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Abstract
Plurality voting is perhaps the most commonly used way to aggregate the preferences of multi-
ple voters. Yet, there is no consensus on how people vote strategically, even in very simple set-
tings. The purpose of this paper is to provide a comprehensive study of people’s voting behavior 
in various online settings under the plurality rule. We implemented voting games that replicate 
two common real-world voting scenarios in controlled experiments. In the first, a single voter 
votes once after seeing a pre-election poll. In the second game, a group of voters play an itera-
tive game, and change their vote as the game progresses (as in online voting). The winning can-
didate in each game (and hence the subject’s payment) is determined using the plurality rule. 
For each of these settings we generated hundreds of game instances, varying conditions such 
as the number of voters, subjects’ preferences over candidates and the poll information that was 
made available to the subjects prior to voting. We show that people can be classified into several 
groups, one of which is not engaged in any strategic behavior, while the largest group demon-
strates both a tendency for strategic compromise, and a bias toward voting for the leader in the 
poll. We provide a detailed analysis of this group behavior for both settings, and how it depends 
on the poll information. Our study has insight for multi-agent system designers in uncover-
ing patterns that provide reasonable predictions of voters’ behaviors, which may facilitate the 
design of agents that support people or act autonomously in voting systems.
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1  Introduction

Voting protocols are among the most widely used tools for group decision-making and 
preference aggregation  [16, 53, 61], and their properties have been studied formally at 
least since the eighteenth century  [18, 19]. More recently, computers have been playing 
an increasingly active role in voting systems, whether as systems for aggregating prefer-
ences [23], or autonomous agents acting as proxies for individual voters [7].

Examples of existing systems abound, especially on the Internet: Wikipedia, which 
promotes its editors via an online election system [37] and Doodle, which specializes in 
scheduling polls, has over 30M monthly users voting over meeting times [22]. Facebook, 
and more recently Google, allow users to create their own polls and aggregate votes from 
friends. Apps such as Dvel (www.letsd​vel.com) let their users to take any decision they face 
and ask their friends to vote on it in real time. Voting is also shown to be a useful aggrega-
tion tool for crowdsourcing  [65] and human-computation applications  [39]. New voting 
rules are being designed for the purpose of being used in large-scale online settings [30].

While there is general consensus in political science, economics, game theory and 
computational social choice that people do not vote truthfully, it is not clear what voting 
strategy they actually employ, and what type of environmental factors affect this strategy. 
Indeed, even under the simple plurality rule there is an active discussion on how voters 
should vote or would vote given their preferences, and different studies suggest differ-
ent conclusions  [5, 29, 55]. There are precious few publicly available benchmarks that 
researchers can use to evaluate the assumptions and predictions of various theories from 
the social choice literature. One exception is the PrefLib project [40], which contains over 
3000 datasets from a variety of sources and locations, and is freely available on the web 
(www.prefl​ib.org). However the PrefLib datasets contains either reported preferences (e.g., 
movie or Sushi preferences), or reported votes (e.g., referee ratings in ice-skating champi-
onship), but not both.

Our goal is to fill this gap by collecting and analyzing human strategic voting behavior 
in a variety of online settings. There are several benefits for controlled online experiments. 
First, they reflect the growing use of computerized systems in the aggregation of people’s 
preferences and voting behavior. Second, we can run experiments on a large scale using 
crowdsourcing. Third, it allows us to create a controlled environment that abstracts away 
(as much as possible) from the context, and thus the only factors affecting people’s vot-
ing behavior are their preferences and the information that is available to them. There is 
no interference due to dependency relationships with candidates, sense of duty, expressive 
voting, coalition formation and other factors that are common e.g., in political voting.

We base our controlled experiments on two interactive voting games that are easy to 
explain to subjects. In both settings, voters are automatically assigned private cardinal utili-
ties over a fixed set of three candidates. The payment to subjects depends only on the iden-
tity of the winning candidate, regardless of how they have voted.

The first setting consists of a one-shot voting with a single human voter. We completely 
control the data available to the voter by providing her with a (non-binding) pre-election 
poll of others’ votes, and record her voting behavior under conditions that vary the infor-
mation in the poll.

The second setting consists of a group of human participants in an iterative voting game. 
As in the previous setting, the preference profile is dictated to the voters, but they are free 
to change their votes at will until they reach an agreed outcome (or a timeout). As in the 
poll game, we recorded the decision of each voter along with the information available to 

http://www.letsdvel.com
http://www.preflib.org


Autonomous Agents and Multi-Agent Systems (2020) 34:31	

1 3

Page 3 of 37  31

her at that point in time. Both games put voters under uncertainty, but the source of uncer-
tainty varies: in the first game voters only have access to an inaccurate poll. In the second 
game a voter directly observes the current votes of her peers, but does not know how they 
will vote eventually at the final round (or when will the final round arrive).

In both games the voter faces a strategic dilemma when her favorite candidate from 
the three is at a disadvantage (at the poll or according to the other current votes): to 
remain truthful or to compromise, i.e. to vote for a less preferred candidate that has a 
better chance to win. This definition of compromise coincides e.g. with the definition of 
a strategic vote in [2].

We conducted an extensive empirical study in which over 550 human subjects played 
over 10,000 game instances in both game settings. We varied the number of voters, sub-
jects’ preferences over candidates, and (in the one-shot case) the poll information that 
was made available to them prior to voting. We analyzed under what conditions subjects 
choose the strategic compromise (or an unexpected, “irrational,” action) over the truth-
ful vote. Our three main findings are as follows:

•	 In both settings we found large interpersonal differences, identifying several distinct 
groups: (1) subjects that consistently voted for their most preferred candidate; (2) 
subjects who tended to compromise when facing a strategic decision; and (3) sub-
jects who sometimes play dominated actions, like voting for the least preferred can-
didate. We focused our analysis on the second group, which consisted of 85% of the 
subjects (the “strategic subjects”).

•	 Strategic subjects tend to compromise more in situations where this increases their 
expected payoff. Yet many subjects compromise even when it would be better to vote 
truthfully.

•	 When the most preferred candidate is ranked second (a situation that should not pose 
a strategic dilemma), a significant fraction of the strategic voters voted for the (less 
preferred) leader of the poll.

In addition, in the iterative setting we show that:

•	 The behavior was remarkably similar to the one-shot setting, where the current votes 
of the other voters are treated like the poll in the first setting.

•	 Voters demonstrate some level of “stickyness,” and are more likely to keep their vote 
from the previous turn.

Therefore, the contribution of this paper is three-fold: First, the development of a flex-
ible experimental platform that is designed to run both offline and online settings. Sec-
ond, collecting thousands of instances of human strategic voting behavior in a different 
interactive online settings. Third, defining novel ways to measure and quantify various 
voting behaviors empirically, and studying how these measures are affected by the con-
text and information available to a voter with fixed preferences.

Our platform provides researchers with an environment that allows to control the fac-
tors affecting people’s voting behavior, the information that is available to them and the 
context. All of the data from this paper is publicly available to the research community 
at www.votel​ib.org/. The Also, we will make our open source code available for pub-
lic use. The VoteLib database is the first of its kind in that it combines both people’s 
preferences and their strategic voting behavior, over multiple strategic decisions. This 
allows researchers to test their own theories and train their models on our data without 

http://www.votelib.org/
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incurring the overhead of collecting the data, and will advance research in MAS and 
computational social choice.

The paper significantly revises and extends prior work by the authors [68] both on the 
data collection side and on the analysis side. First, it scales up the data collection to include 
tens of thousands of games and hundreds of subjects. Second, it provides a completely new 
analysis of the data collected for both one-shot and iterative settings, and identifies new 
types of voting behavior in these settings. Lastly, it provides a new and detailed compari-
son of our study to relevant work in social choice and experimental economics. Together, 
these contributions led to new insights about people’s voting behavior in strategic settings.

The remainder of this paper is organized as follows. Section 2 discusses theoretical and 
experimental work that inspired this work. Section 3 introduces the formal problem and 
definitions. Sections  4 and  5 include our results and analysis on the one-shot and itera-
tive settings, respectively. We end the paper with a discussion and ideas for future work in 
Sect. 6.

2 � Related work

We begin by overviewing several prominent theoretical voting models from the social 
choice literature that aim to describe strategic voting behavior. Then, we review relevant 
findings from real election studies. Finally, we position our study within the large literature 
on voting experiments.

2.1 � Theoretical work

The most fundamental solution concept in game theory is Nash equilibrium. However, try-
ing to apply Nash equilibrium (either pure or mixed) to strategic voting often results in a 
trivial unrealistic outcome, since almost all voting profiles are Nash equilibria. Other game 
theoretic approaches have been developed by imposing various notions of uncertainty and 
rationality. Predominant examples include the calculus of voting Bayes-Nash equilibrium 
models  [48, 52, 61], trembling hand equilibrium  [46], strong equilibrium  [64], and sub-
game-perfect equilibrium [21, 26] models. In the calculus of voting model, which has been 
the leading model in the economic literature since the 1970’s, a voter estimates her prob-
ability of being pivotal when all other preferences are sampled from a known distribution, 
and votes in a way that maximizes their expected utility. The calculus of voting papers, as 
most of the other papers above, assume that all voters employ the same (rational) reason-
ing, and in particular two voters with the same preferences would always vote the same. A 
newer model that relaxes the assumption that the number of voters is known in advance is 
Poisson games [49].

A second class of models focuses on heuristics for making strategic decisions by a 
single voter, regardless of equilibrium considerations. These heuristics have ranged from 
myopic heuristics based on best-response [15, 32] to regret minimization [28], and com-
plex decision diagrams [27, 50]. Some papers analyze the best-response strategy specifi-
cally for voters that are faced with poll information rather than with the preferences of their 
peers [14, 59]. More recent work considers voters that are faced with both poll information 
and the votes of their neighbors in a social network [67].

Several papers have combined decision- and game theoretic modeling of voting behav-
ior. In an iterative setting where voters may change their vote one at a time, voters who 
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follow the simple myopic best-response (MBR) heuristic are guaranteed to converge to a 
Nash equilibrium under the plurality rule  [42]. Consequently, other heuristics have been 
shown to converge, giving rise to new notions of equilibrium [32, 43, 60]. For an extensive 
overview of strategic voting models, see [44].

The bias towards voting for the leader (“bandwagon effect:) also received theoretical 
attention: Simon [66] considered the “prediction problem,” which states that it is impos-
sible to give a correct political prediction since the prediction itself affects the outcome. He 
showed that in a particular model of bandwagon (or opposite, underdog) effect, there must 
be an equilibrium point where prediction is self-justifying.

2.2 � Empirical work and in‑situ experiments

Strategic voting was thoroughly studied in the context of political elections (see Regen-
wetter and Grofman [57] for an overview), supreme court votes [33] and other real world 
voting scenarios. These works commonly compare the vote distribution over several years 
and/or several districts [11].

Real world voting settings are challenging to study due to the lack of information about 
voters’ preferences. Indeed, Regenwetter et al.  [56] observe that testing phenomena such 
as existence of Condorcet cycles cannot be done reliably when it is not possible to infer 
individual preferences from ballots alone. In addition, it is not possible to explain people’s 
voting behavior with a single monolithic model. Regenwetter et al. [58] found that people’s 
voting behavior in organizational elections cannot be explained by a single heuristic func-
tion uniformly by all voters, and that their behavior may fit a mixture of heuristic behav-
iors based on the theoretical models mentioned above. They argue that “individual choice 
research finds actors to behave worse than normative theory requires, whereas the sparse 
empirical research on social choice appears to suggest that electorates may outperform nor-
mative expectations” (p.  1011), and call for further research that links decision making 
with individual voting behavior. Such links, together with the findings that a significant 
portion of the voters vote strategically [11, 72], was part of the motivation for the current 
work.

Other works focusing on real world voting behavior query a subset of voters and ask 
them to report their truthful preferences, in addition to how they actually voted [1, 6, 13, 
54, 70], or how they would have voted under different voting rules [72]. Blais et al. [10] 
presented voters in the 2015 Canadian elections with different levels of information regard-
ing the party strength, and observed no effect on the tendency to vote strategically.

Collecting such information is valuable to researchers as it allows to compare between 
a voter’s individual preferences and her action. However, it is commonly the case that 
each voter provides a single data point, so it is not possible to model or predict how the 
voter would behave in different situations. Another challenge to studying real world voting 
behavior is that voters are influenced by various social, ideological, emotional factors that 
are not readily available to the researcher.

2.3 � Lab experiments

Most experimental studies of people’s voting behavior in the lab focus on settings in which 
the same game is played several times and payments are realized at each game after the 
winning candidate is determined  [5, 9, 69]. These works vary in the number of candi-
dates, the voting rule and more. Blais et al. [9] studied settings in which there are only two 
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candidates, voting is costly, and the strategic decision to make is whether to vote or not. 
They show that even in this simple setting subjects exhibit irrational behavior: they overes-
timate the probability of ties, and fail to vote in a way that maximize their payoff.

The three-candidate setting we use in our work has also been explored by other set-
tings where subjects played a complete information multiplayer game with at least three 
candidates  [5, 8, 29, 69, 71]. The main treatment in these experiments is to vary the 
voting rule, and results are studied at the aggregate level (e.g. the distribution of votes, 
or the likelihood of a specific winner), in comparison to predictions based either on 
rational theoretical models (plus some model of participants’ beliefs) or on heuristic 
models.

As part of this line of work, Forsythe et al. [29] and Bassi [5] studied people’s voting 
strategies in Borda, approval voting and plurality voting systems. They found that strategic 
voting was common in all of the voting systems, and that voters behaved strategically more 
often in the plurality voting condition than in the Borda or Approval voting condition. The 
candidate that maximizes the social welfare was chosen significantly more often in the Plu-
rality voting condition that in the other conditions, and the Condorcet loser candidate was 
never chosen. They showed that over time people learned to strategize in a way that was 
consistent with a single equilibrium strategy of the stage game, modeled using a quantal 
response equilibrium.

Kube and Puppe [35] studied strategic voting behavior under the Borda rule. They found 
a positive relationship between the amount of information that was provided to subjects 
about others and their propensity to manipulate: subjects were significantly more likely to 
engage in strategic behavior when they are informed about others’ preferences, and even 
more so when subjects were provided information about others’ actual votes. They con-
jectured that subjects’ reason for the manipulation was to bring about a “satisfiable” out-
come, that is, to increase the winning probability of the candidate that would have won 
under sincere voting. However, the baseline for comparison was “no information”, whereas 
we are interested in the effect of direct information on other voters’ actions rather than 
preferences.

Tyszler and Schram  [69] study voter behavior in voting settings in which Condorcet 
cycles occur. They showed that information (whether voters know each other’s prefer-
ences), and the value of the voter’s second most preferred candidate affected the decision 
of whether to compromise by subjects. Specifically, the probability of strategic voting 
increases with the value of the intermediate candidate for both conditions and whether the 
most preferred candidate was trailing in the polls (when information was available) and the 
extent to which the poll leader is preferred. They also show that a quantal-response equilib-
rium model provides a good fit to the aggregate vote distribution of players.

Blais et al. [8] performed similar lab experiments with dictated metric preferences over 
5 candidates that are placed along an interval. Each group of 21 participants played 4 con-
sequent voting rounds with the same preference profile and voting rule, and repeated the 
experiment with a different profile and voting rule. They found that voters tend to strategi-
cally desert candidates with low support in past rounds, and that there was a similar ten-
dency to vote strategically under plurality. In a followup study using the same data, van der 
Straeten et al. [73] analyzed the different factors that affect the strategic decision in 2-round 
plurality versus simple plurality.

van der Straeten et al. [71] model players’ once as purely rational (following the calcu-
lus of voting models) and then as heuristic (omitting candidates ranked low in the previ-
ous round). They test the theoretical prediction vs. the actual individual vote (assuming all 
voters follow the same behavior). For the Plurality rule, they show that the rational model 
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provides better predictions than the simple heuristic models, and better than the baseline 
model of truthful voting. They also show that for more complicated voting rules (e.g., 
2-round Plurality) the heuristic models provide a better prediction. A more careful exami-
nation of the results for Plurality shows that the rational model is very inaccurate at the first 
round of the game when only preferences are known (54% accuracy vs. 68% for truthful 
voting), and reaches 80% accuracy by the fourth round. That is, rational behavior is made 
possible when playing the same game repeatedly with the same people.

An experiment that combined features from lab and in-situ, was performed in [36]: sub-
jects arrived in the lab and were asked to use their real preferences over candidates in the 
French presidential elections. Thus in both studies there was no control over the prefer-
ences of the subjects, and only partial control over the information they had.

To summarize most of the work above, it seems that the rational models (which treat all 
voters uniformly) provide a reasonable explanation of voters’ behavior either on the aggre-
gate level, or in settings where voters have the opportunity to adapt their behavior. When 
voters lack the information and/or opportunity to learn, they resort to heuristics which are 
not well understood. Our work is the first that aims to identify the individual behavioral 
strategy of subjects and how it depends on the information they have.

Finally, voting behavior has increasingly been studied in the multi agent systems com-
munity. Bitan et al. [7], focused on designing computer agents that outperform the human 
voters using various best-response methods. They also found that people tend to strategize 
and deviate from truthful reporting over time, in a very different setting of voting commit-
tees. Fairstein et al. [25] tested how well various models from the literature (including cal-
culus of voting, local dominance, and k-pragmatist mentioned above) can predict individ-
ual voting behavior in several experimental settings, including the data from the conference 
version of this paper [68]. In contrast to most experiments (e.g. the one by van der Straeten 
et al. [71]) that aim to explain all data with a single behavior (rational or heuristic), Fair-
stein et al. assume that voters may apply different bounded rational behaviors. They fit the 
parameters of the different models on a training set, then apply the model on held out test 
data, and compare the predicted actions of each voter to the ground truth, as well as to a 
benchmark of a machine learning algorithm. In particular they show that a wide range of 
parameters is required to get a good prediction (supporting our finding regarding distinct 
types of voters), and that the heuristics that obtained the highest performance are those that 
account for leader-bias behavior.

3 � The setting

We denote [x] = {1, 2,… , x} . Let M be a set of m candidates and let N be a set of n voters. 
A single-vote social choice correspondence is a function f ∶ MN

⟶ 2M⧵{�} that returns 
the set of winning candidates given a voting profile. A voting profile consists of a vector 
� ∶ N → M , where ai ∈ M is the vote of voter i. The score of a candidate c ∈ M given the 
voting profile � is defined as s

�
(c) = |{i ∈ N ∶ ai = c}| . A score vector �

�
 given voting pro-

file � contains the scores for all voters, which summarizes all the relevant information on 
the outcome of the vote. We use notation �(c) for the score of candidate c when the voting 
profile � is clear from context.

For the remainder of this paper, we will use the Plurality rule to choose the winning can-
didates W(�) with maximal score given the voting profile � , that is W(�) = argmax cs�(c).
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Let L = L(M) be the set of all strict total orders over M. The preference ordering of 
voter i is a strict total order Li ∈ L over the candidates (which is known only to i). Let 
Li(a) ∈ [m] be the rank of candidate a ∈ M.

Voter i prefers candidate a to b, iff Li(a) < Li(b) . In this paper we focus on m = 3 can-
didates, therefore we refer to the most preferred, second, and least preferred candidates for 
i as qi, q′i , and q′′

i
 , respectively. That is, Li = (qi, q

�
i
, q��

i
) . We also omit the subscript i when 

clear from context.
We say that voter i is voting truthfully in profile � if ai = qi ; otherwise i is voting 

strategically.
The reward to voter i when candidate c wins alone is defined as ri(c) = r(Li(c)) , where r 

is a non-increasing function. We extend this definition for a subset of candidates C ⊆ M as 
the average reward obtained over all candidates C:

In game theoretic terms, the utility for voter i in voting profile � is ui(�) = ri(W(�)).
To illustrate our setting we present the following example in which four voters vote over 

a set of three candidates: Red ( � ), Grey ( � ) and Blue ( � ). The preference profile of the four 
voters is as follows:

Suppose that each of the voters votes for its most preferred candidate and that the 
rewards are defined as . The winning candidate is 
W(�, �, �, �) = {�} , and thus L1(�) = L2(�) = 1 , and L3(�) = L4(�) = 3 . The rewards for all 
voters are . Suppose voter 4 voted for � rather than � . 
In this case there are multiple winners: W(�, �, �, �) = {�, �} . Consequently, the rewards 
are , and .

In all of our settings, a human subject is presented with a poll consisting of a voting pro-
file for all agents, and is subsequently asked to vote for one of the candidates. Voters were 
automatically assigned a preferred ranking over the candidates, which is private informa-
tion unknown to the other voters.

Expected utility and pivotal players  In order to analyze the rationality of a vote, we need 
to compute how much a voter gains by voting for a candidate c. To answer this formally 
we adopt an expected utility framework following the “calculus of voting” literature.1 In 
the small n condition, we simply calculate the expected utility by going over all possible 
outcomes. In the other conditions we use the simplifying assumption that 3-way ties are 
impossible.2 Let W(�−i) be outcome without i’s vote. In order to calculate the expected util-
ity, we assume that a probability distribution over the voting profile of the other players is 

(1)ri(C) =
1

|C|
∑

c∈C

ri(c)

(2)
L1 = (�, �, �); L2 = (�, �, �);

L3 = (�, �, �); L4 = (�, �, �)

1  Most of the calculus of voting literature such as [48, 61] considers beliefs that are derived from equilib-
rium calculations. We follow the framework of Merrill [45], where the strategic decision can be based on an 
arbitrary belief, where in our case the belief is derived from the true distribution of votes.
2  This is consistent with the assumptions in the theoretical literature [45, 48]. In practice, the most likely 
3-way tie in our experiment occurs when n = 100 and gaps are 0, and has a probability of 0.8%.
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known (denoted by �−i ∼ D ). The expected reward (or expected utility) of the voter when 
not voting at all is

We say two candidates x, y are tied in voting profile � if W(�) = {x, y} , and denote this 
event by Txy(�) . We also denote by T−xy(�) the event that x is missing exactly one vote to 
be tied with y (i.e., f (�) = {y} and f (� ∪ {x}) = {x, y} ). We observe that whenever Txy(�−i) 
occurs, voter i has the power of making x a single winner, thereby increasing her reward 
from ri({x, y}) to ri(x) . Similarly, when T−xy(�−i) occurs then i has the power of making x 
part of the winning set, increasing her reward from ri(y) to ri({x, y}) . Clearly in any other 
profile, voting for x has no effect on the outcome. We say that i is pivotal for x against y in 
profile � if either event occurs, denoted Pxy

i
(�) = T−xy(�−i) ∪ Txy(�−i) . The expected utility 

gain (EUG) for voter i by voting for x can be calculated as:

Note that under “nice” distributions, PrD(T
−xy(�)) ≅ PrD(T

xy(�)).3 Similarly, 
PrD(P

xy(�)) ≅ PrD(P
yx(�)) . We thus make the following simplifying assumption for theo-

retical analysis purposes (also taken from [48]), noting that it only applies for high values 
of n: 

1.	 PrD(P
xy

i
(�)) = 2PrD(T

xy(�−i)) = 2PrD(T
−xy(�−i));

2.	 PrD(P
xy(�)) = PrD(P

yx(�)).

Given a probability distribution D , the utility gain depends almost entirely on the probabil-
ity of a tie, and Eq. (4) can be simplified under the above assumption:

Thus the expected utility for i is thus EUi if i abstains, and EUi + EUGi(x) if i votes for x.

In our simple experiment there are only 3 candidates. For a voter i we write 
T12
i
(�) = T

qi,q
�
i

i
(�−i) (this event corresponds to i being pivotal for q against q′ ). We omit � 

when clear from the context. We similarly define T13
i

 and T23
i

.

(3)EUi =
∑

�−i

PrD(�−i) ⋅ ri(W(�−i))

(4)

EUGi(x) =
∑

�−i

∑

y≠x

PrD(T
xy(�−i)) ⋅ (ri(x) − ri({x, y}))

+
∑

�−i

∑

y≠x

PrD(T
−xy(�−i)) ⋅ (ri({x, y}) − ri(y))

(5)EUGi(x) =
∑

�−i

∑

y≠x

PrD(T
xy(�−i))(ri(x) − ri({x, y}) + ri({x, y}) − (ri(y))

(6)=
∑

�−i

∑

y≠x

PrD(T
xy(�−i))(ri(x) − (ri(y))

3  For example, if the score of each candidate sc is independ-
ent, then PrD(T

xy(�)) =
∑

k Pr(sx = k)Pr(sy = k)
∏

c≠x,y Pr(sc < k) , whereas 
PrD(T

−xy(�) =
∑

k Pr(sx = k − 1)Pr(sy = k)
∏

c≠x,y Pr(sc < k) . When n is large then these numbers are 
almost identical.
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Finally, we say that i is pivotal if i is pivotal for some pair of candidates.

4 � One‑shot voting

The first type of voting game we studied consisted of a one-shot voting setting in which 
participants could vote once. A single human subject is presented with a poll, and is subse-
quently asked to vote for one of the candidates.

4.1 � Methodology

The game was implemented online using a voting infrastructure that allows to configure 
the number of computer-simulated voters and the subjects’ preferences over the candidates. 
Figure 1 shows a snapshot of the GUI of the one-shot voting game that is configured to 
include three candidates (red, grey, and blue) and 103 voters. The game interface is shown 
from the perspective of a human subject playing the game. The candidates are displayed 
in order of the preferences for the voter, from left (the most preferred candidate) to right 
(the least preferred candidate). The voting profile in the poll is visualized by showing the 
number of votes for each candidate (in the voting bar to the left of each candidate). In our 
example, the red candidate has 30 votes. The leading candidate of the poll according to the 
plurality rule (the grey candidate in the figure, with 38 votes) is marked by a glowing vot-
ing bar.

Poll conditions  We control both the voter’s preferences and the information presented to 
the human in the poll. Suppose the three candidates are sorted so that according to the poll 
we have s(c1) ≥ s(c2) ≥ s(c3) . We use the notation c >s c

′ to indicate that the score of can-
didate c in poll s is larger than the score of c′ . We omit the subscript s when clear from the 
context. A game is defined by setting the values of four parameters: 

Fig. 1   Voting game interface for one-shot setting. The voting bar to the left of each candidate displayed the 
number of votes for the candidate in the poll
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1.	 The total number of voters n, which ranged over the four values “small”, “100”, “1000” 
and “10, 000”.4

2.	 The ordinal alignment of candidate’s scores with voters’ preferences. Since there are 6 
possible permutations of three candidates, this is a categorical parameter with 6 possible 
values called “scenarios.” See Sect. 4.3 for details.

3.	 The gap between the number of votes for the leader and the runner-up, denoted “Gap-
leader” (formally, s(c1) − s(c2)).

4.	 The gap between the runnerup and the least popular candidate in the poll, denoted “Gap-
last” (formally, s(c2) − s(c3)).

For n ≥ 100 , we varied the gap values from 1 vote to (almost) n/2, and clustered each of 
them into five discrete conditions (for n = 100 some conditions coincide).

Figure  1(top) shows an example of a poll in the n = 100 condition (note that the 
actual number of voters is a bit higher, see Footnote 4), the scenario is q′′ >s q >s q

′ (see 
Sect. 4.3), gap-leader = 4 and gap-last = 4.

Determining the outcome and payoff  The outcome of the voting process was generated by 
sampling each voter i.i.d using the poll scores as the distribution and then adding the vote 
of the subject. Thus the poll provided a noisy indication of the results of the voting.

We emphasize several design choices. First, the subjects were not informed on the accu-
racy of the poll or how votes are sampled (only that the poll was non-binding and that the 
poll results may not reflect the final score of each candidate), but could see the final scores 
and the true winner(s) after each game. Experiments in economics typically present the 
subjects with information that allows them, at least theoretically, to deduce their expected 
utility. However voters are unlikely to know the actual types of the other voters or the sta-
tistical methods behind polls, and even less likely to perform complicated probabilistic 
calculations.

Second, the actual probability that the participant would affect the outcome rapidly 
becomes smaller for large values of n, since the voter is pivotal only in case of a tie or near-
tie. Therefore for large polls (e.g. n ≥ 1000 ) the strategy of the participant had almost no 
effect on her actual reward, which is a common situation in wide-scale elections in the real 
world. In fact, exact calculations show that the action of the voter in any single game with 
n ≥ 100 cannot affect her expected payoff by more than   (and much less under most 
conditions, see Figs. 4 and 17). In contrast, under the “small n” condition the action of the 
voter may change the payoff by up to  in each game.

Data collection  603 subjects participated in total. Of which, 60 subjects (all for the small 
n configuration) were first-year engineering students from Ben-Gurion University who 
played the game in the lab. IRB approval for the study was granted by the Ethics review 
board of this institution. All other subjects were recruited using Amazon mechanical Turk 
(all from the U.S.) and played online. For subject who participated in the experiment more 
than once, only the first session was considered. Subjects were given a detailed tutorial of 

4  For the “small” condition the actual range of n was between 6 and 9, picking a value that enables setting 
the appropriate gaps. For the other size conditions, we used a slightly larger number (e.g. for the n = 100 
condition we used 102 or 103 voters), both to avoid round numbers which may be treated differently by sub-
jects [47], and to allow the selected gap values.
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the voting game and their participation in the study was contingent on passing a compre-
hension quiz about the game.5 All the collected data is available for download from www.
votel​ib.org.

Subjects played up to 20 instances (games) in sequence, and were free to leave at any 
point. The average number of games per subject was 17.2, where 400 subjects completed 
all 20 games. Each of the 20 games was independently sampled from a distribution over 
the 6 scenarios and the (up to) 25 combinations of gap values (all games with the same 
value of n). The sample was not uniform and scenarios we considered as more interesting 
were sampled with a higher frequency.

After each game we showed the subject the true outcome of the election and the win-
ning candidate. The subject could choose to play a new game or to stop and collect her 
earnings on the games played. The average session time per subject (excluding tutorial) 
was about 2–3 min. All AMT subjects received a show-up fee of $0.4 and a bonus that 
depended on their total rewards in the game. The reward (utility) of each candidate for a 
voter in a given game was set based on her preferences, as explained in Sect. 3. The reward 
was set to , i.e. the maximum bonus was $2. The average payment per subject was 
$1.92 including the show-up fee.

4.2 � Hypotheses

We collected more than 10,000 game instances in all poll conditions (see Sect. 4.1). As 
noted earlier, the sampling was not uniform but we had at least 5 instances from each con-
figuration. Table 1 summarizes the number of games and participants for each value of n. 
We can see from the table that the average number of games per subjects was more than 
17, as most subjects completed all 20 games.

Based on standard game theoretic models of voting equilibria under uncertainty, we 
hypothesized the following. 

1.	 People never vote for the least-preferred option q′′ . This is since q′′ is a globally-domi-
nated strategy. It may only lower the reward of the voter.

Table 1   One-shot voting game 
statistics

Condition Num. of distinct players Num. of 
games 
played

Small n 223 4134
n = 100 94 1713
n = 1000 192 3054
n = 10,000 94 1482
Total 603 10,383

5  The tutorial can be found at http://goo.gl/6rJJ4​i.

http://www.votelib.org
http://www.votelib.org
http://goo.gl/6rJJ4i


Autonomous Agents and Multi-Agent Systems (2020) 34:31	

1 3

Page 13 of 37  31

2.	 People vote truthfully when their most-preferred candidate q is ranked 1st or 2nd in the 
poll. While q′ is not globally dominated, it is both locally-dominated [43], and has a 
lower expected utility than q as long as the poll is any indication of the outcome.6

3.	 When q is ranked last in the poll, people will tend to compromise for q′ . Also, people 
will tend to compromise more often when the expected gain from a compromise is 
higher.

Based on experimental findings from other studies in decision making [4, 12, 31, 38], we 
also expected to see behavior that may contradict some of the previous hypotheses, as 
detailed below. 

4.	 People tend to vote for the leader of the poll.
5.	 The number of voters n (i.e. size of the poll) has negligible effect on behavior.

4.3 � Classifying games and actions

Measures of voting behavior The large number of combinations of poll conditions makes 
the analysis non-trivial, and thus we aimed to define simple measures for voting behavior. 
We focused on the following four behaviors:

•	 TRT​ A truthful action. That is, voting for the most preferred candidate q.
•	 CMP Compromise. That is, voting for the second preference q′ when q is ranked last.
•	 LB Leader bias. That is, voting for the leader of the poll that is not q.
•	 DOM Dominated moves. That is, there is an action that surely yields a higher expected 

utility (under very weak assumptions on the vote distribution). In other words, there is 
no rational motivation to select this action.

There are also two possible combinations, namely DOM+LB and CMP+LB, abbrevi-
ated as DLB and CLB, respectively. Thus there are six classes of “interesting” actions: 
A = {TRT, LB,DLB, CMP,CLB,DOM} . For each action A ∈ A , we can measure its 
“A-ratio,” which is the fraction of instances where action A was played out of all instances 

Table 2   Classification of voters’ 
actions

Each row represents one of the 6 possible scenarios, and each column 
represents one of the 3 alternatives the voter can vote for

Scenario # Order by score Vote q Vote q′ Vote q′′

1 q > q′ > q′′ TRT​ DOM DOM
2 q > q′′ > q′ TRT​ DOM DOM
3 (LB) q′ > q > q′′ TRT​ LB DOM
4 q′′ > q > q′ TRT​ DOM DOM+LB
5 (CLB) q′ > q′′ > q TRT​ CMP+LB DOM
6 (CMP) q′′ > q′ > q TRT​ CMP DOM+LB

6  In order to prefer q′
i
 under linear reward, a rational voter i must believe that the event T23

i
 is strictly more 

likely than T12

i
∪ T13

i
 . This does not make sense even without computing the actual probabilities.



	 Autonomous Agents and Multi-Agent Systems (2020) 34:31

1 3

31  Page 14 of 37

where it was available. These A-ratios are the main tool we apply in the paper to analyze 
voting behavior.

Computing A‑ratios  We grouped all game instances into six scenarios, based on how can-
didates’ scores are ordered in the poll compared to the voter’s preferences. Table 2 shows 
this classification, where for each of the 3 actions in each of the 6 scenarios we marked 
which behaviors apply. That is, what kind of behavior would justify this action. Note that in 
some cases there are multiple possible justifications.

As the behaviors LB (by itself), CLB and CMP may only occur in a single scenario (3, 5 
and 6, respectively), we name the scenario after these behaviors.

We note the following. First, for ease of presentation we ignore ties in the poll con-
figurations. We return to this point later at Sect. 5 where there are few voters and ties are 
common. Second, it is natural to extend the definitions of these six action classes A to 
games with more than 3 candidates, where the number of scenarios is much larger.

Remark 1  We note that a similar classification of 3-candidate poll scenarios was done by 
Tyszler and Schram [69]. In particular, their “Rank 1st”, “Rank 2nd”, and “Rank 3rd” vot-
ers correspond to scenarios 1 and 2; 3 and 4; 5 and 6, respectively. Their “Supporter”, 
“Compromiser”, and “Opposer” correspond to scenarios 1 and 2; 3 and 5; 4 and 6, 
respectively.

Given a set of instances S (one-shot games) and k ∈ {1,… , 6} , Sk is the subset of 
instances of S in scenario k. For any action class A ∈ A , K(A) ⊆ {1,… , 6} are the sce-
narios where action A is possible (e.g., K(DLB) = {4, 6} ). We define the A-ratio of voter 
i within S as follows:

where the argument S is omitted when clear from context.
For example, if the CMP-ratio of i is 0.2, this means i played a CMP action (voted q′ ) 

in 20% of the games where this was an available action (scenario 6). As another exam-
ple, if we take the group of all subjects, and find that they played q′′ in 35% of all games 
in scenarios 4 and 6, then the DLB-ratio of this group is 0.35.

When the denominator of the A-ratio is smaller than 3 (less than three games 
where action A was available), we leave the A-ratio undefined. We define the type of a 

(7)A-Ratio(S) =

∑
k∈K(A) #{instances of Sk where A was played}

∑
k∈K(A) #{instances of Sk}

Table 3   Counts of all game instances according to scenario and selected candidate (Color figure online)

Scenario Vote q Vote q′ Vote q′′ Total
1 1472 (93.5%) 77 (4.9%) 25 (1.6%) 1574
2 1088 (93.1%) 51 (4.4%) 29 (2.5%) 1168
3 (LB) 807 (53.5%) 679 (45%) 22 (1.5%) 1508
4 1330 (75.1%) 158 (8.9%) 283 (16%) 1771
5 (CLB) 751 (31.9%) 1552 (65.9%) 53 (2.2%) 2356
6 (CMP) 715 (35.6%) 893 (44.5%) 398 (19.9%) 2006
Total 6163 3410 810 10383 

The fonts and colors code different actions: TRT in green, CMP in blue, DOM in red. LB is coded as bold, 
and CLB, DLB as a combination of bold and the relevant color
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participant as the collection of A-ratios (along all six action classes A ) over all games 
played by her, CMP-ratio ( Si ), TRT-ratio ( Si ), and so on, where Si is the set of games 
played by subject i.

Action Count Out of A-Ratio
TRT 6,163 10,383 0.594
LB 679 1,508 0.450
DLB 681 3,777 0.180
CMP 893 2,006 0.445
CLB 1,552 2,356 0.659
DOM 415 8,377 0.050

Fig. 2   A-ratios for all action classes across entire population. The right figure shows the same ratios graphi-
cally (Color figure online)

Fig. 3   Histogram of all A-ratios by subject. Each histogram contains all 603 distinct participants, omitting 
those for which the amount of data was insufficient to determine their type
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4.4 � One‑shot voting findings

Table 3 shows both the number and fraction of times each action was played for each 
scenario. The fonts and colors code different action classes: TRT in green, CMP in blue, 
DOM in red. LB is coded as bold, and CLB, DLB as a combination of bold and the rel-
evant color (Fig. 2). 

The fractions shown in Table 3 are difficult to interpret, as it is not clear what, say vot-
ing q′ in scenario 1 means. We thus rearrange the votes according to the action types we 
defined above.

Figure 2 aggregates counts over each of the 6 available actions, showing the A-ratio of 
each action across the entire population. The counts for each action class correspond to the 
total number of times that the action was chosen (which is the sum of counts over the cells 
in Table 3 that match its color). For example, we can see that there are 415 DOM actions 
by summing all red-non-bold cells in Table 3. Similarly, there are 8377 games in which a 
DOM action was available, which is the sum of the total number of games in the first five 
lines of Table 3. These six ratios can be seen as a collective “fingerprint” of a group of sub-
jects. Of course, we do not argue that the same ratios are indicative for the entire popula-
tion, and are mainly interested on qualitative findings, and on how A-ratios are affected by 
the variables we control.

Figure 2 shows that the DOM-ratio (0.050) is very low, which indicates that Hypothe-
sis 1 holds at large. However, Figure 2 ignores any inter-personal differences among partic-
ipants. To this end, we computed the types of all 603 unique subjects (i.e. all six A-ratios), 
and present the distribution of each A-ratio in the population in Fig. 3. We can see that 
there were 100-odd subjects with DOM-ratio ∼ 0.15 , whereas over 300 subjects never 
played a DOM action ( DOM-ratio = 0 ). These patterns are consistent across poll sizes.

Truthful voters  The most striking observation in Fig. 3 is the clear bimodal distribution of 
the TRT-ratio. A significant fraction of the population has a TRT-ratio close to 1, whereas 
the rest of the population is centered (but not very concentrated) around 0.5. It thus makes 
sense to identify the “(almost) always truthful” voters as a separate group. We denote by 
NTRT all participants with TRT-ratio strictly above 0.9.

Dominated actions  Another clear observation is that about 3
4
 of the voters avoid DOM 

actions completely, and about half avoid DLB actions. Yet there are few voters who repeat-
edly play these actions when available. We classify as NDOM voters those who played a 
DOM action at least twice.7

Table 4   The table shows the partition of subjects to types based on their observed behavior

For each type, we add the number of subjects of each type in the n = 1000 condition, and the total number 
in parentheses

N
TRT

N
DOM

N
other

10 subjects (45 in total) 27 subjects (74 in total) 155 subjects (484 in total)

7  A single DOM or DLB move may be unintentional or exploratory, and should thus be ignored.
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The partition to types is shown in Table 4. The type distribution for other poll size con-
ditions was similar. In the next subsections, we focus on the majority of the voters (85%) 
who are classified as Nother (neither NTRT nor NDOM ), and analyze their behavior in detail.

4.4.1 � Compromise behavior

We first show that the aggregate compromise behavior (Scenario 6 in Table 2) is largely 
consistent with our expectation from rational players. To that end, we calculate the 
expected utility gain in cents from a CMP action (voting q′ instead of q) for every possible 
combination of gaps in the polls. Note that the expected utility gain from compromise is 
almost the same in scenarios 5 and 6 (very slightly lower in Scenario 6), and is always 
negative in all other scenarios.

We assume for analysis purposes that Pr(Txy

i
) = Pr(T

yx

i
) , i.e. that the probability of a 

voter to be pivotal for x against y is equal to that of being pivotal for y against x. For a 
rational voter, the decision whether to vote for q′ in the CMP scenario depends on the like-
lihood of the events that i is pivotal for any pair of candidates, i.e. on T12

i
, T13

i
 and T23

i
 . 

Compromising increases i’s expected utility if and only if Pr(T23
i
) > 2Pr(T13

i
) + 2Pr(T12

i
).8 

To see why, recall that by Eq. (4),

EUGi(q
�) =

∑

�−i

(Pr(T
q�q

i
(�−i))(ri(q

�) − ri(q)) + Pr(T
q�q��

i
(�−i))(ri(q

�) − ri(q
��)))

=
∑

�−i

(Pr(T21
i
(�−i))(−10) + Pr(T23

i
(�−i))(10)) = 10(Pr(T23

i
) − Pr(T21

i
)),

Fig. 4   Gain for performing a compromise action in theory versus the frequency of compromise in practice. 
Both tables are for the condition n = 1000 , and each cell shows specific gap values. The colors emphasize 
high numbers (in green) versus low numbers (in red). The top table shows the expected payoff gain (in
) from a CMP action (CMP-value). The bottom table shows the actual CMP-ratio over all games of N

other
 

subjects. Since in some cells there are too few samples to get a reliable estimation, we smooth the table in 
the following way: for each cell, we take the average value between this cell and the average of all neighbor-
ing cells (at most four) (Color figure online)

8  This criterion coincides with the one in the equilibrium analysis of Palfrey [52] for three candidates.
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whereas

Under our assumption, Pr(T12
i
) = Pr(T21

i
) , thus the value (in cents) of a CMP action is

This value (and in particular whether it is positive or negative) depends on the other param-
eters, i.e. the size of the poll n and the gaps between candidates. For n = 100 and above, we 
estimated the CMP-value using Eq. (8), where T12

i
 , T23

i
 , and T13

i
 are multinomial random 

variables. For example Pr(T12
i
) =

∑⌊n∕2⌋
t=⌈n∕3⌉ Pr(X1,X2,X3)∼multinomial (s1,s2,s3,n)

[X1 = t ∧ X2 = t] , 
where sj is the score of candidate j at the poll. For the small n condition the estimation of 
Eq. (8) is inaccurate, and we thus used sampling to estimate CMP-value directly.

Figure 4 (top) shows the expected gain (the CMP-value) from playing q′ and the actual 
distribution of voters’ decisions (CMP-ratio, bottom figure). In the figure, we can see that 
the rational decision in the n = 1000 condition is to compromise (roughly) when Gap-last 
is in one of the two largest values. The effect of Gap-leader is mainly on the absolute CMP-
value, and not on the correct decision (which depends on the sign of CMP-value). As Gap-
leader increases, the possible gain (or loss) from a compromise becomes negligible—espe-
cially for large n. For other poll sizes (see Figs. 15, 16, and 17 in the appendix) we get 
similar results, except that the absolute expected gain differs. Thus for n = 10,000 the effect 
of a single vote on the expected utility is almost completely negligible. The CMP-value, as 
reflected in Fig. 4(top), provides the theoretical support to our Hypothesis 3: rational voters 
will be more inclined to compromise as Gap-last increases (since this means CMP-value is 
positive), and as Gap-leader decreases (since CMP-value becomes more significant).

Figure  4 (bottom) shows both of these trends in participants’ voting behavior for the 
CMP scenario (Scenario 6 in Table 2, which confirms Hypothesis 3. When gap-last is large 
and gap-leader is small (i.e., the voter’s favorite candidate is trailing behind in the poll, 
whereas the two other alternatives are nearly tied), voters compromise with probability 
∼ 0.8 . If either condition is violated, then the CMP-ratio drops significantly to 0.3–0.5.

Based on Fig. 4 we argue that voters in the CMP scenario follow a rational behavior, at 
least qualitatively. This can be further demonstrated by calculating the correlation between 
CMP-value and CMP-ratio. For n = 1000 , there is a medium correlation of 0.47. We get 
very similar trends for other poll sizes: The correlation of CMP-value with CMP-ratio is 
0.69, 0.62 and 0.56 for small n , n = 100 and n = 10,000 , respectively.

Yet, we can also see from Fig. 4 (bottom) that participants fail to adjust their decision 
threshold correctly: they compromise too much even when it hurts them in expectation 
(when both gaps are small), and when they are not pivotal (Gap-leader is large). Notably, 
once we omit the rightmost columns where the voter is almost never pivotal, the correla-
tion of CMP-value and CMP-ratio leaps from 0.47 to 0.76 in the n = 1000 condition, and 
similarly for the other poll size conditions. This is an indication that subjects tend to follow 
the rational behavior when stakes are (relatively) higher.

Another evidence that voters compromise too much shows when we analyze subjects’ 
payoffs: in the “small n” condition, subjects who compromised frequently obtained a 4–5% 

EUGi(q) =
∑

�−i

(Pr(T
qq�

i
(�−i))(ri(q) − ri(q

�)) + Pr(T
qq��

i
(�−i))(ri(q) − ri(q

��)))

=
∑

�−i

(Pr(T12
i
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i
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i
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(8)CMP-value = EUGi(q
�) − EUGi(q) ≅ 10Pr(T23

i
) − 20(Pr(T13

i
) + Pr(T12

i
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lower payoff than those who never compromised. In the larger n conditions the influence of 
the subject on the outcome (and thus on her own payoff) is negligible.

Table 5   The table extends 
Table 4 with the partition of 
N
other

 subjects based on their 
observed leader bias

All numbers are for the n = 1000 condition

N
other

 (155 subjects)

NTRT NDOM NLB0 (15 subjects) Unclassified
(10 subjects) (27 subjects) NLBX (42 subjects) (73 subjects)

NLB1 (25 subjects)

Fig. 5   LB-ratio of all games with a particular gap-leader value. Data shown is for the n = 1000 condition

Fig. 6   CLB-ratio (top) and CMP-ratio (bottom) as a function of gap-last. Both figures are for n = 1000
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4.4.2 � Leader bias

Studies in public policy and economics have documented “herding” effect in which voters 
are influenced by poll and ballot results [3, 4, 17]. As shown in the distribution of LB-ratio 
in Fig. 3, a significant number of voters are inclined to vote for the leader of the poll, at 
least when it is not the candidate they rank last ( q′′ ). We highlight that such a decision 
cannot increase the reward of the participant in expectation (or at all, except in extremely 
unlikely cases). This confirms Hypothesis 4, and shows that Hypothesis 2 applies only for 
a subset of voters.

To understand leader bias behavior in our setting (Scenario 3 in Table 2), we focus on 
the gap between the leader and the runnerup. The frequency of an LB action increases 
monotonically with gap-leader from around 0.35 to around 0.7 (Fig. 5). We observe a simi-
lar increase (from 0.15 to 0.35) in the probability of DLB action, which is overall less 
frequent.

Combining compromise and leader‑bias  When trying to apply the same analysis as above 
to CLB actions rather than LB, we get a much more noisy image. One possible explanation 
is that compromise behavior and leader-bias act in opposite directions, which leads to con-
founds. Recall that the LB-ratio of a subject was defined based on her behavior in the LB 
scenario only. We can refine the analysis by studying how voters with different LB-ratios 
behave differently in the CMP and CLB scenarios. We partitioned the voters with well-
defined LB-ratio into three subclasses. Let NLB0 ⊆ Nother denote all voters with LB-ratio of 
0, and NLB1 ⊆ Nother denote all voters with LB-ratio of 1. The remaining voters whose LB-
ratio is defined are classified as NLBX . The number of voters in each of these subcategories 
can be seen in the entries outlined with dashed lines in Table 5.

Figure 6(top) shows the CLB (a.k.a. CMP+LB) actions for voters in the CLB scenario 
(scenario 5 in Table 2) for different levels of gap last. In the figure we can see a remarkable 
difference between voters of different groups, where NLB1 voters compromise more than 
NLBX , which in turn compromise more than NLB0 voters. Within each group, we also see 
a slight increase in compromise as Gap-last increases.9 In contrast, there is no clear differ-
ence between these 3 groups of voters in the CMP scenario (Fig. 6 (bottom)). We can thus 
conclude that: (a) the partition to LB types is robust, as leader-biased voters apply their 
bias consistently across different scenarios (LB and CLB); (b) the tendency to compromise 
(as measured in the CMP scenario) and the leader-bias (as measured in the LB scenario) 
have an additive effect when both apply in the CLB scenario.

4.4.3 � Additional findings for one‑shot scenario

We also did an initial analysis of two other behaviors, namely voting for dominated actions, 
and learning. Since these findings are secondary to our main results above, they are 
detailed in Appendix 1. Dominated actions can be divided into two: DLB actions, which 
we show to be a stronger kind of leader bias; and all other DOM actions. For the latter, we 
argue that they reflect a random component in the behavior of some voters. As for learning, 

9  This increase becomes more accentuated if we filter out games with high Gap-leader, as in such games 
the compromise is almost not affected by Gap-last.
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we did not find any evidence that voters change their behavior after playing several games. 
This is in contrast to experiments such as in [5, 29], where voters repeatedly play the same 
game with the same group of people.

5 � Iterative voting

In an iterative setting  [42], voters start from some initial state �0 , but are then given 
repeated opportunities to change their vote. In our study, a single voter may change her 
vote at each step according to some fixed order. The game ends either after a predeter-
mined number of rounds, or if voters converged to an agreed outcome (see details below). 
It is important to note that voters’ preferences do not change over the course of the game.

Formally, we denote the voting profile at step t by �t , and the score vector and winner set 
derived from it by �t = �

�
t ,Wt = W(�t) . Since only one voter may change her vote at each 

Table 6   Example of iterative 
voting process of 4 voters, with 
convergence at step 10, after two 
and a half rounds

Step t 1 2 3 4 5 6 7 8 9 10

Voter i v1 v2 v3 v4 v1 v2 v3 v4 v1 v2

Vote ai r g g b r r g b r r
Winner
W(�) r r,g g g g r r r r r

Fig. 7   Voting game interface for iterative voting setting. The voting bar to the left of each candidate dis-
played the number of votes for the candidate at each round, as well as the identity of the voters who voted 
for the candidate. For example, the red candidate is the current leader, with 3 of the votes, cast by voters 
p4, p1 and p5

Q5
1

qi g b r
q′i b g b
q′′i

2 1 2

r r g

Q5
3 2 1 2

qi g g b
q′i
q′′i

b r r
r b g

Fig. 8   Two examples of preference profiles in iterative voting study for n = 5 . Each column is one prefer-
ence order, and first row indicates the number of voters with this preference. In the profile on the left there 
is a Condorcet winner (blue) but it is not a Plurality winner. In the profile on the right, gray is both the Plu-
rality winner and the Condorcet winner
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step, �t, �t+1 differ by at most one entry. A round is a sequence of n steps (one step for each 
voter). Convergence is defined as the case in which all voters do not change their votes in 
two consecutive rounds. Formally, if �t−t� = �

t for all t� = 0, 1,… , 2n − 1.10

For example, Table 6 shows a history of votes for the above example for steps 1 through 
10, in which convergence occurred. In this example, the game converged because the vote 
for each voter in steps 3–6 (�, �, �, �) repeated in steps 7–10.

5.1 � Methodology

The iterative voting experiments were performed on groups of several human voters, who 
are using iterative voting to select a winner or winners out of three possible candidates. 
Figure 7 shows a snapshot of the GUI of the one-shot voting game that is configured to 
include three candidates (red, grey, and blue) with 5 voters.

Game configurations  We used voter group sizes of 3, 5, and 7 voters, and for each group 
size designed 6 preference profiles according to the interplay between two selection crite-
ria, the Plurality and Condorcet winners.11 Two of the profiles we used for the n = 5 condi-
tion appear in Fig. 8. For all other profiles, see the “Appendix”.

Determining the outcome and payoff  The game was played according to the protocol of 
iterative voting described above, starting from the truthful voting profile. Subjects could 
not see the actual preferences of the other voters, but could see the current voting profile at 
each step (that is, which voter votes for which candidate). The game GUI is shown in Fig. 7 
for an example configuration with 5 voters from the point of view of voter p1.

A game is terminated when the voters converge, as described in Sect. 5, or if the num-
ber of rounds reached a predetermined threshold unknown to the participants (uniformly 
distributed between 5 and 10). The winner (or winners, in case of a ties) was the candidate 
with the largest number of votes in the last round, and the reward for each voter in the 
game was determined separately according to the her preferences. The rewards for a single 
iterative game were set as ( ). Rewards per game are higher than in the one-shot 
games since an iterative game takes longer in average.

Data collection  Subjects were recruited via Amazon Turk from the same pool used for the 
one-shot experiments (Sect. 4). Subjects could play up to 6 games in a sequence, each time 
with a different preference profile and with a different group of subjects (matched at ran-
dom). All the collected data is available for download from www.votel​ib.org.

Hypotheses  Our general hypothesis was that the behavior in the iterative and the one-shot 
settings would be similar. In particular, we expected to find a similar partition to types and 
similar distributions of conditional actions, despite the different context. That is, despite 

10  This is since after two rounds every voter saw that everyone else have kept their vote, and chose to keep 
their vote as well. Thus they are unlikely to change again. Note that the exact cutoff point does not matter 
much since we are interested more in the intermediate actions than in the final state.
11  The Condorcet winner of an election is the candidate who, when compared with every other candidate, is 
preferred by a majority voters. It does not always exist.

http://www.votelib.org
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the fact that in the iterative game a voter sees the actual votes of the other voters and knows 
it may later change.

An alternative hypothesis is that players adopt some notion of rational behavior in 
their play. For this purpose we will compare their behavior to the Myopic Best Response 
Model of Meir et al. [42]. Under this model, in each round a voter plays as if this is the last 
round. This means she should compromise if and only if both of these conditions apply: 
(1) q is ranked last in the current profile �t ; and (2) the gap between the q′ and q′′ (which is 
exactly Gap-last) is either 0 or 1. These are exactly the conditions under which voting for q′ 
changes the outcome in a way that increases the voter’s utility.

We ruled out more complicated rational models such as subgame perfect equilib-
rium [21], as their assumptions are incompatible with the conditions of the experiment. In 
particular, our voters do not know the preferences of others and how many rounds the game 
will continue.

In order to test these hypotheses, we computed and analyzed A-ratios in the same way as 
we did for one-shot voting, except that instead of a poll we used the current voting profile 
�
t . More specifically, we counted each step by player i as a separate decision, classifying it 

into one of six scenarios as in Table 3 and checking the action classes from A to which it 

Fig. 9   Distribution over truthful ratio for small n 

Table 7   Types of subjects in the 
one-shot and iterative setting

N
TRT

N
DOM

N
other

One-shot (small n) 20 (9%) 21 (9%) 182 (82%)

Iterative ( n = 7) 19 (13%) 39 (32%) 66 (55%)

Fig. 10   Action distribution for 
small n, showing each of the six 
average A-ratios among the N

other
 

group
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applies. This way we get multiple data points on each subject (6 games times 2–5 rounds in 
each game) that allow us to measure the A-ratios.

5.2 � Iterative voting findings

We report our findings for groups of 7 voters, and compare them to the small n condition in 
the one-shot setting. Our findings for groups of 5 and 3 voters were similar and exhibited 
the same patterns.

Figure 9 shows the distribution over the TRT-ratio for the iterative setting (left) and 
the one-shot setting (right). As shown by the figure, both settings display similar bi-
modal behavior. A significant amount of the population is centered close to 1, while the 
rest of the population is centered around 0.5.

One big difference was the partition into types, see Table 7. The fraction of subjects 
classified as NTRT and especially NDOM was much higher in the iterative setting, com-
pared to the one-shot games. We return to this point later on.

We can see that the action distribution in the iterative setting, shown in Fig. 10 bears 
striking resemblance to the one in the one-shot setting, even though this is completely 
different game! This confirms the hypothesis that human voters follow a myopic heuris-
tic that is based on poll scores.

Leader‑bias  It seems in Fig. 10 that there is more leader-bias in the iterative setting, but 
recall that in the iterative setting we are unable to control the frequency of each scenario, 
and in particular the gap-size. We thus need to add it as a control variable. Indeed, Fig. 11 
(top) shows that once we control the gap size, the amount of leader-bias in the one-shot and 

Fig. 11   The effect of gap size on LB and CMP ratios for small n in iterative setting on N
other
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iterative settings is remarkably similar. As shown in the figure, in both settings the LB ratio 
increases with the gap size.

Remark 2  Note that in the iterative setting there is a possible rational motivation for an LB 
or DLB action at high gaps that does not apply in the one-shot setting: the subject may use 
it to quickly finish a game where she cannot get her favorite candidate to win.

Compromise behavior  We observe very similar compromise behavior to the one-shot 
games, where CMP-ratio is increasing with gap-last (Fig. 11 (bottom)).

Fig. 12   A-ratios in iterative voting behavior for the N
other

 group, split into “move” and “stay.” As a baseline 
we also show the behavior in the one-shot scenario. On the right we can see the effect of stickiness on the 
DOM-ratio in the N

other
∪ N

DOM
 group

Fig. 13   “Stickiness” actions for different gap size
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The effect of gap-leader on compromise behavior is much weaker. The range of CMP-
ratio is between 0.5 and 0.75 for any value of Gap-leader with weak negative correlation 
in one-shot games, and no correlation in iterative games. In contrast, MBR suggests that 
behavior should follow a sharp threshold: 1 when the voter is pivotal and 0 otherwise. We 
can thus reject MBR as a plausible description of voters’ behavior. While the match with 
the behavior from one-shot games is not perfect, it seems like a good baseline to explain 
and predict the behavior in iterative games.

“Stickiness” behavior  Interestingly, we saw that many voters choose to vote for the same 
candidate as in the last round, even if the scenario changed due to actions by other players. 
This behavior can be demonstrated by splitting the data into “move” and “stay” condi-
tions. We thus recomputed the A-ratios for different actions on each of the “move” and 
“stay” subsets. For example, there were 64 steps in scenario  3 (the LB scenario) where 
the previous vote of the voter was q′ , and in 48 of them (75%), the voter voted q′ again. In 
contrast, there were 86 steps in scenario 3 where the previous vote was not q′ , and in 29 of 
them (34%) the voter changed the vote to q′ . This gives us an LB-ratio of 0.75 and 0.34 in 
the “stay” and “move” conditions, respectively. Figure 12 shows the three most important 
A-ratios (the others exhibit a similar pattern). We can see that in all of them, a voter in 
the iterative game has a lower tendency for compromise/leader-bias than in the one-shot 
game, if this requires an active change of vote. However this tendency becomes higher if it 
only requires to repeat the previous action. The stickiness effect persists when we control 
for the size of the gap (Fig. 13). A natural explanation is that voters in the iterative game 
exhibit a strong level of default-bias, where their last vote is used as the default action. We 
also checked whether the difference in tendency to move could follow from “ego depletion 
effect,” where subject becomes less active in later rounds [62]. We ruled this explanation 
out since the CMP-ratio remain stable throughout the six games of each subject.

Next, we checked whether default-bias could account for the much higher rate of 
DOM and TRT voters in the iterative setting. Since TRT voters have a constant behav-
ior, splitting into conditions cannot reveal much on their actions. However, we ana-
lyzed again the DOM votes of all voters who are not TRT voters (Fig. 12, on the right). 

Fig. 14   An abstraction of the voter’s decision process. The ovals above each decision node indicate factors 
that affect the decision positively (+) or negatively (−). The white ovals are external factors and the shaded 
ones are internal to the voter
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We can see that the DOM-ratio in the “move” condition is essentially the same as in 
the one-shot setting, meaning that voters in both settings actively choose a dominated 
action at a similar rate, probably as random exploration (see Sect. 4.4.3). In contrast, the 
DOM-ratio in the “stay” condition is significantly higher, adding many more instances 
where voters simply kept their previous vote (that may have not been dominated in the 
previous round).

Effect on  welfare  We did not detect any statistically significant differences in the social 
welfare of groups as the iterative game progresses (meaning the iterative process does not 
lead to higher or lower social welfare). However at the individual level there is a negative 
correlation between CMP-ratio and the payoff for the subject, where the payoff of the most 
compromising subjects was 10–15% lower than those who consistently voted for their top 
choice.

6 � Discussion and future work

Our results demonstrate that there are simple heuristics or patterns that provide reason-
able description of voters’ behaviors, even in distinct settings such as one-shot and iterative 
games. We provide an abstraction of the decision process of the voter that is consistent 
with our findings in Fig. 14:

•	 First, a voter may decide to explore with a random vote with some (low) probability. 
This probability is higher for some voters, and higher on the first game. We believe this 
decision comes first since it seems to be independent of other factors and since random 
actions demonstrate shorter response times.

•	 Then, a voter may simply stick to her current vote (only relevant to the iterative set-
ting), where again some voters may be more “lazy” than others.

•	 In scenarios that pose a strategic dilemma, the voter may choose to compromise, where 
this decision is affected both by internal factors (tendency to compromise, as measured 
by the CMP-ratio), and by the poll information. We note that the effect of the numeric 
information provided in the poll is qualitatively correct (i.e. voters compromise more 
in situations where a compromise would improve their expected utility), but most vot-
ers compromise too often.

•	 Finally, the voter may decide to vote for the leader, where again this is highly affected 
by personal differences (some voters have no leader-bias at all), and by the margin of 
the leader.

This abstraction should facilitate the generation of hypotheses and specific models 
regarding voters’ behavior in more complex situations, e.g. with a larger number of candi-
dates or different voting rules.

Leader‑bias and bandwagon effect  The phenomenon of leader-bias is particularly surpris-
ing, since a common explanation for herding/bandwagon effect is information cascade, 
where decision makers are unsure about the quality of each choice, and learn from the 
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actions of others [3]. Such an explanation is irrelevant for our results due to two reasons.12 
First, Dekel and Piccione [20] showed that in voting between two candidates (as is the case 
in practice in our LB scenario) information cascades do not occur in equilibrium. Second 
and more importantly, in our setting the qualities of candidates were known and the reward 
was fixed. Also, our subjects did not have an exogenous incentive to reach consensus, in 
contrast to other experiments as in [34]. In fact, while in our iterative game voting for the 
leader can be somewhat rationalized (see Remark 2), in the one-shot game this invariably 
decreases the voter’s expected utility, and hence the “herding” moves cannot be rational-
ized by purely economic terms.

Two possible alternative explanations are: (1) voting for the leader is perceived by 
some voters as an alternative “default” option, that does not require cognitive effort (just 
like voting for the most preferred); (2) some voters acquire (non-monetary) utility from 
the satisfaction of voting for the winner (known as expressive utility [63]), and thus vot-
ing for the leader does bear a higher overall utility for them. Further experimentation is 
required to determine whether these explanations are valid. We note that various possi-
ble motivations for herding (or “bandwagon effect”) in political voting are discussed in 
[12], and are more inline with the latter explanation.

The behavior of voters in two very different settings (one-shot voting with simulated 
noise, and iterative voting game with other human participants) was remarkably similar, 
where participants treated poll information (in one-shot) and current votes (in iterative) 
in the same way. This similarity shows the robustness of the patterns above. The main 
difference between the settings was the higher tendency to play truthful actions and 
dominated actions, where at least the latter is fully explained by “stickiness”: another 
form of default-bias that is not available in the one-shot game.

We can conclude that our results generally support the “decision-theoretic” models 
of strategic voting. Indeed, it seems that for the large part, human voters follow rel-
atively simple heuristics, that ignore and sometimes directly contradict economic, or 
“game theoretic” reasoning. Moreover, in the context of iterative voting these heuristics 
are largely myopic, as they only depend on the current state. This finding emphasizes 
the relevance of theoretical models of myopic strategies  [24, 32, 43, 51]. When look-
ing for a theory to explain and predict voters’ behavior, it is crucial that the model will 
allow for a wide range of behaviors, as specified above.

Future directions  In the future we intend to perform a deeper analysis of interpersonal 
differences, whether by identifying finer subgroups of voters, or some individual param-
eters that affect voters’ behavior (such as different levels of risk-aversion or tendency for 
herding). We believe it is possible to predict the voting behavior of a person based on few 
observations, and that the accuracy of such predictions can guide us in finding better voting 
models.

Since in our experiment there were only three candidates, the range of available 
strategic decisions was very limited. Running experiments with larger sets of can-
didates will enable us to study what strategic actions voters prefer when there are 

12  Another explanation that is also less relevant in our case is that voters signal their own competence by 
following others [31].
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Fig. 15   CMP-value and CMP-ratio for n = 7 . Note that in practice the number of voters ranges in 6 − 10

Fig. 16   CMP-value and CMP-
ratio for n = 100

Fig. 17   CMP-value and CMP-
ratio for n = 10,000
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several plausible alternatives. Note that the number of scenarios quickly explodes as we 
increase the number of candidates (24 for 4 candidates, 120 for 5, and so on). However, 
the six behaviors that we define and measure (TRT, CMP and so on) can be extended to 
any number of candidates, even if the classification of some borderline scenarios may be 
arguable.

Our results demonstrate the critical role of the information that a voter has on her 
strategic decisions. As most economic and game theoretic models assume that avail-
able information includes the preferences of other voters (or a distribution thereof), we 
would like to check the effect of such information on the behavior, when given instead 
or in addition to current score information (such as polls). We conjecture that the effect 
in the latter case will be small, as unlike poll information, it may be difficult for people 
to translate preference profiles to an obvious strategic decision.

Finally, a better understanding of how people behave strategically in online voting 
settings can guide the design and implementation of better platforms for preference 
aggregation. Our experimental infrastructure can be used to test such mechanisms in a 
context-free environment.
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Fig. 18   Every point represent a 
single subject, except those for 
which there where not enough 
samples to determine their type. 
The X-axis is the LB-ratio, and 
the Y-axis is the CLB-ratio

http://creativecommons.org/licenses/by/4.0/
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Appendix 1: Additional findings in one‑shot games

CMP actions

We add here more figures that support the findings in Sect. 4.4.1. Specifically, Figs. 15, 
16, and 17 show that empirical CMP-ratios closely follow the theoretical CMP-values for 
populations of sizes n = 7 , n = 100 , and n = 10,000 , respectively.

As with the n = 1000 case analyzed in Sect. 4.4.1 and Fig. 4, there is a medium cor-
relation between CMP-value and CMP-ratio of 0.69, 0.62 and 0.56 for n = 7, n = 100 and 
n = 10,000 , respectively. Also, most of the voters’ ‘errors’ are in the rightmost columns, 
where the voter is rarely pivotal, yet human subjects tend to compromise.

DLB actions

A small group of voters ( NDLB ) frequently vote for the leader even when it is a globally 
dominated action. That is, can only decrease their payoff.

Fig. 19   Average A-ratios for early games (games 1–10 of each subject) versus late games (games 11–20 of 
each subject). Data presented is for n = 1000

Fig. 20   A graphical representa-
tion of the A-ratios of the DOM 
subjects, versus the A-ratios of 
LB1 voters with 50% probability 
to perform a random action
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One possible explanation is that these participants misunderstood the game (e.g., 
believed their goal is to guess the winner). We rule out this explanation since: a. all subjects 
completed a tutorial and a quiz which demonstrate in detail how the reward is decided; and 
b. although “always vote for the leader” is a very simple strategy to play, no subject fol-
lowed it consistently, and only a handful of subjects had a DLB-ratio of 1.

Comparing the DLB and LB ratio of each subject, it is evident from Fig. 18 that the 
DLB ratio of almost all voters is same or lower than their LB ratio. We can therefore think 
of DLB as a stronger and less rational form of leader-bias.

Learning

We relate to the question of how people’s strategic behavior changes over time. On one 
hand, since voters essentially compromise “too much,” we expect them to eventually learn 
to correct their behavior by compromizing less. On the other hand, the signal after every 
round is very weak (except for n = 7 ), so in practice voters do not get any valuable feed-
back on their strategy.

We can see in Fig. 19 that there is almost no change in A-ratio, for all the 5 interesting 
actions we identified (TRT-ratio omitted to avoid cluttering). We get similar results for all 
poll size conditions, and also when controlling the value of gap-leader and gap-last. In fact, 
for n = 7 we get a slight increase in CMP-ratio, which is the opposite of what we would 
expect.

Thus at least at the population level there does not seem to be any learning process or 
change in behavior over time is taking place. It is possible though that at the individual 
level people are changing their behavior in opposite ways, and further experimentation is 
required to determine that (Fig. 19).

Dominated actions

It seems a bit mysterious that subject play actions that strictly decrease their payoff. One 
possible explanation that appeared in previous work was that voters use Quantal Response 
rather than best response [41]. We offer a different explanation, and argue that these actions 
are due to a random component in the behavior of some subjects. In other words, each 

Fig. 21   Average response times 
(in seconds) for voters classified 
as DOM, TRT and all others. We 
control the poll size, as it has a 
strong effect on the response time
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subject has a certain likelihood (which varies among subjects) to vote randomly, which is 
part of her type.

To check this, we partitioned subjects based on their type. We computed the A-ratios 
ADOM of subjects classified as DOM, and compared it to the A-ratios of other subgroups 
of subjects, and in particular to the most Lead-biased group whose A-ratios are ALB1 . We 
considered possible noisy actions by mixing the actions with a uniform distribution over all 
actions AU.

We can see  in Fig.  20 that ADOM is almost identical to the linear combination 
Amix =

1

2
ALB1 +

1

2
AU , even without trying to optimize any parameters. In other words, 

a DOM voter behaves, on average, like a standard voter that randomized her action with 
probability 0.5.

Another corroboration to that viewpoint is by looking at response times. Intuitively, we 
would expect a voter that behaves randomly to react faster. Indeed, as we can see in Fig. 21, 
DOM voters are about 10–15% faster than “other” voters. The TRT voters, who do not 
need to think about their action at all, are the fastest.

Appendix 2: Profiles used for iterative games

For each of the n = 5 and n = 7 conditions, we constructed 6 profiles, which differ in the 
consensus among players regarding the best outcome. In two of the profiles there was a 
Condorcet winner who is same the Plurality winner; In two profiles there was no Con-
dorcet winner; and in two profiles the Condorcet winner was different than all Plurality 
winners. Each table presents one profile. Each column presents a single voter type, and 
the top row presents the number of voters of this type in the profile. The Condorcet winner 
appears in bold, when exists. For the n = 3 there is only one profile with no Condorcet win-
ner, which is completely symmetric and thus less interesting so we only used the CsP and 
CdP profiles.



	 Autonomous Agents and Multi-Agent Systems (2020) 34:31

1 3

31  Page 34 of 37

References

	 1.	 Adams, J., Merrill, S., & Grofman, B. (2005). Does France’s two-ballot presidential election system 
alter candidates policy strategies? A spatial analysis of office-seeking candidates in the 1988 presiden-
tial election. French Politics, 3(2), 98–123.

	 2.	 Aldrich, J. H., Blais, A., & Stephenson, L. B. (2018). Strategic voting and political institutions. In J. H. 
Aldrich, A. Blais, & L. B. Stephenson (Eds.), The many faces of strategic voting. Ann Arbor: Univer-
sity of Michigan Press.

	 3.	 Banerjee, A. V. (1992). A simple model of herd behavior. The Quarterly Journal of Economics, 
107(3), 797–817.

	 4.	 Bartels, L. M. (1988). Presidential primaries and the dynamics of public choice. Princeton: Princeton 
University Press.

	 5.	 Bassi, A. (2008). Voting systems and strategic manipulation: An experimental study. Technical report, 
mimeo.



Autonomous Agents and Multi-Agent Systems (2020) 34:31	

1 3

Page 35 of 37  31

	 6.	 Baujard, A., Igersheim, H., Lebon, I., Gavrel, F., & Laslier, J.-F. (2014). Who’s favored by evaluative 
voting? An experiment conducted during the 2012 French presidential election. Electoral Studies, 34, 
131–145.

	 7.	 Bitan, M., Gal, Y., Kraus, S., Dokow, E., & Azaria, A. (2013). Social rankings in human–computer 
committees. In Proceedings of AAAI’13 (pp. 116–122).

	 8.	 Blais, A., Laslier, J.-F., Laurent, A., Sauger, N., & van der Straeten, K. (2007). One-round vs two-
round elections: An experimental study. French Politics, 5(3), 278–286.

	 9.	 Blais, A., Pilet, J.-B., van der Straeten, K., Laslier, J.-F., & Héroux-Legault, M. (2014). To vote or 
to abstain? An experimental test of rational calculus in first past the post and PR elections. Electoral 
Studies, 36, 39–50.

	10.	 Blais, A., Loewen, P. J., Rubenson, D., Stephenson, L. B., & Gidengil, E. (2018). Information on party 
strength and strategic voting: Evidence of non-effects from a randomized experiment. In J. H. Aldrich, 
A. Blais, & L. B. Stephenson (Eds.), The many faces of strategic voting. Ann Arbor: University of 
Michigan Press.

	11.	 Brunell, T. L., & Grofman, B. (2009). Testing sincere versus strategic split-ticket voting at the aggre-
gate level: Evidence from split house–president outcomes, 1900–2004. Electoral Studies, 28(1), 
62–69.

	12.	 Callander, S. (2007). Bandwagons and momentum in sequential voting. The Review of Economic Stud-
ies, 74(3), 653–684.

	13.	 Chamberlin, J. R., Cohen, J. L., & Coombs, C. H. (1984). Social choice observed: Five presidential 
elections of the American Psychological Association. The Journal of Politics, 46(02), 479–502.

	14.	 Chopra, S., Pacuit, E., & Parikh, R. (2004). Knowledge-theoretic properties of strategic voting. Pre-
sented in JELIA-04, Lisbon, Portugal.

	15.	 Conitzer, V., Walsh, T., & Xia, L. (2011). Dominating manipulations in voting with partial informa-
tion. In Proceedings of AAAI’11 (pp. 638–643).

	16.	 Cox, G. W. (1997). Making votes count: Strategic coordination in the world’s electoral systems (Vol. 
7). Cambridge: Cambridge University Press.

	17.	 Cukierman, A. (1991). Asymmetric information and the electoral momentum of public opinion polls. 
Public Choice, 70(2), 181–213.

	18.	 de Condorcet, M. (1785). Essai sur l’application de l’analyse à la probabilité de décisions rendues à la 
pluralité de voix. Imprimerie Royal, 1785. Facsimile published in 1972 by Chelsea Publishing Com-
pany, New York.

	19.	 de Borda, J.-C. (1953). Memoires sur les elections au scrutin. Paris: Histoire de l’Academie Royale des 
Sciences. Translation in Alfred de Grazia, 1953. “Mathematical Derivation of an Election System”. 
Isis, 44(42–51)

	20.	 Dekel, E., & Piccione, M. (2000). Sequential voting procedures in symmetric binary elections. Journal 
of Political Economy, 108(1), 34–55.

	21.	 Desmedt, Y., & Elkind, E. (2010). Equilibria of plurality voting with abstentions. In Proceedings of 
ACM-EC’10 (pp. 347–356).

	22.	 Doodle. (2018). New all-time high: 30m users per month arrange their meetings with doodle. The 
Doodle Blog. https​://en.blog.doodl​e.com/2018/12/06/new-all-time-high-30m-users​-per-month​-arran​
ge-their​-meeti​ngs-with-doodl​e/.

	23.	 Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for the web. In 
Proceedings of WWW’01 (pp. 613–622).

	24.	 Endriss, U., Obraztsova, S., Polukarov, M., & Rosenschein, J. S. (2016). Strategic voting with incom-
plete information. In Proceedings of IJCAI’16 (pp. 236–242).

	25.	 Fairstein, R., Lauz, A., Meir, R., & Gal, K. (2019). Modeling people’s voting behavior with poll infor-
mation. In Proceedings of AAMAS’19 (pp. 1422–1430).

	26.	 Farquharson, R. (1969). Theory of voting. New Haven: Yale University Press.
	27.	 Felsenthal, D. S., Rapoport, A., & Maoz, Z. (1988). Tacit co-operation in three-alternative non-coop-

erative voting games: A new model of sophisticated behaviour under the plurality procedure. Electoral 
Studies, 7(2), 143–161.

	28.	 Ferejohn, J. A., & Fiorina, M. P. (1974). The paradox of not voting: A decision theoretic analysis. The 
American Political Science Review, 62, 525–536.

	29.	 Forsythe, R., Rietz, T., Myerson, R., & Weber, R. (1996). An experimental study of voting rules and 
polls in three candidate elections. International Journal of Game Theory, 25(3), 355–383.

	30.	 Goel, A., & Lee, D. (2012). Triadic consensus. In Proceedings of WINE’12 (pp. 434–447).
	31.	 González, M., Modernell, R., & París, E. (2006). Herding behaviour inside the board: An experimental 

approach. Corporate Governance: An International Review, 14(5), 388–405.

https://en.blog.doodle.com/2018/12/06/new-all-time-high-30m-users-per-month-arrange-their-meetings-with-doodle/
https://en.blog.doodle.com/2018/12/06/new-all-time-high-30m-users-per-month-arrange-their-meetings-with-doodle/


	 Autonomous Agents and Multi-Agent Systems (2020) 34:31

1 3

31  Page 36 of 37

	32.	 Grandi, U., Loreggia, A., Rossi, F., Venable, K. B., & Walsh, T. (2013). Restricted manipulation in 
iterative voting: Condorcet efficiency and Borda score. In Proceedings of ADT’13 (pp. 181–192).

	33.	 Hall, M. G. (1992). Electoral politics and strategic voting in state supreme courts. The Journal of 
Politics, 54(02), 427–446.

	34.	 Kearns, M., Judd, S., Tan, J., & Wortman, J. (2009). Behavioral experiments on biased voting in 
networks. Proceedings of the National Academy of Sciences, 106(5), 1347–1352.

	35.	 Kube, S., & Puppe, C. (2009). (When and how) do voters try to manipulate? Public Choice, 139(1), 
39–52.

	36.	 Lebon, I., Baujard, A., Gavrel, F., Igersheim, H., & Laslier, J.-F. (2018). Sincere voting, strategic 
voting: A laboratory experiment using alternative proportional systems. In J. H. Aldrich, A. Blais, 
& L. B. Stephenson (Eds.), The many faces of strategic voting. Ann Arbor: University of Michigan 
Press.

	37.	 Leskovec, J., Huttenlocher, D., & Kleinberg, J. (2010). Signed networks in social media. In Pro-
ceedings of SIGCHI’10 (pp. 1361–1370).

	38.	 Leskovec, J., Huttenlocher, D. P., & Kleinberg, J. M. (2010). Governance in social media: A case 
study of the Wikipedia promotion process. In Proceedings of ICWSM’10 (pp. 98–105).

	39.	 Mao, A., Procaccia, A. D., & Chen, Y. (2013). Better human computation through principled vot-
ing. In Proceedings of AAAI’13 (pp. 1142–1148).

	40.	 Mattei, N., & Walsh, T. (2013). Preflib: A library for preferences http://www.prefl​ib.org. In Pro-
ceedings of ADT’13 (pp. 259–270).

	41.	 McKelvey, R. D., & Patty, J. W. (2006). A theory of voting in large elections. Games and Economic 
Behavior, 57(1), 155–180.

	42.	 Meir, R., Polukarov, M., Rosenschein, J. S., & Jennings, N. R. (2010). Convergence to equilibria in 
plurality voting. In Proceedings of AAAI’10 (pp. 823–828).

	43.	 Meir, R., Lev, O., & Rosenschein, J. S. (2014). A localf-dominance theory of voting equilibria. In 
Proceedings of ACM-EC’14 (pp. 313–330).

	44.	 Meir, R. (2018). Strategic voting. Synthesis lectures on artificial intelligence and machine learning. 
San Rafael: Morgan Claypool.

	45.	 Merrill, S. (1981). Strategic decisions under one-stage multi-candidate voting systems. Public 
Choice, 36(1), 115–134.

	46.	 Messner, M., & Polborn, M. K. (2002). Robust political equilibria under plurality and runoff rule. 
Mimeo, Bocconi University.

	47.	 Mitchell, J. (2001). Clustering and psychological barriers: The importance of numbers. Journal of 
Futures Markets, 21(5), 395–428.

	48.	 Myerson, R. B., & Weber, R. J. (1993). A theory of voting equilibria. The American Political Sci-
ence Review, 87(1), 102–114.

	49.	 Myerson, R. B. (2002). Comparison of scoring rules in Poisson voting games. Journal of Economic 
Theory, 103(1), 219–251.

	50.	 Niemi, R. G., & Frank, A. Q. (1982). Sophisticated voting under the plurality procedure. In K. A. 
Shepsle & P. Ordeshook (Eds.), Political equilibrium (pp. 151–172). Berlin: Springer.

	51.	 Obraztsova, S., Markakis, E., & Thompson, D.  R. M. (2013). Plurality voting with truth-biased 
agents. In Proceedings of SAGT’13 (pp. 26–37).

	52.	 Palfrey, T.  R. (1988). A mathematical proof of Duverger’s law. Mimeo, California Institute of 
Technology.

	53.	 Palfrey, T. R. (2009). Laboratory experiments in political economy. Annual Review of Political Sci-
ence, 12, 379–388.

	54.	 Regenwetter, M., & Grofman, B. (1998). Approval voting, Borda winners, and Condorcet winners: 
Evidence from seven elections. Management Science, 44(4), 520–533.

	55.	 Regenwetter, M., & Rykhlevskaia, E. (2007). A general concept of scoring rules: General defini-
tions, statistical inference, and empirical illustrations. Social Choice and Welfare, 29(2), 211–228.

	56.	 Regenwetter, M., Grofman, B., & Marley, A. A. J. (2002). On the model dependence of majority 
preference relations reconstructed from ballot or survey data. Mathematical Social Sciences, 43(3), 
451–466.

	57.	 Regenwetter, M., Grofman, B., Marley, A., & Tsetlin, I. (2006). Behavioral social choice. Cam-
bridge: Cambridge University Press.

	58.	 Regenwetter, M., Ho, M.-H. R., & Tsetlin, I. (2007). Sophisticated approval voting, ignorance pri-
ors, and plurality heuristics: A behavioral social choice analysis in a Thurstonian framework. Psy-
chological Review, 114(4), 994.

	59.	 Reijngoud, A., & Endriss, U. (2012). Voter response to iterated poll information. In Proceedings of 
AAMAS’12 (pp. 635–644).

http://www.preflib.org


Autonomous Agents and Multi-Agent Systems (2020) 34:31	

1 3

Page 37 of 37  31

	60.	 Reyhani, R., Wilson, M. C., & Khazaei, J. (2012). Coordination via polling in plurality voting games 
under inertia. In COMSOC’12.

	61.	 Riker, W. H., & Ordeshook, P. C. (1968). A theory of the calculus of voting. The American Political 
Science Review, 62(1), 25–42.

	62.	 Schmeichel, B. J., Vohs, K. D., & Baumeister, R. F. (2003). Intellectual performance and ego deple-
tion: Role of the self in logical reasoning and other information processing. Journal of Personality and 
Social Psychology, 85(1), 33.

	63.	 Schuessler, A. A. (2000). Expressive voting. Rationality and Society, 12(1), 87–119.
	64.	 Sertel, M. R., & Sanver, M. R. (2004). Strong equilibrium outcomes of voting games are the general-

ized condorcet winners. Social Choice and Welfare, 22(2), 331–347.
	65.	 Shah, N., Zhou, D., & Peres, Y. (2015). Approval voting and incentives in crowdsourcing. In Proceed-

ings of ICML’15 (pp. 10–19).
	66.	 Simon, H. A. (1954). Bandwagon and underdog effects and the possibility of election predictions. Pub-

lic Opinion Quarterly, 18(3), 245–253.
	67.	 Sina, S., Hazon, N., Hassidim, A., & Kraus, S. (2015). Adapting the social network to affect elections. 

In Proceedings Of AAMAS’15 (pp. 705–713).
	68.	 Tal, M., Meir, R., & Gal, Y. (2015). A study of human behavior in online voting. In Proceedings of 

AAMAS’15 (pp. 665–673).
	69.	 Tyszler, M., & Schram, A. (2016). Information and strategic voting. Experimental Economics, 19(2), 

360–381.
	70.	 van Deemen, A. M. A., & Vergunst, Noël P. (1998). Empirical evidence of paradoxes of voting in 

Dutch elections. Public Choice, 97, 475–490.
	71.	 van der Straeten, K., Laslier, J.-F., Sauger, N., & Blais, A. (2010). Strategic, sincere, and heuristic vot-

ing under four election rules: An experimental study. Social Choice and Welfare, 35(3), 435–472.
	72.	 van der Straeten, K., Laslier, J.-F., & Blais, A. (2013). Vote au pluriel: how people vote when offered 

to vote under different rules. PS: Political Science & Politics, 46(2), 324–328.
	73.	 van der Straeten, K., Sauger, N., Laslier, J.-F., & Blais, A. (2013). Sorting out mechanical and psycho-

logical effects in candidate elections: An appraisal with experimental data. British Journal of Political 
Science, 43(4), 937–944.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Strategic voting in the lab: compromise and leader bias behavior
	Abstract
	1 Introduction
	2 Related work
	2.1 Theoretical work
	2.2 Empirical work and in-situ experiments
	2.3 Lab experiments

	3 The setting
	4 One-shot voting
	4.1 Methodology
	4.2 Hypotheses
	4.3 Classifying games and actions
	4.4 One-shot voting findings
	4.4.1 Compromise behavior
	4.4.2 Leader bias
	4.4.3 Additional findings for one-shot scenario


	5 Iterative voting
	5.1 Methodology
	5.2 Iterative voting findings

	6 Discussion and future work
	Acknowledgements 
	References




