Thanh, L. (2016). Interactive scheduling of appliance
usage in the home. https://eprints.soton.ac.uk/396670/.

53. Vinyals, M., Robu, V., Rogers, A., Jennings, N. R. (2014). Prediction-of-use games: A cooperative game
theoryapproach to sustainable energy tariffs. In Proceedings of the 2014 international conference on
autonomous agents and multi-agent systems, AAMAS’14 (pp. 829–836). International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC.

54. World Energy Council: Average household electricity use around the world (2010). http://
shrinkthatfootprint.com/average-household-electricity-consumption.

55. Yohanna, I., Iortyer, H., & Ierve, A. (2013). Assessment of energy use pattern in residential buildings of
Kano and Kaduna northern Nigeria. American Journal of Engineering Research, 2, 271–275.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://gridwatch.co.uk
http://gridwatch.co.uk
http://wiki.nilm.eu/datasets.html
https://eprints.soton.ac.uk/396670/
http://shrinkthatfootprint.com/average-household-electricity-consumption
http://shrinkthatfootprint.com/average-household-electricity-consumption

	Solving the fair electric load shedding problem in developing countries
	Abstract
	1 Introduction
	2 Related work
	3 Modelling household-level load shedding for developing countries
	3.1 Simulating developing country energy consumption data
	3.1.1 Appliance usage
	3.1.2 Temperature
	3.1.3 Consumption patterns

	3.2 Modelling households as agents
	3.3 The fair load shedding problem (FLSP)
	3.4 Key assumptions

	4 Household-level load shedding heuristics
	5 Optimizing fair load shedding
	5.1 The knapsack MIP formulation
	5.2 The MKP MIP formulation
	5.2.1 Fairness criterion based on number of hours of connection
	5.2.2 Fairness criteria based on comfort
	5.2.3 Fairness criteria based on electricity supply

	5.3 Maximizing supply: an optional MIP objective

	6 Evaluation of results
	6.1 Fairness and efficiency in terms of connections
	6.2 Fairness and efficiency in terms of comfort
	6.3 Fairness and efficiency in terms of supply
	6.4 Implementation with different levels of uncertainty
	6.4.1 Connections to supply under different levels of uncertainty
	6.4.2 Comfort delivered under different levels of uncertainty
	6.4.3 Electricity supplied under different levels of uncertainty

	6.5 Implementation with other datasets
	6.5.1 Dataset of USA homes
	6.5.2 Dataset of multiple homes in developing countries

	6.6 Computation complexities of load shedding solutions

	7 Conclusion
	7.1 Summary of work
	7.2 Future work

	References




