

Vrije Universiteit Brussel

Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey
Radulescu, Roxana; Mannion, Patrick; Roijers, Diederik; Nowe, Ann

Published in:
Autonomous Agents and Multi-Agent Systems

DOI:
10.1007/s10458-019-09433-x

Publication date:
2019

Document Version:
Submitted manuscript

Link to publication

Citation for published version (APA):
Radulescu, R., Mannion, P., Roijers, D., & Nowe, A. (2019). Multi-Objective Multi-Agent Decision Making: A
Utility-based Analysis and Survey. Autonomous Agents and Multi-Agent Systems, 34(1), [10].
https://doi.org/10.1007/s10458-019-09433-x

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 18. Apr. 2024

https://doi.org/10.1007/s10458-019-09433-x
https://cris.vub.be/en/publications/multiobjective-multiagent-decision-making-a-utilitybased-analysis-and-survey(d32d072e-29f1-439e-bc60-9111fdf003d4).html
https://doi.org/10.1007/s10458-019-09433-x

Multi-Objective Multi-Agent Decision Making:
A Utility-based Analysis and Survey

Roxana Rădulescu · Patrick Mannion ·
Diederik M. Roijers · Ann Nowé

Abstract The majority of multi-agent system (MAS) implementations aim to
optimise agents’ policies with respect to a single objective, despite the fact that
many real-world problem domains are inherently multi-objective in nature. Multi-
objective multi-agent systems (MOMAS) explicitly consider the possible trade-offs
between conflicting objective functions. We argue that, in MOMAS, such compro-
mises should be analysed on the basis of the utility that these compromises have for
the users of a system. As is standard in multi-objective optimisation, we model the
user utility using utility functions that map value or return vectors to scalar val-
ues. This approach naturally leads to two different optimisation criteria: expected
scalarised returns (ESR) and scalarised expected returns (SER). We develop a new
taxonomy which classifies multi-objective multi-agent decision making settings, on
the basis of the reward structures, and which and how utility functions are ap-
plied. This allows us to offer a structured view of the field, to clearly delineate the
current state-of-the-art in multi-objective multi-agent decision making approaches
and to identify promising directions for future research. Starting from the execu-

Roxana Rădulescu
Artificial Intelligence Lab
Vrije Universiteit Brussel
Belgium
E-mail: roxana.radulescu@vub.be

Patrick Mannion
School of Computer Science
National University of Ireland Galway
Ireland
E-mail: mannion.patrick@gmail.com

Diederik M. Roijers
Computational Intelligence
Vrije Universiteit Amsterdam
The Netherlands
E-mail: d.m.roijers@vu.nl

Ann Nowé
Artificial Intelligence Lab
Vrije Universiteit Brussel
Belgium
E-mail: ann.nowe@vub.be

ar
X

iv
:1

90
9.

02
96

4v
1

 [
cs

.M
A

]
 6

 S
ep

 2
01

9

2 Roxana Rădulescu et al.

tion phase, in which the selected policies are applied and the utility for the users
is attained, we analyse which solution concepts apply to the different settings in
our taxonomy. Furthermore, we define and discuss these solution concepts under
both ESR and SER optimisation criteria. We conclude with a summary of our
main findings and a discussion of many promising future research directions in
multi-objective multi-agent systems.

Keywords Multi-agent systems · Multi-objective decision making · Multi-
objective optimisation criteria · Solution concepts · Reinforcement learning

1 Introduction

A multi-agent system (MAS) features multiple agents deployed into a common
environment. This is an inherently distributed paradigm, which benefits from scal-
ability (agents can be added as required) and fault tolerance (the failure of any
one agent does not imply failure of the whole system). The agents within a MAS
may act cooperatively, competitively, or may exhibit a mixture of these behaviours
[121,127].

The majority of MAS implementations aim to optimise agent’s policies with
respect to a single objective, despite the fact that many real world problems are in-
herently multi-objective in nature. Single-objective approaches seek to find a single
policy to a problem, whereas in reality a system may have multiple possibly con-
flicting objectives. Multi-objective optimisation (MOO) [21] approaches consider
these possibly conflicting objectives explicitly. In multi-objective multi-agent sys-
tems (MOMAS) the reward signal for each agent is a vector, where each component
represents the performance on a different objective. By taking a multi-objective
perspective on decision making problems, complex trade-offs can be managed;
e.g., when selecting energy sources for electricity generation, there is an inherent
trade-off between using cheap sources of energy which damage the environment,
versus using renewable energy sources which are more expensive but better for
the environment. Such trade-offs appear in a wide range of domains such as ur-
ban transportation, aviation, management of natural resources and robotics; these
are all domains where multi-objective multi-agent approaches could confer huge
benefits.

Compromises between competing objectives should be made on the basis of
the utility that these compromises have for the users. In other words, if we can
define a utility function that maps the vector value of a compromise solution to a
scalar utility – called a utility or scalarisation function – then we can derive what to
optimise [86], and how to measure the quality of solutions [132]. In some rare cases,
we might even be able to apply the utility function a priori, and try to solve the
decision problem as a single-objective problem. However, as is known from single-
agent multi-objective decision making [85], it is often impossible, undesirable, or
unfeasible to perform such a priori scalarisation. For example, if the utility function
is non-linear, this typically renders a priori scalarisation and subsequent single-
objective solution methods intractable. Moreover, while trying to find compromise
policies, i.e., while the agents are planning or learning, the utility function is often
unknown or uncertain. In such cases, it is often desirable to construct a so-called
coverage set, a set of solutions that has at least one optimal policy with respect to
every possible utility function that a user might have.

Multi-Objective Multi-Agent Decision Making 3

The utility-based approach naturally leads to two different optimisation cri-
teria for agents in a MOMAS: expected scalarised returns (ESR) and scalarised
expected returns (SER). In the former, the users derive their utility from single
roll-outs of the policy, while in the latter, the utility is derived from the expected
outcomes, i.e., the mean over multiple roll-outs. To date, the differences between
the SER and ESR approaches have received little attention in multi-agent settings,
despite having received some attention in single-agent settings (see e.g. [84,85]).
Consequently, the implications of choosing either ESR or SER as the optimisation
criterion for a MOMAS are currently not well-understood.

In single-agent or fully cooperative multi-agent settings [86], it is typically as-
sumed that there is one, possibly unknown, utility function that determines the
possibly unknown preferences of the users, and that the users are interested in the
utility of the expected vector-valued returns (i.e., the SER optimality criterion). In
the execution phase all agents will ultimately pursue the best utility with respect
to this single function. Therefore, the coverage set can be derived from everything
that is known about this utility function, and the types of policies allowed. For
example, for deterministic stationary policies and possibly non-linear utility func-
tions, a coverage set is a so-called Pareto front of deterministic stationary policies.
That is the set of policies that are not Pareto-dominated, i.e., for which there is
no other deterministic stationary policy that has a better or equal value for all
objectives and is better in at least one objective. A Pareto-undominated policy is
also called Pareto-optimal. Another well-known coverage set is a convex coverage
set (CCS), which is a coverage set with respect to all possible linear utility func-
tions. Incidentally, a Pareto-coverage set for stochastic policies can be constructed
from a CCS of deterministic stationary policies [118,85]. We discuss related work
on single-objective and fully cooperative multi-agent systems in Section 2.2.

In multi-agent settings however, the situation can become much more complex.
While in fully cooperative multi-agent systems, the agents are assumed to all
receive the same team rewards, the individual reward vectors received by agents
may be different in general multi-agent settings. We review various models with
different assumptions regarding the reward functions, as well as observability and
statefulness, in Section 3. Then, we consider settings where individual agents value
objectives according to their own preferences, i.e., where each agent can have
their own utility function. This has important consequences for what constitutes
a solution set. We build a taxonomy of what constitutes a solution for a multi-
objective multi-agent decision problem based on modelling assumptions, utility
functions, and optimisation criteria, by analysing what happens at execution time
in Section 4. We note that many of the different settings we identify in Section 4 are
under-explored in the current literature, and offer examples of decision problems
that would merit further investigation for each part of our taxonomy.

Using our taxonomy, we review the literature on multi-objective multi-agent
decision problems in terms of optimal solution sets (Section 5), and solution meth-
ods (Section 6). Finally, we discuss what we consider the key open problems in
this new and exciting field (Section 7).

4 Roxana Rădulescu et al.

Player Y

A B

Player X
A (xA,A, yA,A) (xA,B , yA,B)

B (xB,A, yB,A) (xB,B , yB,B)

Table 1 General format of a Single-Objective Normal Form Game. A and B represent different
actions which are available to the agents, and scalar payoffs x and y are given to each agent
X and Y respectively depending on which combination of actions was selected.

Player Y

A B

Player X
A (xA,A,yA,A) (xA,B ,yA,B)

B (xB,A,yB,A) (xB,B ,yB,B)

Table 2 General format of a Multi-Objective Normal Form Game. A and B represent different
actions which are available to the agents, and vector payoffs x and y are given to each agent
X and Y respectively depending on which combination of actions was selected.

1.1 Motivating Example

As a motivating example for adopting a multi-objective perspective on multi-agent
decision making, we introduce a Multi-Objective Normal Form Game (MONFG)
which is called the Commuting MONFG. By contrast to the usual Single-Objective
Normal Form Game (SONFG) format, which is common in the literature, in a
MONFG the agents receive payoffs in vector rather than scalar format after se-
lecting their actions. This difference is illustrated in Tables 1 and 2.

In the Commuting MONFG, two agents wish to commute from a common ori-
gin to the same destination. There are two transportation options available: travel
by taxi or travel by train. If both agents choose the taxi option, they may split
the cost equally between them. If they both choose to travel by train, they must
each purchase their own ticket individually. If one chooses to travel by taxi and the
other chooses to travel by train, they must also pay their own fares individually.
A train ticket is cheaper than a taxi fare (even when agents share a taxi ride);
however, the taxi journey takes less time than the train journey. The expected
travel time and cost for each mode of transport is listed in Table 3. The individual
or local vector payoffs for each agent are shown in Table 4. Note that the values
in the matrix are negative as this is a minimisation problem for both objectives
(commuters in general do not want to spend any additional time or money on
their commute above what is necessary).

From an utility-based perspective, each commuter will try to balance these con-
flicting objectives such that his/her derived utility is maximised. Each commuter
can of course have a different utility function depending on how each objective is
valued. Furthermore, depending on when each commuter evaluates the commute
(e.g., on a monthly basis or after each trip), the two different optimisation criteria
come into play: ESR or SER. For example, for some commuters travelling costs
should be maintained within a certain budget every month, while still being on
time at least 75% of the time. This requires the use of the scalarised expected
returns for the month. For other commuters the time component might be crucial
and they cannot be late on any given day, thus imposing the expected scalarised
return criterion.

Multi-Objective Multi-Agent Decision Making 5

cost time

taxi 20 10

train 5 30

Table 3 Cost and travel time for different modes of transport in the Commuting MONFG.

Player Y

taxi train

Player X
taxi ([−10,−10], [−10,−10]) ([−20,−10], [−5,−30])

train ([−5,−30], [−20,−10]) ([−5,−30], [−5,−30])

Table 4 Individual (local) payoff matrix for the Commuting MONFG

2 Background

Before we address the specifics of multi-objective multi-agent systems, and how
to define optimal solutions for the Commuting MONFG in the previous section,
we first introduce relevant background work on multi-agent decision theory, multi-
objective decision making, optimisation criteria and utility functions which is nec-
essary to understand the material covered later in this article.

2.1 Multi-Agent Decision Theory

Multi-agent systems appeared as a natural paradigm for modelling numerous real-
world problems (e.g., health-care [42], smart grid management [69,49], traffic [37],
and Internet of Things [18]) as they lend themselves perfectly to the idea of large
distributed systems. They combine several disciplines ranging from artificial in-
telligence, software engineering, economics to social sciences [127]. We are mostly
interested here in autonomous intelligent systems, where multiple agents are de-
ployed in the same environment and are faced with a series of decision making
problems.

Multi-agent decision making problems can often be modelled as a stochastic
(or Markov) game (SG) [102,121]. A stochastic game can be formally defined as a
tuple: M = (S,A, T,R), with n ≥ 2 agents, where:

– S is the system state space
– A = A1 × · · · ×An is the set of joint actions, Ai is the action set of agent i
– T : S ×A× S → [0, 1] is a probabilistic transition function
– R = R1×· · ·×Rn are the environment reward functions, where Ri : S×A×S →

R is the reward function of agent i

At every timestep, the environment emits a joint state s = 〈s1, . . . , sn〉, where
s ∈ S. Depending on the system, the agents can fully observe this state, or can
only observe a local view si. Notice that the reward received by an agent depends
on the joint action taken by all the agents in the environment and not just on her
own.

However, the SG model is not the most general model. The stochastic game
model can be further generalised to a partially observable stochastic game (POSG)

6 Roxana Rădulescu et al.

[38,124] to include the possibility that the agents do not have full access to the
environment state. In this case, each agent receives an observation and maintains
a set of beliefs over possible states. Because the issue of partial observability is
orthogonal to the existence of multiple objectives, but does make the model sig-
nificantly more complex, we will restrict ourselves to fully observable models in
this article. Note however that the solution concepts presented here generalise to
partially observable environments as well.

The behaviour of an agent is defined by its policy πi : S×Ai → [0, 1], meaning
that given a state, actions are selected according to a certain probability dis-
tribution. In the discounted infinite-horizon case, optimising πi is equivalent to
maximising the expected discounted long-term reward:

V πi = E

[∞∑
t=0

γtri,t | π, µ0

]
(1)

where π is the joint policy of the agents acting in the environment, µ0 is the
distribution over initial states s0, γ is the discount factor and ri,t = Ri(st,at, st+1)
is the reward obtained by agent i at timestep t, for the joint action at ∈ A, at
state st ∈ S and transitioning to the next state st+1 ∈ S.

Learning in multi-agent systems is considered a vital component, as envi-
ronments are often characterised by high complexity and stochasticity, meaning
that optimal behaviours are often impossible to achieve using pre-programmed
approaches [4]. However, we note that transitioning from single- to multi-agent
learning is not straightforward. Building an intelligent distributed system is a
notoriously difficult problem as it involves dealing with non-stationarity, limited
resource sharing, and often requires coordination or overcoming conflicting goals
[101]. As a learning paradigm, we mainly consider reinforcement learning (RL)
[110], but we will also discuss approaches from related fields such as game theory,
planning or negotiation.

Multi-agent decision making is a multifaceted problem that can be explored
through the lens of many fields and from different perspectives (e.g., system versus
agent point of view). But perhaps the most important distinction we observe
in multi-agent learning problems concerns the definition of the reward function.
Whether agents in a MAS will learn to act cooperatively or competitively depends
directly on the reward function definitions. The literature usually distinguishes
between three different settings:

– cooperative, where the reward function is the same for all agents: R1 = · · · =
Rn = R. Examples of this setting include domains where all agents work
together to optimise the performance of a larger system, such as urban traffic
control [61], air traffic control [20] and electricity generator scheduling [64].

– competitive, where any win for one agent implies a loss for another. Some
competitive settings are zero-sum. Examples of this setting include fully com-
petitive games such as Backgammon [116], Go [107] and Starcraft 2 [120].

– mixed, where no restriction is imposed on the reward function definitions.
Mixed games may incorporate elements of both cooperation and competition.
Examples of this setting include games with opposing teams of agents, such as
RoboCup soccer [50].

This classification of multi-agent decision making problems is also reflected in
the taxonomy we define in Section 4.

Multi-Objective Multi-Agent Decision Making 7

Discrete, tabular representations are the simplest way for agents to store in-
formation which they have learned (e.g., policies, environment models, or action
values in the case of model-free RL agents). When information is stored discretely,
each additional feature tracked in the state leads to an exponential growth in
the number of state-action pair values that must be stored [110]. This problem
is commonly referred to in the literature as the “curse of dimensionality”, a term
originally coined by Bellman [11]. While this rarely occurs in simple environments,
it may lead to an intractable learning task in complex real-world domains due
to memory and/or computational constraints. Learning over a large state–action
space is possible, but may take an unacceptably long time to learn useful policies.

Function approximation methods, such as artificial neural networks (ANNs),
may be employed to represent policies, environment models or action values. These
methods allows one to handle higher dimensional inputs, as well as allowing gener-
alisation between similar observations and actions. Agents using function approxi-
mators can also potentially deal with continuous observation and/or action spaces.
Recent advances in single and multi-agent RL make use of deep ANNs as function
approximators; this emerging paradigm is known as deep reinforcement learning
(DRL). For further information on recent deep MARL methods, the interested
reader is referred to recent survey articles [40,75].

Another dimension to characterise multi-agent systems is represented by the
degree of decentralisation. The planning/learning phase and the execution phase
may be either (partially) centralised or fully decentralised. The paradigm of cen-
tralised training with decentralised execution represents a middle ground between
fully centralised and decentralised settings often used in cooperative or mixed set-
tings [30,31,55,97,108]. The aim here is to enrich and aid the training/learning
phase with extra information shared between the agents, however during the policy
execution phase, the agents act in a fully decentralised manner.

2.2 Multi-Objective Decision-Making

Single-objective decision making requires the existence of a single scalar reward
function that agents can observe. The goal for the agents is then to find a policy
that maximises the expected sum of these scalar rewards. However, most real-
world problems do not adhere to this requirement. Specifically, there are typically
multiple objectives that agents should care about. For example, consider the cost
and time objectives of our transportation example in Section 1.1.

When there are multiple objectives, one might in some special cases still be
able to use single-objective methods by using a priori scalarisation. Specifically, if
there exists a function that maps every possible outcome, i.e., a vector with policy
values in each objective, which captures the exact preferences that the user(s)
might have with respect to all these possible outcomes of the decision problem;
this function is known a priori; and can be applied to the decision problem in such
a way that the resulting single-objective problem remains tractable; then single-
objective methods could still be used to solve the problem [85]. However, often
such a priori scalarisation is either impossible, infeasible or undesirable. Roijers et
al. [85] identify three use-case scenarios for multi-objective decision making, shown
in Figure 1, in which this is indeed the case.

8 Roxana Rădulescu et al.

algorithmMOMDP solution
set

scalarization

weights

algorithm solution
set

user
selection

single
solution

planning or learning phase

execution phase

algorithm
MOMDP

+
weights

(a)

(b)

(c)

MOMDP

single
solution

execution phaseselection phase

single
solution

execution phase

selection phaseplanning or learning phase

planning or learning phase

Fig. 1 Use-case scenarios for multi-objective decision making [85]

In the unknown weights scenario, or more precisely the unknown utility function
scenario (Figure 1a), a priori scalarsation is undesirable, as the utility that the
user is able to get from the alternatives is too uncertain, or even unknown at the
moment when planning or learning must occur. For example, when the objectives
correspond to things that can be purchased or sold at an open market, but due to
the complexity of the planning problem the prices can change significantly before
planning or learning is complete. In such cases, it is desirable to compute a coverage
set in order to be able to respond as quickly as possible whenever the available
information about the market prices is updated.

In the decision support scenario (Figure 1b), a priori scalarisation is infeasible
or impossible, as a utility function that corresponds to the preferences of the user
is never known explicitly. For example, consider a decision on the medical treat-
ment of a serious illness. This decision problem has objectives such as maximising
the probability of being cured and minimising the side effects. However, it is very
difficult for a patient to articulate an exact utility function that makes all hypo-
thetical trade-offs between these objectives a priori. In such cases it is therefore
highly preferable to create a set containing the available possibly optimal alterna-
tives, and present this set to the user. The decision support scenario thus proceeds
almost identically to the unknown weights scenario. The only difference is that
in the selection phase, the user selects a policy from the coverage set according
to her arbitrary preferences, rather than explicit scalarization according to given
weights.

Finally, in the known weights scenario or known utility function scenario, a
priori scalarisation would in principle be possible, as an exact utility function is
available before planning or learning. However, even if this is indeed the case, it
can still be undesirable to do so, because performing a priori scalarisation can lead
to an intractable problem [85].

Key to all of these use cases is the notion of user utility. Indeed, we argue that
for any (multi-objective) decision making problem, the agent should always aim to
maximise the user’s utility. Specifically, following the work of Roijers et al. [85], we
take the utility-based approach to multi-objective decision making. In short, this

Multi-Objective Multi-Agent Decision Making 9

means that the ultimate goal is to maximise user utility, and that what constitutes
a solution to a multi-objective decision problem should be derived from what is
known about the user utility. User utility is characterised by a utility function u
that maps vector-valued (expected) returns to a scalar value. We first discuss one
optimisation criterion, SER, which will be discussed in the next section to give
an impression of how an optimal solution set in multi-objective problems can be
constructed. In SER, it is the value vector V πi , i.e., the expected vector-valued
return of policy πi, that is projected to a scalar value:

V πi = u(V πi) (2)

In order to derive the optimal solution set – which is what a planning or learning
algorithm should output – one should start at the back of the use-case scenario,
i.e., the execution phase, and work back, through the selection phase, until a
specification of the optimal output of the algorithm is reached. As shown in Figure
2, in single-agent multi-objective decision making, the execution phase is straight-
forward. The agent uses its policy π to interact with the environment, which leads

environment V u(V) π

Fig. 2 The execution phase for single-agent multi-objective decision making.

to a value vector Vπ. Under SER (see next section) the utility function u is applied
to Vπ. This means that in the selection phase, the policy that maximises u(Vπ),
must be available, which brings us to the selection phase. In a known weights
scenario, this is trivial, as u is known, so let us focus on the decision support and
unknown weights scenarios. In both these scenarios, u is (implicitly or explicitly)
applied to a set of alternative value vectors, leading to the maximising policy from
a set of alternatives to be chosen.1 Because in the unknown weights and decision
support scenarios, u is at least partially unknown when the agent needs to plan or
learn, the planning or learning algorithm should output a set of alternative policies,
that for every possible u that a user might have (subject to what is already known
at the beginning of the planning or learning phase), contains at least one optimal
policy. This is called a coverage set [85].

In multi-agent settings, the execution phase is much less straight-forward. In
fact, there are different settings, all with their own uses, that lead to very different
schemas for the execution phase. Therefore, after discussing the various multi-
agent multi-objective decision-theoretic problem settings in Section 3, we conduct
a thorough analysis of the execution phase for multi-agent multi-objective decision
making in Section 4. Before going into different choices with respect to the execu-
tion phase in multi-agent settings however, we must first discuss another, perhaps
even more fundamental choice: when to apply the utility function.

1 Note that we are assuming here that there is a small discrete set of alternatives, and that
this maximisation can explicitly be computed in reasonable time. If this is not the case, for
example if their set of alternatives is continuous, the user can be assisted in selecting a good
policy using specific algorithms designed for the selection phase [133]. However, in such cases
optimality can typically not be guaranteed.

10 Roxana Rădulescu et al.

2.3 Multi-Objective Optimisation Criteria

In the previous section, we have seen an example of how to construct an optimal
solution for a given problem setting. From a more general point of view, when
agents consider multiple conflicting objectives, they should balance these in such
a way that the user utility derived from the outcome of a decision problem is max-
imised. This is known as the utility-based approach [85]. Following this approach,
we assume that there exists a utility function that maps a vector with a value for
each of the d objectives to a scalar utility: u : Rd → R.

We recall that the value function vector is defined similarly to Equation 1, as
the expected discounted long-term reward:

Vπ = E

[∞∑
t=0

γtrt | π, µ0

]

where µ0 is the distribution over initial states, π is the agent’s policy, γ is the
discount factor and rt is the reward vector received for each of the objectives at
timestep t.

When deciding what to optimise in a multi-objective decision making problem,
we thus need to apply this utility function to the vector-valued outcomes of the
decision problem in some way. There are two choices for how to do this [85,86].
Computing the expected value of the payoffs of a policy first and then applying
the utility function, leads to the scalarised expected returns (SER) optimisation
criterion, i.e.,

V πu = u

(
E

[∞∑
t=0

γtrt | π, µ0

])
(3)

where V πu is the return derived by the agent from the vector Vπ. SER is employed
in most of the multi-objective planning and reinforcement learning literature. Al-
ternatively, the utility function can be applied before computing the expectation,
leading to the expected scalarised returns (ESR) optimisation criterion [84], i.e.,

V πu = E

[
u

(∞∑
t=0

γtrt

)
| π, µ0

]
(4)

Which of these criteria should be considered best depends on how we are interested
in evaluating the outcome of a policy. SER is the correct criterion if we want
to execute a policy multiple times, and it is the average return over multiple
executions that determines the agent’s utility. ESR is the correct formulation if
the return of a single policy execution is what is important to the agent.

2.4 Utility Functions

Linear combinations are a widely used canonical example of a utility function:

u(r) =
∑
d∈D

wdrd (5)

Multi-Objective Multi-Agent Decision Making 11

where D is the set of objectives, w is a weight vector2, wd ∈ [0, 1] is the weight
for objective d and rd is the component for objective d of some reward vector
r. Interestingly, for such linear utility functions, there is no difference between
SER and ESR, as the inner product with the weight vector distributes over the
expectation.

Non-linear, discontinuous utility functions may arise in the case where it is
important for an agent to achieve a minimum payoff on one of the objectives; such
a utility function may look like the following:

u(r) =

{
rtd if rd ≥ td
0 otherwise

(6)

where rd represents the component of r for objective d, td is the required threshold
value for d, and rtd is the reward for reaching the threshold value on d. In general
we are interested in the class of all monotonically increasing (possibly non-linear)
utility functions.

Definition 1 A scalarization function f is monotonically increasing if:

(∀o, V πo ≥ V π
′

o)⇒ u(Vπ) > u(Vπ′). (7)

This means that if for all objectives, the value for that objective under policy π
is greater than or equal than the value for that same objective under policy π′,
then policy π yields equal or higher utility than policy π′. This is a rather minimal
assumption to make, as it translates to: we always want more of each objective.
Non-linear utility functions may yield different optimal policies under SER and
ESR.

Utility functions may not always be known a priori and/or may not be easy to
define depending on the setting. For example, in the decision support scenario [85]
it may not be possible for users to specify utility functions directly; instead users
may be asked to provide their preferences by scoring or ranking different possible
outcomes. After the preference elicitation process is complete, users’ responses
may then be used to model their utility functions [133].

3 Modelling Multi-Objective Multi-Agent Settings

In this section, we discuss how multi-objective problems with multiple agents can
be modelled. We discuss the multi-objective stochastic game, and partially observ-
able stochastic game models, as the most general models, and then show which
additional assumptions can be made to arrive at more restricted models.

3.1 The Multi-Objective Stochastic Game Model

As a framework for defining multi-objective multi-agent decision making settings
we will use the Multi-Objective Stochastic Game (MOSG). We formally define a
MOSG as a tuple M = (S,A, T,R), with n ≥ 2 agents and d ≥ 2 objectives,
where:

2 A vector whose coordinates are all non-negative and sum up to 1.

12 Roxana Rădulescu et al.

– S state space
– A = A1 × · · · ×An set of joint actions, Ai is the action set of agent i
– T : S ×A× S → [0, 1] probabilistic transition function
– R = R1 × · · · × Rn reward functions, Ri : S × A × S → Rd is the vectorial

reward function of agent i for each of the d objectives

Furthermore, the same as in the stochastic game case, the MOSG can be ex-
tended to also incorporate partial observability. We can thus also define a multi-
objective partially observable stochastic game (MOPOSG), where agents do not
have access anymore to the full state of the environment. In this situation, agents
receive observations from the environment and have to maintain beliefs over possi-
ble states. While, for the scope of this work, it is sufficient to consider the MOSG
model, we will build our categorisations having the MOPOSG model as the most
general case.

An agent behaves according to a policy πi : S×Ai → [0, 1], meaning that given
a state, actions are selected according to a certain probability distribution. Opti-
mising πi is equivalent to maximising the expected discounted long-term reward:

V πi = E

[∞∑
t=0

γtRi(st,at, st+1) | π, µ0

]
(8)

where π is the joint policy of the agents acting in the environment, µ0 is the
distribution over initial states s0, γ is the discount factor and Ri(st,at, st+1) is
the vectorial reward obtained by agent i for the joint action at ∈ A, at state
st ∈ S. We also note that it is also possible to extend this framework to include
the case in which the discount factor is different for each agent i by replacing γ
with γi.

The value function is also vectorial, V πi ∈ Rd. We consider that each agents
also has an individual utility function ui to project V πi to a scalar value, as
described in Section 2.4.

Starting from this model, we will further develop a taxonomy in Section 4
focusing on the utility and reward axis. Furthermore, we show how the approaches
found in the literature can be mapped to this model by limiting various dimensions
such as states, observability, individual rewards, or utilities.

3.2 Special Case Models

The MOPOSG model is general enough to encompass a wide range of multi-
objective multi-agent decision making settings; consequently, many prior decision
making models may be viewed as special cases of a MOPOSG. By restricting
certain degrees of freedom in the MOPOSG model, one can derive many commonly
used decision making models from the single-agent and multi-agent literature,
as well as the single-objective and multi-objective literature; e.g. by setting the
number of agents n = 1 and the number of objectives d = 1 in a MOPOSG, one
may obtain a traditional POMDP. Fig. 3 outlines the relationship between the
MOPOSG model and many other common multi-objective multi-agent decision
making models. Table 5 sumarises other common decision making models, and
outlines which degrees of freedom of the MOPOSG model must be restricted to
derive each other model. We hope that readers will be able to use this as a reference,

Multi-Objective Multi-Agent Decision Making 13

MOSG

MOCBG

MOPOSG

fully observable cooperative

MOCoG

MODec-POMDP
MOMMDP

stateless

MONFG

MOBG

Fig. 3 The MOPOSG is a general model, which encompasses many other common de-
cision making models. The abbreviations in the Venn diagram stand for: multi-objective
partially observable stochastic game (MOPOSG), multi-objective stochastic game (MOSG),
multi-objective decentralised partially observable Markov Decision Process (MODec-POMDP),
multi-objective Bayesian game (MOBG), multi-objective multi-agent Markov Decision Pro-
cess (MOMMDP), multi-objective normal form game (MONFG), multi-objective collaborative
Bayesian game (MOCBG), and multi-objective coordination graph (MOCoG)

so they can easily identify ways in which problem settings and algorithms from
the single-objective literature could be extended/reanalysed from a multi-objective
perspective. Furthermore, it should be possible to easily spot methods developed
specifically for multi-objective models which could be applied to the corresponding
single-objective model.

4 The Execution Phase

As mentioned in Section 3, multi-objective multi-agent models are typically named
according to assumptions about observability, whether the problem is sequential,
and the structure of the reward function. These are indeed important distinctions.
However, following the utility-based approach [85], this information is not sufficient
to determine what constitutes a solution for such a problem. Specifically, we should
aim to optimise the utility of the user(s). In single-agent multi-objective problems,
we can typically assume that at execution time we aim to optimise the utility of
a single user with a single utility function3. The shape of the utility function,

3 Or multiple users whose utility functions can be aggregated in an overall aggregated utility
function

14 Roxana Rădulescu et al.

Model d n |S| observability

multi-objective

multi-agent

MOPOSG
MOSG full
MODec-POMDP
MOMMDP full
MOCoG 1 full
MOBG 1
MOCBG 1
MONFG 2 1 full
MOMG 2 1 full

single-agent
MOPOMDP 1
MOMDP 1 full
MO Multi-armed bandit 1 1 full

single-objective

multi-agent

POSG
SG 1 full
Dec-POMDP 1
MMDP 1 full
CoG 1 1 full
BG 1 1
CBG 1 1
NFG 1 2 1 full
MG 1 2 1 full

single-agent
POMDP 1 1
MDP 1 1 full
Multi-armed bandit 1 1 1 full

Table 5 Summary of which degrees of freedom must be restricted to derive common decision
making models from the MOPOSG model. Here d is the number of objectives, n is the number
of agents and |S| is the size of the system state space. Blank cells indicate no restriction,
whereas numeric values indicate a required parameter setting. (See Figure 3 for a list of the
abbreviations.)

in conjunction with the allowed policy space, can be used to derive the optimal
solution set that a multi-objective decision-theoretic algorithm should produce.

In multi-agent settings, the situation is more complex than in single-agent
settings. Particularly, each individual agent can represent one or more distinct
users. In other words, the utility function may vary per agent. For example, assume
we have a group of friends deciding where to go on holiday, who outsource the
decision making to a group of agents (one agent per friend). The objectives they
agree on are minimising costs, minimising the distance from the hotel to the beach,
maximising the expected number of hours of sun, and maximising the number
of museums and other points of cultural interest within a 20km radius. After
a decision is reached, every friend will get the same (expected) returns vector.
However, each friend may have a different utility for each possible vector—in fact
this is the entire reason that this decision problem may be hard. Furthermore, it
depends on which perspective we take, as the algorithm designers. In the example,
we have taken the perspective of the individual users, but we could also take the
perspective of an external observer that wants the outcome to be fair (for whatever
definition of fair), i.e., wants to optimise some form of social welfare.

We propose a taxonomy based on the reward as well as the utility functions.
We distinguish between two types of reward functions: a team reward, in which
each agent receives the same value or return vector for executing the policy, and
individual rewards in which each agent receives a different value/return vector.
Furthermore, we make a distinction in three types of utility—more or less orthog-

Multi-Objective Multi-Agent Decision Making 15

onally to the types of rewards— i.e., team utility, which is what happens when all
the agents serve the same interest, e.g., when they all work for a single company
or are on the same football team; social choice utility, when we are interested in
optimising the overall social welfare across all agents; and individual utility, which
is what happens if each agent serves a different agenda and just tries to optimise
for that. This results in the taxonomy provided in Figure 4. We further note that
the utility functions may be applied according to the ESR or SER criteria for every
setting.

Multi-objective
multi-agent

decision making

Team

Team

Social choice

Reward

Individual

Individual

Social choice

Individual

Utility

Fig. 4 Taxonomy of multi-objective multi-agent decision making settings.

We note that in the taxonomy, the team reward and team utility setting could
be translated to a single-agent setting, by flattening out the multi-agent aspect.
Specifically, we could define a single agent that would control the actions of all
other agents, i.e., one agent choosing its actions from the entire joint action space.
As such, the solution concepts from the single-agent multi-objective literature
apply [85]. However, the problem can still be significantly harder than a single-
agent problem, due to the size of the joint action space, as we discuss in Section
4.1.1.

Furthermore, we note that the individual rewards with a team utility setting
is not realistic; even if the utility function of all the individual agents would be
the same (i.e., the agents have the same opinion about what is important), that
would still lead to different individual utilities due to different input (expected)
return vectors. Hence, even when the utility functions are identical, we treat these
as individual utilities.

In the remainder of this section, we discuss each of the remaining settings in
our taxonomy in more detail. In Section 5 we discuss the various solution concepts
that apply to these settings (see Figure 4).

16 Roxana Rădulescu et al.

4.1 Team Reward

First, we consider the top row of Figure 4, team reward. In this setting each agent
receives the same reward vectors, R1 = · · · = Rn = R. As a result, the (expected)
return vector is the same for each agent when a given joint policy is executed. This
is for example the case in multi-objective multi-agent Markov decision processes
(MOMMDPs) [83, Section 5.2.1], as we discussed in the previous section.

At first glance, this may appear to be a fully cooperative setting. However,
this depends on how much the individual agents value their (expected) cumu-
lative reward vectors, i.e., on the utility function of each agent. We distinguish
between three cases: team utility, individual utility, and social choice with respect
to individual utilities.

4.1.1 Team Reward Team Utility

Perhaps due to its relative simplicity, the most common case by far in the multi-
objective multi-agent decision-theoretic planning and reinforcement learning liter-
ature is the team reward with team utility setting, i.e., all the agents together aim
to strive for a single maximum utility, under SER,

V ∗ = max
π

u(V π),

or under ESR:
V ∗ = max

π
E[u(ρ)|π, µ0],

where ρ =
∑∞
t=0 γ

trt. u (including its parameterisation) may or may not be known
to the agents. This is a truly fully cooperative setting. Therefore, the optimal
solution sets, i.e., coverage sets, can be derived from the same information as in
single-agent multi-objective settings (see Section 2), and the same types of solution
methods apply.

environment V u(V)π
ijk

Fig. 5 The execution phase for the Team Reward Team Utility setting. This figure depicts the
SER optimality criterion, where the expected values (i.e., the average over many executions of
the policies) will be input to u. Under ESR the input to u would be ρ, i.e., the returns for an
individual roll-out.

Even though techniques similar to single-agent multi-objective settings can
be used to solve multi-agent multi-objective settings, multi-agent multi-objective
problems are much more complex than their single-agent counterparts. Specifi-
cally, the number of possible joint actions increases exponentially in the number
of agents, leading to a much larger policy space. In turn, in cases where the utility
function is unknown during planning or learning this leads to much larger coverage
sets.

To keep multi-objective multi-agent planning and reinforcement learning tractable
in these settings, it is key to exploit so called loose couplings [36,51], i.e., each

Multi-Objective Multi-Agent Decision Making 17

agent’s actions only directly affect a subset of the other agents. Loose couplings
can be expressed using a factorised reward function. Such a factorised reward
function can be visually represented as a graphical model known as a coordi-
nation graph in the multi-agent literature. The single-shot setting – the multi-
objective coordination graph (MO-CoG) – is one of the most well-studied models
in the multi-objective multi-agent literature [22,24,23,65,66,90,87,86,94,93,125,
etc.]. Exploiting loose couplings also plays an important role in sequential multi-
objective multi-agent settings [99,83].

We discuss the solution concepts for this setting in Section 5.2.

4.1.2 Team Reward Individual Utility

When a group of agents receives a single shared reward vector, that does not
mean that all agents value that reward equally. For example, imagine that you are
playing a massive multiplayer online role playing game (MMORPG), and you set
out on a quest with teammates. You will play multiple quests with the same team,
so you are interested in the expected returns rather than the returns of a single
quest (SER). The expected value of doing a quest in terms of experience points,
currency and gear is the same for each member of the team, but for different
players each of these objectives may be more or less important. Therefore, even
when the team gets team rewards for all quests, the members of the team may
prefer different quests. This is because mathematically, each agent tries to optimise
its own utility via the team value of a joint policy:

V πi = ui(V
π),

under SER, or,

V πi = E[ui(ρ)|π, µ0],

under ESR, where π is the joint team policy. This leads to the execution phase
depicted in Figure 6.

environment V

u
i
(V)

u
j
(V)

u
k
(V)

π
ijk

Fig. 6 The execution phase for the Team Reward Individual Utility setting. This figure depicts
the SER optimality criterion, where the expected values (i.e., the average over many executions
of the policies) will be input to u. Under ESR the input to u would be ρ, i.e., the returns for
an individual roll-out.

The existence of individual utilities immediately poses a problem for the agents.
Each agent can only control a small part of the joint policy, i.e., its own actions,
and a lack of coordination may lead to a very bad policy for all agents. In other
words, an agent cannot simply maximise its utility by changing its own policy
without taking the policies, and policy changes, of the other agents into account.

18 Roxana Rădulescu et al.

Therefore, in the selection phase – immediately preceding the execution phase –
it is vitally important to coordinate, and agree on a joint policy.

There are two main ways to go about this. Firstly, let us view the game-
theoretic perspective, in which we aim to find a joint policy that is in some sense
stable, i.e., agents do not have an incentive to deviate from the joint policy. Stable
solutions come in many different levels of strictness [19], from core stability, to
Nash equilibria, to individual stability. Particularly challenging in this respect is
how to figure out what the individual preferences are. When agents do not or
cannot divulge their individual utility functions a priori, for example because it
would be hard or even impossible to specify this utility function exactly, algorithms
that aim to find stable outcomes must learn about the individual utility functions
of the agents to learn whether a joint policy is stable or not [43].

Finding a stable joint policy in the planning or learning phase may seem to
mitigate the need for an extensive selection phase; as no agent will have an in-
centive to deviate from it, deviations should not happen. There are however two
problems that could still arise. Firstly, if there are multiple possible stable solu-
tions, the agents still need to agree on which of these to pick. Secondly, in repeated
interaction settings, an agent could be spiteful, i.e., aim to be as disruptive to the
elected stable solution as possible, in order to strengthen its hand the next time a
stable solution must be selected.

Secondly, there is the negotiation perspective, i.e., agents will try to ham-
mer out a deal on which policy they will jointly execute. This has the advantage
that even non-stable solutions—that may offer better utility for all agents than
the stable ones—could be selected, as long as the agents are obligated to follow
through. For example, the Automated Negotiating Agents Competition (ANAC)
[46] considers three-agent negotiations in which agents negotiate about possible
alternative outcomes. When each alternative is associated with its own vector cor-
responding to different objectives, the agents will know that some outcomes are
Pareto-dominated, and should therefore be excluded from consideration, but for
the solutions that are in the Pareto coverage set, different agents may have dif-
ferent preferences. In general, the outcome of such a negotiation should thus be a
“deal” between the agents about which alternative joint policy from the coverage
set to execute.

Finally, we note that there is a special case of the team rewards and individual
utilities, in which the number of objectives is equal to the number of agents,
and the utility function of each agent would just be the value of the objective
corresponding to that agent. This special case may seem identical to the single-
objective multi-agent case with individual rewards, but there is in fact a significant
difference. Specifically, it reflects the situation in which the agents can care about
the rewards of the other agents, and can make (a priori or a posteriori) agreements
on which division of rewards is admissible. In other words, it can be used to model
various degrees of altruism. At a very minimum, the agents could all exclude
Pareto-dominated solutions, leading to the situation in which agents always prefer
to help the other agents to increase their rewards, as long as it does not cost them
anything. A bit more drastically, the agents could agree to exclude a joint policy
from consideration if another policy exists in which the total sum of the values
for each objective/agent is at least the same, but more fairly distributed over the
agents. This leads to the solution concept of Lorenz optimality [34], which we will
discuss in Section 5.2.4.

Multi-Objective Multi-Agent Decision Making 19

4.1.3 Team Reward and Social Welfare with Respect to Individual Utilities

In the individual rewards setting, it is hard to predict, let alone optimise for, utility.
This is because the agents have different agendas, leading to complex behavioural
dynamics, in which agents react to each other’s behaviours. This process may not
converge to stable solutions. Furthermore, the individual utility functions may not
be common knowledge.

environment V

u
i
(V)

u
j
(V)

u
k
(V)

π
ijk

W(

u

i
(V),

u

j
(V),

u

k
(V)

)

Fig. 7 The execution phase for the Team Reward and Social Welfare with Respect to Individ-
ual Utilities setting. Please note that the social welfare can depend both on the utilities of the
agents and the value/return vector. This figure depicts the SER optimality criterion, where
the expected values (i.e., the average over many executions of the policies) will be input to u.
Under ESR the input to u would be ρ, i.e., the returns for an individual roll-out.

A different perspective on this problem is to take a step back from the self-
interested agents and optimising for their individual utilities, and instead look at
what would be a desirable outcome. For example, we can focus on what would
be socially favourable by the agents. Once we have decided on what would be
desirable, we can define social welfare as a social choice function, corresponding
to the desirability of each outcome, and construct a system of payments that will
make the joint policy converge to the desired outcome. This is known as mechanism
design [121, Ch. 6].

It is important to note that the social welfare function can depend both on the
value or return vector, as well as the individual utilities of the agents, as illustrated
in Fig. 7. For example, in traffic, social welfare may depend on the pollution levels,
as well as fairness between different vehicles in terms of their total expected time
that they have to wait for traffic lights.

In mechanism design, the challenge is to formulate the system of payments in
such a way that the agents will be non-manipulable, i.e., do not have an incentive to
lie about their preferences. If this succeeds, the agents will report their preferences
truthfully, and from a planning perspective, the decision-problem becomes fully
cooperative, i.e., aiming to collectively optimise the social choice function.

For multi-objective decision problems, the social welfare perspective can for
example be used by governments to control the parameters of tenders, to balance
the different objectives for projects. For example, in a traffic network maintenance
planning setting [100], the balancing of traffic delays and costs can be made a
posteriori, by computing a convex coverage set for a cooperative multi-objective
multi-agent MDP [89], because a non-manipulable mechanism exists for every dif-
ferent weighting of the objectives. While mechanism design methods are very pow-
erful, they do pose challenges. Specifically, they typically require (near-)optimal
policies to be guaranteed, and they require agents to articulate their preferences
exactly, in order for the mechanism to be non-manipulable. The first condition

20 Roxana Rădulescu et al.

poses restrictions on the type of planning methods than can be used; which is par-
ticularly important in highly complex sequential decision problems. The second
condition poses restrictions on the way the utility functions can be accessed. We
discuss the implications of this in Section 5.

4.2 Individual Rewards

Up until now, we have considered situations in which all agents have the same
vector input to the utlity function, V under SER and ρ under ESR, but may have
separate individual utilities, ui(V) or ui(ρ), with respect to this vector. We now
consider situations in which the rewards, and therefore (expected) return vectors,
are different for the individual agents.

First, we note that we consider only two settings for individual rewards: in-
dividual utilities and social choice. This is because when individual rewards are
received, even if the utility functions for all agents are the same, the resulting
utilities are still individual, and the interest of the agents may still be opposed.

We observe that individual reward settings may seem similar to the team re-
ward but individual utilities settings, regarding the fact that ultimately the joint
policies will be selected on the utilities of the individual agents. However, whether
the value (or return) vectors are identical or not, can have a profound impact on
how complex it is to solve the decision problem. Specifically, a joint policy can
often be excluded from consideration if all agents agree that executing a different
policy would be better for all agents.4 When the rewards are shared, all agents
will share the same joint policy outcomes and will thus always agree on whether
a policy is Pareto-dominated or not. When the rewards are individual however,
a joint policy can be the only Pareto-optimal policy (in terms of value or return
vectors) for one agent, while it is dominated for another. In other words, settings
with individual rewards are considerably more difficult to solve.

4.2.1 Individual Reward Individual Utility

First let us consider the completely self-interested setting of agents with individual
rewards and utilities. This results in the execution phase depicted in Figure 8.

environment

V
i

V
j

V
k

u
i
(V

i
)

u
j
(V

j
)

u
k
(V

k
)

π
ijk

Fig. 8 The execution phase for the Individual Reward Individual Utility setting. This figure
depicts the SER optimality criterion, where the expected values for each agent (i.e., the average
over many executions of the policies) will be input to u. Under ESR the input to u would be
ρi, i.e., the returns for an individual roll-out for an individual agent.

4 Note that this is not a sufficient condition in multi-agent settings though, as there may be
equilibria that are Pareto-dominated.

Multi-Objective Multi-Agent Decision Making 21

For example [28] study cooperative games, in which coalitions of agents are
formed that can obtain rewards in different objectives, and then divide the value of
these objectives amongst themselves, leading to individual rewards. Subsequently,
they consider what information regarding the utility functions of the agents is
available, and whether stable coalitions can be found given this information.

Because the individual rewards and individual utilities setting is highly com-
plex, it is vitally important to exploit all available information there is with regards
to the utility functions of the agents. For example, consider the situation in which
all individual agents have the same utility function [28,114], but it is not a priori
clear what this utility function is, or the utility function is not fixed. For exam-
ple, consider the case in which the objectives correspond to resources that can
be sold on an open market. Because these prices can vary (possibly rapidly) over
time, the agents will need to adjust their policies according to the latest possible
price information. A multi-objective multi-agent model with individual rewards
and individual utilities, may then help to predict how the agents will respond to
changing prices.

In general, the individual utility functions may be different for each agent,
and various degrees of knowledge may exist about their shape or properties. In
such settings, it may be hard to produce a sufficiently compact set of possibly
viable joint policies to choose from or negotiate with. In this case, we suspect that
interactive approaches [43], in which more information about the utility functions
is actively pursued by querying the agents while planning or learning to limit the
set of viable alternatives, will play an important role in future research.

4.2.2 Individual Reward and Social Choice with Respect to Individual Utilities

Finally, let us consider the individual rewards and utilities, from the perspective
of social choice. This leads to the situation in Figure 9, in which agents obtain
individual value or return vectors, value these according to individual utilities,
which are then weighed up, together with the individual value or return vectors,
through a social welfare function.

environment

V
i

V
j

V
k

u
i
(V

i
)

u
j
(V

j
)

u
k
(V

k
)

π
ijk

W(

u

i
(V

i
),

u

j
(V

j
),

u

k
(V

k
)

)

Fig. 9 The execution phase for the Individual Reward and Social Welfare with Respect to In-
dividual Utilities setting. Please note that the social welfare can depend both on the utilities of
the agents and the value/return vectors for each agent. This figure depicts the SER optimality
criterion, where the expected values for each agent (i.e., the average over many executions of
the policies) will be input to u. Under ESR the input to u would be ρi, i.e., the returns for an
individual roll-out for an individual agent.

As in the team reward setting, it is important to note that the social welfare
function can depend both on the individual value or return vectors, as well as the
individual utilities of the agents. For example, in auctions [78], social welfare may

22 Roxana Rădulescu et al.

Coverage sets Mechanism design

Coverage sets
(+ Negotiation)

Equilibria and
stability concepts

Mechanism design

Equilibria and
stability concepts

Coverage Sets as
best responses

T
e
a
m

In
d
iv
id
u
a
lR
e
w
a
r
d

Team Social choice Individual

Utility

Fig. 10 Taxonomy mapping to solution concepts for multi-objective multi-agent system

depend on attributes of the winning bid(s), as well as a fair outcome in terms of
payments to the individual agents, that together the costs the agents need to make
to execute their bids if chosen, typically determine the individual utilities.

As in the team reward but individual utilities case, we aim to find a mechanism,
i.e., a social welfare function, that forces agents to be truthful about their utility
functions, such that the joint policy can be optimised with respect to a notion of
social welfare. An interesting – but to our knowledge unexplored – aspect would be
to investigate, in the case when individual reward vectors are common knowledge,
but the preferences are (partially) unknown, whether such mechanisms could still
be established, possibly through active querying to obtain information about the
individual utility functions.

5 Solution Concepts

In this section we introduce some of the main solution concepts which are featured
in MAS and multi-objective optimisation research, as well as explaining how they
relate to the scenarios described in our taxonomy above.

In the context of MAS, it is difficult to identify what constitutes an optimal
behaviour, as the agents’ strategies are interrelated, each decision depending on
the choices of the others. For this reason, we usually try to determine interesting
groups of outcomes (i.e., solution concepts), to determine when the system can
reach some form of equilibrium. Fig. 10 provides an overview of which of these
solution concepts are relevant to each of the five settings in our multi-agent decision
making taxonomy.

Multi-Objective Multi-Agent Decision Making 23

5.1 Policies

We introduce a few preliminary definitions regarding types of behaviour agents
can learn, depending on the action selection strategy given a certain state or on
whether or not time plays any role in the policy definition.

A deterministic (or pure) policy is one where the same action a is always
selected for a given state s (i.e., Pr(a|s) = 1). A stochastic policy is one where
actions in a given state are selected according to a probability distribution (i.e.,
Pr(a|s) ∈ [0, 1],∀a ∈ A). The output of a stationary policy depends only on
state, not on time. The output of a non-stationary policy may vary with both
state and time.

A deterministic game is one where the transition function is deterministic, i.e.,
the game always transitions to the same next state, for a given system state and
joint action. While in single-objective decision problems it is often sufficient to
take only deterministic stationary policies into account, it is known that in multi-
objective decision problems stochastic or non-stationary policies can lead to better
utility [85,123] both under SER and ESR [84].

A mixture policy [104,118] is a stochastic combination of deterministic policies
(referred to as base policies). This technique has been used in single agent multi-
objective settings to combine two or more deterministic Pareto optimal policies to
satisfy a user’s preferences. Mixing happens inter-episode only, rather than intra-
episode. Vamplew et al. [118] note that switching between base policies during
an episode will likely result in erratic and sub-optimal behaviour. Therefore, one
of the available base policies is selected probabilistically at the beginning of each
episode and followed for the entire episode duration. The aim is to determine
mixture probabilities, which on average, after a large number of runs, will yield
the desired long-term average return on each objective.

As noted in Section 4.1.1, the team reward team utility setting is similar enough
to single-agent multi-objective settings such that methods developed for one may
be easily applied to the other; mixture policies are one such method which could
feasibly be used in the team reward team utility setting.

5.2 Coverage Sets

The optimal solution in single-agent multi-objective decision making is called a
coverage set (CS) [85,86]. A coverage set contains at least one optimal policy for
each possible utility function, u(Vπ), i.e., if a set C is a coverage set then, under
SER,

∀u ∈ U : max
π∈Π

u(Vπ) = max
π∈C

u(Vπ),

and under ESR,

∀u ∈ U : max
π∈Π

E[u(ρ)|π, µ0] = max
π∈C

E[u(ρ)|π, µ0],

where Π is the space of all possible (and allowed) policies, ρ are the vector-valued
returns, i.e., ρ =

∑∞
t=0 γ

trt and U is the set of all possible utility functions.
Furthermore, coverage sets do not contain dominated policies,

π ∈ C → ∃u ∈ U : u(Vπ) = max
π′∈C

u(Vπ′),

24 Roxana Rădulescu et al.

under SER, and,

π ∈ C → ∃u ∈ U : E[u(ρ)|π, µ0] = max
π′∈C

E[u(ρ)|π′, µ0],

under ESR, i.e., a coverage set should only contain policies that are optimal for
some utility function u. Finally, algorithms should aim to construct coverage sets
that are as small as possible, but as coverage sets are not unique, so constructing
a minimally sized one is far from trivial.

5.2.1 Motivations for Coverage Sets in Multi-Agent Settings

In single-agent settings, coverage sets need to be constructed with respect to any
possible utility function allowed by the problem specification. However, due to
the single-agent nature, it can be assumed that ultimately, in the execution phase,
there will be one true utility function that governs user utility. Multi-agent settings
are more complex; the different agents can represent different interests, and may be
optimising for different utility functions. Nonetheless, there are many multi-agent
settings for which coverage sets are the appropriate solution concept.

The first and most straightforward motivation is the team reward and team
utility setting described in Section 4.1.1. This is a fully cooperative setting; all
rewards and the utility derived from that is shared between all agents. Therefore,
there is only one true utility function in the execution phase, and the motivation for
coverage sets being the right solution concept is the same as for single-agent multi-
objective decision making. For example, this is the case when there are multiple
agents belonging to the same team or organisation are tackling a problem together,
e.g., a soccer team or different agents belonging to the same company.

However, team utility is not strictly necessary for coverage sets to be useful.
In a team reward but individual utility setting, coverage sets could be used if all
agents will agree (preferably contractually) that they will always execute a policy
that is potentially optimal. In this case, a coverage set can be computed as the
input to a negotiation [45,46] between the agents of which policy to execute.

Note that this strategy of computing a coverage set and then negotiating does
not trivially apply to individual reward settings. In the case of individual rewards,
a joint policy can be optimal for one agent, while it can be strictly dominated for
another. Generalising the concept of a coverage set to individual reward settings
is an open question that would merit investigation.

Furthermore, in an individual utility setting, a coverage set can also be a set
of possible best responses to the behaviours of the other agents. Of
course, one needs a different coverage set per combination of possible behaviours
for all the individual other agents. This may quickly become infeasible if the set of
possible policies of the other agents becomes large. However, if one can model the
opponents using a small set of possible behaviours this may be a viable approach.

Finally, there is a uniquely individual rewards setting coverage set, for the
special case that each objective corresponds to one agent, and the objectives of
other agents are seen as secondary objectives. In other words, this is the case where
agents are at least partially altruistic. This concept is called a Lorenz optimal set,
which we discuss in Section 5.2.4.

Multi-Objective Multi-Agent Decision Making 25

5.2.2 Convex Coverage Sets

A convex coverage set is the optimal solution set when it can be assumed that
the utility functions of all agents are linear. This is a salient case in the multi-
objective decision making literature, and for example applies in the case where
each objective corresponds to a resource that can be bought or sold on an open
market. Specifically the utility functions are assumed to be the inner product
between a vector of weights w and the value vector of the joint policy Vπ, i.e.,

ui(V
π) = wi ·Vπ. (9)

Please note that for this type of utility function, there is no difference between
SER and ESR, as E[w · ρ|π, µ0] = w · E[ρ|π, µ0] = w ·Vπ.

In the case of linear utility functions, the undominated set – the convex hull –
is defined as follows:

Definition 2 The convex hull (CH) is the subset of the set of all admissible joint
policies Π for which there exists a w for which the linearly scalarised value is
maximal:

CH(Π) = {π : π ∈ Π ∧ ∃w∀(π′ ∈ Π) w ·Vπ ≥ w ·Vπ′}. (10)

Please note that in this definition, we assume a team reward setting, such that
Vπ is a single vector.

One problem with the CH is that it can be undesirably large; and in the case of
stochastic policies, often infinitely large. However, in such cases a convex coverage
set (CCS) can often been defined that is much more compact5:

Definition 3 A set CCS(Π) is a convex coverage set (CCS) if it is a subset of
CH(Π) and if, for every w, it contains a policy whose linearly scalarised value is
maximal:

CCS(Π) ⊆ CH(Π) ∧ (∀w)(∃π)
(
π ∈ CCS(Π) ∧ ∀(π′ ∈ Π) w ·Vπ ≥ w ·Vπ′

)
.

(11)

While in the case of individual utility, the actual wi can differ per agent, the
CCS contains at least one optimal policy for every wi, and therefore forms a
suitable starting point for finding possible compromises based on the assumption
that all agents have a linear utility function. For example, a strategy could be to
try to estimate each wi and take the average weights vector across all agents to
select the default compromise. Of course, agents may also want to negotiate [45,
46] in order to get a better deal than such a default compromise.

5.2.3 Pareto Coverage Sets

For monotonically increasing but non-linear utility functions, the undominated
and coverage sets become significantly larger than for linear utility functions. To
be able to define a coverage set for this setting under SER we must first define the
concept of Pareto dominance:

5 For details on why this is so, please refer to [85].

26 Roxana Rădulescu et al.

Definition 4 A joint policy π Pareto-dominates another joint policy π′ when its
value is at least as high in all objectives and strictly higher in at least one objective:

Vπ �P Vπ′ ⇔ ∀i, V πi ≥ V π
′

i ∧ ∃i, V πi > V π
′

i . (12)

Looking at this definition, it is clear that no Pareto-dominated policy can ever
have a higher utility under a monotonically increasing utility function:

Vπ �P Vπ′ → ui(V
π) ≥ ui(Vπ′).

As long as being monotonically increasing is the only assumption we can make
about the utility function, this is in fact the only thing that can be said of the rel-
ative preferences across all possible utility functions. Therefore, we use the concept
of Pareto dominance to define the undominated set for monotonically increasing
utility functions, the Pareto front:

Definition 5 The Pareto front is the set of all joint policies that are not Pareto
dominated by any other joint policy in the set of all admissible joint policies Π:

PF (Π) = {π : π ∈ Π ∧ ¬∃(π′ ∈ Π),Vπ′ �P Vπ}. (13)

A Pareto coverage set (PCS) of minimal size can be constructed by selecting only
one policy of the policies with identical value vectors from the PF (Π):

Definition 6 A set PCS(Π) is a Pareto coverage set if it is a subset of PF (Π)
and if, for every policy π′ ∈ Π, it contains at least one policy that either dominates
π′ or has equal value to π′:

PCS(Π)⊆PF (Π) ∧ ∀(π′∈Π)(∃π)
(
π∈PCS(Π) ∧ (Vπ�P Vπ′ ∨Vπ=Vπ′)

)
.

(14)

Negotiating a good compromise from a set of alternatives with different values for
all objectives is a typical setting for negotiation [46]. Note that in multi-objective
settings, agents and/or users are often incapable of specifying their utilities numer-
ically [133]. However, recently there has been research in automated negotiation
focusing on preference uncertainty [117], i.e., uncertainty about the individual util-
ity functions, and eliciting preferences [9], making realistic negotiation with the
PCS of a multi-objective decision problem as input, possible.

Under ESR the situation becomes significantly more complex, i.e., in general,
the undominated set is defined as:

Definition 7 The undominated set of policies (U) under possibly non-linear mono-
tonically increasing u, under ESR, is the subset of the set of all admissible joint
policies Π for which there exists a u for which the scalarised value is maximal:

U(Π) = {π : π ∈ Π ∧ ∃(u∈U) ∀(π′∈Π) E[u(ρ)|π, µ0] ≥ E[u(ρ)|π′, µ0]}. (15)

However, this is very hard to determine without further information about u.
To our knowledge no research has yet been done into constructing (approximate)
undominated or coverage sets under ESR. In fact, the available research in single-
agent MORL typically assumes that u is known [84].

Multi-Objective Multi-Agent Decision Making 27

5.2.4 Lorenz Optimal Sets

A uniquely multi-agent coverage set is the Lorenz optimal set [77]. Underlying this
solution concept is the assumption that each objective corresponds to the interest
of each individual agent. Furthermore, it is assumed that the interests of the other
agents are an objective for every agent. In other words, the agents are at least in
part altruistic. Finally, it is assumed that “more equal” solutions - we will define
this exactly below – are better if sum of utilities does not increase. This final
assumption corresponds to a (rather minimal) concept of fairness.

The use-case for Lorenz optimal sets is: all agents agree that fair solutions are
better, hence a set of possibly fair solutions will be computed, after which the
agents will negotiate which solution from this set to select. It is thus vital that
the agents can rely on the selected solution being followed and that no individual
agent will enrich itself to the detriment of the group. This can either be enforced
contractually, or simply by the notion that the group of agents will have to rely
on each other in the future, and that agents that do not follow the convention will
no longer be allowed to participate in other decision problems in which the same
agents will need to cooperate.

The underlying idea of the Lorenz notion of fairness, is the so-called Robin-
Hood transfer: if in a vector objective i has a higher value, vi than objective j,
vj , then transferring part of the difference, i.e., setting the value of vi to vi − δ
and vj to vj + δ, for 0 < δ ≤ vi − vj , yields a fairer, and therefore better value
vector. More formally, this can be captured in the concept of Lorenz domination.
To test whether a vector Vπ Lorenz dominates a vector Vπ′ , both vectors are first
projected to their corresponding Lorenz vectors:

Definition 8 The Lorenz vector L(Vπ) of a vector Vπ is defined as:(
v(1), v(1) + v(2), ... ,

N∑
i=0

v(i)

)
,

where, v(1) ≤ v(2) ≤ ... ≤ v(N), correspond to the values in the vector Vπ sorted
in increasing order.

NB: this definition is under SER. To our knowledge no research has been done
with regards to Lorenz optimality under ESR.

Definition 9 A vector Vπ Lorenz dominates (�L) a vector Vπ′ when:

Vπ �L Vπ′ ⇔ L(Vπ) �P L(Vπ′),

i.e., when the Lorenz vector of Vπ Pareto dominates the Lorenz vector of Vπ′ .

Definition 10 The Lorenz Optimal Set is the set of all joint policies that are not
Lorenz dominated by any other joint policy in the set of all admissible joint policies
Π:

LOS(Π) = {π : π ∈ Π ∧ ¬∃(π′ ∈ Π),Vπ′ �L Vπ}. (16)

A Lorenz coverage set (LCS) of minimal size can be constructed by selecting only
one policy of the policies with identical value vectors from the LOS(Π), similar
to constructing a PCS from a PF.

28 Roxana Rădulescu et al.

5.3 Nash Equilibria

When multiple self-interested agents learn and act together in the same environ-
ment, it is generally not possible for all agents to receive the maximum possible
reward. Therefore, MAS are often designed to converge to a Nash equilibrium [105]
(NE). This notion of equilibrium was first introduced by Nash [72], and is one of
the most important concepts used to analyse MAS [127].

Consider a multi-agent system with n agents, where π = (π1, . . . , πi, . . . , πn)
is their joint policy, with πi representing the stochastic policy of agent i. We also
define π−i = (π1, . . . , πi−1, πi+1, . . . , πn) to be a joint policy without the policy of
agent i. We can thus write π = (πi, π−i).

Definition 11 A joint policy πNE leads to a Nash equilibrium if for each agent
i ∈ {1, ..., n} and for any alternative policy πi:

V
(πNEi ,πNE−i)

i ≥ V (πi,π
NE
−i)

i (17)

Whenever the above inequality holds true for all possible policies and for all agents
in a MAS, a Nash equilibrium exists. In other words, a Nash equilibrium occurs
whenever any individual agent cannot improve its own return by changing its
behaviour, assuming that all other agents in the MAS continue to behave in the
same way.

In cooperative MAS (i.e., the team reward scenario), coordinating agents’
actions to achieve the highest possible system welfare is already a difficult prob-
lem. While it is possible for multiple individual learners in a cooperative MAS to
converge to a point of equilibrium, whether they will converge to an optimal joint
policy (one which maximises the system welfare) depends on the specific learning
algorithm and reward scheme used.

5.3.1 Nash Equilibrium in Multi-Objective Multi-agent Settings

In multi-objective decision making, each agent is trying to optimise his return
along a set of objectives. Each agent needs to also make compromises between
competing objectives on the basis of his/her utility function. As a motivation for
why NE is an appropriate solution concept in MOMAS, we look at the team
reward individual utility (section 4.1.2) and individual reward individual
utility (section 4.2.1) scenarios. In both these cases, the utility derived by each
agent from the received reward is different, regardless if this reward is the same or
not for all the agents. These constitute the most difficult scenarios in our taxonomy.
Furthermore, one should also consider which optimisation criteria are best to use,
based on what each agent is looking to optimise. Depending on whether an agent
cares about average performance over a number of policy executions, or just the
performance of a single policy execution [84], we can define the concept of Nash
Equilibrium from the perspective of the two multi-objective optimisation criteria
defined in Section 2.3: ESR and SER.

To simplify our notation let us denote the discounted sum of rewards received

by agent i by: ρi =
∞∑
t=0

γtri,t. We can then re-write the expected value of a joint

policy π, given the distribution µ0 over initial states as: V π = E [ρi | π, µ0].

Multi-Objective Multi-Agent Decision Making 29

Definition 12 (Nash equilibrium for Expected Scalarised Returns) A joint
policy πNE leads to a Nash equilibrium under the Expected Scalarised Returns cri-
terion if for each agent i ∈ {1, ..., n} and for any alternative policy πi:

E
[
ui(ρi) | (πNEi , πNE−i), µ0

]
≥ E

[
ui(ρi) | (πi, πNE−i), µ0

]
(18)

i.e., πNE is a Nash equilibrium under ESR if no agent can increase the expected
utility of her returns by deviating unilaterally from πNE.

Definition 13 (Nash equilibrium for Scalarised Expected Returns) A joint
policy πNE leads to a Nash equilibrium under SER if for each agent i ∈ {1, ..., n}
and for any alternative policy πi:

ui
(
E
[
ρi | (πNEi , πNE−i), µ0

])
≥ ui

(
E
[
ρi | (πi, πNE−i), µ0

])
(19)

i.e. πNE is a Nash equilibrium under SER if no agent can increase the utility of
her expected returns by deviating unilaterally from πNE.

Under non-linear utility functions, it has been shown that the choice of optimi-
sation criterion can alter the set of Nash equilibria [98]. Furthermore, under SER,
even in a multi-objective normal form game, NE need not exist.

5.4 ε-approximate Nash Equilibria

An ε-approximate Nash equilibrium [76] occurs when an individual agent cannot
increase its return by more than an additive ε > 0 by deviating from its policy,
assuming that all other agents continue to behave in the same way. In other words,
an agent will not care to switch his policy, if the obtained gain is too small.

Definition 14 A joint policy πNE leads to a ε-Nash equilibrium if for each agent
i ∈ {1, ..., n} and for any alternative policy πi:

V
(πNEi ,πNE−i)

i ≥ V (πi,π
NE
−i)

i − ε (20)

ε-Nash equilibria can be envisioned as regions surrounding any Nash equilib-
rium. All the definitions for NE under SER and ESR can also be adapted for the
case of ε-Nash equilibria by subtracting ε from the right side of each inequality.

5.5 Correlated Equilibria

A correlated equilibrium (CE) is a game theoretic solution concept proposed by
Aumann [7] in order to capture correlation options available to the agents when
some form of communication can be established prior to the action selection phase.
Another way to think about this concept is to envision an external device sampling
from a given distribution and providing each agent with a private signal (e.g., a
recommended action) at each time-step. Given this private signal, each agent can
then independently make a decision on how to act next. For this work we will
consider that the signals take the form of action recommendations.

30 Roxana Rădulescu et al.

While previously discussed policies define state-based action probabilities in-
dependently for each agent, a correlated policy σ represents a probability distribu-
tion over the joint-action space A of all the agents in the system (i.e., Pr(a|s) ∈
[0, 1],∀a ∈ A). Thus, correlated policies introduce explicit dependencies between
the agents’ behaviours. Let us define πσ = (πσ1 , . . . , π

σ
n) as the joint policy of

the agents when following the recommendation provided according to a correlated
policy σ.

Definition 15 A correlated policy σCE is a correlated equilibrium if for each agent

i ∈ {1, ..., n} with its corresponding policy under σCE, πσ
CE

i , and for any alterna-
tive policy πi:

V
(πσ

CE

i ,πσ
CE

−i)

i ≥ V (πi,π
σCE

−i)

i (21)

Thus, a correlated equilibrium ensures that no player can gain additional return
by deviating from the suggestions, given that the other players follow them as well.

5.5.1 Correlated Equilibria in Multi-Objective Multi-agent Settings

Similarly to the Nash equilibria case, solution concepts such as correlated equilibria
can be used in scenarios in which each agent derives a different utility from the
received reward vector, i.e., the team reward individual utility (section 4.1.2)
and individual reward individual utility (section 4.2.1) settings. Furthermore,
we can also define correlated equilibria from the perspective of the two possible
optimisation criteria: ESR and SER, when considering multi-objective multi-agent
decision making problems. We will again denote the value of a joint policy π as

V π = E [ρi | π, µ0], where ρi =
∞∑
t=0

γtri,t.

Definition 16 (Correlated equilibrium for Expected Scalarised Returns)
A correlated policy σCE is a correlated equilibrium under ESR if for any agent

i ∈ {1, ..., n} with its corresponding policy under σCE, πσ
CE

i , and for any alterna-
tive policy πi:

E
[
ui(ρi) | (πσ

CE

i , πσ
CE

−i), µ0

]
≥ E

[
ui(ρi) | (πi, πσ

CE

−i), µ0

]
(22)

i.e. σCE is a correlated equilibrium under ESR if no agent can increase the ex-
pected utility of her returns by deviating unilaterally from the action recommen-
dations in σCE.

Definition 17 (Correlated equilibrium for Scalarised Expected Returns)
A correlated policy σCE is a correlated equilibrium under SER if for any agent

i ∈ {1, ..., n} with its corresponding policy under σCE, πσ
CE

i , and for any alterna-
tive policy πi:

ui
(
E
[
ρi | (πσ

CE

i , πσ
CE

−i), µ0

])
≥ ui

(
E
[
ρi | (πi, πσ

CE

−i), µ0

])
(23)

i.e. σCE is a correlated equilibrium under SER if no agent can increase the utility
of her expected returns by deviating unilaterally from the given action recommen-
dations in σCE. 6

6 When considering a CE-based approach, an agent is able to calculate his expected return
given one correlation signal, but also an expected return given all the possible signals. This

Multi-Objective Multi-Agent Decision Making 31

It has also been shown that the set of correlated equilibria will be altered,
depending on the optimisation criteria used [98]. Furthermore, under SER, with
non-linear utility functions, in multi-objective normal form games, CE need not
exist when taking the expectation over all the possible correlation signals.

5.6 Coalition Formation and Stability Concepts

A different perspective on multi-agent decisions is that taken by cooperative game
theory [19]. Cooperative game theory studies settings where binding agreements
among agents are possible. A central problem is therefore that of coalition forma-
tion, i.e., finding (sub)groups of agents that are willing to make such a binding
agreement with each other. In the models in cooperative game theory, the utility
for each agent is directly derived from the coalition the agents end up in, however,
one can imagine that under the hood, the coalition works together cooperatively
(based on their binding agreement) in a sequential decision problem that results in
this utility. We further note, that the word cooperative does not imply team util-
ity; typically, the agents will have their own utility functions. Hence, the solution
concepts from cooperative game theory apply to the individual utility settings.

To illustrate the solution concepts for multi-objective cooperative game theory,
we use the multi-criteria coalition formation game (MC2FG) [43,113,114]. Such
a game consists of a set of agents, N , each with their own utility function ui(q),
and a quality/reward function q(S) that maps each possible subset, i.e., coalition,
of the agents S ∈ N to a value or quality vector, that each agent in that coalition
will receive. That is, we are in an individual utility setting.

Definition 18 A multi-criteria coalition formation game (MC2FG) is a triple
(N, q,U) where N a finite set of agents, q : 2N → Rd is a vector-valued reward
function that represents the quality q(S) of a subset, i.e. coalition, of agents S ⊆ N ,
and ui ∈ U are the utility functions for each agent i ∈ N .

The MC2FG is a useful model to study for multi-objective multi-agent systems.
Specifically, if in a multi-agent system with multiple objectives, the agents need to
form coalitions to cooperate to gain a value vector, the most straightforward case
is a MC2FG, i.e., given the coalition the value vector can exactly be predicted
independently of the other coalitions, but agents can have different preferences
between possible value vectors. Therefore, MC2FGs form a minimal model to
study the feasibility of contract negotiations between agents in multi-objective
multi-agent decision making.

The goal in an MC2FG is to find a partition, ψ, of agents into coalitions
that are stable. That is, the coalitions will not break apart. For this notion of
stability, there are multiple possible versions, from strong to weak: core stability,
Nash stability, and individual stability.

We denote the coalition (subset of agents) which agent i is in according to ψ
as ψ(i). A partition ψ is individually rational if no agent strictly prefers staying
alone to their own coalitions, i.e. ∀i : ui(q(ψ(i)) ≥ ui(q({i})).

allows one to define two variants for CE under SER: the single-signal CE (when agents have
multiple interactions under the same given signal) and multi-signal CE (when agents receive
a new signal after every interaction) [98]. For this work we define the more general case of
multi-signal CE.

32 Roxana Rădulescu et al.

Definition 19 A coalition S ⊆ N is said to block a partition ψ if every agent
strictly prefers S to ψ(i), i.e., ∀(i ∈ S) : ui(q(ψ(i)) < ui(q(S)).

Definition 20 A partition ψ of N is core stable (CR) if no (non-empty) coalition
S ⊆ N blocks ψ.

Beside CR, there are two key stability concepts that represent immunity to
deviations by individual players. An agent i, wants to deviate from ψ(i) to another
coalition in ψ, S, if it prefers S ∪ {i} to ψ(i), i.e., ui(q(ψ(i)) < ui(q(S ∪ {i})).
A player j ∈ S would accept such a deviation if it prefers S ∪ {i} to S, i.e.,
uj(q(S) ≤ uj(q(S ∪ {i})).

Definition 21 A deviation of i from ψ(i) to S is an NS-deviation if i wants to
deviate from ψ(i) to S.

Definition 22 A deviation of i from ψ(i) to S is an IS-deviation if it is an NS-
deviation and all players in S accept it.

Definition 23 A partition ψ is Nash stable (NS) if there are no NS-deviations
for any agent i, from its coalition ψ(i) to any other coalition S ∈ ψ or to ∅.

Definition 24 A partition ψ is Individually stable (IS) if there are no IS-deviations
for any agent i, from its coalition ψ(i) to any other coalition S ∈ ψ or to ∅.

Every single-criterion coalition formation game has at least one partition that
is core stable and individually stable [43]. However, this is not necessarily so in the
multi-objective case. This is because in a single-objective coalition formation game,
the utility of a coalition is the same for each agent, i.e., the scalar quality/reward
of the coalition. However, in the multi-objective case, all agents that are in a
coalition S receive the same reward vector q(S), but they may value these vectors
differently. In fact, Igarashi and Roijers [43] show that MC2FGs do not necessarily
have core, Nash, nor individually stable partitions by counter-example resulting
in the following Theorem:

Theorem 1 For any positive integer n and for any 0 < ε < 1 there exists an
MC2FG (N,q, {wi : i ∈ N}), where wi is the weights vector for the linear utility
function of agent i, which admits neither a core nor individually stable partition,
where the number of players |N | = n, the number of criteria m = 2, and |wi,k −
wi,k| ≤ ε for any i, j ∈ N and either objective (k).

So, this theorem implies that even when the number of objectives is smaller
than the number of agents, and the difference between the utility functions (even
if they are linear) is arbitrarily small, stable partitions do not need to exist. This
has important consequences for multi-objective multi-agent systems in general, as
MC2FGs are such a minimal model of finding cooperative subsets of agents that
could contractually agree on a value vector. Because no stable solutions need to
exist, such contract negotiations could go on forever (agents repeatedly switching
between coalitions before signing the contract), if all agents just aim to optimise
their individual utilities. We believe this means that a thorough investigation of
(the compatibility of) negotiation techniques for various multi-objective multi-
agent decision problems on the basis of coverage sets, under different optimali-
sation criteria (i.e., ESR versus SER) is required. Furthermore, the fact that the

Multi-Objective Multi-Agent Decision Making 33

stability of coalitions cannot be guaranteed could have a strong impact on future
interactive approaches7 as well. While the prospects of such interactive approaches
seem good, as [43] have shown that individually stable coalitions can often be found
interactively under linear utility functions in MC2FGs, it is not clear what will
happen for non-linear utility functions under SER or ESR, or in learning settings
where the estimated value vectors of different joint policies of changing coalitions,
may change.

5.7 Social Welfare and Mechanism Design

In this section, we have so far taken the position of the individual agents. How-
ever, we can also take a system perspective, i.e., we can look at what the socially
desirable outcomes of a multi-agent decision problem would be. In Section 4.1.3
and 4.2.2, we have looked at the execution phase of such settings and defined the
social welfare function, i.e., a function that should be maximised if we want to
find socially desirable outcomes.

In game theory, the field of mechanism design takes the system’s perspective
for multi-agent decision problems: taking an original decision problem where the
agents have individual reward functions that are unknown to the other agents
and the “owner” of the game, as well as a social welfare function as input, the
aim is to design a system of additional payments that would a) force the agents
to be truthful about their individual utilities, and b) leads to solutions that are
(approximately) optimal under the social welfare function.

In single-objective multi-agent decision problems, the individual utilities of the
agents are simply the individual (expected) (cumulative) rewards that the agents
receive. The agents can be assumed to know these rewards, and act accordingly.
This is for example the case in public tenders, where different companies know their
own costs and profit margins of their possible proposals, but do not broadcast this
information to others. In multi-objective settings, the situation is more complex, as
the individually received rewards determine the individual utilities via individual
private utility functions. These utility functions can have different properties. In
general, it might even be very hard, or even impossible to articulate these functions,
so being “truthful” about their utilities might be infeasible from the get-go.

Nevertheless, it is possible to design mechanisms for some multi-objective
multi-agent problems if the individual utilities can be articulated. First, we observe
that if the utility functions are linear, the inner product with weights distributes
over all expectations. Hence, it is possible to even design mechanisms that are
agnostic about the weights, compute a convex coverage set (see Section 5.2.2) of
possibly socially desirable outcomes, and choose the weights a posteriori. This
enables the designer/owner of the decision problem to make an informed decision
about which weights to use. For example, in a public tender for traffic maintenance
by Scharpff et al. [100,89], the objectives of costs and traffic hindrance should both
be minimised. Because of mechanism design, all agents need to be truthful; what-
ever weights (and resulting penalties) are put on traffic hindrance, it is in the
best interest of the agents to be truthful about their costs, making it possible for

7 Interactive approaches intertwine preference elicitation and learning about the decision
problem [92,91].

34 Roxana Rădulescu et al.

the owner of the game to assume that given the mechanism, all agents will be
fully cooperative, solve the problem as an MOMMDP, and choose the weights a
posteriori.

For specific cases of non-linear utility functions, it is also possible to devise
mechanisms. For example, Grandoni et al. [35] assume individual utility functions
with a primary objective that should be maximised, and other objectives that need
to achieve at least a threshold value. The utility is the value of the first objective
in the case that all thresholds are met, but negative infinity if the thresholds are
not met. They show that for such cases, effective mechanisms can be designed,
and solutions can be found within a reasonable amount of time.

An interesting and different approach to social welfare is taken by Mouaddib et
al. [71], who cast a decentralised sequential multi-agent problem with individual
(scalar) reward functions as a multi-objective problem. Specifically, besides its
main objective an agent will model its positive impact on the group as well as the
nuisance it causes to other group members as separate objectives. Even though
this work provides no strong guarantees, the authors show empirically that these
additional objectives in combination with a social welfare function can lead to
good emergent group behaviour in very hard – decentralised partially observable
multi-agent – decision problems.

5.8 Other Solution Concepts

The concepts discussed so far do not form in any way an exhaustive list for what
constitutes a solution in a MOMAS. We briefly present below a few other possible
solution concepts that have been discussed in the literature.

An early discussion on how to extend equilibria concepts from single-objective
games to multi-objective settings can be found in [103], where the concepts of
weak and strong equilibria are proposed as extensions of NE. These concepts are
defined using vector domination and thus are called Pareto-Nash Equilibria [13,
122,56]. Continuing the game theoretic perspective, [48] extends the concept of
evolutionary stability for multi-objective games.

Cyclic equilibria [29,68,131] have been proposed as a solution concept for games
where no stationary equilibrium exists. A cyclic equilibrium is a non-stationary
joint policy where agents have no incentive to deviate unilaterally [131]. Cyclic
equilibria cycle repeatedly through a set of stationary policies. Similar to ε-NE, an
ε-correlated cyclic equilibrium is defined as a situation where no agent can improve
its value by more than ε at any stage by deviating unilaterally [131].

6 Algorithmic Approaches and Applications

In the section, we survey related work on algorithmic approaches to MOMAS,
as well as applications of multi-objective multi-agent decision making. The works
we survey are organised into three broad categories: those which aim to derive
coverage sets are discussed in Section 6.1, those which aim to apply stability and
equilibria concepts are discussed in Section 6.2 and finally methods which employ
mechanism design are discussed in Section 6.3. Within these categories, the works

Multi-Objective Multi-Agent Decision Making 35

surveyed are further classified according to our taxonomy on the basis of the reward
and utility functions used.

6.1 Coverage Sets

6.1.1 Team Reward - Team Utility (TRTU)

Multi-objective coordination graphs (MOCoGs)8 are one of the most studied mod-
els for cooperative multi-objective multi-agent systems, and in particular for team
reward team utility. One reason for this is that it is the simplest model to express
and exploit loose couplings, i.e., the fact that in multi-agent systems the rewards
can often be factorised into a sum over small components, i.e., local reward func-
tions, that depend on small (but possibly overlapping) subsets of agents. However,
finding suitable joint actions in a MOCoG is also key to finding, e.g., coverage sets
for MOMMDPs (as is also the case for single-objective CoGs and MMDPs [51,
52]).

In MOCoGs, a lot of research focuses on finding (approximate) Pareto coverage
sets (PCSs), using various algorithmic approaches. These approaches often extend
single-objective methods by adapting the inner workings of such methods to be
able to handle sets of value vectors rather than single scalar values. Examples of
such methods are multi-objective bucket elimination (MOBE) [94,93], also known
as multi-objective variable elimination (MOVE, which is the more common in the
planning and reinforcement learning communities), which solves a series of local
sub-problems to eliminate all agents from a MOCoG in sequence, by finding local
coverage sets as best responses to neighbouring agents. Other such methods include
multi-objective Russian doll search [95], multi-objective (AND/OR) branch-and-
bound tree search [65,66,96] using mini-bucket heurtistics [94,65], Pareto local
search [44], and multi-objective max-sum [22]. Many of these papers note that
PCSs can grow very large very quickly, making finding exact PCSs infeasible.
Therefore computing bounded approximations [66] can be necessary.

On the other hand, Roijers et al. [88,89,90] compare the computational and
memory complexity of computing convex and Pareto coverage sets (CCSs and
PCSs). They observe that the size of PCSs typically grows much faster with the
number of agents in a MOCoG than the size of CCSs, and that often CCSs suffice,
e.g., in the case that mixture policies are allowed (Section 5.1). It can therefore
be highly preferable to focus on finding CCSs, especially in problems with many
agents. They propose several methods to do so with different computation-memory
trade-offs. Specifically for finding CCSs, they propose and compare inner loop
methods to outer loop methods, i.e., methods that construct CCSs by iteratively
solving scalarised instances of the multi-objective decision problem. Outer loop
methods are more memory-efficient, and significantly faster for smaller numbers
of objectives, while inner loop methods are faster for many objectives. Finally,
they note that ε-approximate CCS can efficiently be computed using outer loop

8 Because the MOCoG model is a flexible multi-objective graphical model that can be used
for many types of problems, and has been used by many research communities, the MOCoG
is known under many different names. These include: multi-objective weighted constraint sat-
isfaction problems (MO-WCSPs) [94] and Multi-objective Constraint Optimisation Problems
(MOCOPs) [65,67].

36 Roxana Rădulescu et al.

methods. Anytime approximations to CCSs can also be effectively constructed
using an outer loop method that employs variational (inference) methods [87].

Wilson et al. [125] consider methods to compute coverage sets for MOCoGs
when more information about the possible utility function(s) is available. They
assume that along with the standard notion of the shape of the utility function9,
they are provided with a set of preferences that users expressed a priori. They
integrate these preferences into AND/OR branch-and-bound, and show that this
can often lead to much more efficient computation than would be required to
compute a PCS. To achieve this, they pose additional constraints on the utility
function, that are only fulfilled by linear utility functions. Therefore, doing the
same for arbitrarily shaped utility functions is still an open problem.

Multi-objective multi-agent MDPs (MOMMDPs) – in the literature often re-
ferred to as cooperative multi-objective stochastic games (cooperative MOSGs)
– are another frequently used model for cooperative multi-objective multi-agent
decision making problems. Some recent works have sought to derive coverage sets
in MOMMDPs using reinforcement learning or evolutionary algorithms (e.g. [129,
128,63,60,59,58]). As in single-objective MMDPs, learning joint policies which co-
ordinate agents’ actions to get the desired outcome(s) in MOMMDPs is a difficult
problem. When individual agents learn using the system reward and the same util-
ity function (i.e TRTU), it is difficult for any one agent to evaluate how its actions
affected the system utility, due to the effect of the other agents in the system.
This is referred to as the credit assignment problem in the single-objective MAS
literature. Reward shaping is one solution which has been proposed to address
this problem, where the reward which is usually received from the environment
is augmented with an additional shaping term, with the goal of providing a more
informative reward signal to the agents in a MAS. Specific forms of reward shaping
which have been applied to cooperative MOMAS include difference rewards (D)
[126] and potential-based reward shaping (PBRS) [73]10.

Yliniemi [129] and Yliniemi and Tumer [128] present the first work that con-
siders the use of reward shaping in a cooperative MOMARL setting. Their work
compares the effectiveness of the difference reward with that of two typical MARL
reward structures: local rewards (L) and global rewards (G). Experimental work
in a multi-objective congestion problem, and a multi-objective robot coordination
problem confirms that D can improve MOMARL performance when compared to
L or G, both in terms of learning speed and the quality of the set of non-dominated
solutions found. [128] also demonstrates that D can be used effectively with multi-
objective evolutionary algorithms, in a series of experiments where it is applied to
shape the fitness function of the Elitist Non-dominated Sorting Genetic Algorithm-
II (NSGA-II). [64] evaluate the effect of D in an electricity generator scheduling
problem. Mannion et al. [60] provide a theoretical analysis of PBRS in single-
and multi-agent MORL settings, demonstrating that the Pareto relation between
(joint) policies is preserved when PBRS is used. Mannion et al. [62] also provide

9 Or, in their original paper, the equivalent concept of domination.
10 Although individualised reward shaping implies that each agent receives a different reward,

we have classified these works under the TRTU setting as all agents use the same utility
function and the individual shaped rewards are still aligned with the global (system) rewards.
Reward shaping might also be useful in combination some of the other settings in our taxonomy
and solution concepts discussed in Section 5, although only the TRTU setting with coverage
sets has been explored to date.

Multi-Objective Multi-Agent Decision Making 37

a theoretical analysis of D in MOMMDPs, demonstrating that the relative values
of actions (and therefore the Pareto relation between actions) is preserved when
D is applied in MOMMDPs. A comprehensive analysis of the effects of both D
and PBRS when generating coverage sets via learning in cooperative MOMARL
settings is presented in [59] and [58].

On the application side, Ahmad et al. [2] consider the problem of multi-core
processing, or, more specifically, energy aware task allocation for optimising energy
use versus performance. They employ a cooperative game theory perspective and
transform the problem into a max-max-min one to generate solutions for differ-
ent energy-time trade-offs. Bone and Dragićević [12] are interested in the setting
of natural resource management, where each agent represents a forest harvesting
company. Agents need to learn how to harvest wood in order to maximise eco-
nomic profit and minimise ecological impact. They use a step utility function to
transform the problem into a single-objective one and learn an optimal policy as
independent reinforcement learners. Babbar-Sebens and Mukhopadhyay [10] con-
sider a water resource management system modelled as a multi-objective game,
where the players use a simple reinforcement learning or genetic algorithm ap-
proach in order to find a set of solutions corresponding to various linear utility
functions. Focusing on traffic optimisation, Houli et al. [41] develop the multi-RL
algorithm, a multi-agent reinforcement learning approach which selects an optimi-
sation objective depending on the real-time traffic conditions.

6.1.2 Team Reward - Individual Utility (TRIU)

Aoki et al. [6] model a multi-stage flow systems as a MAS, where each agent (i.e.,
service centre) represents a different objective. They use a distributed reinforce-
ment learning framework and propose a bi-directional decision making mechanism
to address the multi-objective nature of the problem.

6.1.3 Individual Reward - Individual Utility (IRIU)

Investigating multi-objective games, Avigad et al. [8] propose an evolutionary
search algorithm for finding the Pareto set of strategies for a player, given each pos-
sible strategy of an opponent. Also looking at competitive multi-objective games,
Eisenstadt et al. [26] proposes a co-evolutionary algorithm for finding solutions
simultaneously for both players, under worst-case assumptions, given that the
oponent’s preferences are unknown.

Brys et al. [16] apply MOMARL to a traffic signal control problem, where
each intersection in a 2 × 2 grid is controlled by an individual agent. Their work
demonstrats that rewarding agents with a linear scalarised combination of delay
and throughput can improve delay times when compared to agents rewarded using
delay alone. However, their approach uses local rewards (i.e. each agent is rewarded
based on conditions at its assigned intersection only, and hence this work is classi-
fied as IRIU), and does not make any attempt to explicitly encourage coordination
between the agents.

Dusparic and Cahill [25] propose the Distributed W-Learning algorithm, an
RL-based approach for multi-policy optimisation in collaborative multi-agent sys-
tems, such as urban traffic. Each agent represents a traffic light at an intersection
and implements a set of local and remote policies (i.e., involving its neighbours).

38 Roxana Rădulescu et al.

Even though the agents here have possibly conflicting goals and receive an indi-
vidual reward, at every time-step they exchange information with their neighbours
regarding their current states and rewards, allowing them to develop, if necessary,
a cooperative behaviour.

Van Moffaert et al. [119] apply MORL to a multi-objective multi-agent smart
camera problem. They develop an adaptive weight algorithm (AWA) which is used
to choose the weighting between the two system objectives when linear scalarisa-
tion is applied to individual reward vectors for each camera agent in the system.
The AWA algorithm is found to improve learning speed, obtaining solutions with
a better spread in the objective space, when compared with other weight selection
methods that were tested.

6.2 Equilibria and Stability methods

6.2.1 Team Reward - Individual Utility (TRIU)

Lee [54] takes a game theory perspective on the reservoir watershed management
domain and develops for this purpose a multi-objective game theory model. The
goal in this case is to balance between maximising economic gain and minimising
environmental impact. Each player represents a different objective and multiple
bargaining rounds are used in order to arrive at a Nash equilibrium.

6.2.2 Individual Reward - Individual Utility (IRIU)

Qu et al. [79] examine multi-objective non-zero sum game, where each agent has
a set of weights for each objectives (i.e., linear utility function where the exact
weights are not known). They propose an approach for finding a robust weighted
Nash Equilibrium.

Taylor et al. [115] propose Parallel Transfer Learning (PTL) as a mechanism
to accelerate learning, by sharing experience among agents. PTL is tested on a
multi-objective multi-agent smart grid problem, and is found to improve learning
speed and final performance when compared to agents learning without PTL.

Madani and Lund [57] consider a Monte Carlo Game Theory approach for
stochastic multi-criteria decision making settings, such as water resource manage-
ment. They propose the use of Monte Carlo simulations to map the problem to
deterministic settings transformed then into strategic games, solved using non-
cooperative stability methods.

6.3 Social Welfare and Mechanism Design

On the line of reward engineering in multi-objective congestion problems, Ramos
et al. [80] consider the route choice traffic problem and develop a reward signal
based on the marginal cost tolling mechanism. This allows one to reach a system
optimum performance, even when agents have heterogeneous preferences with re-
spect to travelling time and monetary costs. To model the agent preferences they

Multi-Objective Multi-Agent Decision Making 39

use a linear utility function that attributes different weights to the considered ob-
jectives. They show that if all the agents use their proposed learning approach,
i.e., Generalised Toll-based Q-learning, they will converge to a system optimum.

Mouaddib et al. [71] develop a multi-objective multi-agent planning framework
in the form of a regret-based algorithm to improve the resulting social behaviour
for the considered vector-valued Dec-MDP. This framework assumes a true ob-
jective – the regular Dec-MDP objective – and then adds two extra objectives,
i.e., the positive and negative impact an agent has on the team. This leads to so-
cial behaviour, and therefore better functioning teams. Such addition of artificial
objectives to attain better policies can be seen as a form of multi-objectivisation
[15]. Multi-objectivisation to improve team behaviour through social welfare is an
interesting research direction that we believe needs to be further explored.

Grandoni et al. [35] assume individual utility functions with a primary objec-
tive that should be maximised, and other objectives that need to achieve at least
a threshold value. This type of utility function is similar to constrained MDPs [5]
in the single-agent literature, and can be seen as a special case of multi-objective
MDPs, i.e., one where the utility has this shape. They show that truthful mecha-
nisms exist that allow finding solutions in reasonable time.

Pla et al. [78] study auctions in which agents make bids that lead to a value-
vector in different objectives. For such auctions the social welfare must be opti-
mised via a mechanism that determines the payments w.r.t. the bid. These pay-
ments, together with the costs of the bids, constitute the individual utilities. They
show that the social welfare function must obey three properties for a mechanism
to be possible: it must be real-valued and monotonically increasing in all objectives
– as to utility functions for any multi-objective decision problem – and it must
be bijective, i.e., given the bid attributes values and the result of an evaluation
function, the cost corresponding to a bid can take only one possible value. This is
necessary to be able to calculate the payments in a mechanism.

Mechanisms for multi-objective decision problems are used in a variety of appli-
cations, for example: Buettner and Landes [17] apply mechanism design in order to
match employers looking for temporary workers, to workers looking for contracts.
Because these contracts have several aspects that may lead to utility, as hourly
salary, benefits, sick pay or overtime premiums, this is a multi-objective setting;
Fard et al. [27] use mechanism design in for cloud work-flow management, where
the agents have costs and completion time as objectives when trying to schedule
tasks; and Kruse et al. [53] study multi-objective airline service procurement using
mechanisms.

7 Conclusions and New Horizons

In this paper, we analysed multi-objective multi-agent decision problems from a
utility-based perspective. Starting from the execution phase and working back-
wards, we derived when different solution concepts apply. We surveyed the liter-
ature on the applicable solution concepts, methods that compute such solutions,
and practical applications. The taxonomy of problem settings and solution meth-
ods we propose structures this relatively new line of research from the perspective
of user utility, and it is therefore our hope that this survey helps to place existing
research papers in the larger multi-objective multi-agent decision problem context,

40 Roxana Rădulescu et al.

and informs and helps to inspire further research. To this end, in this last section
we discuss what we consider to be the key new horizons and open problems in the
field of multi-objective multi-agent decision making.

7.1 Optimisation Criteria and Solution Concepts

In future work, it would be worthwhile to further explore the link between multi-
objective optimisation criteria (ESR vs. SER) and solution concepts for MOMAS
with non-linear utility functions. The body of literature on theory and experi-
mental results is limited up until this point with respect to this topic, apart from
an initial analysis conducted by Rădulescu et al. [98] for multi-objective normal-
form games under SER which proves by example that Nash equilibria need not
exist, and that correlated equilibria can exist under certain conditions. This line
of research should be extended to sequential settings (e.g., MOSGs), as well as
to consider the other solution concepts discussed in Section 5. It is also possible
that not all agents in a MOMAS would choose the same optimisation criterion; it
is currently not known how mixing optimisation criteria would affect the collec-
tive behaviour of MOMAS in practice. Developing stronger theoretical guarantees,
as well as a better understanding of these issues using comprehensive empirical
studies represents an important research direction one can pursue.

7.2 ESR Planning and Reinforcement Learning and SER Game Theory

For multi-objective multi-agent decision problems, there is a large discrepancy
between the game theory literature and the planning and reinforcement learning
literature. The former focuses mostly on ESR settings, while the latter focuses
almost exclusively on SER settings. Perhaps this is an artefact of the single-shot
nature of most game-theoretic models and the sequential nature of planning and
reinforcement learning models. However, as we recently noted [98], both optimality
criteria are well-motivated, as they apply to different real-world decision problem
settings, and lead to vastly different theoretical results as well as practical solutions
in single-shot settings with non-linear utility functions. The same argument can be
made for sequential decision making settings. Therefore, we believe that analysing
sequential decision problems under ESR, and game-theoretic (single-shot) models
under SER, is both highly important and almost entirely unstudied.

7.3 Opponent Modelling and Modelling Opponent Utility

In single-objective reinforcement learning, an agent often aims to learn a model
of the other agents’ behaviours and uses this model when selecting or learning
best responses. In multi-objective multi-agent settings, a good and possibly even
sufficient predictor for this behaviour would be the utility function of the other
agents. Therefore, explicitly estimating the utility functions of the other agents in
a MOMAS is likely to be important in future research. In team-utility settings,
i.e., when there is only one true utility function, Zintgraf et al. [133] show that
this utility function can be estimated effectively by posing preference queries, and

Multi-Objective Multi-Agent Decision Making 41

using monotonicity information about the utility function. However, this assumes
that there is a single user to pose such queries to, who “owns” the utility function.
In multi-agent settings, there may be multiple utility functions, and users, that
have conflicting interests. Furthermore, if they can benefit from not revealing their
true preferences, they might lie. This motivates two important open questions for
future research: can we design mechanisms that force agents/users to be truthful
about revealing their preferences over value/return vectors? And if not, can we es-
timate their utility functions solely from the agent’s behaviour in a multi-objective
decision problem? Albrecht and Stone recently published a comprehensive survey
on opponent modelling for single-objective MAS [3]; many of the methods they
surveyed could plausibly be adapted or extended to model other agents’ intentions
and utilities in MOMAS.

7.4 Closing the Loop

From our analysis of prior works on MOMAS in Section 6, it is apparent that
the field to date has been quite fractured; some settings from our taxonomy (e.g.
TRTU) have received much more attention than others, and a limited number of
authors are currently active in the field. Consequently, there is not yet a standard-
ised approach to identifying and completing all the steps which are necessary for
a successful application of multi-objective multi-agent decision making.

We propose the following sequence of steps: selecting an appropriate decision
making model from among those listed in Section 3, identifying which setting
from our taxonomy the decision making problem fits into (Section 4), defining
the environment including the state and action spaces and reward and utility
schemes, selecting an appropriate solution concept (Section 5), completing the
planning/learning and/or negotiation phase, executing the policies found and fi-
nally evaluating the outcome by measuring the utilities achieved. We hope that
by following these main steps, it will become easier for other researchers to apply
multi-objective multi-agent decision making theory in their work.

7.5 Interactive approaches

In most of the survey we have assumed that there is a separate learning or plan-
ning phase first, then a policy selection and/or negotiation phase, and finally an
execution phase. However, it is also possible to elicit preferences from users while
planning or learning, leading to a combined planning/learning and preference-
elicitation/negotiation phase. In single-agent multi-objective systems this has been
studied in [92,91], and in cooperative game theory by [43]. Furthermore, the in-
corporation of preference information during planning in [125] can also be seen
in this line. This previous research however focuses either on eliciting preferences
with respect to a team utility function [92,91,125] or individual utilities in the
context of checking whether deviations from current coalitions are desired [43].
Parallel negotiation and learning or planning is, to our knowledge, still unexplored
territory.

42 Roxana Rădulescu et al.

7.6 Deep Multi-Objective Multi-Agent Decision Making

Most of research discussed in this survey so far considers domains with discrete
states and actions. For challenging real-world applications of MOMAS, it will
be necessary to develop methods which consider continuous or high-dimensional
state and action spaces. Considerable progress has been made on developing single-
objective Deep RL methods for single-agent decision making. In the last couple of
years, interest in Deep MORL has intensified, although primarily in single-agent
settings (see e.g. [1,33,47,70,74,82,106,111,112]). Very recently, single-objective
multi-agent RL has received considerable attention as well [30,32,39,55,97,81,109,
130]. An important next step is therefore to extend existing Deep RL methods for
multi-objective multi-agent decision making settings.

7.7 Applications and Broader Applicability

Now that we have identified the different settings and solution concepts which are
relevant to MOMAS, significant opportunities exist to revisit problems that were
initially modelled as single-objective multi-agent decision problems using a multi-
objective perspective. This could provide a richer set of potential solutions for
cooperative MAS using the concept of coverage sets (Section 6.1), or potentially
improve performance by considering additional synthetic objectives of sub-tasks
explicitly (a process known as multi-objectivisation [15,14]. The possibility also
exists to use MORL techniques to develop agents which may be tuned to adopt
a range of different behaviours during deployment in MAS (e.g. cooperative vs.
competitive), as recently demonstrated by Källström and Heintz [47].

References

1. Abels, A., Roijers, D.M., Lenaerts, T., Nowé, A., Steckelmacher, D.: Dynamic weights
in multi-objective deep reinforcement learning. In: ICML 2019: Proceedings of the 36th
International Conference on Machine Learning (2019). To appear.

2. Ahmad, I., Ranka, S., Khan, S.U.: Using game theory for scheduling tasks on multi-
core processors for simultaneous optimization of performance and energy. In: 2008 IEEE
International Symposium on Parallel and Distributed Processing, pp. 1–6. IEEE (2008)

3. Albrecht, S.V., Stone, P.: Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence 258, 66 – 95 (2018)

4. Alonso, E., D’inverno, M., Kudenko, D., Luck, M., Noble, J.: Learning in multi-agent
systems. The Knowledge Engineering Review 16(3), 277–284 (2001)

5. Altman, E.: Constrained Markov decision processes, vol. 7. CRC Press (1999)
6. Aoki, K., Kimura, H., Kobayashi, S.: Distributed reinforcement learning using bi-

directional decision making for multi-criteria control of multi-stage flow systems. In:
The 8th Conference on Intelligent Autonomous Systems, pp. 281–290 (2004)

7. Aumann, R.J.: Subjectivity and correlation in randomized strategies. Journal of mathe-
matical Economics 1(1), 67–96 (1974)

8. Avigad, G., Eisenstadt, E., Cohen, M.W.: Optimal strategies for multi objective games
and their search by evolutionary multi objective optimization. In: 2011 IEEE Conference
on Computational Intelligence and Games (CIG’11), pp. 166–173. IEEE (2011)

9. Baarslag, T., Kaisers, M.: The value of information in automated negotiation: A de-
cision model for eliciting user preferences. In: Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, pp. 391–400. International Foundation
for Autonomous Agents and Multiagent Systems (2017)

Multi-Objective Multi-Agent Decision Making 43

10. Babbar-Sebens, M., Mukhopadhyay, S.: Reinforcement learning for human-machine col-
laborative optimization: Application in ground water monitoring. In: 2009 IEEE Inter-
national Conference on Systems, Man and Cybernetics, pp. 3563–3568. IEEE (2009)

11. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, NJ, USA
(1957)

12. Bone, C., Dragićević, S.: Gis and intelligent agents for multiobjective natural resource
allocation: A reinforcement learning approach. Transactions in GIS 13(3), 253–272 (2009)

13. Borm, P., Tijs, S., Van Den Aarssen, J.: Pareto equilibria in multiobjective games. Meth-
ods of Operations Research 60, 302–312 (1988)

14. Brys, T., Harutyunyan, A., Vrancx, P., Now, A., Taylor, M.E.: Multi-objectivization and
ensembles of shapings in reinforcement learning. Neurocomputing 263, 48 – 59 (2017).
Multiobjective Reinforcement Learning: Theory and Applications

15. Brys, T., Harutyunyan, A., Vrancx, P., Taylor, M.E., Kudenko, D., Nowé, A.: Multi-
objectivization of reinforcement learning problems by reward shaping. In: 2014 interna-
tional joint conference on neural networks (IJCNN), pp. 2315–2322. IEEE (2014)

16. Brys, T., Pham, T.T., Taylor, M.E.: Distributed learning and multi-objectivity in traffic
light control. Connection Science 26(1), 65–83 (2014). DOI 10.1080/09540091.2014.
885282

17. Buettner, R., Landes, J.: Web service-based applications for electronic labor markets: a
multi-dimensional price vcg auction with individual utilities. In: ICIW 2012 Proceedings,
pp. 168–177 (2012)

18. Calvaresi, D., Marinoni, M., Sturm, A., Schumacher, M., Buttazzo, G.: The Challenge
of Real-time Multi-agent Systems for Enabling IoT and CPS. In: Proceedings of the
International Conference on Web Intelligence, WI ’17, pp. 356–364. ACM, New York,
NY, USA (2017)

19. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational aspects of cooperative game
theory. Synthesis Lectures on Artificial Intelligence and Machine Learning 5(6), 1–168
(2011)

20. Chung, J.J., Rebhuhn, C., Yates, C., Hollinger, G.A., Tumer, K.: A multiagent framework
for learning dynamic traffic management strategies. Autonomous Robots pp. 1–17 (2018)

21. Deb, K.: Multi-objective optimization. In: Search methodologies, pp. 403–449. Springer
(2014)

22. Delle Fave, F., Stranders, R., Rogers, A., Jennings, N.: Bounded decentralised coordina-
tion over multiple objectives. In: Proceedings of the Tenth International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 371–378 (2011)

23. Dubus, J., Gonzales, C., Perny, P.: Choquet optimization using GAI networks for multia-
gent/multicriteria decision-making. In: ADT 2009: Proceedings of the First International
Conference on Algorithmic Decision Theory, pp. 377–389 (2009)

24. Dubus, J., Gonzales, C., Perny, P.: Multiobjective optimization using GAI models. In:
IJCAI 2009: Proceedings of the Twenty-third International Joint Conference on Artificial
Intelligence, pp. 1902–1907 (2009)

25. Dusparic, I., Cahill, V.: Distributed w-learning: Multi-policy optimization in self-
organizing systems. In: 2009 Third IEEE International Conference on Self-Adaptive
and Self-Organizing Systems, pp. 20–29. IEEE (2009)

26. Eisenstadt, E., Moshaiov, A., Avigad, G.: Co-evolution of strategies for multi-objective
games under postponed objective preferences. In: 2015 IEEE Conference on Computa-
tional Intelligence and Games (CIG), pp. 461–468. IEEE (2015)

27. Fard, H.M., Prodan, R., Moser, G., Fahringer, T.: A bi-criteria truthful mechanism for
scheduling of workflows in clouds. In: 2011 IEEE Third International Conference on
Cloud Computing Technology and Science, pp. 599–605. IEEE (2011)

28. Fernandez, F.R., Hinojosa, M.A., Puerto, J.: Core solutions in vector-valued games. Jour-
nal of Optimization Theory and Applications 112(2), 331–360 (2002)

29. Flesch, J., Thuijsman, F., Vrieze, K.: Cyclic markov equilibria in stochastic games. In-
ternational Journal of Game Theory 26(3), 303–314 (1997)

30. Foerster, J., Assael, I.A., de Freitas, N., Whiteson, S.: Learning to communicate with
deep multi-agent reinforcement learning. In: Advances in Neural Information Processing
Systems, pp. 2137–2145 (2016)

31. Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P.H., Kohli, P., Whiteson, S.:
Stabilising experience replay for deep multi-agent reinforcement learning. In: Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 1146–1155.
JMLR. org (2017)

44 Roxana Rădulescu et al.

32. Foerster, J.N., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual
multi-agent policy gradients. In: Thirty-Second AAAI Conference on Artificial Intelli-
gence (2018)

33. Friedman, E., Fontaine, F.: Generalizing across multi-objective reward functions in deep
reinforcement learning. arXiv preprint arXiv:1809.06364 (2018)

34. Golden, B., Perny, P.: Infinite order lorenz dominance for fair multiagent optimization. In:
Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems: volume 1-Volume 1, pp. 383–390. International Foundation for Autonomous
Agents and Multiagent Systems (2010)

35. Grandoni, F., Krysta, P., Leonardi, S., Ventre, C.: Utilitarian mechanism design for multi-
objective optimization. In: Proceedings of the twenty-first annual ACM-SIAM symposium
on Discrete Algorithms, pp. 573–584. Society for Industrial and Applied Mathematics
(2010)

36. Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs. In: Advances
in Neural Information Processing Systems 15 (NIPS’02) (2002)

37. Hamidi, H., Kamankesh, A.: An approach to intelligent traffic management system using a
multi-agent system. International Journal of Intelligent Transportation Systems Research
16(2), 112–124 (2018)

38. Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially ob-
servable stochastic games. In: Proceedings of the 19th National Conference on Artifical
Intelligence, AAAI’04, pp. 709–715. AAAI Press (2004)

39. He, H., Boyd-Graber, J., Kwok, K., Daumé III, H.: Opponent modeling in deep rein-
forcement learning. In: International Conference on Machine Learning, pp. 1804–1813
(2016)

40. Hernandez-Leal, P., Kartal, B., Taylor, M.E.: Is multiagent deep reinforcement learning
the answer or the question? a brief survey. arXiv preprint arXiv:1810.05587 (2018)

41. Houli, D., Zhiheng, L., Yi, Z.: Multiobjective reinforcement learning for traffic signal con-
trol using vehicular ad hoc network. EURASIP journal on advances in signal processing
2010(1), 724035 (2010)

42. Hurtado, C., Ramirez, M.R., Alanis, A., Vazquez, S.O., Ramirez, B., Manrique, E.: To-
wards a multi-agent system for an informative healthcare mobile application. In: KES
International Symposium on Agent and Multi-Agent Systems: Technologies and Appli-
cations, pp. 215–219. Springer (2018)

43. Igarashi, A., Roijers, D.M.: Multi-criteria coalition formation games. In: International
Conference on Algorithmic DecisionTheory, pp. 197–213. Springer (2017)

44. Inja, M., Kooijman, C., de Waard, M., Roijers, D.M., Whiteson, S.: Queued pareto local
search for multi-objective optimization. In: International Conference on Parallel Problem
Solving from Nature, pp. 589–599. Springer (2014)

45. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra, C.:
Automated negotiation: prospects, methods and challenges. Group Decision and Nego-
tiation 10(2), 199–215 (2001)

46. Jonker, C.M., Aydoğan, R., Baarslag, T., Fujita, K., Ito, T.: Automated negotiating
agents competition (anac). (2017)

47. Källström, J., Heintz, F.: Tunable dynamics in agent-based simulation using multi-
objective reinforcement learning. In: Proceedings of the Adaptive and Learning Agents
Workshop (ALA-19) at AAMAS (2019)

48. Kawamura, T., Kanazawa, T., Ushio, T.: Evolutionarily and neutrally stable strategies
in multicriteria games. IEICE Transactions on Fundamentals of Electronics, Communi-
cations and Computer Sciences 96(4), 814–820 (2013)

49. Khan, M.W., Wang, J.: The research on multi-agent system for microgrid control and
optimization. Renewable and Sustainable Energy Reviews 80, 1399–1411 (2017)

50. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot world
cup initiative. In: Proceedings of the First International Conference on Autonomous
Agents, AGENTS ’97, pp. 340–347. ACM, New York, NY, USA (1997)

51. Kok, J.R., Vlassis, N.: Sparse cooperative Q-learning. In: Proceedings of the twenty-first
international conference on Machine learning, ICML ’04. ACM, New York, NY, USA
(2004)

52. Kok, J.R., Vlassis, N.: Collaborative multiagent reinforcement learning by payoff propa-
gation. Journal of Machine Learning Research 7(Sep), 1789–1828 (2006)

53. Kruse, S., Brintrup, A., McFarlane, D., Lopez, T.S., Owens, K., Krechel, W.E.: Designing
automated allocation mechanisms for service procurement of imperfectly substitutable

http://arxiv.org/abs/1809.06364
http://arxiv.org/abs/1810.05587

Multi-Objective Multi-Agent Decision Making 45

services. IEEE Transactions on Computational Intelligence and AI in Games 5(1), 15–32
(2013)

54. Lee, C.S.: Multi-objective game-theory models for conflict analysis in reservoir watershed
management. Chemosphere 87(6), 608–613 (2012)

55. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent actor-
critic for mixed cooperative-competitive environments. In: Advances in Neural Informa-
tion Processing Systems, pp. 6379–6390 (2017)

56. Lozovanu, D., Solomon, D., Zelikovsky, A.: Multiobjective games and determining pareto-
nash equilibria. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica (3),
115–122 (2005)

57. Madani, K., Lund, J.R.: A monte-carlo game theoretic approach for multi-criteria decision
making under uncertainty. Advances in water resources 34(5), 607–616 (2011)

58. Mannion, P.: Knowledge-based multi-objective multi-agent reinforcement learning. Ph.D.
thesis, National University of Ireland Galway (2017)

59. Mannion, P., Devlin, S., Duggan, J., Howley, E.: Reward shaping for knowledge-based
multi-objective multi-agent reinforcement learning. The Knowledge Engineering Review
33 (2018)

60. Mannion, P., Devlin, S., Mason, K., Duggan, J., Howley, E.: Policy invariance under
reward transformations for multi-objective reinforcement learning. Neurocomputing 263
(2017)

61. Mannion, P., Duggan, J., Howley, E.: An experimental review of reinforcement learning
algorithms for adaptive traffic signal control. In: L.T. McCluskey, A. Kotsialos, P.J.
Müller, F. Klügl, O. Rana, R. Schumann (eds.) Autonomic Road Transport Support
Systems, pp. 47–66. Springer International Publishing (2016)

62. Mannion, P., Duggan, J., Howley, E.: A theoretical and empirical analysis of reward trans-
formations in multi-objective stochastic games. In: Proceedings of the 16th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2017)

63. Mannion, P., Mason, K., Devlin, S., Duggan, J., Howley, E.: Dynamic economic emissions
dispatch optimisation using multi-agent reinforcement learning. In: Proceedings of the
Adaptive and Learning Agents workshop (at AAMAS 2016) (2016)

64. Mannion, P., Mason, K., Devlin, S., Duggan, J., Howley, E.: Multi-objective dynamic
dispatch optimisation using multi-agent reinforcement learning. In: Proceedings of the
15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)
(2016)

65. Marinescu, R.: Exploiting problem decomposition in multi-objective constraint optimiza-
tion. In: CP 2009: Principles and Practice of Constraint Programming, pp. 592–607
(2009)

66. Marinescu, R.: Efficient approximation algorithms for multi-objective constraint opti-
mization. In: ADT 2011: Proceedings of the Second International Conference on Algo-
rithmic Decision Theory, pp. 150–164 (2011)

67. Marinescu, R., Razak, A., Wilson, N.: Multi-objective constraint optimization with trade-
offs. In: International Conference on Principles and Practice of Constraint Programming,
pp. 497–512. Springer (2013)

68. Mirrokni, V.S., Vetta, A.: Convergence issues in competitive games. In: Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 183–
194. Springer (2004)

69. Moradi, M.H., Razini, S., Hosseinian, S.M.: State of art of multiagent systems in power
engineering: A review. Renewable and Sustainable Energy Reviews 58, 814–824 (2016)

70. Mossalam, H., Assael, Y.M., Roijers, D.M., Whiteson, S.: Multi-objective deep reinforce-
ment learning. arXiv preprint arXiv:1610.02707 (2016)

71. Mouaddib, A.I., Boussard, M., Bouzid, M.: Towards a formal framework for multi-
objective multiagent planning. In: Proceedings of the 6th international joint conference
on Autonomous agents and multiagent systems, p. 123. ACM (2007)

72. Nash, J.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)
73. Ng, A.Y., Harada, D., Russell, S.J.: Policy invariance under reward transformations:

Theory and application to reward shaping. In: Proceedings of the Sixteenth International
Conference on Machine Learning, ICML ’99, pp. 278–287 (1999)

74. Nguyen, T.T.: A multi-objective deep reinforcement learning framework. arXiv preprint
arXiv:1803.02965 (2018)

75. Nguyen, T.T., Nguyen, N.D., Nahavandi, S.: Deep reinforcement learning for multi-
agent systems: A review of challenges, solutions and applications. arXiv preprint
arXiv:1812.11794 (2018)

http://arxiv.org/abs/1610.02707
http://arxiv.org/abs/1803.02965
http://arxiv.org/abs/1812.11794

46 Roxana Rădulescu et al.

76. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic game theory. Cam-
bridge University Press (2007)

77. Perny, P., Weng, P., Goldsmith, J., Hanna, J.: Approximation of lorenz-optimal solutions
in multiobjective markov decision processes. In: Proceedings of the 27th AAAI Conference
on Artificial Intelligence, pp. 92–94 (2013)

78. Pla, A., Lopez, B., Murillo, J.: Multi criteria operators for multi-attribute auctions. In:
International Conference on Modeling Decisions for Artificial Intelligence, pp. 318–328.
Springer (2012)

79. Qu, S., Ji, Y., Goh, M.: The robust weighted multi-objective game. PloS one 10(9),
e0138970 (2015)

80. Ramos, G.de.O., Rădulescu, R., Nowé, A.: A budged-balanced tolling scheme for efficient
equilibria under heterogeneous preferences. In: Proceedings of the Adaptive and Learning
Agents Workshop (ALA-19) at AAMAS (2019)

81. Rashid, T., Samvelyan, M., de Witt, C.S., Farquhar, G., Foerster, J., Whiteson, S.: Qmix:
Monotonic value function factorisation for deep multi-agent reinforcement learning. In:
ICML 2018: Proceedings of the Thirty-Fifth International Conference on Machine Learn-
ing (2018)

82. Reymond, M., Nowé, A.: Pareto-DQN: Approximating the Pareto front in complex multi-
objective decision problems. In: Proceedings of the Adaptive and Learning Agents Work-
shop (ALA-19) at AAMAS (2019)

83. Roijers, D.M.: Multi-objective decision-theoretic planning. Ph.D. thesis, University of
Amsterdam (2016)

84. Roijers, D.M., Steckelmacher, D., Nowé, A.: Multi-objective reinforcement learning for
the expected utility of the return. In: Adaptive and Learning Agents Workshop (at
AAMAS/IJCAI/ICML 2018) (2018)

85. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective se-
quential decision-making. Journal of Artificial Intelligence Research 48, 67–113 (2013)

86. Roijers, D.M., Whiteson, S.: Multi-objective decision making. Synthesis Lectures on
Artificial Intelligence and Machine Learning 11(1), 1–129 (2017)

87. Roijers, D.M., Whiteson, S., Ihler, A.T., Oliehoek, F.A.: Variational multi-objective co-
ordination. In: MALIC 2015: NIPS Workshop on Learning, Inference and Control of
Multi-Agent Systems (2015)

88. Roijers, D.M., Whiteson, S., Oliehoek, F.A.: Computing convex coverage sets for multi-
objective coordination graphs. In: International Conference on Algorithmic Decision
Theory, pp. 309–323 (2013)

89. Roijers, D.M., Whiteson, S., Oliehoek, F.A.: Linear support for multi-objective coordina-
tion graphs. In: Proceedings of the 2014 international conference on Autonomous agents
and multi-agent systems, pp. 1297–1304. International Foundation for Autonomous
Agents and Multiagent Systems (2014)

90. Roijers, D.M., Whiteson, S., Oliehoek, F.A.: Computing convex coverage sets for faster
multi-objective coordination. Journal of Artificial Intelligence Research 52, 399–443
(2015)

91. Roijers, D.M., Zintgraf, L.M., Libin, P., Nowé, A.: Interactive multi-objective reinforce-
ment learning in multi-armed bandits for any utility function. In: ALA workshop at
FAIM, vol. 8 (2018)

92. Roijers, D.M., Zintgraf, L.M., Nowé, A.: Interactive Thompson sampling for multi-
objective multi-armed bandits. In: International Conference on Algorithmic Decision
Theory, pp. 18–34. Springer (2017)

93. Rollón, E.: Multi-objective optimization for graphical models. Ph.D. thesis, Universitat
Politècnica de Catalunya, Barcelona (2008)

94. Rollón, E., Larrosa, J.: Bucket elimination for multiobjective optimization problems.
Journal of Heuristics 12, 307–328 (2006)

95. Rollon, E., Larrosa, J.: Multi-objective russian doll search. In: AAAI, pp. 249–254 (2007)
96. Rollon, E., Larrosa, J.: Constraint optimization techniques for multiobjective branch and

bound search. In: International Conference on Logic Programming, ICLP (2008)
97. Rădulescu, R., Legrand, M., Efthymiadis, K., Roijers, D.M., Nowé, A.: Deep multi-agent

reinforcement learning in a homogeneous open population. In: Proceedings of the 30th
Benelux Conference on Artificial Intelligence (BNAIC 2018), pp. 177–191 (2018)

98. Rădulescu, R., Mannion, P., Roijers, D.M., Nowé, A.: Equilibria in multi-objective games:
a utility-based perspective. In: Proceedings of the Adaptive and Learning Agents Work-
shop (ALA-19) at AAMAS (2019)

Multi-Objective Multi-Agent Decision Making 47

99. Scharpff, J., Roijers, D.M., Oliehoek, F.A., Spaan, M.T., de Weerdt, M.M.: Solving
transition-independent multi-agent MDPs with sparse interactions. In: AAAI 2016: Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence (2016). To Appear.

100. Scharpff, J., Spaan, M.T., Volker, L., de Weerdt, M.M.: Coordinating stochastic multi-
agent planning in a private values setting. Distributed and Multi-Agent Planning p. 17
(2013)

101. Sen, S., Weiss, G.: Multiagent systems. chap. Learning in Multiagent Systems, pp. 259–
298. MIT Press, Cambridge, MA, USA (1999). URL http://dl.acm.org/citation.cfm?
id=305606.305612

102. Shapley, L.S.: Stochastic games. Proceedings of the national academy of sciences 39(10),
1095–1100 (1953)

103. Shapley, L.S., Rigby, F.D.: Equilibrium points in games with vector payoffs. Naval Re-
search Logistics Quarterly 6(1), 57–61 (1959)

104. Shelton, C.R.: Importance sampling for reinforcement learning with multiple objectives.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (2001)

105. Shoham, Y., Powers, R., Grenager, T.: If multi-agent learning is the answer, what is the
question? Artificial Intelligence 171(7), 365–377 (2007)

106. Si, W., Li, J., Ding, P., Rao, R.: A multi-objective deep reinforcement learning approach
for stock index futures intraday trading. In: 2017 10th International Symposium on
Computational Intelligence and Design (ISCID), vol. 2, pp. 431–436 (2017)

107. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,
Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T., Hassabis, D.: Mastering the game of go with deep neural networks and tree
search. Nature 529, 484–503 (2016)

108. Song, J., Ren, H., Sadigh, D., Ermon, S.: Multi-agent generative adversarial imitation
learning. In: Advances in Neural Information Processing Systems, pp. 7461–7472 (2018)

109. Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W.M., Zambaldi, V., Jaderberg, M.,
Lanctot, M., Sonnerat, N., Leibo, J.Z., Tuyls, K., et al.: Value-decomposition networks
for cooperative multi-agent learning based on team reward. In: Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–
2087. International Foundation for Autonomous Agents and Multiagent Systems (2018)

110. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA (1998)

111. Tajmajer, T.: Multi-objective deep q-learning with subsumption architecture. arXiv
preprint arXiv:1704.06676 (2017)

112. Tajmajer, T.: Modular multi-objective deep reinforcement learning with decision values.
In: 2018 Federated Conference on Computer Science and Information Systems (FedCSIS),
pp. 85–93 (2018)

113. Tanino, T.: Multiobjective cooperative games with restrictions on coalitions. In: Multi-
objective Programming and Goal Programming, pp. 167–174. Springer (2009)

114. Tanino, T.: Vector optimization and cooperative games. In: Recent Developments in
Vector Optimization, pp. 517–545. Springer (2012)

115. Taylor, A., Dusparic, I., Galván-López, E., Clarke, S., Cahill, V.: Accelerating learning
in multi-objective systems through transfer learning. In: Neural Networks (IJCNN), 2014
International Joint Conference on, pp. 2298–2305. IEEE (2014)

116. Tesauro, G.: Td-gammon, a self-teaching backgammon program, achieves master-level
play. Neural Computing 6(2), 215–219 (1994)

117. Tsimpoukis, D., Baarslag, T., Kaisers, M., Paterakis, N.G.: Automated negotiations un-
der user preference uncertainty: A linear programming approach (2018)

118. Vamplew, P., Dazeley, R., Barker, E., Kelarev, A.: Constructing stochastic mixture poli-
cies for episodic multiobjective reinforcement learning tasks. In: Australasian Joint Con-
ference on Artificial Intelligence, pp. 340–349. Springer (2009)

119. Van Moffaert, K., Brys, T., Chandra, A., Esterle, L., Lewis, P.R., Nowé, A.: A novel adap-
tive weight selection algorithm for multi-objective multi-agent reinforcement learning. In:
Neural Networks (IJCNN), 2014 International Joint Conference on, pp. 2306–2314 (2014)

120. Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A.S., Yeo, M., Makhzani,
A., Küttler, H., Agapiou, J., Schrittwieser, J., et al.: Starcraft ii: A new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782 (2017)

121. Vlassis, N.: A concise introduction to multiagent systems and distributed artificial intel-
ligence. Synthesis Lectures on Artificial Intelligence and Machine Learning 1(1), 1–71
(2007)

http://dl.acm.org/citation.cfm?id=305606.305612
http://dl.acm.org/citation.cfm?id=305606.305612
http://arxiv.org/abs/1704.06676
http://arxiv.org/abs/1708.04782

48 Roxana Rădulescu et al.

122. Voorneveld, M., Vermeulen, D., Borm, P.: Axiomatizations of pareto equilibria in multi-
criteria games. Games and economic behavior 28(1), 146–154 (1999)

123. White, D.: Multi-objective infinite-horizon discounted markov decision processes. Journal
of mathematical analysis and applications 89(2), 639–647 (1982)

124. Wiggers, A.J., Oliehoek, F.A., Roijers, D.M.: Structure in the value function of two-
player zero-sum games of incomplete information. In: Proceedings of the Twenty-second
European Conference on Artificial Intelligence, pp. 1628–1629. IOS Press (2016)

125. Wilson, N., Razak, A., Marinescu, R.: Computing possibly optimal solutions for multi-
objective constraint optimisation with tradeoffs. In: IJCAI 2015: Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, pp. 815–821
(2015)

126. Wolpert, D.H., Wheeler, K.R., Tumer, K.: Collective intelligence for control of distributed
dynamical systems. EPL (Europhysics Letters) 49(6), 708 (2000)

127. Wooldridge, M.: Introduction to Multiagent Systems. John Wiley & Sons, Inc., New
York, NY, USA (2001)

128. Yliniemi, L., Tumer, K.: Multi-objective multiagent credit assignment in reinforcement
learning and nsga-ii. Soft Computing 20(10), 3869–3887 (2016)

129. Yliniemi, L.M.: Multi-objective optimization in multiagent systems. Ph.D. thesis, Oregon
State University, Corvallis, OR (2015)

130. Zheng, Y., Meng, Z., Hao, J., Zhang, Z.: Weighted double deep multiagent reinforcement
learning in stochastic cooperative environments. In: Pacific Rim International Conference
on Artificial Intelligence, pp. 421–429. Springer (2018)

131. Zinkevich, M., Greenwald, A., Littman, M.L.: Cyclic equilibria in markov games. In:
Advances in Neural Information Processing Systems, pp. 1641–1648 (2006)

132. Zintgraf, L.M., Kanters, T.V., Roijers, D.M., Oliehoek, F.A., Beau, P.: Quality assessment
of morl algorithms: A utility-based approach. In: Benelearn 2015: Proceedings of the
Twenty-Fourth Belgian-Dutch Conference on Machine Learning. (2015)

133. Zintgraf, L.M., Roijers, D.M., Linders, S., Jonker, C.M., Nowé, A.: Ordered preference
elicitation strategies for supporting multi-objective decision making. In: Proceedings of
the 17th International Conference on Autonomous Agents and Multi-Agent Systems, pp.
1477–1485. International Foundation for Autonomous Agents and Multiagent Systems
(2018)

	1 Introduction
	2 Background
	3 Modelling Multi-Objective Multi-Agent Settings
	4 The Execution Phase
	5 Solution Concepts
	6 Algorithmic Approaches and Applications
	7 Conclusions and New Horizons

