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Abstract

In coalition formation games self-organized coalitions are created
as a result of the strategic interactions of independent agents. For each
couple of agents (i, j), weight wi,j = wj,i reflects how much agents i
and j benefit from belonging to the same coalition. We consider the
modified fractional hedonic game, that is a coalition formation game
in which agents’ utilities are such that the total benefit of agent i
belonging to a coalition (given by the sum of wi,j over all other agents j
belonging to the same coalition) is averaged over all the other members
of that coalition, i.e., excluding herself. Modified fractional hedonic
games constitute a class of succinctly representable hedonic games.

We are interested in the scenario in which agents, individually or
jointly, choose to form a new coalition or to join an existing one, until
a stable outcome is reached. To this aim, we consider common sta-
bility notions, leading to strong Nash stable outcomes, Nash stable
outcomes or core stable outcomes: we study their existence, complex-
ity and performance, both in the case of general weights and in the case
of 0-1 weights. In particular, we completely characterize the existence
of the considered stable outcomes and show many tight or asymptoti-
cally tight results on the performance of these natural stable outcomes
for modified fractional hedonic games, also highlighting the differences
with respect to the model of fractional hedonic games, in which the
total benefit of an agent in a coalition is averaged over all members of
that coalition, i.e., including herself.

1 Introduction

Teamwork, clustering and coalition formations have been important and
widely investigated issues in computer science research. In fact, in many
economic, social and political situations, individuals carry out activities in
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groups rather than by themselves. In these scenarios, it is of crucial impor-
tance to consider the satisfaction of the members of the groups.

Hedonic games, introduced in [16], model the formation of coalitions of
agents. They are games in which agents have preferences over the set of all
possible agent coalitions, and the utility of an agent depends on the compo-
sition of the coalition she belongs to. While the standard model of hedonic
games assumes that agents’ preferences over coalitions are ordinal, there
are several prominent classes of hedonic games where agents assign cardi-
nal utilities to coalitions. Additively separable hedonic games constitute a
natural and succinctly representable class of hedonic games. In such setting
each agent has a value for any other agent, and the utility of a coalition to
a particular agent is simply the sum of the values she assigns to the mem-
bers of her coalition. Additive separability satisfies a number of desirable
axiomatic properties [3] and is the non-transferable utility generalization of
graph games studied in [15]. Fractional hedonic games, introduced in [2],
are similar to additively separable ones, with the difference that the utility
of each agent is divided by the size of her coalition. Arguably, it is more
natural to compute the average value of all other members of the coalition
[17]. Various solution concepts, such as the core, the strict core, and various
kinds of individual stability like Nash Equilibrium have been proposed to
analyze these games (see the Related Work subsection).

In this paper we deal with modified fractional hedonic games (MFHGs),
introduced in [25], and afterward studied in [17, 23]. MFHGs model nat-
ural behavioral dynamics in social environments. Even when defined on
undirected and unweighted graphs, they suitably model a basic economic
scenario referred to in [2, 10] as Bakers and Millers. Moreover, MFHGs can
model other realistic scenarios: (i) politicians may want to be in a party
that maximizes the fraction of like-minded members; (ii) people may want
to be with an as large as possible fraction of people of the same ethnic or
social group.

In MFHGs, slightly differently than in fractional hedonic games, the
utility of an agent i is divided by the size of the coalition she belongs to minus
1, that indeed corresponds to the average value of all other members than i of
the coalition. Despite such small difference, we will show that natural stable
outcomes in MFHGs perform differently than in fractional hedonic games.
Specifically, we adopt Nash stable, Strong Nash stable and core outcomes.
Informally, an outcome is Nash stable (or it is a Nash equilibrium) if no agent
can improve her utility by unilaterally changing her own coalition. Moreover,
an outcome is strong Nash stable if no subset of agents can cooperatively
deviate in a way that benefits all of them. Finally, an outcome is in the
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core or is core stable, if there is no subset of agents T , whose members
all prefer T with respect to the coalition in the outcome. We point out
that, (strong) Nash stable outcomes are resilient to a group of agents that
can join any coalition and therefore represent a powerful solution concept.
However, there are settings in which it is not allowed for one or more agents
to join an existent coalition without asking for permission to its members:
in these settings the notion of core, where in a non-stable outcome a subset
of T agents can only form a new coalition itself and cannot join an already
non-empty coalition, appears to be more realistic.

Our aim is to study the existence, performance and computability of
natural stable outcomes for MFHGs. In particular, we evaluate the per-
formance of Nash, strong Nash, and core stable outcomes for MFHGs, by
means of the widely used notions of price of anarchy (resp. strong price
of anarchy and core price of anarchy), and price of stability (resp. strong
price of stability and core price of stability), which are defined as the ratio
between the social optimal value and the social value of the worst (resp.
best) stable outcome.

An instance of MFHG can be effectively modeled by means of a weighted
undirected graph G = (N,E,w), where nodes in N represent the agents, and
the weight w({i, j}) of an edge {i, j} ∈ E represents how much agents i and
j benefit from belonging to the same coalition.

1.1 Related Work

To the best of our knowledge, only few papers dealt with stable outcomes for
MFHGs. Olsen [25] considers unweighted undirected graphs and investigates
computational issues concerning the problem of computing a Nash stable
outcome different than the trivial one where all the agents are in the same
coalition. The author proves that the problem is NP-hard when we require
that a coalition must contain a given subset of the agents, and that it is
polynomial solvable for any connected graph containing at least four nodes.
Kaklamanis et al. [23] show that the price of stability is 1 for unweighted
graphs. Finally, Elkind et al. [17] study the set of Pareto optimal outcomes
for MFHGs.

Fractional hedonic games have been introduced by Aziz et al. [2]. They
prove that the core can be empty for games played on general graphs and
that it is not empty for games played on some classes of undirected and
unweighted graphs (that is, graphs with degree at most 2, multipartite com-
plete graphs, bipartite graphs admitting a perfect matching and regular bi-
partite graphs). Brandl et al. [12], study the existence of core and individual
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stability in fractional hedonic games and the computational complexity of
deciding whether a core and individual stable partition exists in a given
fractional hedonic game. Bilò et al. [9] initiated the study of Nash stable
outcomes for fractional hedonic games and study their existence, complex-
ity and performance for general and specific graph topologies. In particular
they show that the price of anarchy is Θ(n), and that for unweighted graphs,
the problem of computing a Nash stable outcome of maximum social welfare
is NP-hard, as well as the problem of computing an optimal (not necessarily
stable) outcome. Furthermore, the same authors in [10] consider unweighted
undirected graphs and show that 2-Strong Nash outcomes, that is, an out-
come such that no pair of agents can improve their utility by simultaneously
changing their own coalition, are not always guaranteed. They also provide
upper and lower bounds on the price of stability for games played on dif-
ferent unweighted graphs topologies. Finally, Aziz et al. [4] consider the
computational complexity of computing welfare maximizing partitions (not
necessarily Nash stable) for fractional hedonic games. We point out that
fractional hedonic games played on unweighted undirected graphs model
realistic economic scenarios referred to in [2, 10] as Bakers and Millers.

Hedonic games have been introduced by Dréze and Greenberg [16], who
analyzed them under a cooperative perspective. Properties guaranteeing the
existence of core allocations for games with additively separable utility have
been studied by Banerjee, Konishi and Sönmez [8], while Bogomolnaia and
Jackson [11] deal with several forms of stable outcomes like the core, Nash
and individual stability. Ballester [5] considers computational complexity
issues related to hedonic games, and show that the core and the Nash stable
outcomes have corresponding NP-complete decision problems for a variety
of situations, while Aziz et al. [3] study the computational complexity of
stable coalitions in additively separable hedonic games. Moreover, Olsen [24]
proves that the problem of deciding whether a Nash stable coalitions exists
in an additively separable hedonic game is NP-complete, as well as the one of
deciding whether a non-trivial Nash stable coalitions exists in an additively
separable hedonic game with non-negative and symmetric preferences (i.e.,
unweighted undirected graphs).

Feldman et al. [18] investigate some interesting subclasses of hedonic
games from a non-cooperative point of view, by characterizing Nash equi-
libria and providing upper and lower bounds on both the price of stability
and the price of anarchy. It is worth noticing that in their model they do
not have an underlying graph, but agents lie in a metric space with a dis-
tance function modeling their distance or “similarity”. Peters [26] considers
“graphical” hedonic games where agents form the vertices of an undirected
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graph, and each agent’s utility function only depends on the actions taken
by her neighbors (with general value functions). It is proved that, when
agent graphs have bounded treewidth and bounded degrees, the problem
of finding stable solutions, i.e., Nash equilibria, can be efficiently solved.
Finally, hedonic games have also been considered by Charikar et al. [13]
and by Demaine et al. [14] from a classical optimization point of view (i.e,
without requiring stability for the solutions) and by Flammini et al. in an
online setting [19].

Peters et al. [27] consider several classes of hedonic games and identify
simple conditions on expressivity that are sufficient for the problem of check-
ing whether a given game admits a stable outcome to be computationally
hard.

From a different perspective, strategyproof mechanisms for additively
separable hedonic and fractional hedonic games have been proposed in [20,
28].

Finally, hedonic games are being widely investigated also under differ-
ent utility definitions: For instance, in [6, 7], coalition formation games, in
which agent utilities are proportional to their harmonic centralities in the
respective coalitions, are considered.

1.2 Our Results

We start by dealing with strong Nash stable outcomes. We first prove that
there exists a simple star graph with positive edge weights that admits no
strong Nash stable outcomes. Therefore we focus on unweighted graphs, and
present a polynomial time algorithm that computes an optimum outcome
that can be transformed in a strong Nash stable one with the same social
welfare, implying that strong Nash stable outcomes always exist and that
the strong price of stability is 1. We further prove that the strong price of
anarchy is exactly 2. In particular, we are able to show that, even for jointly
cooperative deviations of at most 2 agents, the strong price of anarchy is at
most 2 (we emphasize that, as we will describe in the next paragraph, the
price of anarchy for Nash stable outcomes that are resistant to deviations
of one agent grows linearly with the number of agents), while it is at least 2
for jointly cooperative deviations of any subsets of agents.

We subsequently turn our attention on Nash stable outcomes. We notice
that Nash stable outcomes are guaranteed to exist only if edge weights are
non-negative. In a similar way as in [9], we prove that the price of anarchy
is at least Ω(n), where n is the number of agents, even for unweighted paths,
and that it is at most n− 1 for the more general case of non-negative edge-
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weighted graphs, thus giving an asymptotically tight characterization. We
also prove a matching lower bound of Ω(n) to the price of stability.

We finally consider core stable outcomes and show that they always exist,
and in particular that an outcome that is core stable can be computed in
polynomial time, even in the presence of negative weights, i.e., for general
undirected weighted graphs. We then establish that the core price of stability
is 2. We further show that the core price of anarchy is at most 4. We also
provide a tight analysis for unweighted graphs.

In the next subsection we emphasize the differences between MFHGs
and fractional hedonic games.

1.3 Main Differences between MFHGs and Fractional Hedo-

nic Games

Roughly speaking, we say that an outcome is a k-strong Nash equilibrium
if no subset of at most k agents can jointly change their strategies in a way
that all of the k agents strictly improve their utility. It is easy to see that,
for any k, k′ ≥ 2, such that k′ ≥ k, a k′-strong Nash equilibrium is also a
k-strong Nash equilibrium. It is known that 2-strong Nash stable outcomes
are not guaranteed to exist for fractional hedonic games, even for unweighted
graphs [10]. In this paper we show that for MFHGs played on unweighted
graphs, k-strong Nash equilibrium always exists and can be computed in
polynomial time, for any 1 ≤ k ≤ n, where n is the number of agents, and
provide a tight analysis on the strong price of anarchy and stability.

For both MFHGs and Fractional Hedonic Games, Nash stable outcomes
(or equivalently 1-strong Nash stable) are guaranteed to exist [9] for positive
weights, but not for negative ones; moreover, the price of stability grows
linearly with the number of agents. For fractional hedonic games played
on unweighted graphs, it is known [10] that the price of stability is greater
than 1 even for simple graphs and that computing an optimum is NP-hard.
For MFHGs we show that it is possible to compute in polynomial time a
(strong) Nash equilibrium that is also optimum.

Finally, it is known that the core can be empty even for fractional hedonic
games played on unweighted graphs and that it is NP-hard deciding the
existence [12]. In this paper we show that for MFHGs the core is not empty
for any graphs (this result was also observed in [1] for unweighted graphs),
and that a core stable outcome can be computed in polynomial time. We
further provide a tight and an almost tight analysis for the core price of
stability and anarchy, respectively.
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2 Preliminaries

For an integer k > 0, denote with [k] the set {1, . . . , k}.
We model a coalition formation game by means of a undirected graph.

For an undirected edge-weighted graph G = (N,E,w), denote with n =
|N | the number of its nodes. For the sake of convenience, we adopt the
notation (i, j) and wi,j to denote the edge {i, j} ∈ E and its weight w({i, j}),
respectively. Say that G is unweighted if wi,j = 1 for each (i, j) ∈ E. We
denote by δi(G) =

∑

j∈N :(i,j)∈E wi,j, the sum of the weights of all the edges

incident to i. Moreover, let δimax(G) = maxj∈N :(i,j)∈E wi,j be the maximum
edge-weight incident to i. We will omit to specify (G) when clear from the
context. Given a set of edges X ⊆ E, denote with W (X) =

∑

(i,j)∈X wi,j the
total weight of edges in X. Given a subset of nodes S ⊆ N , GS = (S,ES)
is the subgraph of G induced by the set S, i.e., ES = {(i, j) ∈ E : i, j ∈ S}.

Given an undirected edge-weighted graph G = (N,E,w), the modified
fractional hedonic game induced by G, denoted as G(G), is the game in
which each node i ∈ N is associated with an agent. We assume that agents
are numbered from 1 to n and, for every i ∈ [n], each agent chooses to join
a certain coalition among n candidate ones: the strategy of agent i is an
integer j ∈ [n], meaning that agent i is selecting candidate coalition Cj. A
coalition structure (also called outcome or partition) is a partition of the
set of agents into n coalitions C = {C1, C2, . . . , Cn} such that Cj ⊆ N for
each j ∈ [n],

⋃

j∈[n]Cj = N and Ci ∩ Cj = ∅ for any i, j ∈ [n] with i 6= j.
Notice that, since the number of candidate coalitions is equal to the number
of agents (nodes), some coalition may be empty. If i ∈ Cj, we say that agent
i is a member of the coalition Cj . We denote by C(i) the coalition in C of
which agent i is a member. In an outcome C, the utility of agent i is defined
as ui(C) =

∑

j∈C(i)
wi,j

|C(i)|−1 . We notice that, for any possible outcome C, we

have that ui(C) ≤ δimax.
Each agent chooses the coalition she belongs to with the aim of maxi-

mizing her utility. We denote by (C, i, j), the new coalition structure ob-
tained from C by moving agent i from C(i) to Cj; formally, (C, i, j) =
C \ {C(i), Cj} ∪ {C(i) \ {i}, Cj ∪ {i}}. An agent deviates if she changes
the coalition she belongs to. Given an outcome C, an improving move (or
simply a move) for agent i is a deviation to any coalition Cj that strictly
increases her utility, i.e., ui((C, i, j)) > ui(C). Moreover, agent i performs a
best-response in coalition C by choosing a coalition providing her the high-
est possible utility (notice that a best-response is also a move when there
exists a coalition Cj such that ui((C, i, j)) > ui(C)). An agent is stable if

7



she cannot perform a move. An outcome is (pure) Nash stable (or a Nash
equilibrium) if every agent is stable. An improving dynamics, or simply a
dynamics, is a sequence of moves, while a best-response dynamics is a se-
quence of best-responses. A game has the finite improvement path property
if it does not admit an improvement dynamics of infinite length. Clearly, a
game possessing the finite improvement path property always admits a Nash
stable outcome. We denote with N(G(G)) the set of Nash stable outcomes
of G(G).

An outcome C is a k-strong Nash equilibrium if, for each C′ obtained
from C, when a subset of at most k agents K ⊆ N (with |K| ≤ k) jointly
change (or deviate from) their strategies (not necessarily selecting the same
candidate coalition), ui(C) ≥ ui(C

′) for some i belonging to K, that is,
after the joint collective deviation, there always exists an agent in the
set of deviating ones who does not improve her utility. We denote with
k−SN(G(G)) the set of strong Nash stable outcomes of G(G). We simply
say that an outcome C is a strong Nash equilibrium if C is an n-strong
Nash equilibrium. It is easy to see that, for any graph G and any k ≥ 2,
k−SN(G(G)) ⊆ k − 1−SN(G(G)), while the vice versa does not in general
hold. Clearly, 1−SN(G(G)) = N(G(G)). Analogously to the notion of Nash
equilibrium, also for strong Nash equilibria it is possible to define a dynam-
ics as a sequence of improving moves, where each move performed by agents
in K leading from outcome C to outcome C′ is such that all of them improve
their utility, i.e. ui(C

′) > ui(C) for every i ∈ K.
We say that a coalition T ⊆ N strongly blocks an outcome C, if each

agent i ∈ T strictly prefers T , i.e., strictly improve her utility with respect
to her current coalition C(i). An outcome that does not admit a strongly
blocking coalition is called core stable and is said to be in the core. We
denote with CR(G(G)) the core of G(G).

The social welfare of a coalition structure C is the summation of the
agents’ utilities, i.e., SW(C) =

∑

i∈N ui(C). We overload the social welfare
function by applying it also to single coalitions to obtain their contribution
to the social welfare, i.e., for any i ∈ [n], SW(Ci) =

∑

j∈Ci
uj(C) so that

SW(C) =
∑

i∈[n] SW(Ci). It is worth noticing that, equivalently, for any

i ∈ [n], SW(Ci) =
2W(ECi)
|Ci|−1 and SW(C) =

∑

i∈[n]

2W(ECi)
|Ci|−1 .

Given a game G(G), an optimum coalition structure C∗(G(G)) is
one that maximizes the social welfare of G(G). The price of anar-
chy (resp. strong price of anarchy and core price of anarchy) of a
modified fractional hedonic game G(G) is defined as the worst-case ra-
tio between the social welfare of a social optimum outcome and that
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of a Nash equilibrium (resp. strong Nash equilibrium and core). For-

mally, for any k = 1, . . . , n, PoA(G(G)) = maxC∈N(G(G))
SW(C∗(G(G)))

SW(C)

(resp. k−SPoA(G(G)) = maxC∈k−SN(G(G))
SW(C∗(G(G)))

SW(C) and CPoA(G(G)) =

maxC∈CR(G(G))
SW(C∗(G(G)))

SW(C) ). Analogously, the price of stability (resp. strong

price of stability and core price of stability) of G(G) is defined as the best-
case ratio between the social welfare of a social optimum outcome and
that of a Nash equilibrium (resp. strong Nash equilibrium and core).

Formally, for any k = 1, . . . , n, PoS(G(G)) = minC∈N(G(G))
SW(C∗(G(G)))

SW(C)

(resp. k−SPoS(G(G)) = minC∈k−SN(G(G))
SW(C∗(G(G)))

SW(C) and CPoS(G(G)) =

minC∈CR(G(G))
SW(C∗(G(G)))

SW(C) ). Clearly, for any game G(G) it holds that

1 ≤ PoS(G(G)) ≤ PoA(G(G)) (resp. 1 ≤ k−SPoS(G(G)) ≤ k−SPoA(G(G))
and 1 ≤ CPoS(G(G)) ≤ CPoA(G(G))).

3 Strong Nash stable outcomes

In this section we consider strong Nash stable outcomes. We start by show-
ing that even the existence of 2-strong nash equilibria is not guaranteed for
non-negative edge-weights graphs.

Theorem 1. There exists a star graph G containing only non-negative edge-
weights such that {G(G)} admits no 2-strong Nash stable outcome.

i z
1

j

ǫ
ǫ

ǫ

ǫ

ǫ
ǫ

Figure 1: The star graph G.

Proof. Let G be a star of order n centred in i as depicted in Figure 1.
The weights of the edges are such that there exists a node leaf z such that
wi,z = 1, while for all the other leafs we have that, wi,j = ǫ, for any j 6= z, i,
and for small enough positive ǫ > 0, (for instance ǫ < 1

n
). First notice that,

the grand coalition where all the agents belong to the same coalition, is
not a 2-strong Nash stable outcome since, for instance, the two agents i, z
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would both get strictly higher utility if they belong to a different coalition
containing only them. On the other hand, any outcome where any leaf j
does not belong to the same coalition containing the center i is even not
Nash stable (i.e., 1-strong Nash stable), since j would get utility zero but
she can improve her utility by selecting the coalition containing the agent i.
Hence, the claim follows.

Given the above negative result, in the remainder of this section, we
focus on unweighted graphs.

Let K1, K2 and K3 be the unweighted cliques with 1, 2 and 3 nodes,
respectively, i.e., K1 is an isolated node, K2 has 2 nodes and a unique edge
and K3 is a triangle with 3 edges. We say that a coalition being isomorphic
to K1, K2 or K3 is a basic coalition.

3.1 Strong Price of Stability

In this subsection we show that, for unweighted graphs, it is possible to
compute in polynomial time an optimum outcome and also a strong Nash
outcome with the same social value. As consequence we get that the strong
price of stability is 1.

In order to show how to compute in polynomial time an optimal solution,
we first need some additional lemmata.

Lemma 2. Given a coalition C with |C| ≥ 4, there exists an edge e = (i, j)
belonging to EC such that

SW({i, j}) + SW(C \ {i, j}) ≥ SW(C).

Proof. Let m = |EC | and k = |C| be the number of edges and nodes in
coalition C, respectively. Moreover, let e = (i, j) be the edge minimizing
∆ = δi + δj . Let us assume by contradiction that

SW({i, j}) + SW(C \ {i, j}) = 2 +
2(m−∆+ 1)

k − 3
<

2m

k − 1
= SW(C).

By simple calculations, we obtain that

∆ >
k2 − 3k + 2 + 2m

k − 1
(1)

We denote by δmax and δmin the maximum and the minimum degrees of
nodes in GC , respectively. We have

2m =
∑

i∈C

δi ≥ (k − 1)δmin + δmax (2)

10



(a) (b)

(c) (d)

Figure 2: Possible coalitions with three nodes.

∆ ≤ δmax + δmin (3)

Substituting (2), (3), in (1), the following holds:

∆ >
k2 − 3k + 2 + 2m

k − 1
≥

k2 − 3k + 2 + (k − 1)δmin + δmax

k − 1

δmax + δmin ≥ ∆ >
k2 − 3k + 2 + (k − 1)δmin + δmax

k − 1

(δmax + δmin) (k − 1) > k2 − 3k + 2 + (k − 1)δmin + δmax

kδmax − δmax > k2 − 3k + 2 + δmax

(k − 2)δmax > (k − 1)(k − 2)

δmax > (k − 1) :

a contradiction, because the maximum degree of a node is at most k−1.

We are now ready to prove the following theorem, showing that it is
possible to consider, without decreasing the social welfare of the outcome,
only coalition structures formed by basic coalitions.

Theorem 3. For any coalition structure C, there exists a coalition structure
C′ containing only basic coalitions and such that SW(C′) ≥ SW(C).

Proof. Consider any coalition C belonging to C. In the following we show
that either coalition C is basic, or the nodes in C can be partitioned in
h ≥ 2 basic coalitions C ′

1, . . . , C
′
h such that

∑h
i=1 SW(C ′

i) ≥ SW(C). This
statement proves the claim because we can consider and sum up over all
coalitions C belonging to C.

We prove the statement by induction on the number k of nodes in C.
The base of the induction is for k ≤ 3: For k = 1 and k = 2, C is already

a basic coalition. For k = 3, there are four possible configurations shown
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in Figure 2. For configurations (a), (b) and (c), again C already is a basic
coalition (or can be trivially divided in basic coalitions). For configuration
(d), let x1, x2, x3 the 3 nodes in C; clearly, SW(C) = 2. Consider coalitions
C ′
1 = {x1, x2} and C ′

2 = {x3}. It is easy to check that SW(C ′
1) + SW(C ′

2) =
2 = SW(C).

As to the induction step, given any k ≥ 4, assume now that the statement
holds for 1, . . . , k − 1; we want to show that it also holds for k.

By Lemma 2, we know that there exists an edge e = (i, j) belonging to
EC such that SW({i, j})+SW(C\{i, j}) ≥ SW(C). Since |C\{i, j}| ≤ k−2,
by the induction hypothesis, coalition C\{i, j} can be decomposed in h basic
coalitions C ′′

1 , . . . , C
′′
h such that

∑h
i=1 SW(C ′′

i ) ≥ SW(C \ {i, j}). Therefore,
given that also {i, j} is a basic coalition, we have proven the induction
step.

By Theorem 3, in order to compute an optimal solution for the coali-
tion structure generation problem (i.e., an outcome maximizing the social
welfare), it is possible to exploit a result from [22]:

Theorem 4 ([22]). Given an unweighted graph G, it is possible to compute
in polynomial time a partition of the nodes of G in sets inducing subgraphs
isomorphic to K1, K2 or K3 (i.e., a coalition structure composed by ba-
sic coalitions) maximazing the number of nodes belonging to sets inducing
subgraphs isomorphic to K2 or K3.

In fact, by combining Theorems 3 and 4, it is possible to prove the
following result.

Theorem 5. Given an unweighted graph G, there exists a polynomial time
algorithm for computing a coalition structure C∗ maximizing the social wel-
fare.

Proof. By Theorem 3, there must exist an optimal outcome C∗ =
(C∗

1 , . . . , C
∗
n) in which, for all i = 1, . . . , n, C∗

i is a basic coalition. Notice
that any node in a basic coalition isomorphic to K1 does not contribute to
the social welfare, while all nodes in other coalitions contribute 1 to SW(C∗).
It follows that, in order to maximize the social welfare, the number of nodes
belonging to coalitions isomorphic to K2 or K3 has to be maximized, and
therefore the solution computed in Theorem 4 is optimal also for our prob-
lem.

In [23] the authors show that the price of stability of modified unweighted
fractional hedonic games is 1, without considering complexity issues. The
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different characterization of the optimum done in Theorem 3 allows us to first
compute in polynomial time an outcome that maximizes the social welfare
(done in Theorem 5) and then to transform this optimal outcome into a
strong Nash without worsening its social welfare, again by a polynomial time
transformation. The following theorem completes this picture by providing
a polynomial time algorithm for transforming an optical outcome into a
strong Nash with the same social welfare, thus also proving that the strong
price of stability is 1.

Theorem 6. Given an unweighted graph G, it is possible to compute in
polynomial time an outcome C ∈ n−SN and such that SW(C) = SW(C∗).

Proof. Let C∗ be the optimal outcome computed in polynomial time by
Theorem 5. Let N ′ ⊆ N the set of agents belonging in C∗ to coalitions
isomorphic to K2 or K3. Notice that SW(C∗) = |N ′|. No agent in i ∈ N ′

can have an incentive in changing her strategy (and thus can belong to any
deviating subset of agents), because ui(C) = 1 and a node can gain at most
1 in any outcome. Therefore, if N ′ = N , then C∗ is also a strong Nash
equilibrium and the claim directly follows.

In order to complete the proof, it is sufficient to (i) show the existence
of a dynamics involving only the set of agents K ⊆ N ′′, where N ′′ = N \N ′,
and leading to a strong Nash outcome C; (ii) providing a polynomial time
algorithm for computing C.

For any h = 1, 2, 3, let C∗
h ⊆ C∗ be the set containing all coalitions of C∗

isomorphic to Kh. We first provide some useful properties of nodes in N ′′:

(P1) For any couple of distinct nodes i, j ∈ N ′′, edge (i, j) 6∈ E, because
otherwise the social welfare of C∗ could be improved by putting i and
j in the same coalition: a contradiction to the optimality of C∗.

j i j i

Figure 3: Proof of (P2).

(P2) For any i ∈ N ′′ and any vertex j belonging to a coalition in C∗
3 , edge

(i, j) 6∈ E, because otherwise the social welfare of C∗ could be improved
by removing j from her current coalition and putting her in the same
coalition of i: a contradiction to the optimality of C∗ ( see Figure 3).
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i i′ j′ i i′ j′

Figure 4: Proof of (P3).

(P3) For any couple of distinct nodes i, j ∈ N ′′ and any coalition {i′, j′} ∈
C∗
2 , if there exists an edge connecting node i to a node in {i′, j′} (assume

without loss of generality to node i′, i.e. assume that (i, i′) ∈ E), then
edge (j, j′) 6∈ E, because otherwise the social welfare of C∗ could be
improved by removing i′ and j′ from their current coalition and putting
them in the same coalition of i and j, respectively: a contradiction to
the optimality of C∗ (see Figure 4).

i

i′ j′ j′′ i′′

j i

i′ j′ j′′ i′′

j

Figure 5: Proof of (P4).

(P4) For any couple of distinct nodes i, j ∈ N ′′ and any couple of coalitions
{i′, j′}, {i′′, j′′} ∈ C∗

2 , if there exist an edge connecting node i to a node
in {i′, j′} (assume without loss of generality to node i′, i.e. assume
that (i, i′) ∈ E), and another edge connecting node j to a node in
{i′′, j′′} (assume without loss of generality to node i′′, i.e. assume
that (j, i′′) ∈ E), then edge (j′, j′′) 6∈ E, because otherwise the social
welfare of C∗ could be improved by removing i′, i′′ and j′ from their
current coalition and putting them in the same coalition of i, j and j′′,
respectively: a contradiction to the optimality of C∗ (see Figure 5).

Consider an initial dynamics, ending in outcome C0, in which every
agent in i ∈ N ′′ unilaterally moves in order to increase her utility (that in
C∗ is 0). By properties (P1) and (P2) it follows that, for any i ∈ N ′′, i
selects a coalition in C∗

2 and by property (P3) it follows that after this initial
dynamics, all coalitions in C0 \ C∗ (i.e., all coalitions modified by this initial
dynamics) are isomorphic to star graphs, i.e. only one node has degree
greater than 1.

Consider now a sequence of improving moves performed by any subset
of agents K ⊆ N and such that for any i ∈ K, agent i improves her utility
after this move. For any t ≥ 1, let Ct be the outcome reached after the t-th
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move of this dynamics and Kt be the set of moving agents. We want to
show that this dynamics converges, i.e., that a strong Nash equilibrium is
eventually reached.

By properties (P3) and (P4) it follows that:

(P5) For any coalition in C∗
2 , there exists an agent that will always have

utility 1 during any dynamics; let N̄ ⊆ N the set containing these
nodes. Clearly, every agent in N̄ , as well as all nodes belonging to
coalitions in C∗

3 , will never belong to a subset of nodes performing an
improving move and therefore will always remain in the same coalition
she belongs in C∗.

(P6) For any t ≥ 1, and any agent i ∈ Kt (potentially i could be an agent
of a coalition in C∗

1 or also an agent of a coalition in C∗
2 not belonging

to N̄), Ct(i) is such that there exists a unique j ∈ Ct(i) ∩ N̄ and i will
have a unique edge in Ct(i) connecting her to j.

By properties (P5) and (P6), the only nodes participating in the dynam-
ics are nodes either belonging to coalitions in C∗

1 or belonging to coalitions
in C∗

2 but not belonging to N̄ ; let ¯̄N be the set of these nodes, i.e., for any
t > 1, Kt ⊆ ¯̄N .

In order to obtain a strong Nash equilibrium, we notice that the “resid-
ual” game played by agents in ¯̄N is equivalent to a singleton congestion
game with identical latency functions (CGI), in which we also have a set of
resources (i.e. a strong Nash equilibrium in this new game is also a strong
Nash equilibrium in our game and vice versa). In a CGI, agent’s strategy
consists of a resource. The delay of a resource is given by the number of
agents choosing it, and the cost that each agent aims at minimizing is the
delay of her selected resource. In particular, the set of agents is ¯̄N and the
set of resources is N̄ . In fact, in our “residual” game every agent aims at
minimizing the cardinality of the star coalition she belongs to. In [21] it has
been shown how to compute in polynomial time a strong Nash equilibrium
for a class of congestion games including the one of CGI.

Let us call C the obtained strong Nash equilibrium. It remains to show
that SW(C) = SW(C∗). Observe that the difference between C and C∗ is
that some coalitions belonging to C∗ isomorphic to K2 becomes a coalition
isomorphic to a star graph in C, and that some coalitions belonging to C∗

isomorphic to K1 disappears in C. The claim follows by noticing that the
contribution to the social welfare of a coalition isomorphic to K1 is zero,
and that the contribution to the social welfare of a coalition isomorphic to
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K2 (whose value is 2) is the same as the one of a coalition isomorphic to a
star graph.

As a direct consequence of Theorem 6, the following corollary holds.

Corollary 7. For any unweighted graph G and any k = 1, . . . , n,
k−SPoS(G(G)) = 1.

3.2 Strong Price of Anarchy

In this subsection we study the strong price of anarchy for unweighted
graphs.

Theorem 8. Given any ǫ > 0, there exists an unweighted graph G such that
n−SPoA(G(G)) ≥ 2− ǫ.

. . .

. . .

Figure 6: The graph G.

Proof. Let us consider the graph G depicted in Figure 6. The number of
nodes in G is n = 2k + 1. Specifically, we have k agents {1, . . . , k} in the
first (upper) layer, and other k agents {k + 1, . . . , 2k} in the second layer.
Moreover, the k nodes in the upper layer form a clique. It is easy to see
that the optimum solution OPT has social welfare at least SW(OPT ) ≥
2k. In fact, the coalitions structure composed by k non-empty coalitions
corresponding to the k matchings between agents of the first and second
layer, i.e., for any j = 1, . . . , k, Cj = {j, k + j} has social welfare exactly
2k. A strong Nash stable outcome is given by the coalition structure C
composed by two coalitions C = {C1, C2}, where C1 contains all the agents
of the clique, while C2 contains all the other agents. Indeed, on the one
hand, all the agents belonging to the coalition C1 get utility 1 that is the
maximum one they can get, which means that they do not have any interest
on deviating from C. Therefore, suppose by contradiction that C is not
strong Nash stable, then the set of deviating agents must be a subset of
the agents belonging to the coalition C2. However, by using the fact that
the two non-empty coalitions C1 and C2 of C contains the same number of
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agents, it is easy to see any subset of agents of C2 cannot jointly deviate and
all get higher utility with respect to C. It follows that C is a strong Nash
stable outcome. Since SW(C) = k + 2, it follows that n−SPoA ≥ 2k

k+2 .

Theorem 9. For any unweighted graph G, 2−SPoA(G(G)) ≤ 2.

Proof. Let C∗ the optimal solution computed by Theorem 5, in which all
coalitions are basic ones.

Consider any 2-strong Nash equilibrium C.
For any coalition C∗ = {i, j} of C∗ isomorphic to K2, on the one hand

we have that SW(C∗) = 2. On the other hand, since C is a 2-strong Nash
stable outcome, ui(C) = 1 or uj(C) = 1, because otherwise i and j could
jointly perform an improving move. Thus, ui(C) + uj(C) ≥ 1, whereas
ui(C

∗) + uj(C
∗) = 2.

For any coalition C∗ = {i, j, k} of C∗ isomorphic to K3, on the one hand
we have that SW(C∗) = 3. On the other hand, since C is a 2-strong Nash
stable outcome, at least 2 agents among i, j, k must have utility 1 in C,
because otherwise there would exist two agents aiming at jointly perform an
improving move: a contradiction to the 2-strong Nash stability of C. Thus,
ui(C) + uj(C) + uk(C) ≥ 2, whereas ui(C

∗) + uj(C
∗) + uk(C

∗) = 3.
For any h = 1, 2, 3, let Nh ⊆ N be such that for any j ∈ Nh, C∗

j is
isomorphic to Kh. Since agents being in coalitions of C∗ isomorphic to K1

do not contribute to SW(C∗), we obtain

SW(C∗)

SW(C)
≤

∑

j∈N2
SW(C∗

j ) +
∑

j∈N3
SW(C∗

j )
∑

j∈N2

∑

i∈C∗

j
ui(C) +

∑

j∈N3

∑

i∈C∗

j
ui(C)

≤

∑

j∈N2
SW(C∗

j ) +
∑

j∈N3
SW(C∗

j )
∑

j∈N2

1
2SW(C∗

j ) +
∑

j∈N3

2
3SW(C∗

j )

≤

∑

j∈N2
SW(C∗

j ) +
∑

j∈N3
SW(C∗

j )

1
2

(

∑

j∈N2
SW(C∗

j ) +
∑

j∈N3
SW(C∗

j )
) = 2

From Theorems 8 and 9, we immediately get the following result.

Corollary 10. The strong price of anarchy for unweighted graphs is 2.

4 Nash stable outcomes

In this section we consider Nash stable outcomes. We start by showing that
there exists a graph G containing negative edge-weights such that the game

17



i1 i2 i3

i4

10 10

1

−M

Figure 7: The graph G.

induced by G admits no Nash stable outcome. This result is very similar to
Lemma 1 of [9].

Theorem 11. There exists a graph G containing edges with negative weights
such that G(G) admits no Nash stable outcome.

Proof. Let G be the graph in Figure 7 and fix a Nash stable outcome C. It
is easy to see that, for −M small enough, agents i1 and i3 cannot belong
to the same coalition. By contrast, agents i4 and i2 must belong to the
same coalition since otherwise the utility of i4 would be zero. Let Cj be the
coalition containing agents i4 and i2. If Cj = {i2, i4}, then agent i1 wants
to join the coalition and improve her utility from zero to 10/2 = 5 thus
contradicting the fact that C is Nash stable. If Cj ⊃ {i2, i4}, then, since
agents i1 and i3 cannot belong to the same coalition, it must be |Cj| = 3.
Moreover, there exists a coalition Ci containing exactly one between the two
agents i1 and i3. Hence, we get the utility of agent i2 in C is 11/2 < 10, while
10 is the utility in joining coalition Ci, which rises again a contradiction.
Since all possibilities for Cj have been considered, it follows that a Nash
stable outcome cannot exist.

We further show that there exists a dynamic of infinite length for games
played on unweighted graphs.

Theorem 12. There exists an unweighted graph G such that G(G) does
not possess the finite improvement path property, even under best-response
dynamics.

Proof. Let us consider the game induced by be the graph G depicted in Fig-
ure 8. Let us analyze the dynamics that starts from the coalitions structure
C = {{i1, . . . , i7}, {i8}}, where agents {i1, . . . , i7} are together in a coali-
tion, and agent i8 is alone in another one. It is not difficult to check that,

18



i1

i2

i3

i4

i5

i6 i8

i7

Figure 8: The graph G.

if the agents perform their unique (best) improving moves in the following
exact ordering i6, i1, i7, i2, i3, i4, i6, i1, i7, i4, i3, i2, we get back to the starting
coalitions structure C.

Despite the above negative results, it is easy to see that, if a graph G
does not contain negative edge-weights, then the game induced by G admits
a Nash equilibrium, that is the outcome where all the agents are in the same
coalition. Therefore, in the next subsections we characterize the efficiency
of Nash stable outcomes in modified fractional hedonic games played on
general graphs with non-negative edge-weights.

By definition, we have that 1 ≤ PoS ≤ PoA.

4.1 Price of Anarchy

We first show that the price of anarchy grows linearly with the number of
agents, even for the special case of unweighted paths.

Theorem 13. There exists an unweighted path G such that PoA(G(G)) =
Ω(n).

Proof. Let G be an unweighted simple path with an even number n of nodes.
Notice that, since in this setting the utility of an agent in any outcome is
at most 1, the optimum solution is given by a perfect matching, that is,
SW(OPT ) = n. However, when all the nodes are in the same coalition, we

obtain a Nash stable outcome C such that SW(C) = 2∗(n−2)+2
n−1 . Hence, the

claim follows.

We are able to show an asymptotically matching upper bound, holding
for weighted (positive) graphs.

Theorem 14. For any weighted graph with non-negative edge-weights G,
PoA(G(G)) ≤ n− 1.
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Proof. We notice that in any Nash equilibrium C, any agent i has utility

ui(C) ≥ δimax

n−1 , since agent i can always join the coalition containing the
agent j, where j = argmaxz∈N wi,z. On the other hand, in the optimal
outcome OPT , we have that any agent i has utility such that ui(OPT ) ≤
(|OPT (i)|−1)∗δimax

|OPT (i)|−1 = δimax. Hence, by summing over all agents, the theorem
follows.

4.2 Price of Stability

On the one hand, since we have proved in Corollary 7 that, for the setting
of unweighted graphs, the strong price of stability is 1, it directly follows
that also the price of stability is 1 in this setting, because any strong Nash
equilibrium is also a Nash equilibrium.

On the other hand, in the weighted case, given the upper bound to the
price of anarchy provided in Theorem 14, the following theorem shows an
asymptotically matching lower bound to the price of stability.

Theorem 15. There exists a weighted star G with non-negative edge weights
such that PoS(G(G)) = Ω(n).

i z
1

j

ǫ
ǫ

ǫ

ǫ

ǫ
ǫ

Figure 9: The star graph G.

Proof. Let G be a star with n nodes centred in i as depicted in Figure 9.
The weights of the edges are such that there exists a leaf node z such that
wi,z = 1, while for all the other leaf nodes j 6= z, i we have wi,j = ǫ, for an
arbitrarily small ǫ > 0, (for instance 0 < ǫ < 1

n
).

Notice that the grand coalition (i.e., the outcome in which all agents
belong to the same coalition) is the unique Nash stable outcome and has

social welfare equal to 2+2(n−2)ǫ
n−1 . In fact, in any Nash equilibrium, all the

leafs must be in the coalition together with the center i. On the other hand,
the coalition containing only agents i and z yields a social value of 2, and
thus the theorem follows.
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5 Core stable outcomes

We first show that the strict core of G(G) could be empty, even if G is
unweighted.

Theorem 16. There exists an unweighted graph G such that SCR(G(G)) =
∅.

Proof. Let G be a path with n = 3 nodes {i, j, k}.
If C = {{x1}, {x2}, {x3}}, C = {x1, x2} is a blocking coalition. In fact,

moving from their coalition in C to coalition C, both x2 and x3 increase
their utility form 0 to 1.

If C = {{x1, x2}, {x3}}, C = {x2, x3} is a weakly blocking coalition. In
fact, moving from their coalition in C to coalition C, x3 increases her utility
form 0 to 1 and x2 does not change her utility. The case C = {{x1}, {x2, x3}}
is symmetric.

Finally, if C = {{x1, x2, x3}}, C = {x1, x2} is a weakly blocking coalition.
In fact, moving from their coalition in C to coalition C, x1 increases her
utility form 1

2 to 1 and x2 does not change her utility.
Since all possibilities for C have been considered, it follows that a strict

core stable coalition does not exist.

Given the negative result of Theorem 16 concerning the strict core of
modified fractional hedonic games, in the following we focus on the core of
this games.

In this section we consider the core of MFHGs. We first show that for
any graph G, the core of the game G(G) in not empty, and that a core stable
outcome approximating the optimal social welfare by a factor of 2 can be
computed in polynomial time.

Theorem 17. Given any graph G = (N,E,w), there exists a polynomial
time algorithm for computing a core stable coalition structure C such that
SW(C) ≥ 1

2SW(C∗(G(G))) and all coalitions in C are of cardinality at most
2.

Proof. Consider the following algorithm, working in phases t = 1, 2, . . . . Let
G0 = (N,E0, w) be the subgraph of G such that E0 = {e ∈ E : w(e) ≥ 0},
that is, G0 has the same vertices as G and only contains the edges of G
of non-negative weight. For any t ≥ 1, let Gt = (N t, Et, w) be the graph
obtained after phase t. In any phase t ≥ 1, a new coalition isomorphic to K2

is added to C as follows: Let et−1 = {i, j} be an edge in Et−1 of maximum
weight wi,j = maxe∈Et−1 we. We add to C the coalition formed by i and
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j, i.e., C = C ∪ {i, j}. Moreover, let Gt such that N t = N t−1 \ {i, j} and
Et ⊂ Et−1 the subset of edges of G0 induced by nodes N t.

When Et = ∅, the algorithm ends returning C ∪ {{i}|i ∈ N t}. Since
at each phase at least an edge is removed from the graph, the algorithms
terminates in at most |E| phases returning an outcome with all coalitions of
cardinality at most 2.

We first show that C is a core stable outcome of G(G). Remind that, for
any possible outcome, ui(C) ≤ δimax. Therefore, in the outcome C, agents
i and j selected at phase t = 1 are achieving the maximum utility they
can hope. It implies that such agents cannot belong to any strongly block
coalition. The proof continues by induction as follows. Suppose that all
the agents selected until phase q, i.e., agents belonging to N \ N q, cannot
belong to any strongly block coalition, then agents iq+1 and jq+1 selected in
the phase q+1 cannot belong to any strongly block coalition as well. In fact,
suppose that such agents have a certain utility x in the coalition C. For the
inductive hypothesis we have that they can create a strongly block coalition
only with agents belonging to N q+1. However, since the edge (iq+1, jq+1)
has the maximum weights in Gq+1, if implies that they cannot get utility
greater than x. Finally, for the agents that are not matched, i.e., agents that
are alone in a coalition, since they form and independent set, they cannot
form a strongly block coalition, and this finishes the proof.

It remains to show that SW(C) ≥ 1
2SW(C∗(G(G))). First of all notice

that in any phase t, a coalition contributing 2wet−1 to the social welfare is
added to C; we thus obtain that

SW(C) =
∑

t≥1

2wet−1 .

For any e ∈ E, let f(e, i) ∈ {0, 1, 2} be the number of endpoints of e
belonging to coalition C∗

i . It is possible to bound SW(C∗(G(G))) as follows:

SW(C∗) =
∑

C∗

i ∈C
∗

SW(C∗
i )

=
∑

C∗

i ∈C
∗

∑

t≥1

∑

e∈EC∗

i
∩(Et\Et−1)

2we

|C∗
i − 1|

≤
∑

C∗

i ∈C
∗

∑

t≥1

2f(et−1, i)wet−1(|C∗
i − 1|)

|C∗
i − 1|

(4)

=
∑

t≥1

∑

C∗

i ∈C
∗

2f(et−1, i)wet−1
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=
∑

t≥1

4wet−1 , (5)

where inequality 4 holds because wet−1 = maxe∈Et−1 we and every endpoint
of et−1 belonging to C∗

i can have at most |C∗
i − 1| adjacent edges (notice

that all edges in Et \Et−1 are adjacent to an endpoint of et−1), and equality
5 holds because, given that C∗

1 , . . . , C
∗
n are a partition of N , it follows by

definition of f that
∑

C∗

i ∈C
∗ f(et−1, i) = 2. Therefore,

SW(C∗(G(G)))

SW(C)
≤

∑

t≥1 4wet−1

∑

t≥1 2wet−1

= 2.

As a direct consequence of Theorem 17, the following corollary holds.

Corollary 18. For any graph G, CPoS(G(G)) ≤ 2.

We now show a matching lower bound on the CPoS for the case of
weighted graphs.

Theorem 19. For any ǫ > 0, there exists a weighted graph G such that
CPoS(G(G)) ≥ 2− ǫ.

Proof. Consider the graph G represented in Figure 10.

i1 i2 i3 i4
1 1 + ǫ

2 1

Figure 10: Graph G.

On the one hand, it is easy to check that the only core stable coalition
C is the one where the two central agents i2 and i3 are together in the same
coalition, while agent i1, as well as agent i4, are alone in different coalitions,
i.e., C = {{i1}, {i2, i3}, {i4}}. Notice that SW(C) = 2

(

1 + ǫ
2

)

. On the other
hand, the outcome C′ = {{i1, i2}, {i3, i4}}, has a social welfare equal to 4,
and therefore SW(C∗) ≥ 4. It follows that CPoS(G(G)) ≥ 4

2(1+ ǫ
2
)
≥ 2−ǫ.

For unweighted graphs, it is easy to see that the optimum outcome pro-
duced in Theorem 6 is also core stable, and therefore the following proposi-
tion holds:

Proposition 20. For any unweighted graph G, CPoS(G(G)) = 1.
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We are also able to prove a constant upper bound to the core price of
anarchy.

Theorem 21. For any graph G, CPoA(G(G)) ≤ 4.

Proof. Let C′ be the solution computed by Theorem 17, in which all coali-
tions have cardinality at most 2.

Consider any core stable outcome C.
For any coalition C ′ = {i, j} of C′ isomorphic to K2, on the one hand we

have that SW(C ′) = 2. On the other hand, since C is a core stable outcome,
ui(C) = 1 or uj(C) = 1, because otherwise coalition {i, j} would strongly
block outcome C. Thus, ui(C) + uj(C) ≥ 1, whereas ui(C

′) + uj(C
′) = 2.

Let N ′ ⊆ N be such that for any j ∈ N ′, C ′
j is isomorphic to K2. Since

agents being in all other coalitions of C′ do not contribute to SW(C′), we
obtain

SW(C′)

SW(C)
≤

∑

j∈N ′ SW(C ′
j)

∑

j∈N ′

∑

i∈C′

j
ui(C)

≤

∑

j∈N2
SW(C ′

j)
∑

j∈N2

1
2SW(C ′

j)
= 2.

The claim follows because, by Lemma 17, SW(C∗(G(G))) ≤ 2 · SW(C′).

For unweighted graphs we get the following tight characterization on the
core price of anarchy.

Proposition 22. For any unweighted graph G, CPoA(G(G)) = 2.

Proof. For the lower bound, it is easy to see that, given an unweighted path
of four nodes i1, i2, i3, i4, the outcome C = {{i1}, {i2, i3}, {i4}} is core stable
and has social welfare 2, while the optimum outcome C∗ = {{i1, i2}, {i3, i4}}
has social welfare 4. A matching upper bound can be obtained by exploiting
the same arguments used in the proof of Theorem 9.

6 Conclusions

We notice that one could consider relaxed strong Nash stable and strict core
outcomes, where among the agents that cooperatively deviate, all of them
do not worsen their utility, and at least one of them gets a strictly better
utility. However, these stable outcomes do not exist even for very simple
instances. In fact, if G is an unweighted path of 3 nodes, (G(G)) admits no
relaxed strong Nash stable outcomes as well as no strict core outcomes.
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There are some open problems suggested by our work. First of all, it
would be nice to close the gap between the lower bound of 2 for the core
price of stability and the upper bound of 4 for the core price of anarchy,
and to study the complexity of computing an optimal outcome when the
graph is weighted. Another research direction could be that of designing
truthful mechanisms for MFHGs that perform well with respect to the sum
of the agents’ utility. Finally, it would be interesting to adopt different social
welfare than the one considered in this paper. An example could be that of
maximizing the minimum utility among the agents.
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