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Abstract
To achieve system-level properties of a multiagent system, the behavior of individual 
agents should be controlled and coordinated. One way to control agents without limiting 
their autonomy is to enforce norms by means of sanctions. The dynamicity and unpredict-
ability of the agents’ interactions in uncertain environments, however, make it hard for 
designers to specify norms that will guarantee the achievement of the system-level objec-
tives in every operating context. In this paper, we propose a runtime mechanism for the 
automated revision of norms by altering their sanctions. We use a Bayesian Network to 
learn, from system execution data, the relationship between the obedience/violation of the 
norms and the achievement of the system-level objectives. By combining the knowledge 
acquired at runtime with an estimation of the preferences of rational agents, we devise heu-
ristic strategies that automatically revise the sanctions of the enforced norms. We evaluate 
our heuristics using a traffic simulator and we show that our mechanism is able to quickly 
identify optimal revisions of the initially enforced norms.

Keywords Multiagent systems · Norm revision · Norm enforcement

1 Introduction

Multiagent systems (MASs) comprise autonomous agents that interact in a shared environ-
ment [57]. To achieve the system-level objectives of a MAS, the behavior of the autono-
mous agents should be controlled and coordinated [11]. For example, a smart traffic system 
is a MAS that includes autonomous agents like cars, traffic lights, etc. The objectives of the 
system include avoiding the occurrence of traffic jams as well as minimizing the number of 
accidents.

 * Davide Dell’Anna 
 d.dellanna@uu.nl

 Mehdi Dastani 
 m.m.dastani@uu.nl

 Fabiano Dalpiaz 
 f.dalpiaz@uu.nl

1 Utrecht University, Utrecht, The Netherlands

http://orcid.org/0000-0002-1162-8341
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-020-09465-8&domain=pdf


 Autonomous Agents and Multi-Agent Systems (2020) 34:43

1 3

43 Page 2 of 54

One way to control the behavior of the agents in a MAS without limiting their autonomy 
is norm enforcement [1, 47]. Norm enforcement via sanctions is traditionally contrasted 
with norm regimentation; the latter alternative prevents the agents from reaching certain 
states of affairs. For example, in a smart traffic system, a regimentation strategy is to close 
a road to prevent cars from entering that road, while a sanctioning strategy is to impose 
sanctions on cars that drive through the road.

Due to the dynamicity and unpredictability of the behaviours of interacting agents in 
uncertain environments, it is difficult for the designers who engineer a MAS to specify 
norms that, when enforced, will guarantee the achievement of system-level objectives in 
every operating context. To cope with this issue, the enforced norms need to be revised at 
runtime. Existing research has investigated the offline revision of the enforced norms [3], 
proposed logics that support norm change [4, 33, 34], and examined the legal effects of 
norm change [28].

In [23], we proposed a framework for engineering normative MASs that, using observed 
data from MAS execution, revises the norms in the MAS at runtime to maximize the 
achievement of the system objectives. In that work, we made the simplistic assumption 
that norms are regimented and we introduced algorithms for switching among alterna-
tive predefined norms. In [24] we extended the framework to support the revision of norm 
enforced via sanctioning. In addition to observed data from MAS execution, we used an 
estimation of the preferences of the agents to guide the runtime norm revision. However, 
we considered MASs where only one norm at a time was enforced.

In this paper, we significantly extend our previous work by supporting MASs where 
multiple norms are enforced. We formalize different types of rational agents that behave 
according to their preferences and we discuss their properties. We use Bayesian Networks 
to learn the norm effectiveness from data observed from MAS execution and to inform the 
runtime norm revision mechanism that revises the sanctions of multiple norms.

The contributions of this paper are as follows:

• We provide a formal definition of different types of rational preferences of agents, spec-
ified in terms of desired states of affairs and the maximum payment that the agent is 
willing to make to achieve such states of affairs. We prove that such preferences satisfy 
the basic rationality requirements [37].

• We build on and extend the general architecture proposed in [23, 24], and study in 
detail the relationships between estimated agents’ preferences, sanctions, and system-
level objectives. We use a framework where the normative MAS is flanked by a norm 
monitoring and enforcement component, and we introduce a norm revision component 
that uses observed data from MAS execution and an estimation of agents’ preferences 
to modify norm sanctions at runtime.

• We propose six heuristic strategies for the revision of multiple norms that leverage 
probabilistic information learned from observed data from MAS execution and an esti-
mation of the preferences of agents.

• We report on an evaluation through a traffic simulator that shows the effectiveness and 
efficiency of our revision strategies in identifying optimal sanctions for multiple norms.

Organization Section 2 reports on related work. Section 3 presents our framework to char-
acterize norms and agents’ preferences. Section  4 explains the overall approach for the 
supervision of normative MAS based on probabilistic reasoning over norm effectiveness 
and agents’ preferences. Section  5 introduces six strategies for revising norms by com-
bining agents’ preferences with the achievement of the system-level objectives. Section 6 
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evaluates our work through simulation experiments. Section  7 discusses the results and 
the assumptions, limitations and future directions of our work. Section  8 presents our 
conclusions.

2  Related work

In the MAS literature, norms have been proposed as a way to regulate the behavior of the 
agents in order to achieve system-level properties without limiting the autonomy of the 
agents [1, 47, 52].

Many approaches focus on the design-time construction of robust normative MASs. 
Several techniques enable proving the correctness of normative systems through the model 
checking of formulas that describe liveness or safety properties [2, 22, 32]. These works 
are useful for the initial design of a MAS, but they cannot cope with the runtime unpredict-
ability of the system that stems from the autonomy and heterogeneity of the agents.

In order to successfully supervise and regulate dynamic MASs, researchers have stud-
ied the revision of norms. Some frameworks formalize norm dynamics thereby allowing 
the assessment of the impact of norms on the specification of a MAS, i.e., whether the 
designed MAS will be norm compliant. Aucher et  al. [4] introduce a dynamic context 
logic to describe the operations of contraction and expansion of theories that occur when 
removing or adding new norms. Governatori et al. [28] investigate how the application of 
theory revision leads to legal abrogations and annulments. Knobbout et al. [34] propose a 
dynamic logic to characterize the dynamics of state-based and action-based norms. Both in 
Knobbout’s work [33, 34] and in Alechina et al.’s approach [2], norm change is restricted 
to norm addition. This family of approaches focus on the impact of revising a norm on 
an existing normative system. In this paper, instead we study the relationship at runtime 
between the enforced norms and the achievement of system-level objectives, and suggest 
mechanisms to determine how to revise the (sanctions of the) current norms.

Jiang et  al. [30] discuss the contextualization of norms. They explicitly represent the 
context of application of a norm and they use such context to organize norms during the 
design of a MAS. In our work, we also enforce different norms in different contexts. Unlike 
them, however, we determine the most appropriate context for different norm sets at runt-
ime and based on observed data from MAS execution.

Miralles et al. [38] present a framework for the adaptation of MAS regulations at runt-
ime. Their approach is complementary to ours. They represent conditional norms via norm 
patterns and describe an adaptation mechanism based on case-based reasoning. Adapta-
tion is performed at runtime individually by a number of assistant agents and then, via a 
voting mechanism, a final adaptation is approved. The decision on how to adapt norms is 
taken based on similar previously seen cases. In their work, however, they do not consider 
sanctions. In our work, we focus on the revision of sanctions, we perform norm revision 
through a centralized component, and we make use of an estimation of agents’ preferences 
to guide norm revision.

Cardoso et al. [12] present a framework for the runtime adaptation of sanctions asso-
ciated with obligations. In their work, they assume that norm violations are bad for the 
system-level objectives. In our work, we relax such assumption, as agents ability to violate 
norms can be useful [13]. We evaluate the effectiveness of a norm at runtime based on 
observed data from MAS execution. Furthermore, they assume that the strength of a sanc-
tion should be directly proportional to its application frequency, and they constantly try 
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to lower sanctions in order to give agents maximum autonomy. In our work, we base the 
revision of norms on an estimation of the preferences of the agents, and we determine the 
appropriate value of their sanctions based on the relationship between obedience of norms 
and achievement of system-level objectives determined at runtime.

In MASs, agents’ preferences have been mainly used as a way to choose at runtime 
between different plans or actions to execute [20, 31, 41, 53]. Preferences are usually inter-
preted as constraints that, if satisfied by a certain plan (or action), increase the desirabil-
ity of executing such plan (or action). Formal languages have been proposed and used for 
expressing preferences (e.g., LPP [6, 9] or LTL [11]). In this work we focus on strate-
gies for sanctions’ revision. For this reason, we make use of a high-level representation 
of preferences, without restricting ourselves to, but supporting, any specific language. In 
particular, we consider preferences that satisfy the basic rationality requirements [37] and 
order different alternative states of affairs that agents may desire to achieve. Our agents are 
rational and norm-aware [50], in the sense that they always try to aim at the most preferred 
state of affairs for which they have enough budget, taking also into account the possible 
sanctions they would incur when violating some of the enforced norms. Furthermore, our 
agents are autonomous, in the sense that they are able to make decisions without the inter-
vention of human users but in line with their preferences [5, 21]. As we aim to investigate 
the process of norm revision, we assume that we have an accurate estimation of the agents’ 
preferences. In future work, we can relax this assumption and investigate norm revision 
based on inaccurate estimations of the agents’ preferences.

Chopra et al. [16] study how agents’ preferences—expressed in terms of goals—inter-
act with norms—represented as commitments. In particular, they propose a framework for 
the agents to adapt their behavior. We take an orthogonal approach, for we study how to 
change the norms without altering the agent construction. In particular, we study how to 
alter the sanctions used to enforce the norms on the agents, so to guarantee at runtime 
the system-level objectives. Our proposed mechanisms, therefore, relate also to the idea of 
adjustable autonomy [39]. The proposed runtime mechanism of revision of the sanctions of 
the norms can be seen as an automated mechanism to adjust the decisions’ options of the 
agents (thus their degree of autonomy) so to maximize the objectives of the system and its 
operators.

Cranefield et  al. [18] present a Bayesian approach to norm identification. They show 
that agents can internalize norms that exist in an environment, by learning from the behav-
ior that complies with or violates certain norms. This work is a valuable addition to ours, 
for it shows that it is possible for agents to learn norms even when they are not explicitly 
communicated to them.

Tumer et al. [48] use multi-agent reinforcement learning in a smart traffic simulation to 
determine the behavior of the car agents that maximizes the utility of the city designer and 
of the individual agents. Their interesting work focuses on regimentation; instead, we focus 
on enforcement that does not violate agents’ autonomy.

3  Normative multiagent systems

This section presents a generic framework for specifying normative multiagent systems 
in which the agents behave in line with their preferences while norms are enforced on 
them via sanctions. This framework allows us to analyze the interplay between norms and 
agents’ preferences in normative multiagent systems.
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3.1  Illustrative example

Consider the two-lanes ring road depicted in Fig. 1. In a ring road, a population of vehi-
cles moves continuously in a circle. Every vehicle is autonomous and acts according to its 
own preferences. For example, vehicles have preferences about, among other things, their 
speed, based on which they determine their willingness to risk sanctions for violating traf-
fic norms. Such preferences and their corresponding willingness to risk sanctions allow the 
vehicles to autonomously decide when and how to accelerate or decelerate or to change 
lane. If a fast vehicle is using the outer line and a slower vehicle blocks its way, the fast 
vehicle may move to the inner line to overtake the slow vehicle. Since all vehicles share 
the same environment, their local decisions have an effect on the (emergent) system-level 
behavior of the vehicles driving on the ring road [46]. For example, based on contextual 
factors such as the density of vehicles on the ring road, the vehicles’ behavior may provoke 
traffic jams and the average speed may vary, as well as the average time to complete a loop 
of the ring road. The ring road is a simple example of a MAS. Although far from realistic 
traffic situations, the ring road illustrates the fundamental phenomena of emergent system-
level properties, caused by the local decisions of individual agents, and the importance of 
mechanisms to control and steer such system-level behaviors.

We assume that the main stakeholder of the ring road (the city council) has two system-
level objectives: to minimize the average time to complete a loop of the ring road and to 
minimize the number of halted cars. Despite interdependence, the stakeholder desires to 
evaluate the two objectives independently due to their distinct nature. We consider two 
contextual variables that may influence the achievement of the system-level objectives, 
together with the vehicles’ behavior: the density of vehicles and the presence of an obstacle 
on the ring road. The higher is the density of the vehicles on the ring road, the higher is the 
risk of breaking waves and slowdowns. The presence of an obstacle may force vehicles to 
halt and wait for an adequate moment to take over the obstacle. If the density of vehicles 
on the ring road is high enough, this may also cause queues after the obstacle. To achieve 
the objectives, the behavior of the agents is regulated by enforcing norms concerning (i) 
the speed limit, such as the norm every vehicle on the ring road shall not exceed a speed 
of 50 km/h, otherwise it will receive a sanction of 100€, and (ii) the minimum safety dis-
tance between cars, such as the norm every vehicle on the ring road shall keep a minimum 
distance of 2m, otherwise it will receive a sanction of 20€. Regulating speed and safety dis-
tance of the cars on the ring road is expected to help achieving the system-level objectives 

Fig. 1  Two lanes ring road. 
Rectangles are vehicles, moving 
in counter clockwise direction
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in the traffic contexts represented by the contextual variables. A car that keeps a sufficient 
safety distance from the car ahead, is less likely affected by sudden deceleration of the car 
ahead. More space between cars may also favour surpasses of slow cars when necessary. 
An opportune safety distance, together with opportune cars speed, may reduce jams in the 
presence of obstacles or the effect of breaking waves.

The ring road above described is a normative MAS. Vehicles are autonomous agents, 
each acting according to their own preferences. Each agent belongs to an agent type that 
can be characterized by the agent’s preferences. For instance a cautious agent is a type of 
agent that prefers to go slow rather than fast on the ring road and prefers to maintain the 
appropriate safety distance. A brave agent is a type of agent that prefers to go fast rather 
than slow, and to approach cars closer than the minimum safety distance, even if it has to 
pay some money to do so.

3.2  Norms

The focus of this paper is the runtime revision of the sanctions of the norms enforced in 
the MAS. In order to focus on this aspect, we propose a simple but extensible language for 
norms. Consider a set of propositional atoms L = {p1,… , pk} , each representing a fact that 
can hold or not in a system state1 (e.g., propositional atom sp100 indicates that the speed of 
a vehicle on the ring road is ⩽ 100 km/h).

Let AL = (L1,… , Ln) be an ordered list of n disjoint subsets of L, s.t. Li contains atoms 
related to an aspect i of the system2 (e.g., Li = {sp100, sp50} , in the ring road scenario, con-
tains atoms related to the speed of the cars).

We consider a norm as a pair N = (p, s) , where p ∈ L and s ∈ ℕ , indicating that p 
should hold in the current system state for all agents, otherwise sanction s will incur. For 
instance, a norm N = (sp50, 100) indicates that every vehicle on the ring road shall not 
exceed a speed of 50 km/h, otherwise it will receive a sanction of 100€.

In the following we consider an ordered set of norms N = ⟨N1,N2,… ,Nn⟩ and assume 
that (i) norms are non-conflicting, i.e., obeying a norm Ni does not prevent an agent from 
obeying or violating any other norm in N  ; and (ii) each norm regulates a different aspect 
of the system, so that the i-th norm Ni = (p, s) in N  is a pair where p ∈ Li (with Li i-th set 
in AL) and s ∈ ℕ . For instance, if AL = (L1, L2) , L1 = {sp50, sp100} and L2 = {dist1, dist2} , 
then N1 = (sp50, 100) is a norm concerning the speed limit and N2 = (dist2, 100) is a norm 
concerning the minimum safety distance.

Note that, despite these assumptions, norms can still influence each others by means 
of the behavior that they cause on the agents. For instance, if the density of vehicles on 
the ring road is high, in order to obey a norm concerning the minimum safety distance 
from the car ahead, an agent may need to decrease its speed, therefore obeying also a 
norm concerning the maximum speed limit. We distinguish, however, such influence 
from the concept of conflict, in the sense that the norm concerning the minimum safety 
distance does not prevent, a priori, an agent to either obey or violate the norm concern-
ing the maximum speed limit, and vice-versa.

1 A system state is assumed to consist of the state of individual cars (e.g., speed and position of the cars) as 
well as the state of the environment (e.g., density of vehicles in the ring road).
2 We use the term aspect to indicate any particular characteristics of the behavior of the agents, such as 
the speed of the cars, that is both monitorable by an organization that enforces norms in the MAS, and over 
which agents have control.
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3.3  Rational agents and their preferences

In MASs, agents are often assumed to be autonomous and possibly heterogeneous. 
Moreover, it is common to assume that the internal states of the agents such as their 
beliefs, preferences, and decision making mechanisms are unknown or partly known to 
other agents or to the institutions that regulate their behaviour. In line with the theory of 
economic rationality [37], in this paper we consider rational agents that behave accord-
ing to their rational preferences, which determine an ordering between different alter-
native states of affairs (simply alternatives in the following). A rational agent aims to 
achieve its most preferred states of affairs: when a rational agent believes it is possible 
to achieve a certain state of affairs s, the agent will never aim to achieve states of affairs 
that are less preferred than s. For example, a cautious agent that prefers to go slow on 
the ring road and maintain appropriate safety distance, may be less prone to surpass 
other cars or to change lane, and may exhibit more moderate acceleration or decelera-
tion than less cautious agents. The behavior of such a cautious agent, however, can vary 
significantly, based on contextual conditions. For example, a sudden break from the car 
ahead may force also the cautious agent to brusquely decelerate.

In this work, we assume we have an estimation of the preferences of the agents con-
cerning the n different aspects of the system that we aim to regulate by a norm, as per 
Sect. 3.2. In the rest of the paper, when we refer to the preferences of the agents, we 
refer therefore to such an estimation of their preferences. We do not assume access to 
the agents’ internals such as their beliefs or their preferences regarding other aspects of 
the system (e.g., information about fuel reserve or the preference on road types). Hav-
ing an estimation of the preferences of the agents should not be seen as a violation of 
the autonomy of agents or access to their internals. Having some knowledge of agents’ 
preferences is realistic in most MAS settings. For example, in some cooperative set-
tings, agents may be requested to declare their true preferences prior entering the sys-
tem and agents can autonomously decide whether to join or not, while in other settings 
the preference of agents can be learned from their behaviors [8]. Note that we do not 
focus on the process of preference elicitation, which is essential for deriving and for-
mulating agents’ preferences, but beyond the scope of this paper. Several techniques for 
the elicitation of preferences have been proposed in literature, including both automated 
methods and methods that directly involve the end-user (see for example [10, 15, 44]). 
Here, we rely on such techniques and we just assume that some relevant part of agents’ 
preferences is already given or estimated.

We represent the alternatives over which the agents have preferences as lists of pairs 
such as (⟨p1, b1⟩,… , ⟨pn, bn⟩) , indicating that for a state of affairs where p1,… , and pn 
hold, the agent is willing to spend, if necessary, a budget b1 to achieve p1 , a budget b2 
to achieve p2 , etc. We focus on finite preferences, therefore we constrain the budgets 
expressed in the alternatives to be member of a budget set B ⊂ ℕ.

We denote by Pref(a) = (A,⪰) the preference of an agent a ∈ Ag , where 
Ag = {a1,… , an} is a set of agents, A is a set of alternatives defined as per Definition 1, 
and ⪰ is a partial order on A. We write x ⪰ y to denote the fact that the agent either pre-
fers alternative x to alternative y or is indifferent between x and y.

Definition 1 (Preference Alternatives) Let AL = (L1,… , Ln) be a list as per Sect.  3.2. 
Given a set of budget lists BL ⊆ B

n (with Bn the n-ary Cartesian power of B ), the set of 
alternatives A is the set { (⟨p1, b1⟩,… , ⟨pn, bn⟩) � pi ∈ Li & (b1,… , bn) ∈ BL }.
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Notation Before continuing, we provide here a summary of the notation that we will use 
in the rest of the paper in the context of preferences. Given a preference Pref (a) = (A,⪰) , 
an alternative x = (⟨p1, b1⟩, … , ⟨pn, bn⟩) ∈ A , and a set of budget lists BL ⊆ B

n , we call:

• prop(x) = (p1,… , pn) , the list of propositional atoms in x
• bud(x) = (b1,… , bn) ∈ BL , the list of budgets associated to each propositional atom in 

x.
• req_bud(x) =

∑
b∈bud(x) b the budget required by alternative x (required budget, in the 

following), i.e., the sum of all budgets in x.
• x[B�] a new alternative x� = (⟨p1, b�1⟩,… , ⟨pn, b�n⟩) with same propositional atoms as x, 

but using budgets B� = (b�
1
,… , b�

n
) ∈ BL instead of budgets B = (b1,… , bn).

Furthermore, in the rest of the paper, unless specified otherwise, when we provide 
an example concerning preferences or norms, we make use of L defined as the set 
{sp50, sp100, dist1, dist2} with AL = (L1, L2) and L1 = {sp50, sp100} and L2 = {dist1, dist2} so 
that N = ⟨N1,N2⟩ with L1 related to N1 (norm concerning speed limit) and L2 related to N2 
(norm concerning safety distance), and we use n to indicate the number of norms in N .

In the following we define the types of preferences that we consider in this paper. We 
first define two basic types of preferences. Then, after providing some examples of such 
preferences, we define more complex preferences that combine the two basic types.

3.3.1  Basic preferences

We define here two types of basic preferences. The first kind of preference orders the alter-
natives based on their budgets, while the second type orders the alternatives based on the 
propositional atoms (i.e., states).

Definition 2 (Basic Preference) Given a list AL = (L1,… , Ln) and a set BL ⊆ B
n , an 

agent is said to have a basic preference (A,⪰) when for all alternatives x and y in A, the 
partial order ⪰ satisfies one of the following two clauses: 

(a) x ⪰ y iff
  req_bud(x) ⩽ req_bud(y)&
  ∀v,w ∈ A,∀B,B� ∈ BL ∶ v[B] ≻ w[B] ⇒ v[B�] ≻ w[B�]

(b) x ⪰ y iff
  if prop(x) = prop(y) then req_bud(x) ⩽ req_bud(y)

  else ∀B,B� ∈ BL ∶ x[B] ⪰ y[B�]

In the rest of the paper, we write x ∼ y when x ⪰ y and y ⪰ x . We write x ≻ y when 
x ⪰ y but not y ⪰ x.

If an agent’s preference adheres to Definition 2a, then the required budget determines the 
order of the alternatives. In particular, Definition 2a determines a preference where alterna-
tives that require a lower budget are preferred to alternatives that require higher budget (first 
condition of Definition  2a) and the relative order between two alternatives with different 
propositional atoms is the same for all possible budgets (second condition of Definition 2a). 
Note that in a basic preference that adheres to Definition 2a, two alternatives x and y such 
that req_bud(x) > req_bud(y) cannot be equally preferred. In fact, if x ∼ y we have that 
req_bud(x) ⩽ req_bud(y) and req_bud(y) ⩽ req_bud(x) . As a consequence, all alternatives 
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with required budget 0 are strictly preferred to all the other alternatives, and all alternatives 
with same required budget are equally preferred.

If an agent’s preference adheres to Definition 2b, then the propositional atoms determine 
the order of the pairs. If a set of propositional atoms is preferred to another, then it is preferred 
regardless of the required budget. In a preference that adheres to Definition 2b though, the 
alternatives with required budget 0 are strictly preferred to all the other alternatives with same 
propositional atoms.

We would like to emphasize that the basic preferences as we defined here are different than 
lexicographic ordering [27]. An agent’s preference, as per Definition 2, satisfies, instead, the 
basic rationality requirements [37], as per Proposition 1.

Proposition 1 A basic preference Pref (a) = (A,⪰) for an agent a ∈ Ag is

• transitive ∀x, y, z ∈ A if x ⪰ y and y ⪰ z then x ⪰ z ; and
• complete ∀x, y ∈ A either x ⪰ y or y ⪰ x or x ∼ y.

Proof See “Appendix 1”.   ◻

3.3.2  Examples of basic preferences

Given B = {0, 1} and BL = B
2 , an example of basic preference defined according to Defini-

tion 2a is the following.

Note that in preference (1), alternatives with lower required budget are preferred over alter-
natives with higher required budget and the agents’ prefers sp100 over sp50 for every safety 
distance, and dist1 over dist2 for every speed.

Given B = {0, 1} and BL = B
2 , an example of basic preference defined according to Defi-

nition 2b is the following.

(1)

(⟨sp100, 0⟩, ⟨dist1, 0⟩) ⪰ (⟨sp100, 0⟩, ⟨dist2, 0⟩) ⪰
(⟨sp50, 0⟩, ⟨dist1, 0⟩) ⪰ (⟨sp50, 0⟩, ⟨dist2, 0⟩) ≻

(⟨sp100, 0⟩, ⟨dist1, 1⟩) ⪰ (⟨sp100, 1⟩, ⟨dist1, 0⟩) ⪰
(⟨sp100, 0⟩, ⟨dist2, 1⟩) ⪰ (⟨sp100, 1⟩, ⟨dist2, 0⟩) ⪰
(⟨sp50, 0⟩, ⟨dist1, 1⟩) ⪰ (⟨sp50, 1⟩, ⟨dist1, 0⟩) ⪰
(⟨sp50, 0⟩, ⟨dist2, 1⟩) ⪰ (⟨sp50, 1⟩, ⟨dist2, 0⟩) ≻

(⟨sp100, 1⟩, ⟨dist1, 1⟩) ⪰ (⟨sp100, 1⟩, ⟨dist2, 1⟩) ⪰
(⟨sp50, 1⟩, ⟨dist1, 1⟩) ⪰ (⟨sp50, 1⟩, ⟨dist2, 1⟩)
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Notice that in preference (2) states of affairs where sp100 and dist1 hold are preferred over 
states of affairs where sp50 and dist1 hold, regardless of the budget. Analogously, regardless 
of the budget, states of affairs where sp50 and dist1 hold are preferred over states of affair 
where sp100 and dist2 hold, which, in turn, are preferred over states of affair where sp50 and 
dist2 hold. Such preference describes an agent type that prefers to drive fast rather than 
slow and that prefers to have a short safety distance rather than high, for whom maximizing 
speed and minimizing safety distance have priority over minimizing the budget to be spent, 
and, finally, who gives more importance to having a short safety distance rather than driv-
ing fast.

Finally, an example of a preference that does not satisfy Definition  2 is 
(⟨sp50, 1⟩, ⟨dist1, 1⟩) ≻ (⟨sp50, 0⟩, ⟨dist1, 0⟩) ≻ ⋯ . This is because the first two alternatives 
share the same propositional atoms but the alternative with higher required budget is pre-
ferred to the alternative with lower required budget.

3.3.3  Preferences

The basic preference as defined in Definition 2 may not be expressive enough to capture 
some realistic cases. In order to cover more cases and to make our approach applicable to 
model more realistic scenarios, we consider more complex types of agents’ preferences 
that combines the two basic types of preferences (defined in Definitions 2a and 2b).

Intuitively, a rational agent may exhibit different preferences when the required budget 
increases. For example, consider a brave agent that prefers to drive fast and to keep a short 
safety distance rather than long, e.g., as per preference (2). Suppose, however, that such an 
agent is ready to pay only up to 1€ for driving fast and for keeping short safety distance. 
In such a  case, the agent would prefer to drive fast and to keep a short safety distance, 
compared to other alternatives (e.g., to drive slow and keep a long safety distance), if the 
required budget is lower than 1€. For example, in preference (2), ordered according to Def-
inition 2b, we have (⟨sp100, 1⟩, ⟨dist1, 1⟩) ≻ (⟨sp50, 0⟩, ⟨dist1, 0⟩) . If the required budget for 
either driving fast or keeping a short safety distance is higher than 1, however, the agent 
may instead give priority to spending the least possible. For example, (⟨sp50, 0⟩, ⟨dist1, 2⟩) , 
not reported in preference (2), would be preferred to (⟨sp100, 1⟩, ⟨dist1, 2⟩) , adhering to Def-
inition 2a instead of Definition 2b. In other words, a rational agent may use different crite-
ria to order the alternatives in a preference depending on the required budget.

We formalize this intuition by defining a type of preference (A,⪰) that is a sequence of k 
basic preferences, with 1 ⩽ k ⩽ |B| . We call such a complex preference simply preference. 
Each of the k basic preferences adhere to either Definition 2a or Definition 2b, and the alter-
natives in the different basic preferences have increasing budgets. In particular, the set of 

(2)

(⟨sp100, 0⟩, ⟨dist1, 0⟩) ≻ (⟨sp100, 0⟩, ⟨dist1, 1⟩) ⪰
(⟨sp100, 1⟩, ⟨dist1, 0⟩) ≻ (⟨sp100, 1⟩, ⟨dist1, 1⟩) ≻
(⟨sp50, 0⟩, ⟨dist1, 0⟩) ≻ (⟨sp50, 0⟩, ⟨dist1, 1⟩) ⪰
(⟨sp50, 1⟩, ⟨dist1, 0⟩) ≻ (⟨sp50, 1⟩, ⟨dist1, 1⟩) ≻

(⟨sp100, 0⟩, ⟨dist2, 0⟩) ≻ (⟨sp100, 0⟩, ⟨dist2, 1⟩) ⪰
(⟨sp100, 1⟩, ⟨dist2, 0⟩) ≻ (⟨sp100, 1⟩, ⟨dist2, 1⟩) ≻
(⟨sp50, 0⟩, ⟨dist2, 0⟩) ≻ (⟨sp50, 0⟩, ⟨dist2, 1⟩) ⪰
(⟨sp50, 1⟩, ⟨dist2, 0⟩) ≻ (⟨sp50, 1⟩, ⟨dist2, 1⟩)
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possible budget lists BLi ⊆ B
n for an alternative in the i-th basic preference (Ai,⪰i) , for i ⩽ k , 

is determined as per Definition 3.

Definition 3 (Budget Lists of the i-th Basic Preference) Consider a set B ⊂ ℕ , and 
k disjoint subsets of B , i.e., B1,… ,Bk , such that each element of Bi is bigger than each 
element of Bj , for j < i ⩽ k . In a preference composed by k basic preferences, the set of 
possible budget lists for the alternatives in the i-th basic preference (Ai,⪰i) , for i ⩽ k , is 
BLi = (

⋃
j⩽i Bj)

n ⧵
⋃

j<i BLj

For instance, given the set B = {0, 1, 2} and k = 2 two possible subsets of B as 
per Definition  3 are B1 = {0, 1} and B2 = {2} . The possible budget lists for the alter-
natives of 2 basic preferences are therefore BL1 = {(0, 0), (0, 1), (1, 0), (1, 1)} and 
BL2 = {(0, 2), (1, 2), (2, 0), (2, 1), (2, 2)} . In other words, the budgets in the alternatives of 
the i-th basic preference are always lower or equal to max(Bi) . This means that the required 
budget of every alternative in Ai is always lower or equal to n ⋅ max(Bi) , while the required 
budget of every alternative in Ai+1 is always higher or equal to n ⋅ max(Bi).

Definition 4 (Preference) Let (A1,⪰1),… , (Ak,⪰k) be k basic preferences as per Defi-
nition 2, such that alternatives in Ai are defined with respect to a set of budget lists BLi 
as per Definition  3. An agent is said to have a preference (A,⪰) , iff A =

⋃k

i=1
Ai and 

⪰=
⋃k

i=1
⪰i ∪{(x, y) ∣ x ∈ Aj & y ∈ Ai & 1 ⩽ j < i ⩽ k }.

Note that a preference (A,⪰) that is composed by only one basic preference (A1,⪰1) so that 
A = A1 for BL1 ⊆ B

n , and ⪰=⪰1 , is a basic preference. If a preference is composed by more 
than one basic preference, every basic preference (Ai,⪰i) composing the preference adheres 
to either Definition 2a or Definition 2b, and for every pair of alternatives x, y ∈ A such that 
x ∈ Ai, y ∈ Aj and i < j , it holds that req_bud(x) ⩽ req_bud(y) . Furthermore, notice that the 
sets A1,… ,Ak of alternatives of the k basic preferences composing a preference (A,⪰) are dis-
joint subsets of A, since the possible budget lists of the k basic preferences are disjoint subsets 
of Bn.

Again, we note that a preference as per Definition 4 is transitive and complete.

Proposition 2 A preference Pref (a) = (A,⪰) for an agent a ∈ Ag is

• transitive ∀x, y, z ∈ A if x ⪰ y and y ⪰ z then x ⪰ z ; and
• complete ∀x, y ∈ A either x ⪰ y or y ⪰ x or x ∼ y.

Proof See “Appendix 1”.   ◻

3.3.4  Examples of preferences

An example of a preference composed by two basic preferences (A1,⪰1) and (A2,⪰2) is given 
in Eq. (3), given B = {0, 1, 2}.
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In such preference, the budget lists of the alternatives in A1 are elements of 
BL1 = {(0, 0), (0, 1), (1, 0), (1, 1)} for B1 = {0, 1} , and the alternatives are ordered 
by Definition  2b. The budget lists of the alternatives in A2 , instead, are elements of 
BL2 = {(0, 2), (1, 2), (2, 0), (2, 1), (2, 2)} , for B2 = {2} , and they are ordered by Defini-
tion 2a. The required budget of every alternative in A1 is lower or equal to 2, while the 
required budget of every alternative in A2 is higher or equal to 2 and lower or equal to 4.

3.3.5  Consistent preferences

The preferences above described allow to express a multitude of possible orderings 
between different states of affairs. In the following we define an additional property that a 
preference can exhibit. We call such property consistency [29].

Intuitively a preference is consistent if when a state of affairs where a propositional atom 
p holds is preferred to a state of affair where q holds, then states of affairs where p holds 
are preferred to states of affairs where q holds also when a third atom r is considered. For 
instance, if (⟨p, b1⟩, ⟨x, b2⟩) ⪰ (⟨q, b1⟩, ⟨x, b2⟩) , then in a consistent preference this holds for 
every propositional atom x.

Notice that preferences as per Definition 4 are not necessarily consistent. An example 
of a preference that is not consistent (i.e., does no exhibit the consistency property) is the 
following:

Notice that, given dist1 , sp100 is preferred to sp80 , but given dist2 , sp80 is preferred to sp100.
We define consistent preferences by means of an enumeration condition over the propo-

sitional atoms of the alternatives. In particular, if two alternatives x and y with same budget 
lists differ exactly for one propositional atom, then if x is preferred to y, this has to hold 
also for all other pairs of alternatives with same budget lists differing exactly for the same 
propositional atoms as x and y. Intuitively the enumeration condition imposes an ordering 
on the alternatives that corresponds to an ordering that can be obtained by systematically 
enumerating the possible combinations of propositional atoms. For instance, if, given dist1 , 
the proposition sp100 from the set {sp100, sp50} is enumerated before proposition sp50 (i.e, 
(⟨dist1, b1⟩, ⟨sp100, b2⟩) ≻ (⟨dist1, b1⟩, ⟨sp50, b2⟩) ), then in a consistent preference sp100 is 
enumerated before sp50 also given dist2 (i.e, (⟨dist2, b1⟩, ⟨sp100, b2⟩) ≻ (⟨dist2, b1⟩, ⟨sp50, b2⟩)
).

(3)

#from here ordered by Definition 2b

(⟨sp100, 0⟩, ⟨dist1, 0⟩) ≻ (⟨sp100, 0⟩, ⟨dist1, 1⟩) ⪰
(⟨sp100, 1⟩, ⟨dist1, 0⟩) ≻ (⟨sp100, 1⟩, ⟨dist1, 1⟩) ≻
(⟨sp50, 0⟩, ⟨dist1, 0⟩) ≻ ⋯ ≻ (⟨sp50, 1⟩, ⟨dist1, 1⟩) ≻ ⋯ ≻

(⟨sp50, 1⟩, ⟨dist2, 1⟩) ≻
#from here ordered by Definition 2a

(⟨sp100, 0⟩, ⟨dist1, 2⟩) ⪰ (⟨sp100, 2⟩, ⟨dist1, 0⟩) ⪰ ⋯ ≻

(⟨sp100, 2⟩, ⟨dist1, 2⟩) ≻ (⟨sp50, 0⟩, ⟨dist1, 2⟩) ⪰ ⋯ ⪰

(⟨sp50, 2⟩, ⟨dist2, 2⟩)

(⟨sp100, 0⟩, ⟨dist1, 0⟩) ≻ (⟨sp80, 0⟩, ⟨dist1, 0⟩) ≻ (⟨sp80, 0⟩, ⟨dist2, 0⟩) ≻
(⟨sp50, 0⟩, ⟨dist1, 0⟩) ≻ (⟨sp50, 0⟩, ⟨dist2, 0⟩) ≻ (⟨sp100, 0⟩, ⟨dist2, 0⟩) ≻ ⋯
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Definition 5 A preference Pref (a) = (A,⪰) is consistent if and only if for all alternatives 
x, y in A s.t. their lists of propositional atoms differ exactly for one element, the following 
enumeration condition holds.

Let ⋄ ∈ {≻,∼}.
x ⋄ y ⇒

      ∀v,w ∈ A ∣ prop(v) = (p1,… , pn) & prop(w) = (p�
1
,… , p�

n
)

      if pi ≠ p�
i
& ∀k∈{1,…,n}∣k≠ipk = p�

k
& bud(v) = bud(w)

      then v ⋄ w

3.4  Norms and agents’ preferences

As above mentioned, in this paper we assume that norms and agents’ preferences are com-
parable. Consider AL = (L1,… , Ln) and a norm set N = ⟨N1,… ,Nn⟩ as per Sect.  3.2. 
Given an alternative (⟨p1, b1⟩,… , ⟨pn, bn⟩) in an agent’s preference, we have that both the 
proposition pi of i-th pair ⟨pi, bi⟩ and the proposition p of the i-th norm Ni = (p, s) in N  
belong to Li . Furthermore, since both the sanctions of the norms and the agents’ budgets 
of agent’s preferences are natural numbers, they also are commensurable. This makes it 
possible to analyze an agent’s preference in the context of a norm to determine whether the 
preference motivates an agent to comply with a norm or to violate it.

Intuitively, in the context of a set of enforced norms, an agent that follows its preference 
aims at realizing a state of affairs that can be compliant with some of the enforced norms 
and violating other norms for which he is willing to pay the corresponding sanctions.

Given a set N  of n norms and a preference (A,⪰) , we say that an alternative x ∈ A such 
that x = (⟨p1, b1⟩,… , ⟨pi, bi⟩,… , ⟨pn, bn⟩) is a violating alternative w.r.t. the i-th norm 
Ni = (p, s) in N  , and we write viol(x,Ni) , if and only if pi (e.g., sp100 ) excludes3 p (e.g., 
sp50 ); otherwise x is said to be a complying alternative w.r.t. norm Ni . An alternative that 
is compliant w.r.t. all norms in N  is said fully compliant. Note that any rational prefer-
ence, due to its completeness property as per Proposition 2, always contains at least one 
fully compliant alternative. This means that agents always have a choice to aim at a state of 
affairs that does not violate any norm.

Definition 6 (Most Preferred Alternatives to Act Upon) Given a preference (A,⪰) and a 
set N  of n norms, a subset A′ ⊆ A of alternatives is called the set of most preferred alterna-
tives to act upon in the context of N  if and only if for all alternatives x ∈ A ⧵ A� it holds 
that for all alternatives y ∈ A� either y ≻ x or x ⪰ y and there exists a norm Nj = (p, s) in N  
s.t. viol(x,Nj) & bj < s (with bj budget of the j-th pair in x).

The set of most preferred alternatives to act upon in the context of N  is the set of alter-
natives A′ ⊆ A such that every other alternative x ∈ A ⧵ A� is either strictly less preferred 
(i.e., y ≻ x ∀y ∈ A� ), or is an alternative that violates at least a norm Nj but the budget is 
not enough to pay the sanction (i.e., viol(x,Nj) & bj < s ). This means that the alternatives 
in A′ are either fully compliant or they violate some norms and the budget is enough to pay 

3 In this paper we assume that information about exclusion between propositional atoms (e.g., in the sense 
of material implication) is given as background knowledge. A formal definition of violation of a norm 
depends on the specific language used to specify the norms and is out of the scope of the paper.
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the sanction, and there is no other alternative that satisfies such conditions that is strictly 
preferred to them.

A rational agent always acts upon one of its most preferred alternatives. We say that 
an agent a has a reason to violate a norm N whenever the agent’s preference Pref(a) is so 
that, among the set of most preferred alternatives, there is at least one alternative x such 
that viol(x,N) . When different alternatives are equally preferred by an agent, the agent 
can freely choose to aim at any of them. This means that an agent that has a reason to 
violate a norm will not necessary aim to violate it: if another alternative is equally pre-
ferred to the violating state of affairs, the agent may decide to aim at  to obeying state of 
affairs, despite it has a reason to violate the norm. Consider for example an agent type 
characterized by the preference in Eq. (1) and a norm N = (sp50, 0) that prohibits agents to 
drive faster than 50 km/h. Given N, the agents’ most preferred alternatives to act upon are 
(⟨sp100, 0⟩, ⟨dist1, 0⟩) , (⟨sp100, 0⟩, ⟨dist2, 0⟩) , (⟨sp50, 0⟩, ⟨dist1, 0⟩) and (⟨sp50, 0⟩, ⟨dist2, 0⟩) . 
Some of these alternatives violate the norm N (e.g., (⟨sp100, 0⟩, ⟨dist1, 0⟩) ), therefore the 
agent has a reason to violate N. However, some of the other most preferred alternatives are 
compliant with the norm (e.g., (⟨sp50, 0⟩, ⟨dist2, 0⟩) ). Since all most preferred alternatives 
are equally preferred, the agent may rationally decide to aim at any of them.

We introduce the notion of maximum budget for norm violation as the maximal payment 
that an agent is willing to pay for violating a given norm according to its preference. Let 
Ni = (p, s) be the i-th norm in N  , and let Pref(a) = (A,⪰) be the preference of agent a. Let 
x ∈ A be the agent’s most preferred fully compliant alternative, and A� = {y ∈ A ∣ y ⪰ x} be 
the set of alternatives in A that are (equally) preferred to x. The maximum budget that a is 
willing to pay for the violation of Ni , denoted as maxB(a,Ni) , is the highest budget b that 
occurs in the i-th pair of the alternatives in A′ . Note that if the maximum budget for violat-
ing a norm is lower than the sanction of norm Ni , then the most preferred alternatives to act 
upon are necessarily alternatives compliant w.r.t. Ni . For instance if N = (sp50, 3) and an 
agent a has maxB(a,N) = 2 , then all alternatives x in the set of most preferred alternatives 
are compliant to N, i.e., viol(x,N) does not hold, and it does not exists a pair ⟨p, b⟩ ∈ x with 
b ⩾ 3 , since b ⩽ maxB(a,N) < 3.

Finally, it is worth noting that in case of preference composed by more than one basic 
preference as per Definition  4, it is always the case that if the first basic preference is 
strictly preferred to the remaining ones then the set of most preferred alternatives to act 
upon in the context of N  never contains any alternatives from any basic preference apart 
from the first one. This is because the first basic preference necessarily contains an alterna-
tive that is fully compliant (due to completeness of every basic preference (Ai,⪰i) w.r.t. AL 
and BLi for 1 ⩽ i ⩽ k and k number of basic preferences composing the preference), and 
such alternative is strictly preferred to any other alternative that belongs to the remaining 
basic preferences.

4  Norm‑based supervision

In this section we present the key concepts of a norm-based supervision of a multi-agent 
system. We build on the runtime norm-based supervision mechanism for multiagent sys-
tems as proposed in [23] and sketched in Fig. 2. Such mechanism corresponds to a con-
trol loop that continuously monitors the behavior of a multiagent system, evaluates the 
enforcement of the norms w.r.t. the system-level objectives, and, when needed, intervenes 
by revising the norms.
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Consider an ordered set N = ⟨N1,… ,Nn⟩ of norms and a set C of all possible oper-
ating contexts of the multiagent system (e.g, a context c ∈ C in the ring road scenario 
could be “low vehicle density and no obstacle”). We call system configuration an assign-
ment of a sanction s ∈ ℕ to each norms in N  in each of the MAS operating contexts.

For example, given two possible operating contexts c1 and c2 , and given a 
norm set N = {N1,N2} , a possible system configuration is {(c1, (N1, 1), (N2, 0)), 
(c2, (N1, 0), (N2, 1))} , meaning that in context c1 norms N1 and N2 are enforced respec-
tively with sanctions 1 and 0, while in context c2 they are enforced respectively with 
sanctions 0 and 1.

The control loop of the supervision mechanism sketched in Fig. 2 starts with an ini-
tial system configuration. A Monitoring and Sanctioning component collects, at runt-
ime, perfect information about the obedience or violation of the norms in the contexts 
in which they are evaluated and sanctions agents that violate the norms. Such compo-
nent also provides a Boolean evaluation of the system-level objectives (e.g., whether the 
number of halted cars is below a certain threshold or not, in the ring road scenario).

The collected information is used to automatically train a Bayesian Network called 
Norm Bayesian Network (described in Sect. 4.1) that is used to learn and reason at runt-
ime about the correlation between norm obedience or violation and the achievement of 
the system-level objectives. For example, the Norm Bayesian Network helps answering 
questions like how well, and in which contexts, does the norm (sp50, 100) help achieve 
the objective of avoiding halted cars?

MAS

Monitoring
and 

Sanctioning

Norm Revision

(Bayesian Network
+

Agent Preferences)

TripDur
(true, false)

Halted
(true, false)

Vehicle
Density

(low, high)
Obstacle

(true, false)

SafDst
(ob, viol)

SpdLim
(ob, viol)

Norms

Statistical data

Fig. 2  Illustration of the MAS supervision mechanism
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A Norm Revision component makes use of the learned knowledge, encoded in the 
Bayesian Network, to determine whether some norms should be revised and how. Revising 
a norm N = (p, s) means modifying either the proposition p or the sanction s, or both. In 
this paper we focus on the revision of the sanctions of the norms. The norm revision pro-
cess generates as output a (possibly) new system configuration, replacing the current one.

In previous work [23], we proposed an implementation of the control loop above 
described as a variation of the hill climbing optimization technique. In this paper we follow 
the same approach. We consider the system configurations as possible solutions to explore 
in order to find an optimal one. The quality of a solution is determined, by means of the 
observed data from MAS execution, as the probability of achieving the system-level objec-
tives. Instead of terminating the exploration of the space when a local optimum is found, as 
in traditional hill climbing, we use as stopping criterion a constraint defined by the system 
designer that determines whether or not the current solution is acceptable. In particular 
we use, as stopping criterion, a minimum desired value of the probability of achieving the 
system-level objectives. We call such value toa . We use the Norm Revision component to 
determine the next solution to try, when the current one is not acceptable.

In [23] we proposed heuristic algorithms for suggesting norm revisions that alter the 
regimented norms. In this paper, differently from the earlier work, we make use of some 
additional information concerning the preferences of the agents in order to determine how 
to revise the norms, and we focus on the revision of sanctions. In [24], we used the same 
framework of [23] to revise the way one norm is enforced by modifying its sanction. In this 
paper, we significantly extend our previous work by devising several new strategies for the 
revision of the sanctions of multiple norms enforced at the same time.

In the rest of the section we first provide some background concerning the Norm Bayes-
ian Network, then we analyze some properties of the relationships between norms, agents’ 
preferences and system-level objectives.

4.1  Norm Bayesian network

Consider some monitorable environmental properties such as the density of vehicles or the 
presence of an obstacle on the ring road. Each of these properties is called contextual vari-
able, and is associated to a domain of values. For example, Vehicles density can be either 
low or high, while Obstacle can be true or false. Given a set of contextual variables, a 
context assigns a value to each contextual variable. For instance, given Vehicles density and 
Obstacle, four possible contexts exist: high-true, high-false, low-true, low-false.

A Norm Bayesian Network NBN = (X,A,P) [23] is a Bayesian Network where:

• X = � ∪� ∪ � are nodes that represent random variables in probability theory. N, O 
and C are disjoint sets. N consists of norm nodes; each node N ∈ � corresponds to a 
norm and has a discrete domain of 3 possible values: obeyed, violated and disabled. O 
consists of objective nodes; each node O ∈ � corresponds to a Boolean objective and 
has a discrete domain of 2 values: true and false. Finally, C consists of context nodes; 
each node C ∈ � corresponds to a contextual variable and can have a discrete or con-
tinuous domain of values.

• A ⊆ (� × �) ∪ (� ×�) ∪ (� ×�) is the set of arrows that connect pairs of nodes. If 
there is an arrow from node X to node Y, X is called parent of Y.

• P is a set of conditional probability distributions. These are encoded into conditional 
probability tables (CPTs), each one associated with a node in X  and quantifying the 
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effect of the parents on the node. The conditional probability values in the CPT of a 
node are the parameters of the network. These parameters are automatically learned 
from observed data from MAS execution through classic Bayesian learning.

Notation In the rest of the paper, we use the following notation for Bayesian Networks. 
Italic uppercase (X, Y, … ) for random variables; bold uppercase ( � , � , … ) for sets of ran-
dom variables; italic lowercase ( v1 , v2 , … ) for values in the domain of a random variable; 
Nv abbreviates (N = v) , i.e., an assignment of value v to a norm variable N; �v denotes an 
assignment of value v to all nodes in � ; P denotes a single probability. An evidence e is an 
observed assignment of values for some or all of the random variables in the network. An 
evidence c for all the context nodes C is an observation for a certain context; for example, 
Vehicles density has value low and Obstacle has value false. For simplicity, we use the term 
context also to refer to the associated evidence in the Bayesian Network.

Figure 3 reports an example of a Norm Bayesian Network for the running example of 
the ring road.

Since we focus on revising the sanctions that enforce norms, norms are never disabled, 
therefore in the following we ignore the disabled value of the nodes in the Bayesian Net-
work. Despite we do not explicitly disable a norm, we consider enforcing a norm with a 
sanction of 0 as equivalent to disabling the norm, assuming that an agent that violates a 
norm with sanction of 0 does not incur in any other kind of sanctions (e.g., consequences 
in the relation between the individual and the other agents due to shared (moral) values 
[7]).

Finally, the construction and training of the Norm Bayesian Network is a fully automated 
process. In particular, the structure of the network can be trivially obtained from the the 
definition of X  and A . The conditional probability distributions P (i.e., the parameters of 
the network), instead, are automatically learned through classical Bayesian learning using 
data collected from MAS execution. Without going into the details of the Monitoring and 

Fig. 3  A Norm Bayesian Network 
for the ring road TripDur

(true, false)

Halted
(true, false)

Vehicle
Density
(low, high)

Obstacle
(true, false)

SafDst
(ob, viol)

SpdLim
(ob, viol)

Table 1  Example of part of a 
dataset used to train the Norm 
Bayesian Network of Fig. 3 and 
obtained from monitoring the 
execution of the MAS

VehicleDensity Obstacle SpdLim SafDst TripDur Halted

Low true viol ob true false
Low false ob viol false false
High true viol ob true false
High false ob ob true true
…
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Sanctioning component, which are out of the scope of this paper, Table 1 reports a sample 
dataset that can be obtained from monitoring norms and objectives for the running exam-
ple of the ring road. The values that each of the variables assumes belongs to its domain as 
above specified (e.g., obeyed, violated, for norm nodes, true or false for objective nodes). 
Such dataset can be used to automatically train the Norm Bayesian Network of Fig. 3 and 
learn the set of conditional probability distributions P . As in this work we assume that the 
population of agents do not change over time and that the behavior of agents is consistent 
over time, the CPTs of the Norm Bayesian Network stabilize after receiving a sufficient 
number of evidences.

4.2  Norms, agents’ preferences and system‑level objectives in MAS

Consider a set of agent types T = {t1,… , tk} , each type corresponding to a preference as 
per Sect. 3. In order to focus on the revision of the norms’ sanctions, we assume that we 
possess a correct estimation of the preferences of agents concerning the aspects of the sys-
tem we aim to regulate. Additionally, we assume that the agents’ preferences do not change 
in different contexts. As we will see in the following, an accurate estimation of agents’ 
preferences is helpful for improving the effectiveness of our heuristics. Our technique, 
however can be extended to support partial or inaccurate estimations of the agents’ prefer-
ences. In Sect. 7.1, we sketch some directions for future work to support these aspects.

Take a set of agents Ag = {a1,… , an} , each with a specific type from T  . We use 
Pref(a) ∈ T  to indicate that agent a ∈ Ag behaves according to a type from T  . For simplic-
ity we assume that the behaviors exhibited in the multiagent system are uniformly distrib-
uted over all the agents: at every time instant every agent either violates or obeys each of 
the enforced norms.

Given these assumptions and a set of norms N  , we say that a norm N in N  is well 
defined in the context of N  (simply well defined, for brevity) if the probability that N is 
violated, denoted as P(Nviol) , is never higher than the percentage of agents in the MAS with 
a reason to violate N in the context of N .4 In other words, the upper bound of the prob-
ability P(Nviol) in the context of N  (denoted as UB(Nviol,N) ) is the percentage of the agents 
with a reason to violate N in the context of N .

Let N be a norm in N  , and let � = (d1,… , dk) be a distribution over the agent types 
T = {t1,… , tk} , where di ∈ [0, 1] is the percentage of population of agents of type ti , with ∑k

i=1
di = 1 . The percentage of agents with a reason to violate N (as per Sect. 3.4) in the 

context of N  is 
∑k

i=1
(di ⋅ hasReason(i,N,N)) , with hasReason(i,N,N) = 1 if agent type ti 

has a reason to violate N in the context of N  , 0 otherwise.
Consider, as an example, a norm set N = ⟨N1,N2⟩ , with N1 = (sp50, s1) and 

N2 = (dist2, s2) and B = {0, 1} . Consider the two types of agents t1 and t2 as per Eq. (1) and 
Eq.  (2), respectively. Assuming a uniform distribution of agents between the two types, 

4 Consider a norm N  =  every vehicle on the ring road shall always exceed 70  km/h, a type of norm 
employed in our society, for instance, to prevent vehicles to have negative impact on road throughput and 
safety. Our framework supports such type of norm if it is well-defined. Suppose that in our running exam-
ple no agent has reason to violate N. If N was well-defined we would expect P(Nviol) = 0 . However, in our 
running example, such norm is not well-defined, for in case of high density, for example, the agents may be 
forced to slow down below the minimum speed, therefore violating the norm and exhibiting P(Nviol) > 0 . 
A well-defined norm guarantees agents that have no reason to violate the norm (i.e., their preferred alterna-
tives are compliant with the norm) to be able to obey such norm.
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Fig. 4 reports the upper bound of the probability of violating N1 and N2 for this example 
with different sanctions (i.e., different values of s1 and s2).

The upper bound of P(Nviol) describes a worst-case hypothetical situation where all 
agents behave according to their preferences, and if they have reason to violate a norm they 
are assumed to violate it, no contextual factor influences agent behavior, and interactions 
among agents do not prevent them to act according to their preferences. This would hap-
pen, for example, when a single car drives on an empty highway with perfect road and car 
conditions. Note, however, that the actual probability to violate a norm is affected by the 
agents’ decisions, their interactions and by the MAS environment, and it is assumed to be 
unknown a priori. Even if all agents have a reason to violate a norm, due to their interac-
tion or to environmental circumstances (e.g., large number of cars on the ring-road), none 
of them may end up violating it. Furthermore, as explained in Sect. 3.4, if an agent equally 
prefers two states of affairs, one violating a norm, and another obeying the norm, the agent, 
since autonomous, may decide to obey the norm even if it has a reason to violate it. We 
call, therefore, the monitored probability of violating (obeying) a norm exhibited norm vio-
lation (obedience). We do not assume any prior knowledge about such probability.

Note that, since we consider agent types with rational preferences as per Sect.  3.3, 
increasing the sanction s of a norm N = (p, s) , without changing the sanctions of other 
norms, does not increase the percentage of agents with a reason to violate N. Therefore, 
given k agent types and maxB(T,N) as the maximum budget among all agent types to vio-
late a well-defined norm N = (p, s) , the percentage of agents with a reason to violate a 
well-defined norm N� = (p,maxB(T,N) + 1) in the context of N  is 0. This is to say that 
increasing the sanction of a norm above the maximum budget that any agent is willing 
to pay causes all agents to comply with the norm. Consequently, given two well-defined 
norms N = (p, s1) and N� = (p, s2) such that s2 > s1 , and assuming no change in other 
norms of N  , the upper bound of the probability P(N�

viol
) is never bigger than the upper 

bound of the probability P(Nviol).
Furthermore, it is possible to prove that, if all agents in the MAS have a consistent 

preference (as per Definition 5), then given a set of norms N = ⟨N1,… ,Nn⟩ , increasing 
the sanction of a norm Nj in N  without changing the sanctions of other norms, does not 
increase the upper bound of the probability P(Nviol) for every N in N .

Proposition 3 Given an ordered set of norms N = ⟨N1,… ,Nn⟩ , and a set of t agent types 
T  , each type corresponding to a consistent preference (as per Definition  5), increasing 
the sanction of a norm Nj in N  without changing the sanctions of other norms, does not 
increase the upper bound of the probability P(Nviol) , i.e., UB(Nviol,N) , for all N in N .

Proof See “Appendix 1”.   ◻

Fig. 4  Upper bound of the 
probability of violating norms 
N1 = (sp50, s1) (in red) and 
N2 = (dist2, s2) (in black) with 
the two types of agents t1 and t2 
as per Eqs. (1) and (2), respec-
tively, uniformly distributed
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The concept of well-defined norm as described above, concerns the relationship between 
a norm and the preferences of the agents. In a multiagent system, norms are enforced in 
order to achieve some system-level objectives. Although setting the sanction of all norms 
in N  above max(B) makes all the agents fully compliant (i.e., P(Nviol) = 0 and P(Nob) = 1 
for all N ∈ � ), this does not necessarily guarantee the achievement of the system-level 
objectives, as norms can be ineffective, or even harmful, when obeyed by all agents [23]. 
Having an estimation of the agents’ preferences on its own is therefore not sufficient for an 
effective supervision of a MAS.

We describe here two properties that, instead, relate a norm with the system-level objec-
tives: the concept of synergy between a norm and the system-level objectives, and the con-
cept of effectiveness of a norm set.

We say that there is a positive synergy between a norm and the system-level objectives if 
it is more likely to achieve the system-level objectives when the norm is obeyed than when 
it is violated. A positive synergy between a norm N and a set of Boolean objectives � exists 
if P(�true|Nob) > P(�true|Nviol) . We say that there is a negative synergy between N and � if 
P(�true|Nob) < P(�true|Nviol) . Finally, we say that there is no synergy between N and � if 
P(�true|Nob) = P(�true|Nviol).

We say, instead, that a norm set N  is effective if, when norms in N  are enforced, N  
guarantees the desired achievement level toa of the system-level objectives, i.e., when 
P(�true) ⩾ toa . Conversely, if, when enforcing a norm set N  , we have that P(�true) < toa , 
we say that N  is ineffective.

Information such as the exhibited norm obedience, the synergy and the effectiveness 
described above, are hard to determine while designing a MAS. This is due to several fac-
tors, including the complexity of the system, the interaction between autonomous agents, 
the lack of complete knowledge of the agents’ internals, and the uncertainty of the environ-
ment. However, they can be learned at runtime by monitoring the MAS execution. In this 
paper, we learn such properties by means of the Norm Bayesian Network and, in Sect. 5, 
we propose different strategies to combine these properties with the agents’ preferences, in 
order to revise the sanctions of an ineffective norm set N .

5  Norm revision

In this section we propose different heuristic strategies for the revision of the sanctions of 
a set of norms whose enforcement is currently ineffective (as per Sect.  4.2). Opportune 
sanctioning of agents is a well-known mechanism to achieve the system-level objectives 
in MASs [11, 12]. Our strategies leverage the knowledge learned at runtime about norm 
effectiveness and an estimation of the preferences of the agents in the system, and deter-
mine a new set of sanctions to use to enforce the norms.

Take the Norm Bayesian Network in Fig. 3. By analyzing the CPTs of the objectives nodes 
� = {TripDur,Halted} , we can determine whether a norm set N  is effective or not in a con-
text c. If N  is not effective (i.e., P(�true|�) < toa ), a norm revision process is triggered. In 
such a case, in this paper we aim to revise the sanctions of the norms in N  . For example, if 
the two norms (sp50, 1) and (dist1, 1) are ineffective when on the ring road there is an obstacle 
and high vehicle density, we aim to identify another set of values for their sanctions. Given a 
norm set N  consisting of n norms, a set of agent types T  and the maximum possible budget 
max(B) among all agent types in T  , the possible sets of sanctions that can be used to enforce 
norms in N  is S = ×n

i=1
{s ∈ ℕ | s ⩽ max(B) + 1} . When a norm is enforced with a sanction 
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0, agent’s decisions are not affected by the norm, since every agent can always afford to violate 
(if preferred) a norm with sanction 0. When a norm is enforced with a sanction max(B) + 1 , 
instead, no agent can violate such norm, since no agent can afford to pay such sanction, for the 
maximum possible budget among all agent types is max(B).

The set S is the search space within which our heuristic strategies for norm revision search 
for new sanctions.

In Sect. 5.1, we describe six strategies for the suggestion of a revision of the sanctions of 
a norm set. Such strategies extend and adapt heuristics presented in previous work [23, 24] 
by supporting the revision of sanctions of multiple norms. Each strategy suggests how the 
behavior of agents w.r.t. the aspects of the system regulated by norms should change in order 
to improve the probability of achieving the system-level objectives. For example, given two 
norms, one strategy could suggest to reduce the violations of one norm and to increase the 
violations of the second norm. Based on the upper bound of the violation of norms obtained 
from agents’ preferences (Sect. 4.2), we provide then in Sect. 5.2 an algorithm to explore the 
search space S in order to identify a new set of sanctions that satisfies (as much as possible) 
the suggestions provided by the revision strategies.

It is worth noting that we do not claim that modifying sanctions is always enough in order 
to achieve the system’s objectives. As shown in previous work [23], sometimes the enforced 
norms (and not their enforcement) need to be revised. In this paper, however, we focus on 
mechanisms for the revision of the sanctions associated to the norms (i.e., the way norms are 
enforced). The combination of the mechanisms proposed here with the revision of the content 
of the norms is left for future work.

5.1  Norm revision strategies

We propose six strategies for the suggestion of norm revisions. Each strategy determines a 
list of n suggestions (one per each norm in N  ). We present three types of strategies: synergy-
based strategies, sensitivity-based strategies, and category-based strategies.

Each strategy is applied to a context mpc that, in our framework, corresponds to 
the most problematic context in which the objectives are not achieved. In particular, 
��� = argmax�∈all(�)P(�false | �) , where all(�) is the set of all possible contexts (assignments 
of a value to each of the context nodes in NBN  ). For simplicity, in the rest of the section, we 
call such context simply c.

5.1.1  Synergy‑based strategies

Synergy-based strategies are based on the concept of norm-objectives synergy described in 
Sect. 4.2. The idea is that, if there is a positive synergy between a norm N and the objectives 
� in c, the objectives � are more likely to be achieved when N is obeyed. In this case, by 
reducing the violations of N, we expect to increase P(�true|�) . If there is a negative synergy 
between N and � in c, instead, we expect that increasing the violations of N, and P(�true|�) 
would increase. We present two strategies of this type (Naive synergy and Combined synergy), 
which differ in the way they determine the synergy between norms and objectives.

Naive synergy Consider, for each norm N ∈ � , its synergy with the objectives O:

For instance, for a norm node SpdLim in the Bayesian Network of Fig.  3, where 
� = {TripDur,Halted} , we have that

(4)argmaxv∈{ob,viol}P(�true|Nv ∧ �)
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To determine the argmax of Eq. (4) means therefore to determine if SpdLimob is better than 
SpdLimviol for the achievement of the objectives TripDur and Halted.

Naive synergy calculates such argmax for each norm node and suggests to decrease vio-
lations of norms such that v = ob in Eq.  (4), and to increase violations of norms where 
v = viol in Eq. (4). For instance, given N = ⟨N1,N2⟩ , if v = ob for N1 and v = viol for N2, 
then naive synergy suggests to decrease violations of norm N1 and to increase violations of 
norm N2.

Combined synergy Determine which combination of values obeyed and violated for 
each norm is the best for the achievement of the objectives O.

Let �� be the set of all possible assignments of values in the set {ob, viol} to all 
norm nodes in N (e.g., given � = {N1,N2} , then �� = {{N1ob,N2ob}, {N1ob,N2viol}, 
{N1viol,N2ob}, {N1viol,N2viol}} ). Determine:

This strategy suggests to decrease violations of norms with value ob in �d and to increase 
violations of norms with value viol in �d . For instance if �d = {N1ob,N2viol} , then com-
bined synergy suggests to increase violations of norm N1 and to decrease violations of 
norm N2.

It is worth noting that Combined synergy purely determines the best combination of 
values for the norms, according to the observed data from MAS execution, without consid-
ering the prior probability of observing those values (in practice, Combined synergy only 
compares, one by one, the rows of the CPT of the objective nodes). Naive synergy, instead, 
when comparing different combinations of values for the norms, takes also into account 
the probability to observe those values (Naive synergy compares sums of different rows of 
the CPT of the objectives nodes, multiplied by the prior probability of observing the cor-
responding values for the norm nodes). Adopting the Naive synergy strategy may have the 
advantage of providing more precise suggestion w.r.t. the data acquired so far during the 
system execution. Considering only the CPT of the objective nodes, as per Combined syn-
ergy, may help instead determining the actual best combination of values of obedience of 
the norms for the system-level objectives, without being biased by the current probabilities 
of violating the norms, which will be modified after the sanctions revision.

5.1.2  Sensitivity‑based strategies

Sensitivity-based strategies are based on the sensitivity analysis technique from prob-
abilistic reasoning [14]. Such strategies do not only determine the direction of the 
revision—i.e., increasing or decreasing the probability of violating a norm, as in the 
case of synergy-based strategies—, but also estimate the required change in such prob-
ability in order to make the entire norm set effective in context c. In particular, given 
a norm node N, the probability P(Nviol|�) is a parameter �Nviol|�

 of the Norm Bayesian 
Network. Sensitivity-based strategies try to identify possible changes to the parameter 
�Nviol|�

that can ensure the satisfaction of the constraint P(�true|�) ⩾ toa . We call required 
revision strength (RRS) for a norm set N = ⟨N1,…Nn⟩ , the set of desired changes 
{��N1viol|� ,… ,��Nnviol|�} in the parameters �Nviol|�

 of each N in N  that ensure the satisfaction 

P(�true ∣ Nv ∧ �) = P(TripDurtrue,Haltedtrue ∣

SpdLimv ∧ � ∧ SafDstob) ⋅ P(SafDstob ∣ �) + P(TripDurtrue,Haltedtrue ∣

SpdLimv ∧ � ∧ SafDstviol) ⋅ P(SafDstviol ∣ �)

(5)�d = argmax�∈��P(�true|� ∧ �)
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of the constraint P(�true|�) ⩾ toa . We present two strategies of this type (Naive sensitiv-
ity analysis and n-CPT sensitivity analysis), which differ in the way they determine such 
set of desired changes for each norm in N .

Naive sensitivity analysis Determine, for each norm N, the required revision strength 
(RRS) ��Nviol

 by solving Eq. (6).

Consider the topology of a Norm Bayesian Network. Following Chan et al. [14], the deriva-
tive �P(�true|�)

��Nviol|�
 for a norm node N in N  can be computed as follows.

For instance, for a norm node SpdLim in the Bayesian Network of Fig.  3, where 
� = {TripDur,Halted} , the left member of the difference in Eq. (7) is

while the right member of the difference in Eq. (7) is

Therefore the derivative of Eq. (7) for a norm node SpdLim in the Bayesian Network 
of Fig. 3 can be computed as:

The RRS for a norm N determines the change in P(Nviol|�) that is estimated, based 
on observed data from MAS execution, to be required in order to make the norm set N  
effective.

Naive sensitivity analysis suggests to change (increase or decrease) the viola-
tions of norms of the amount determined by the corresponding RRSs. The sign of the 
required revision strength determines whether it is required to reduce (negative RRS) or 
to increase (positive RRS) violations of a norm, i.e., it determines the direction of the 
required revision. The value of the RRS determines the intensity of the required change. 
For instance if ��N1viol|� = +0.2 and ��N2viol|� = −0.5 , then the suggestion is to increase 
P(N1viol) of 0.2 and to decrease P(N2viol) of 0.5.

This strategy computes the RRS for a norm, without considering that a change could 
be applied, at the same time, also to other norms. In other words, the RRS for a norm N 

(6)P(�true|�) +
�P(�true|�)
��Nviol|�

⋅ ��Nviol|�
⩾ toa

(7)
�P(�true|�)
��Nviol|�

=
P(�true,Nviol|�)

P(Nviol|�)
− P(�true|Nob, �)

P(�true,Nviol|�)
P(Nviol|�)

=
P(TripDurtrue ,Haltedtrue , SpdLimviol|�)

P(SpdLimviol|�)

=
P(TripDurtrue,Haltedtrue|SpdLimviol, �) ⋅ P(SpdLimviol|�)

P(SpdLimviol|�)
= P(TripDurtrue|SpdLimviol, �) ⋅ P(Haltedtrue|SpdLimviol, �)

= P(TripDurtrue ∣ SpdLimviol, SafDstviol , �) ⋅ P(Haltedtrue ∣ SpdLimviol, SafDstviol , �) ⋅ P(SafDstviol ∣ �)

+ P(TripDurtrue ∣ SpdLimviol, SafDstob, �) ⋅ P(Haltedtrue ∣ SpdLimviol, SafDstob , �) ⋅ P(SafDstob ∣ �)

P(�true|Nob, �) = P(TripDurtrue ,Haltedtrue|SpdLimob, �)

= P(TripDurtrue ∣ SpdLimob, SafDstviol, �) ⋅ P(Haltedtrue ∣ SpdLimob, SafDstviol , �) ⋅ P(SafDstviol ∣ �)

+ P(TripDurtrue ∣ SpdLimob, SafDstob , �) ⋅ P(Haltedtrue ∣ SpdLimob, SafDstob , �) ⋅ P(SafDstob ∣ �)

P(TripDurtrue ∣ SpdLimviol, SafDstviol , �) ⋅ P(Haltedtrue ∣ SpdLimviol, SafDstviol, �) ⋅ P(SafDstviol ∣ �)

+ P(TripDurtrue ∣ SpdLimviol, SafDstob , �) ⋅ P(Haltedtrue ∣ SpdLimviol, SafDstob , �) ⋅ P(SafDstob ∣ �)

− P(TripDurtrue ∣ SpdLimob, SafDstviol , �) ⋅ P(Haltedtrue ∣ SpdLimob, SafDstviol , �) ⋅ P(SafDstviol ∣ �)

− P(TripDurtrue ∣ SpdLimob, SafDstob, �) ⋅ P(Haltedtrue ∣ SpdLimob, SafDstob, �) ⋅ P(SafDstob ∣ �)
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is computed as if no change in the probability of violating any other norm could happen 
(from this the term naive). However, when determining the RRS for a norm, Naive sen-
sitivity analysis considers all possible values of the other norms. Therefore, this strat-
egy may result robust to unexpected changes in the probability of violating other norms 
when changing the sanctions.

n-CPT sensitivity analysis Determine the required revision strength for all norms 
together, by solving, following Chan et  al. [14],  Eq.  (8) for the n parameters 
��N1viol

,… ,��Nnviol . Let co(�, i) be the set of all possible combinations of i norm nodes 
from the set � , and, given a set � = {N1,… ,Nm} ⊆ � of norm nodes, let �i

���viol∣�

 be the 
Leibniz’s notation for the i-th partial derivative �i

��N1viol∣�…��Nmviol∣�

 for Nj ∈ �.

Solving Eq.  (8) means to determine a list of n values ��Nviol
 , one for each norm node 

N ∈ � . To do so, first of all it is required to compute: the n first partial derivatives �P(�true|�)
��Nviol|�

 

(one for each norm N ∈ � ); the second partial derivatives for the 
(
n

2

)
 possible combinations 

of two norm nodes from � ; the third partial derivatives for the 
(
n

3

)
 possible combinations of 

three norm nodes from � ; and so on until the n-th partial derivative �nP(�true|�)
��N1viol∣�

…��Nnviol∣�

.

For instance, in the case of � = {N1,N2} , we have that n = 2 , 
co(�, 1) = {{N1}, {N2}} , and co(�, 2) = {{N1,N2}} , and inequality (8) corresponds to 
inequality (9).

The first partial derivatives in Eq.  (8) can be computed as per Eq.  (7), while the second 
partial derivative, in the case of two norms (as it is in Eq.  (9)), can be computed as per 
Eq. (10).

If we consider the running example from Fig. 3, the derivative in Eq. (10) can be computed 
as follows.

P(TripDurtrue ∣ SpdLimviol, SafDstviol, �) ⋅ P(Haltedtrue ∣ SpdLimviol, SafDstviol, �) +

P(TripDurtrue ∣ SpdLimob, SafDstob, �) ⋅ P(Haltedtrue ∣ SpdLimob, SafDstob, �) −

P(TripDurtrue ∣ SpdLimviol, SafDstob, �) ⋅ P(Haltedtrue ∣ SpdLimviol, SafDstob, �) −

P(TripDurtrue ∣ SpdLimob, SafDstviol, �) ⋅ P(Haltedtrue ∣ SpdLimob, SafDstviol, �).
After determining the values of the opportune derivatives, as above reported, ine-

quality (8) can be solved by solving the following optimization problem.

(8)P(�true|�) +
n∑

i=1

[
∑

�∈co(�,i)

(
�iP(�true|�)
���viol∣�

⋅

∏

N∈�

��Nviol|�

)]
⩾ toa

(9)

P(�true|�)

+
�P(�true|�)
��N1viol|�

⋅ ��N1viol|�
+

�P(�true|�)
��N2viol|�

⋅ ��N2viol|�

+
�2P(�true|�)

��N1viol|�
��N2viol|�

⋅ ��N1viol|�
��N2viol|�

⩾ toa

(10)

�2P(�true|�)
��N1viol|�

��N2viol|�

= P(�true|N1viol,N2viol, �) + P(�true|N1ob,N2ob, �)
− P(�true|N1viol,N2ob, �) − P(�true|N1ob,N2viol, �)
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where � = (x1,… , xn) is a vector of real values, such that xi is a possible value for ��Niviol|� 
and f (�) is the left member of inequality (8). Notice that the constraint to which the opti-
mization problem is subject to corresponds to the canonical form of Eq. (8). Solving the 
optimization problem (11) means to determine the minimum values for the n parameters 
��N1viol|�

,… ,��Nnviol|� that satisfy the desired constraint of inequality (8) (i.e., the probability 
of achieving the objectives, after applying the required change in the probability of violat-
ing the enforced norms, is above the desired threshold toa).

Analogously to naive sensitivity analysis, n-CPT sensitivity analysis suggests to 
change (increase or decrease) the violations of norms of the amount of the correspond-
ing RRSs determined by solving inequality (8). For instance, in the case of two norms, 
if ��N1viol|� = +0.2 and ��N2viol|� = −0.5 , then the suggestion is to increase P(N1viol) of 0.2 
and to decrease P(N2viol) of 0.5. Differently from the previous strategy, however, such 
values are obtained taking into account the change applied at the same time to the prob-
ability of violating all norms (instead of applying a change only one norm at a time).

5.1.3  Category‑based strategies

Category-based strategies classify norms into different categories, based on their exhib-
ited norm violation and on their relationship with the system-level objectives discovered 
at runtime, and determine an adequate revision for each norm based on their category. We 
present two strategies of this type (Synergy+MLE and State-based), based on two heuristic 
strategies presented in [23] and used to suggest a revision of regimented norms. In this 
paper we adapt them to support the revision of sanctions.

Synergy+MLE This strategy is based on the pureBN strategy presented in [23]. We 
distinguish between norms that are more useful when obeyed (useful-ob for brevity) or 
more useful when violated (useful-viol). Furthermore, norms can also be either most likely 
obeyed when the objectives are not achieved (likely-ob for brevity) or most likely violated 
(likely-viol). In order to distinguish between useful-ob and useful-viol we calculate the 
combined synergy �d (as per Eq. (5)). Norms with value ob in �d are useful-ob, norms with 
value viol in �d are useful-viol. In order to distinguish between likely-ob and likely-viol, 
instead, we determine the most likely explanation [36] mle for �false in context c, as follows 
(with ov defined as per Eq. (5)).

Norms with value ob in ��� are likely-ob, norms with value viol in ��� are likely-viol.
Synergy+MLE suggests to increase violations of norms belonging to category useful-

viol (more useful when violated); to reduce violations of norms belonging to both catego-
ries useful-ob and likely-viol (norms that are more useful when obeyed, but most likely 
violated when the objectives are not achieved); and to do nothing for, or reduce violations 
of, norms belonging to both categories useful-ob and likely-ob (norms that are more useful 
when obeyed, and most likely obeyed when the objectives are not achieved).

The original pureBN strategy [23] included the concept of harmful norm: a norm that 
is better when disabled. The suggestion of pureBN for harmful norms is to disable them. 
In this paper we only consider active norms and we focus on the sanction revision, thereby 

(11)
minimize �∈ℝn f (�)

subject to: toa − f (�) ⩽ 0

(12)��� = argmax�∈�� P(� |�false ∧ �)
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omitting specific suggestions for harmful norms. However, a suggestion of increasing vio-
lation of a norm N, may lead to enforce N with a sanction equals to 0. In this paper, enforc-
ing a norm N with a sanction of 0 corresponds to disabling N.

Finally, note that Synergy+MLE is a refinement of Combined synergy strategy. In addi-
tion to the combined synergy, this strategy also takes into account the most likely explana-
tion for the objectives being not achieved, in terms of obedience or violation of norms.

State-based This strategy, based on the stateBased strategy presented in [23], considers, 
in addition to the classification of norms described for strategy Synergy+MLE, informa-
tion about the system state in context c. In particular, as illustrated in Fig. 5, the system 
can be in four states with respect to the average norm obedience, calculated as the mean 
ns = meanN∈�P(Nob|�) , and the objectives achievement probability oa = P(�true ∣ �).

• In state A, norms are sufficiently obeyed, but this does not lead to sufficient objectives 
achievement (i.e., ns ⩾ tns and oa < toa for some given tns and toa).

• In state B, norms are not sufficiently obeyed and also objectives are not achieved (i.e., 
ns < tns and oa < toa).

• In state C, the objectives are achieved even though the norms are not obeyed (i.e., 
ns < tns and oa ⩾ toa).

• In state D, (the desired state of the system) the norms are satisfied and the objectives 
are achieved (i.e., ns ⩾ tns and oa ⩾ toa).

If the system is in state A, State-based suggests to increase violations of norms belong-
ing to both categories useful-viol and likely-ob, i.e., norms that are more useful when vio-
lated but most likely obeyed when the objectives are not achieved, if any. Otherwise, State-
based suggests to do nothing for (or to reduce violations of) the current norm set. In this 
case, there is probably some aspect of the system that has not been considered during its 
design, for the current norms are mostly obeyed and they are most useful when obeyed, but 
the system-level objectives are not achieved as desired. If the system is in state B, State-
based suggests to reduce violations of norms belonging to both categories useful-ob and 
likely-viol, i.e., norms that are more useful when obeyed but most likely violated when the 
objectives are not achieved. It also suggests to increase violations of norms belonging to 
category useful-viol, i.e., norms that are more useful when violated. If the system is in state 
C, finally, State-based suggests to increase violations of norms belonging to both catego-
ries useful-viol and likely-viol, if any. Otherwise it suggests to decrease violations of norms 
belonging to both categories useful-ob and likely-viol.

Fig. 5  System states (points) in 
four states (A–D) w.r.t. average 
norm obedience and objectives 
achievement probability

B

A

C

D

0 1

1
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While Synergy+MLE suggests for all the norms in N  the most adequate revision to per-
form, State-based considers the global state of the system and suggests to revise only a spe-
cific category of norms at every iteration (for the norms that do not belong to the category 
above mentioned it is suggested to do nothing). In case of high number of norms enforced, 
this strategy may significantly reduce the number of revisions that need to be performed at 
every step.

5.2  Sanctions revision

Consider a norm N = (p, s) and a revision of it N� = (p, s�) , with s′ ≠ s . Let P(Nviol|�) 
be N’s exhibited norm violation (i.e., the probability of violating N monitored dur-
ing system’s execution) in context � . We call applied revision strength the differ-
ence UB(N�

viol
,N) − P(Nviol|�) between the upper bound UB for violation of N′ (as per 

Sect. 4.2) and the N’s exhibited norm violation. For instance, in the example reported 
in Fig.  4, supposing that when enforcing N1 = (sp50, 1) and N2 = (dist2, 0) the exhib-
ited norm violation of N1 is 0.3, the applied revision strength when revising N1 into 
N�
1
= (sp50, 2) is 0 − 0.3 = −0.3 , while the applied revision strength when revising N1 

into N�
1
= (sp50, 0) is 1 − 0.3 = 0.7.

The strategies described in Sect. 5.1, provide, for each norm N in N  , a suggestion 
such as reduce/increase violations of N, do nothing with N, reduce/increase violations 
of N of a certain amount RRS (as per Sect. 5.1.2). Given these suggestions, and all pos-
sible sets of sanctions S that can be used to enforce norms in N  , we need to find a new 
set of sanctions such that the applied revision strength satisfies (as much as possible) 
the given suggestions.

A trivial solution is to systematically go through all elements in S until the desired 
sanction set (if it exists) is found. Such solution is however computationally expensive, 
as the number of possible sanction sets is (max(B) + 2)n , with max(B) + 2 maximum 
budget among all agent types ( max(B) ) plus sanction 0 and sanction max(B) + 1 , and n 
number of norms.

In the following, we propose a simple alternative way to explore the search space S 
that can be used in case of a population of consistent agent types as per Definition 5. 
With a population of consistent agent types, according to Proposition  3, the upper 
bound of the probability of violating norms decreases monotonically when any sanction 
increases. This means that given a sanction set, and the exhibited norm violation for 
each enforced norm, if we desire to apply a negative revision strength, we need to move 
towards higher values of sanctions. To apply a positive revision strength, instead, we 
could change in any way the sanctions (even though typically we should move towards 
lower values of sanctions), since the currently exhibited norm violation could be lower 
than the upper bound of norm violation with an higher sanction.

Under the assumption of consistent agent types, we can reduce therefore the 
exploration of S by directing the search towards the desired values of sanctions. For 
instance, suppose to have two norms N1 = (p1, s1) and N2 = (p2, s2) , and a list of sug-
gestions sugg = (reduce, increase) for a context c (i.e., it is suggested to reduce viola-
tions of norm N1 and to increase violations of norm N2 in context c). Given sugg , we 
need to look for a new sanction set {s�

1
, s�

2
} such that UB(N1�

viol
,N�) < P(N1viol|�) and 

UB(N2�
viol

,N) > P(N2viol|�) , with N� = ⟨N1�,N2�⟩ . We can therefore reduce the search 
space to the subset of S such that s′

1
⩾ s1 and s′

2
≠ s2.

Algorithm 1 reports the pseudo-code of a procedure to perform such search.
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Notice that if preferences are not consistent, we have no guarantees that by moving 
towards higher values of sanctions we will not increase violations of norms, since Prop-
osition 3 does not hold in the general case (i.e., for preferences that are not consistent). 
Despite this, one may still heuristically explore S by using Algorithm 1, also when not 
all preferences are consistent.

Algorithm  1 is invoked when a suggestion of norm revision has been determined 
with one of the strategies of Sect. 5.1 after a norm revision is triggered, and there is at 
least one sanction set that has not been tried previously in context c. If a sanction set 
has already been tried, we know it is not effective (otherwise no further norm revision 
would have been triggered). If all possible sanction sets have been already tried (omitted 
from Algorithm 1), then the sanction set that, when enforced, maximizes P(�true ∣ �) is 
selected. 

The algorithm takes as input: the list of currently enforced sanctions cs; the exhibited 
violation of the enforced norms E; the list sugg of suggestions obtained with one of the 
strategies of Sect. 5.1 (a value reduce (or increase, or nothing) in sugg[i] corresponds 
to a suggestion to reduce (increase, or do nothing with) violations of the i-th norm); a 
matrix UB containing the upper bounds for norms violations as per Fig. 4; a list RRS of 
required revision strengths (empty if no sensitivity-based strategy is used); and the con-
text c. As output, Algorithm 1 returns a (possibly new) list of sanctions to use to enforce 
norms in context c.

The algorithm explores the possible sanction sets starting from the current sanc-
tion set cs. The first step is to determine the subset of S to explore. Notice that, if a 
reduce suggestion has been given for norm i (i.e., sugg[i] = reduce ), the new sanction 
for norm i must be greater of equal than the current one (i.e., ns[i] ⩾ cs[i] ). This means 
that ns[i] has to be equal to cs[i] + ch , with ch ⩾ 0 amount of change. Conversely, if 
sugg[i] = increase , ns[i] has to be equal to either cs[i] + ch or cs[i] − ch . If we put these 
cases together (line 6 of Algorithm  1), ns[i] has to be equal to cs[i] + o[i] ⋅ ch , with 
o[i] ∈ {0, 1} if sugg[i] = reduce , and o[i] ∈ {0,−1, 1} if sugg[i] = increase , and ch > 0 
amount of change.
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Variable comb (line 3) is a set of all possible combinations of operators o[i] for each 
norm i, obtained from their suggestion sugg[i] (see op[sugg[i]] , which retrieves from 
the labeled set op declared at line 2, the opportune list of operators given suggestion 
sugg[i] ). For instance, supposing to have two norms N1 = (p1, s1) and N2 = (p2, s2) , 
and a list of suggestions sugg = (reduce, increase) , we have that op[sugg[1]] = [0, 1] and 
op[sugg[2]] = [0,−1, 1] and comb is the set of all possible combinations of operators 
in op[sugg[1]] and op[sugg[21]] , i.e., {(0, 0), (0,−1), (0, 1), (1, 0), (1,−1), (1, 1)} , such that 
given a certain element o ∈ comb , o[i] is the operator to apply to the change of sanc-
tion cs[i].

The algorithm iterates through all possible changes that can be applied to sanc-
tions (line 4). For each possible change, the algorithm iterates through all possible 
new sanction sets that can be obtained with the combinations of operators in comb 
(lines 5–6). Notice that, by iteratively increasing the change, we explore the search 
space at increasing distance from the current sanction set. This means that if the algo-
rithm finds a new (function isNewSanctionSet at line 7) sanction set ns that satisfies 
the given suggestions (function suggSat at line 8), such sanction set is also the closest 
possible to the current one.

Finally, if no new sanction set satisfying the suggestions is found, the current sanc-
tion set is returned. In this case, in our framework a random sanction set never tried 
before is enforced in context �.

Notice also that function suggSat (line 8), whose purpose is to verify that a pro-
posed sanction set satisfies the given suggestions, does not need to require that all sug-
gestions are perfectly satisfied. In particular, especially when suggestions include also 
a required revision strength (i.e., when using sensitivity-based strategies), it may be 
more useful to search for a good-enough sanction set. For our experiments, described 
in Sect. 6, when list RRS is not empty, we keep track of the best new sanction set found 
so far (if not all suggestions are satisfied) and for every new sanction set tested we 
require at least 80% of suggestions to be satisfied. Furthermore in case of suggestion 
nothing, since unlikely, in our experiments, that the exhibited probability of a norm 
exactly corresponds to a value on its upper bound, we accept also a reduction of the 
probability of violating the norm of a small � (we used � = 0.1).

After enforcing the new norm set N′ , obtained by revising the sanctions of norms in 
N  according to the new sanction set obtained from Algorithm 1, we monitor the new 
behavior of the agents and detect the new exhibited norm violation P(N�

viol
|�) , for each 

norm N� ∈ N
� . We call actual revision strength the difference P(N�

viol
|�) − P(Nviol|�) 

between the exhibited norm violation of N′ and N, with N� = (p, s�)and N = (p, s).

6  Experimentation

We report on an experiment that investigates the process through which the norm-
based supervision mechanism of Sect.  4 identifies an optimal system configuration. 
The object of our study consists of the strategies for norm revision proposed in Sect. 5. 
In particular, we study the process through which the norm-based supervision mecha-
nism identifies an optimal system configuration when employing each of the six pro-
posed strategies as possible informed heuristics for defining the neighborhood of a 
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configuration, i.e., the configurations where the sanctions of the enforced norms are 
revised as suggested by the heuristics.

We compare the results in terms of convergence speed. The convergence speed 
measures the number of steps (i.e., revisions of the sanctions of norms triggered) 
required by the heuristic strategies to make the norms effective in achieving the sys-
tem-level objectives. This allows us to study the time efficiency of the norm revision 
strategies in refining sub-optimal norms at runtime.

6.1  Experimental setting

Our experiment is run through a simulation5 of the ring road scenario described in Sect. 3. 
Our implementation of the norm-based supervision mechanism of Sect. 4, as a modified 
version of hill climbing, is called SASS (Supervisor of Autonomous Software Systems).6 
The supervisor performs a local search and stops when either (i) all the system configura-
tions have been tried; or (ii) a local optimum (system configuration) is found that has objec-
tives achievement probability oa = P(�true) above the desired threshold toa . The objectives 
achievement probability of a certain system configuration is not known to SASS before the 
configuration is actually enforced. Such probability is determined at runtime from simula-
tion data, given the chosen system configuration. In this experimental setting, the last sys-
tem configuration that is selected before stopping is called optimal, since either the objec-
tives achievement is above the desired threshold or there is no other better configuration.

In the ring road scenario, we consider the two contextual variables Vehicle density, 
which can be low (40 cars on the ring road) or high (80 cars);7 and Obstacle, which is true 
when an obstacle is placed on the outer lane of the ring road. Each car in the simulation is 
an agent that acts according to its specific characteristics, beliefs and preferences. At each 
simulation step, every agent also deliberates about a number of things, including its desired 
speed and the minimum safety distance, whether and how much to accelerate or decelerate, 
whether to change lane to surpass or to move back to the outer lane, whether to activate 
the turn signals. Agents’ decisions are based on their own internals, which are specific for 
each agent and unknown to the norm revision mechanism. In our simulations, when an 
agent equally prefers two alternatives x and y concerning the speed and safety distance 
(i.e., x ∼ y ), the agent applies a deterministic choice to determine what state of affair to 
pursue (i.e., simply the first one in the representation of the alternatives), instead of random 
choice.

In order to define norms and agents’ preferences, we consider the set of propositional 
atoms L = {sp15, sp8, sp3, dist0.5, dist1, sp2} , with AL = (L1, L2) and L1 = {sp15, sp8, sp3, } 
and L2 = {dist0.5, dist1, dist2} . Each element in L1 represents a speed in m/s and each ele-
ment in L2 represents a safety distance in meters. Furthermore, we consider a language 
B = {0, 1, 2} for defining budgets and a language S = {0, 1, 2, 3} for defining sanctions of 
norms.

7 The density values have been determined empirically based on the size of the ringroad used for the exper-
iments.

5 For our experiment, we used the SUMO traffic simulator [35] and CrowdNav+RTX [43].
6 The source code and the material for experiments’ replication can be found in [25].
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6.1.1  Agent types

We experiment with four types of rational agents with consistent preferences (as per Defi-
nition 5). In the following we briefly describe such types, and we report in “Appendix 2” 
the full preferences.

• BraveRich is a consistent basic preference that adheres to Definition  2b, i.e., where 
alternatives are ordered by propositional atom. It describes an agent type with a maxi-
mum budget of 4, that prefers to drive fast and to keep a short safety distance, and that 
gives priority to the short safety distance rather than to driving fast.

• BraveMiddleClass is a consistent preference composed by two basic prefer-
ences. The first basic preference (A1,⪰1) adheres to Definition  2b. The alternatives 
in A1 are such that A1 = {(⟨p1, b1⟩,… , ⟨pn, bn⟩) ∣ pi ∈ Li & (b1,… , bn) ∈ BL1} , 
with BL1 = {(0, 0), (0, 1), (1, 0), (1, 1)} . The second basic prefer-
ence (A2,⪰2) adheres to Definition  2a. The alternatives in A2 are such 
that A2 = {(⟨p1, b1⟩,… , ⟨pn, bn⟩) ∣ pi ∈ Li & (b1,… , bn) ∈ BL2} , with 
BL2 = {(0, 2), (1, 2), (2, 2), (2, 1), (2, 0)} . BraveMiddleClass describes an agent type 
similar to BraveRich, but that is willing to pay no more than 2 for a certain state of 
affairs. The alternatives in A2 are ordered by required budget and, for consistency, they 
maintain the same relative order as in A1.

• BravePoor is a consistent basic preference ordered by required budget, as per Defini-
tion 2a. It describes an agent type that equally prefers to drive fast or slow and to keep 
a short or long safety distance, but is not willing to pay anything to reach any state of 
affairs.

• Cautious is a consistent basic preference ordered by required budget, as per Defini-
tion 2a. It describes an agent type that equally prefers to drive slow or fast and to keep 
a long or short safety distance, and is not willing to pay anything to reach any state of 
affairs. Notice that this preference is equivalent to BravePoor, however due to the deter-
ministic mechanism of choice of an alternative that our agents employ (i.e., the first one 
in the representation of the alternatives), these two agent types will exhibit different 
behaviors at runtime. For instance, even though states of affairs where sp15 and dist0.5 
hold are equally preferred to state of affairs where sp3 and dist0.5 hold, in both prefer-
ences, and they could both be chosen in the case of random choice, in our simulation, 
given enough budget, BravePoor will aim at a state of affair where sp15 and dist0.5 hold, 
while Cautious will aim at a state of affair where sp3 and dist0.5 hold.

We consider three distributions of types of agents:

• uniform the entire population of agents is uniformly distributed across the four types 
above described.

• mostly compliant 75% of agents belongs to type Cautious and the rest is uniformly dis-
tributed across the remaining types.

• mostly violating 75% of agents belongs to type BraveRich and the rest is uniformly dis-
tributed across the remaining types.

Note that despite our estimation of the preferences of the agents concerning speed and 
safety distance, we do not have any control on the exact speed or safety distance of the 
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agents, which is internally and opaquely set by the agents, together with the rest of their 
behaviors.

6.1.2  Norms

We consider four ordered norm sets: N31 = ⟨SpdLim3, SafDst1⟩ , N32 = ⟨SpdLim3, SafDst2⟩ , 
N81 = ⟨SpdLim8, SafDst1⟩ , N82 = ⟨SpdLim8, SafDst2⟩ , with SpdLimx = (spx, s1) , 
SafDsty = (disty, s2) , x ∈ {3, 8} , y ∈ {1, 2} and s1 and s2 sanctions in S.

Figure  6 illustrates the upper bounds of the probability of violating the two norms 
SpdLimx and SafDsty above defined (as per Sect. 4.2) for the three agent type distributions.

Notice that the reported upper bounds hold for all combinations of the values x and y 
above defined (i.e., values of speed limit and minimum safety distance). This is due to the 
types of agents that we considered for our experiments. BraveRich prefers to keep a speed 
of 15 m/s by maintaining a short safety distance and it is willing to pay a sanction of 2 
for each of these aspects. When the sanction of a norm is above 2 this agent is compliant 
with the norm, regardless of the value of the speed limit, because the agent has no budget 
for violating the norm. BraveMiddleClass is analogous to BraveRich but with a maximum 
budget of 1 for the violation of a norm: up to sanction 1 BraveMiddleClass has reason 

(a)

(c)

(b)

Fig. 6  Upper bound of the probability of violating norms SpdLimx = (spx, s1) (red) and SafDsty = (disty, s2) 
(black) with different agent type distributions. In each subfigure the x-axis represents the sanction s1 of 
norm SpdLimx , while the y-axis represents the sanction s2 of norm SafDsty
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to violate a norm (it also prefers to go at a speed of 15 m/s by maintaining a short safety 
distance), while when the sanction of a norm is above 1 BraveMiddleClass is compliant. 
Finally BravePoor and Cautious have reason to violate the norms only when their sanc-
tions is 0. With higher sanctions, these agent types are compliant.

Furthermore notice that, since all the agent types that we considered are consistent as 
per Definition 5, the upper bounds reported in Fig. 6 satisfy Proposition 3: when increasing 
the sanction of only one norm the upper bound of violating the other norm never increases. 
This allows us to take advantage, in our experiments, of Algorithm 1 for the selection of a 
new sanction set.

6.2  Experiments

By combining the three distributions of agents of Sect. 6.1.1 with the four norm sets of 
Sect. 6.1.2, we derived 12 different experiments. We ran a simulation of the ring road for 
each of the 12 experiments and we collected data about norm obedience and objective 
achievement in the four different operating contexts �1 = VehicleDensitylow ∧ Obstaclefalse , 
�2 = VehicleDensitylow ∧ Obstacletrue , �3 = VehicleDensityhigh ∧ Obstaclefalse , 
�4 = VehicleDensityhigh ∧ Obstacletrue . This means that during a simulation, the contexts 
in which the cars on the ring road operate changes three times (for a total of fours different 
operating contexts in each simulation). During the simulations, we monitored the behavior 
of the cars and sanctioned each car that violated one of the enforced norms. A car sanc-
tioned for the violation of a norm N was not sanctioned anymore for violations of norm 
N until it completed a full loop of the ring road. The Boolean value of the system-level 
objectives was measured every 25 simulation steps. The objective TripDur was considered 
achieved if, on average in the 25 steps, the cars on the ring road took less than 2.5 times the 
theoretical average trip time8 to complete a loop of the ring road. The objective Halted was 
considered achieved if, on average in the 25 steps, less than x% of cars were halted on the 
ring road, with x = 25 if the density of vehicles on the ring road is high, and x = 5 if the 
density of vehicles is low.9 A car in SUMO is considered halted if its speed is below 0.1 
m/s. Cars could be halted on the ring road for several reasons. For example, the presence 
of an obstacle may force them to stop and wait for the right moment to surpass the obstacle 
or breaking waves may force cars to temporary slow down significantly to avoid collisions.

In every experiment that we perform, the system has nm possible configurations, 
with n possible sanction sets and m different operating contexts. Since the speed of 
convergence to an optimal solution depends on the initial system configuration (i.e., 
a different amount of revisions may be required starting from different initial configu-
rations), we execute each strategy starting from each possible configuration and we 
calculate statistics information (i.e., median, maximum, mean and standard deviation) 
concerning the convergence speed in the different executions. To keep our experimen-
tation’s time manageable, in our experiments we considered only 2 of the 4 operating 
contexts: c2 and c3. This allowed us to reduce the number of possible configurations 
from 164 to 162 = 256 : 16 possible sanction sets for the enforced norms in any of the 2 

8 The theoretical trip time is 
∑

ti∈T
di × ti,N  , with T  being the set of agent types, di being the percentage of 

agents of type ti , and ti,N  being the theoretical time needed by ti to complete a loop in case of free ring road 
when norm set N  is enforced.
9 Values for the evaluation of the objectives were determined based on some preliminary experimentation 
with the ring road simulation in order to retrieve a variegate set of experiments.
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contexts. Figure 7 shows the probability P(�true) obtained with the 256 configurations 
in each of the 12 experiments and highlights the optimal configurations (the configura-
tions s.t. P(�true) ⩾ toa ). Every dot in Fig. 7 represents the probability of achieving the 
objectives during a simulation with a certain system configuration (i.e., P(�true) ), con-
sidering both the contexts c2 and c3. In each sub-figure (one per experiment) we see 
therefore 256 dots, one per system configuration. Notice that in the 12 experiments, 

Fig. 7  Probability of objectives achievement (y-axis) for the 256 tried configurations (x-axis) in the 12 
experiments

Table 2  The setting of the 12 experiments

Exp. ID Agents distribution Norm set Contexts t
oa

Optimal

1 DUN31 uniform N31 �2 , �3 0.99 84/256 (32.8%)
2 DUN32 uniform N32 �2 , �3 0.99 48/256 (18.7%)
3 DUN81 uniform N81 �2 , �3 0.9 6/256 (2.3%)
4 DUN82 uniform N82 �2 , �3 0.7 8/256 (3.1%)
5 DCN31 mostly compliant N31 �2 , �3 0.99 72/256 (28.1%)
6 DCN32 mostly compliant N32 �2 , �3 0.99 60/256 (23.4%)
7 DCN81 mostly compliant N81 �2 , �3 0.79 4/256 (1.6%)
8 DCN82 mostly compliant N82 �2 , �3 0.5 17/256 (6.6%)
9 DVN31 mostly violating N31 �2 , �3 0.99 24/256 (9.4%)
10 DVN32 mostly violating N32 �2 , �3 0.9 96/256 (37.5%)
11 DVN81 mostly violating N81 �2 , �3 0.6 18/256 (7%)
12 DVN82 mostly violating N82 �2 , �3 0.8 3/256 (1.2%)
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the distribution of the 256 configurations w.r.t. the probability of achieving the sys-
tem-level objectives is different. In other words, a certain system configuration c (i.e., 
enforcing norms with certain sanctions in the two contexts c2 and c3) can be effective 
in an experiment but ineffective in another experiment. This makes the 12 experiments 
independent, thereby increasing the generality of our results.

For each of the 12 experiments, we defined a different toa as indicated in Table 2, 
which summarizes the entire experimental setting. The different thresholds allow us to 
test our strategies with different degrees of difficulty (i.e., number of optimal configu-
rations to be found).

6.3  Analysis of the results

Table 3 reports the results concerning the steps required by the supervision mechanism to 
find an optimal configuration in the 12 experiments when employing each of the six pro-
posed revision strategies. In particular, we report the median, the maximum, the average, 
and the standard deviation of the number of steps. We highlight in bold the values of the 
best performing strategies in each experiment.

On average, all the strategies required a limited number of steps to find an optimal con-
figuration in almost all experiments. In the 12 experiments, while the number of optimal 
configurations to be found ranges from 3 to 96 out of 256 configurations, on average the 
strategies never required more than 52 steps to find one of those configurations (see col-
umns Avg ( � ) in Table 3, where � is the standard deviation), with a minimum of 0 for all 
strategies (trivially in the cases the initial configuration is optimal, not reported in Table 3), 
a maximum of 218 in the most difficult scenario (see columns Max of experiment DVN82), 
and a median value never above 35 steps.

If we look at the average values, the strategy that performed less well in the 12 experi-
ments is Naive sensitivity analysis, which, in order to find an optimal configuration among 
the 256 possible configurations, required an average number of steps between 1 and 52. 
The strategy that, on average, performed best, instead, is n-CPT sensitivity analysis, requir-
ing an average number of steps between 2 and 12. In particular, these results show that 
when using n-CPT sensitivity analysis, on average, about 6 norm revisions were triggered 
by the norm-based supervision mechanism before finding a configuration where the sys-
tem-level objectives were achieved as desired.

Despite n-CPT sensitivity analysis performed, on average, better than the other strate-
gies in the 12 experiments, the results show that using that strategy was mostly advan-
tageous when very few configurations were optimal among all the possible ones. In par-
ticular, n-CPT sensitivity analysis appeared to be more effective than the other strategies 
when the number of optimal configurations was lower than 2% of all the configurations. 
For instance, in experiment DCN81 (1.6% of configuration are optimal), never more than 
13 steps were required to find an optimal configuration when employing n-CPT sensitivity 
analysis, while the other strategies required a maximum number of steps between 104 and 
216. Furthermore, while the median number of step is 9 with n-CPT sensitivity analysis, 
the median number of steps with the other strategies is more than twice. One exception 
is State-based, which in such experiment required an average number of steps similar to 
n-CPT sensitivity analysis and an even lower median. State-based, however, exhibited an 
higher variance, requiring in some executions up to 104 steps. In experiment DVN82 (1.2% 
of configuration are optimal), while all other strategies (including State-based) required an 
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average number of steps between 20 and 52, n-CPT sensitivity analysis was able to find on 
average an optimal configuration in about 12 steps.

If we consider, instead, simpler experiments (e.g., DUN31 or DCN31), n-CPT sensitiv-
ity analysis did not outperform significantly the other strategies. In fact, if we consider 
the average number of steps, among all the strategies, Naive synergy outperformed (even 
though by few steps) all the others in 5 experiments, requiring in all of them less then 6 
steps to find an optimal configuration. Furthermore in 8 experiments the average number 
of steps required by Naive synergy was below the average between the different algorithms. 
State-based had similar performances to Naive synergy and, even though it was the abso-
lute best strategy in only 3 experiments in terms of average number of steps, in 8 experi-
ments out of 12 it exhibited the lowest median value.

Figure  8 plots the percentage of configurations explored in the 12 experiments by 
the six strategies before finding an optimal one. In most experiments, all algorithms 
required to explore less than 10% of all configurations. The only cases that required to 

(a)

(b)

(c)

Fig. 8  Average percentage of explored configurations before finding an optimal one
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explore more than 10% of configurations were experiments DCN81 and DVN82, where 
the number of optimal configuration to be found was less than 2%. Figure 8 emphasizes 
that all proposed strategies performed similarly, with the exception of n-CPT sensitivity 
analysis, which did not show a degradation in the cases of very few optimal configura-
tions and required to explore a significantly lower number of configurations.

The values in Table 3 and in Fig. 8 concern the absolute number of steps required, 
and configurations explored, to find one of the optimal configurations among the total 
amount of 256 configurations. They provide an overview of the behaviour of the strate-
gies proposed in this paper in problems of different difficulty with a search space of 256 
possible solutions. Figure 9 compares the percentage of explored configurations by the 
different strategies with the percentage of optimal configurations to be found.

Note that, in problems with more than 6% of optimal configuration, the strategies did not 
exhibit significant differences. In more difficult problems (less than 3% of optimal configu-
rations), the number of configurations to explore increased up to 20% with Synergy+MLE, 
Combined synergy and in particular with Naive sensitivity analysis. Naive synergy and 
State-based, instead, as reported above, exhibited a similar behavior in most of the cases. 
In problems with less than 2% of optimal configurations, however, they also required to 
explore a higher number (up to ∼15%) of configurations. Finally, the figure shows the 
robustness of n-CPT sensitivity analysis: despite performing slightly worse than other strat-
egies in some experiments, n-CPT sensitivity analysis never required to explore more than 
5% of all configurations, even in problems with about 1% of optimal configurations.

7  Discussion

The results reported in Sect. 6 show that our proposed strategies can be employed to effec-
tively revise at runtime the sanctions of the enforced norms to quickly improve the perfor-
mance of the system (in terms of achievement of the system-level objectives). In particular, 
on 12 problems of different difficulty, our strategies reached optimal system’s configura-
tions after very few norm revisions. Starting with no initial knowledge about the effective-
ness of the possible configurations, all the strategies explored on average less than 10% 
of all possible configurations before finding an optimal one. In the simplest experiment 
(DVN32), all strategies required to explore on average less than 1% of all possible con-
figurations. In the same experiment, an uninformed strategy that does not consider runtime 
information and randomly tries a new configuration when the current one is not optimal 

Fig. 9  Average percentage of explored configurations (y-axis) compared to the percentage of optimal con-
figurations in the 12 different experiments (x-axis)
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would explore, on average, 62.5% of the configurations. In the most difficult experiment 
(DVN82), while a random strategy would explore on average 98.8% of the configurations 
to find one of the 1.2% optimal ones, our best performing strategy n-CPT sensitivity analy-
sis explored, on average, only 5% of all possible configurations.

Our experiments identified three best-performing strategies: Naive synergy, State-based 
and n-CPT sensitivity analysis. We discuss each of these strategies and interpret the results 
and the conditions for their applicability.

Naive synergy determines, for each of the enforced norms, what type of synergy 
exists between the norm and the system-level objectives. Based on the identified syn-
ergy, Naive synergy increases or decreases the sanction for violating the norm. This 
strategy suits well cases where the observed data from MAS execution clearly high-
lights that a norm is better when either obeyed or violated. In experiment DUN81, for 
instance, in both contexts c2 and c3 the speed limit norm is effective only when fully 
obeyed by all agents (i.e., system configurations where some agents violate the speed 
limit are not optimal). In such experiment, and also in similar experiments such as 
DUN82 and DCN82, the results confirmed that Naive synergy outperforms the other 
strategies.

The State-based strategy extends Combined synergy. Just like the latter, it considers 
the synergy between norms and objectives. Unlike Combined synergy, it also considers 
the most likely explanation for the objectives being not achieved. Furthermore, State-
based takes also into account the global state of the system (the average norm obedience 
and objectives achievement) and suggests to revise only a certain type of norms at every 
iteration. This strategy is suitable for cases where many norms are enforced and where 
the obedience of agents to a norm is likely to affect also the obedience to other norms. 
In our experiments, State-based performed well in most of the cases, with the excep-
tion of the most difficult ones DCN81 and DVN82, where, similarly to Naive synergy it 
required a higher number of revisions.

Note that, in experiments DCN81 and DVN82, the optimal configurations are only 
4 and 3, respectively, out of 256. To find the few optimal configurations quickly, it is 
necessary to have a strategy that precisely directs the norm revision. For this reason, 
synergy-based or category-based strategies, which only provide a direction for the revi-
sion (i.e., they simply suggest to either increase or decrease violations), were not the 
best in these experiments.

n-CPT sensitivity analysis, instead, provides a quantitative measure of how much 
change in the violations of each norm is required. This strategy is more precise, and, 
although it performed slightly worse than other strategies in a few cases, it showed a 
consistent convergence speed in all the experiments, including complex ones such as 
DCN81 and DVN82. Thus, this strategy proved to be the most robust in terms of con-
vergence speed. It is worth noting, however, that in cases where the desired achievement 
of the system-level objectives is not particularly restrictive and where many norms are 
enforced, n-CPT sensitivity analysis may be less adequate due to the higher computa-
tional effort it requires, especially if compared to simpler strategies like Naive synergy.

The worst-performing strategy, on average, is Naive sensitivity analysis. This strat-
egy performed particularly bad (compared to the others) especially in the most diffi-
cult experiments, where, as explained above, very few configurations were needed to 
be found. This result, which may seem surprising since sensitivity-based strategies are 
generally more precise than the others, can be explained by the naive approach of the 
strategy in determining the amount of change in the violations of norms that is required 
to achieve the system-level objectives. In doing so, unlike n-CPT sensitivity analysis, 
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this strategy considers the changes for only one norm at a time, assuming that the other 
parameters of the Bayesian Network (i.e., the amount of violations of other norms) 
would not change. After providing a suggestion, however, the strategy applies a sanc-
tions revision to all norms together (i.e., it changes all the parameters of the network 
together), creating a discrepancy between the way the suggestions are provided and the 
implementation of such suggestions. This discrepancy appears evident in cases where 
the precision of the suggestions is essential to identify one of the few optimal solutions 
(e.g., DCN81 and DVN82). Note, however, that all the proposed strategies are heuristics. 
Therefore, there is no guarantee that one strategy will always perform better or worse 
than the others. This is visible in the results: every strategy that we proposed, including 
Naive sensitivity analysis, performed better than the others in at least one experiment.

7.1  Limitations and possible extensions

In the following, we provide a discussion of some of the limitations and assumptions 
related to our framework and to the revision strategies that we proposed, outlining some 
possible future directions.

7.1.1  Preferences changing over time and context

We considered agents with same preferences in all operating contexts. This simplifica-
tion does not affect the generality of our approach. Our framework supports agents with 
different preferences in multiple operating contexts. In Sect. 4.2, we have shown how to 
use the estimation of the preferences of agents to determine an upper bound of the prob-
ability of violating a norm. In Sect. 5, we used such upper bound to guide the revision 
of the sanctions of the enforced norms in a certain operating context c. In order to use 
different preferences in varying operating contexts, it is possible to explicitly model the 
different contexts (as proposed, for example, in context-aware systems such as Ambient 
Intelligence systems [44]), and use an adequate upper bound in each of them.

This is made possible by the assumption that the preferences of agents (and therefore 
our estimation) do not change over time, i.e., we assumed that the behavior of the agent 
is consistent over time. We did not study the case of preferences changing over time. 
Preferences may change over time due to external factors inducing changes in the end-
user’s preferences, the introduction of new norms in the MAS, or changes in agents’ 
own evaluation of states of affairs due to the acquisition of new experience [40, 58].

To support preferences that change over time, our framework needs to be adapted in 
a number of ways, briefly listed below. First, depending on the type of system, mecha-
nisms for the dynamic elicitation of preferences should be employed and the estimation 
of the preferences should be dynamically replaced or updated (see, for example, mecha-
nisms to learn and update dynamic preferences [19, 49]). Given the new preferences, 
the upper bound of the probability of violating a norm should be recomputed. System 
configurations that are ineffective when certain behaviours are exhibited by the agents, 
may be instead effective when different behaviors are exhibited, and vice-versa. When 
the preferences of the agents are changed, therefore, the knowledge acquired during the 
norm revision process about the effectiveness of the norms and about the relationship 
between norm violation and system-level objectives should be reconsidered and oppor-
tunely weighted. If the preferences of the agents change very quickly and repeatedly 
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over time, the use of a static Norm Bayesian Network as the one described in Sect.  4 
may be unfavourable and the use of different more dynamic learning techniques, e.g., 
Dynamic Bayesian Networks [42], may be necessary. Supporting partial and inaccurate 
preferences of agents, as briefly discussed in Sect. 7.1.2, could also help to cope with 
preferences changing over time.

7.1.2  Partial or inaccurate information

When looking for a new sanction set, we assumed not to have any knowledge about the 
norm violations that will be actually exhibited when a never-tried-before sanction set is 
used to enforce norms. To guide the norm revision, we used the upper bound of a norm 
violation, a “safe” estimation of the actual norm violation that will be exhibited by agents. 
To calculate such upper bound we assumed an accurate (i.e., perfect) estimation of the 
preferences of the agents concerning the aspects of the system we aim to regulate.

The advantage of having an accurate estimation of the preferences of the agents is that 
we can define an upper bound for the probability of violating a (well defined) norm that is 
not too coarse-grained (e.g., a trivial upper bound is obviously a probability of 1, but this 
provides little information). As shown in Sect. 6, such an estimation, combined with our 
revision strategies, allows us to efficiently revise ineffective norms.

In some MASs, however, it is not possible to ensure a correct estimation of the agents’ 
preferences [26]. Extending our work to support partial and/or inaccurate information 
about the agents’ preferences requires an in-depth investigation. Based on the amount and 
type of information available, the accuracy and usefulness of the upper bound could sig-
nificantly change. For partial information (e.g., we know that an agent type prefers a state 
of affairs over another, but we do not have information about all possible comparisons of 
alternative states of affairs), it is still possible to estimate a possibly more coarse-grained 
upper bound. For example, a trivial estimation could be obtained by assuming that agents 
always prefer to violate the norms related to aspects for which we do not have informa-
tion. Less trivial estimations could be obtained for example by approximating the complete 
preferences by expressing the uncertain information as a belief function and leveraging 
the rationality principles of the preferences [17]. The estimated upper bound could be then 
refined over time by monitoring the behavior (i.e., the number of violations) of the agents. 
In case of inaccurate information (e.g., some of the available information about the prefer-
ences of agents is wrong, or the information available is only obtained from statistical data 
about the behavior of typical agents, or by learning the preferences from observed agents’ 
choices [26]), the estimation of the probability of violating a norm should be treated more 
as a prediction, rather than an upper bound. In this case, techniques such as Bayesian Opti-
mization [45], which attempts to find the minimum value of an unknown function, could be 
used for selecting new sanction sets and to refine over time the current estimation.

Nevertheless, a correct estimation of the preferences of the agents, as used in this paper, 
does not imply perfect revision strategies. This is because the trend of the upper bound 
may be different from the trend of the actual norm violation, which is unknown a priori.
The consequence of this can be illustrated on the example of Fig. 10, which reports a com-
parison between an upper bound (red dashed line) of the probability of violating a norm N, 
and N’s exhibited violation (blue solid line), w.r.t. the sanction associated to N. Suppose the 
current sanction for a norm N is 0, with an exhibited norm violation P(Nviol) = 0.3 , and the 
employed revision algorithm (e.g., Naive synergy) suggests to reduce violations of N. Here, 
the only possible choice for Algorithm 1, which relies on the estimation of the upper bound 
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of violating a norm, is to select sanction 4 as new sanction, since for all other sanctions 
the upper bound is higher than the currently exhibited norm violation. Although sanction 
2 would also satisfy the suggestion, this will remain unknown until such sanction is tried. 
If the optimal value of P(Nviol) for the achievement of the system-level objectives is, for 
instance, around 0.1, our supervision framework will need to perform additional revision 
steps to select sanction 2.

7.1.3  Complexity of preferences representation

In this paper, we introduced several types of preferences of rational agents as lists of tuples 
ordered according to different rational criteria. In our discussion and experiments, we con-
sidered complete preferences, i.e., we explicitly represented all possible alternative states 
of affairs. Such representation, however, grows exponentially with the number of norms 
and budgets. In real world scenarios, doing so may be possible only in restricted domains 
where the number of norms and the possible budgets of the agents is limited. In the gen-
eral case, however, representing the complete preferences of agents may be infeasible. In 
this work we attempted to lay down well founded principles for understanding the inter-
play between norms and the preferences of rational agents. For this reason, we provided 
a formal definition of different types of rational agents and we studied the properties of 
their preferences in relation with the chances to violate the enforced norms. We consider 
this as a necessary starting point for approaches to the runtime supervision of normative 
multiagent systems involving rational agents. In Sect. 7.1.2, we outlined some guidelines 
for our framework to support also partial (and inaccurate) preferences, which is one obvi-
ous way to reduce the complexity of explicitly representing the complete preferences. We 
leave this as future work, together with the integration of automated preferences elicitation 
techniques within our framework.

7.1.4  Norms importance

Our strategies do not make any distinction between norms: revisions are applied to all 
the norms. This approach can be extended to support a selective revision that takes into 
account of the importance of a certain norm for the achievement of the objectives. Con-
sider the derivative in Eq. (7), which describes the impact of changes in P(Nviol) on P(�true) 
in a context c. High values of such derivatives imply that changes in the violations of norm 
N have bigger impact on P(�true) . We call such derivative for a norm N the importance 

Fig. 10  Comparison between the upper bound (red dashed line) of the probability of violating a norm N, 
and N’s exhibited violation (blue solid line), w.r.t. the sanction associated to N 
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[54] of norm N in context c. By computing the importance of all norms, we obtain an 
ordering between norms w.r.t. the system-level objectives. The strategies of Sect. 5.1 could 
be then applied to the k most important norms. Although there is no guarantee that this 
approach will be more effective, it applies to cases in which revising norms comes at a 
cost, and therefore minimizing the number of revisions is important.

In addition to the importance of a norm, the observed data from MAS execution allows 
to analyze the relationship between pairs of norms and to detect weather some of the fol-
lowing properties hold.

Additive synergy between two norms This property, based on the concept of addi-
tive synergies in qualitative probabilistic networks [55], describes a situation where 
it is more likely to achieve the objectives when two norms are either both obeyed 
or both violated. Formally, two norms N1 and N2 exhibit an additive synergy when 
P(�true|N1obN2ob) + P(�true|N1violN2viol) ⩾ P(�true|N1obN2viol) + P(�true|N1violN2ob)  . 
The norms that exhibit an additive synergy with some of the k most important ones, could 
also be considered among the norms to be revised.

Product synergy between two norms This property, based on the concept of prod-
uct synergies in qualitative probabilistic networks [56], expresses how the value of one 
norm (e.g., N1 obeyed) influences the probability of the values of another norm (e.g., 
N2 obeyed), upon knowing the value for a common child (e.g., � true). For instance a 
negative product synergy says that observing N1 obeyed makes less likely to observe N2 
being obeyed. Formally, two norms N1 and N2 exhibit a negative product synergy when 
P(�true|N1obN2ob) ⋅ P(�true|N1violN2viol) ⩾ (⩽)P(�true|N1obN2viol) ⋅ P(�true|N1violN2ob)  . 
This property can be used to choose between two norms to revise: it is enough to revise one 
of them to obtain an effect on the other.

7.1.5  Conflicting norms

In this paper we assumed that the norms that are enforced are not conflicting, i.e., obey-
ing a norm does not prevent a priori agents to obey other norms. This work focuses on 
regulative norms: norms enforced by an institution in order to regulate the behaviour of 
the agents so to achieve desired system-level properties. In this context, we believe that an 
institution should not enforce conflicting norms, and we rely on normative conflict resolu-
tion mechanisms [51]. Despite this, our framework currently supports conflicting norms 
as long as the agents are aware of such conflicts, i.e., as long as the preferences of agents 
already take into account the conflicts. If two norms N1 and N2 are conflicting, obeying N1 
prevents the agents to obey N2 and vice-versa. The preference of an agent that is aware of 
the conflict, determines whether the agent prefers to obey N1 and pay a sanction for N2 , or 
vice-versa. This information is sufficient in our framework to estimate the upper bound for 
the violation of the norms and revise the sanctions of the norms when needed. Addition-
ally, the information of the conflict could also be explicitly used to improve the perfor-
mance of our revision strategies, similarly to the use of the product synergies described 
in Sect. 7.1.4: if obeying a norm agents cannot obey another norm, then it is sufficient to 
revise one sanction to obtain an effect also on the violation of the other norm.

7.1.6  Neighborhood expansion

When a norm revision is triggered, our supervision mechanism searches for a new sanction 
set that satisfies the suggestions provided by one of the heuristic strategies. The neighborhood 
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of a configuration, in the current hill climbing implementation of the supervisor, is composed 
by exactly one sanction set (configuration): the one that best satisfies the suggestions. An 
immediate extension of this approach is to expand the neighborhood definition, by including 
not only the best satisfying configuration, but also sub-optimal ones: those configurations that 
“almost” satisfy the suggestions provided. This extension is easily supported by our supervi-
sor, and it better fits the typical usage of the hill climbing optimization technique. By expand-
ing the neighborhood, the number of revision steps required by the supervision mechanism to 
find an optimal configuration could possibly further decrease. The challenge in expanding the 
neighborhood is in appropriately defining almost-satisfying suggestions. Different distance 
metrics and criteria could be considered in order to do so. Adopting a neighborhood com-
posed only by the best satisfying configuration allowed us, however, to analyze the quality of 
the suggestions provided by our algorithms without further overloading the experimentation 
with additional parameters. Experiments with different neighborhood definitions will be car-
ried on in future work, considering also a bigger case study.

8  Conclusions

In a MAS, the complexity and unpredictability of the agent interactions and of the environ-
ment must be taken into account to maximize the achievement of the system-level objec-
tives. When engineering such systems, the available knowledge of these dynamics is only 
partial and incomplete. As a consequence, MASs need to be supervised and regulated at 
runtime.

In this paper, we proposed a supervision mechanism that relies on norms with sanction 
to influence agent behavior and regulate a MAS [11]. We considered MASs where agents 
are rational, i.e., they always choose to achieve their most preferred state of affairs. We 
characterized rational agents through their preferences and we made use of an estimation 
of the agents’ preferences to guide the supervision of the MAS. Our mechanism automati-
cally revises the sanctions that are employed to enforce the norms. To do so, it first inter-
prets—through a Bayesian Network—observed data from MAS execution in terms of how 
well certain norms contribute to the achievement of the system-level objectives in different 
operating contexts. Then, it suggests how to revise the sanctions based on the knowledge 
learned at runtime and on the agents’ preferences. We proposed six heuristics for the sug-
gestion of sanction revisions.

An evaluation of the strategies through a traffic regulation simulation shows that our 
heuristics quickly identify optimal norm sets. We performed 12 different experiments on a 
ring-road traffic simulation, differing for the difficulty of the problem: the number of opti-
mal norm sets to be found among all the possible ones ranged from 1.2% to 37.5%. All the 
proposed strategies explored a small number of norm sets before finding an optimal one. 
In particular, the strategy n-CPT sensitivity analysis, based on the sensitivity analysis tech-
nique from probabilistic reasoning [14], on average never required to explore more than 5% 
of all possible norm sets in order to find one of the optimal ones.

This work paves the way for numerous future directions, some of which are sketched 
in Sect.  7.1. An in-depth evaluation of the scalability and computational complexity of 
the presented approach is necessary to assess its suitability for MASs with many norms 
and sanctions. Our simple language for representing norms and agents’ preferences can be 
extended to consider complex norm types beyond atomic propositions. Our agent popula-
tion was defined according to specific types. Future work should study the effect of agents 
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that deviate from the prototypical agent types. Finally, we are planning to extend our strate-
gies to support, in addition to the revision of the sanctions, also the revision of the norm 
proposition, and to synthesize new norms.
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Appendix 1: Properties of rational agents’ preferences

We report here a formal definition of the properties of the rational agents’ preferences 
described in Sects. 3.3 and 4.2.

Proposition 1 A basic preference Pref (a) = (A,⪰) for an agent a ∈ Ag is

• transitive ∀x, y, z ∈ A if x ⪰ y and y ⪰ z then x ⪰ z ; and
• complete ∀x, y ∈ A either x ⪰ y or y ⪰ x or x ∼ y.

Proof Consider a list AL = (L1,… , Ln) , a set B ⊂ ℕ , a set BL ⊆ B
n and an ordered set N  

of n norms. Let Pref(a) = (A,⪰) be a basic preference and x, y, z be alternatives in A.
(Transitivity) Assume that x ⪰ y and y ⪰ z . We prove the transitivity for two cases: 

either the preference adheres to Definition 2a (case 1) or the preference adheres to Defini-
tion 2b (case 2). For both cases, we show that x ⪰ z.

Case 1: we have that req_bud(x) ⩽ req_bud(y) and req_bud(y) ⩽ req_bud(z) . 
By transitivity of ⩽ , we have req_bud(x) ⩽ req_bud(z) . Moreover, we have 
∀k, l ∈ A,∀B,B� ∈ BL ∶ k[B] ≻ l[B] ⇒ k[B�] ≻ l[B�] for both x ⪰ y and y ⪰ z , such that we 
have it also for x ⪰ z . Therefore, we conclude that x ⪰ z.

Case 2: we have either (i) prop(x) = prop(y) = prop(z) or (ii) prop(x) ≠ prop(y) 
and either prop(y) = prop(z) or prop(y) ≠ prop(z) . In case (i), we have that 
req_bud(x) ⩽ req_bud(y) and req_bud(y) ⩽ req_bud(z) , and, by transitivity of ⩽ , we have 
that the first condition of Definition 2b is also satisfied by x and z. In case (ii), instead, we 
have that ∀B,B� ∈ BL ∶ x[B] ⪰ y[B�] . If prop(y) = prop(z) , we have that prop(x) ≠ prop(z) 
and ∀B,B� ∈ BL ∶ x[B] ⪰ z[B�] , so the second condition of Definition 2b is satisfied also 
by x and z. If instead also prop(y) ≠ prop(z) , then we have that ∀B,B� ∈ BL ∶ x[B] ⪰ y[B�] 
and ∀B,B� ∈ BL ∶ y[B] ⪰ z[B�] . Take three arbitrary alternatives x[B], y[B�], z[B��] . We 
have that x[B] ⪰ y[B�] and y[B�] ⪰ z[B��] . Since the choice of B,B′ and B′′ was arbitrary, 
this holds for any possible budget list. Therefore there is no B,B�� ∈ BL such that alter-
native z[B��] is strictly preferred to an alternative x[B], i.e., ∀B,B�� ∈ BL ∶ x[B] ⪰ z[B��] . 
Again the second condition of Definition 2b is satisfied by x and z, such that x ⪰ z.

(Completeness) By definition of basic preference, every pair of alternatives x, y ∈ A has 
to satisfy either Definition 2a or Definition 2b. Notice that, given x and y, if it is not the 

http://creativecommons.org/licenses/by/4.0/
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case that x ⪰ y , then we have that y ≻ x , therefore for every pair of alternatives x, y ∈ A 
either x ⪰ y or y ≻ x.

  ◻

Proposition 2 A preference Pref (a) = (A,⪰) for an agent a ∈ Ag is

• transitive ∀x, y, z ∈ A if x ⪰ y and y ⪰ z then x ⪰ z ; and
• complete ∀x, y ∈ A either x ⪰ y or y ⪰ x or x ∼ y.

Proof Consider a list AL = (L1,… , Ln) , a set B ⊂ ℕ , a set BL ⊆ B
n and an ordered set N  

of n norms. Let A = {(⟨p1, b1⟩,… , ⟨pn, bn⟩) ∣ pi ∈ Li & (b1,… , bn) ∈ BL} be the set of 
alternatives over which agents have preferences. Let A1,… ,Ak be k disjoint subsets of A as 
per Definition 4, and x, y, z be alternatives in A.

(Transitivity) Assume that x ⪰ y and y ⪰ z . If both x,  y and z belong to the same Ai 
for 1 ⩽ i ⩽ k then, by Proposition  1, x ⪰ z . Otherwise, if x ∈ Ai , y ∈ Aj and z ∈ Al with 
i < j < l , then, by Definition 4, given i < l , ∀v ∈ Ai∀w ∈ Al ∶ v ⪰ w , therefore x ⪰ z.

(Completeness) By Proposition 1, for every pair of alternatives x, y ∈ Ai for 1 ⩽ i ⩽ k , 
either x ⪰i y or y ⪰i x . Furthermore, by definition of preference, for all x ∈ Aj and y ∈ Ai , 
we have x ⪰ y , for 1 ⩽ j < i ⩽ k . We have therefore that for every pair of alternatives 
x, y ∈ A either x ⪰ y or y ⪰ x .   ◻

Proposition 3 Given an ordered set of norms N = ⟨N1,… ,Nn⟩ , and a set of t agent types 
T  , each type corresponding to a consistent preference (as per Definition  5), increasing 
the sanction of a norm Nj in N  without changing the sanctions of other norms, does not 
increase the upper bound of the probability P(Nviol) , i.e., UB(Nviol,N) , for all N in N .

Proof In this paper the agent’s preferences are not affected by the preferences of other 
agents. Since the upper bound UB(Nviol,N) of the probability of violating a norm N in the 
context of a norm set N  is determined by the number of agents with reason to violate N, as 
per Sect. 3.2, if Proposition 3 holds for one agent type, then Proposition 3 must hold also 
for all agent types. In the following we consider, therefore, one agent type T. Furthermore 
we assume N  composed by at least two different norms (if only one norm is enforced, 
Proposition 3 is trivially satisfied).

We prove Proposition 3 by contradiction.
Let M be the set of most preferred alternatives to act upon for agent type T in the con-

text of N = ⟨N1,… ,Nj,… ,Nn⟩ (as per Definition  6). Suppose we increase the sanction 
of norm Nj = (pj, sj) , obtaining N�

j
= (pj, s

�
j
> sj) . Let now M′ be the set of most preferred 

alternatives to act upon for agent type T in the context of N� = ⟨N1,… ,N�
j
,… ,Nn⟩.

Suppose, by contradiction, that UB(Nviol,N
�) > UB(Nviol,N) for N = (p, s) ≠ Nj , with 

p ∈ Li and Li in AL. This means that, in the context of N  , T has no reason to violate N, 
while in the context of N′ , T has reason to violate N (i.e., there exists no alternative c ∈ M 
with viol(c,N) , while there exists an alternative c� ∈ M� such that viol(c�,N)).

In order to modify the set of most preferred alternatives M when increasing the sanction 
from sj to s′

j
 , it must be the case that there exists at least one alternative c ∈ M s.t. viol(c,Nj) 

and sj ⩽ bj < s′
j
 (with bj budget of the j-th pair in c). If it is not the case increasing sj to s′

j
 

does not affect T’s most preferred alternatives and thus the proposition holds.
Consider the alternative from M with highest budget bj in the j-th pair. Consider also an 

i ≠ j . Let awx[B] = (⟨p1, b1⟩,… , ⟨w, bw⟩,… , ⟨x, bx⟩,… , ⟨pn, bn⟩) be such alternative, with 
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w ∈ Lj, x ∈ Li and sj ⩽ bw < s′
j
 . Let bzy[B�] = (⟨p�

1
, b�

1
⟩,… , ⟨z, bz⟩,… , ⟨y, by⟩,… , ⟨p�

n
, b�

n
⟩) 

be an alternative c� ∈ M� such that c� ∉ M and viol(c�,N) with z ∈ Lj, y ∈ Li and bz ⩾ s′
j
 . 

Notice that awx[B] is compliant w.r.t. N and bzy[B�] is not compliant w.r.t. N, hence 
y ≠ x . Notice also that awx[B] ≻ bzy[B�] . This is because by Definition  6 we have that, 
since bzy[B�] ∉ M , bzy[B�] ⪰ awx[B] iff bzy[B�] violates a norm Nk but the budget is not 
enough to pay the sanction. Such Nk cannot be Nj , since bz ⩾ s′

j
 , and if it’s another Nk then 

bzy[B�] cannot be also in M′ because we only increased the sanction of norm Nj . Therefore 
bzy[B�] must be strictly less preferred than awx[B] . Furthermore, let c be a fully compliant 
alternative.10

We first consider the case of T = (A,⪰) basic preference as per Definition 2, which can 
adhere to either Definition 2a or Definition 2b, then we uplift the proof to the preference as 
per Definition 4.

Basic preference
(Case Definition  2a) Since awx[B] ≻ bzy[B�] , it holds that, due to Definition  2a, 

c[B] ≻ bzy[B�] for all alternatives c in A. This means that also a fully compliant alternative 
c[B] is such that c[B] ≻ bzy[B�] . However, since s′

j
> bw , after revising sj into s′

j
 , there is at 

least one alternative in M′ (i.e., c[B] ) that is strictly preferred to bzy[B�] , because already 
present in M, and that is compliant to N. Therefore, bzy[B�] cannot be among the most pre-
ferred alternatives to act upon, i.e., bzy[B�] ∉ M� (contradiction).

(Case Definition 2b) Since awx[B] ∈ M ≻ bzy[B�] ∈ M� , by Definition 2b it holds that 
awx[B�] ⪰ awx[B] ≻ bzy[B�] ⪰ bzy[B] for all B� ∈ BL , i.e., awx ≻ bzy regardless of the 
required budget, including the maximum possible budget in B , max(B) . Therefore, since 
awx is the alternative in M with highest budget in the j-th pair, we have that s�

j
> max(B) , 

and no alternative that violates N′
j
 can be chosen in the context of N′ . bzy[B�] is then 

compliant w.r.t. N′
j
 , hence z ≠ w . By Definition 2, T contains at least another alternative 

awy[B�] . If awy[B�] ⪰ awx[B�] , then, according to Definition 2b, awy[B�] ⪰ awx[B�] for all 
B� ∈ BL . But if this is the case, we have that sj > max(B) (otherwise at least one alterna-
tive awy with bw = max(B) is in M and, in contradiction with out hypothesis, T has reason 
to violate N since viol(y,N) ). But if sj > max(B) we have awx[B] ∉ M (contradiction). If, 
instead, awx[B�] ≻ awy[B�] then awx ≻ awy regardless of the budget. By consistency (Def-
inition 5), then, we also have bzx ≻ bzy . We distinguish 2 cases: (a) awx ≻ bzx , this implies 
awx ≻ bzx ≻ bzy , which contradicts bzy[B�] ∈ M� , since alternatives bzx (compliant w.r.t 
N′
j
 ) are strictly preferred to bzy[B�] ; (b) bzx ≻ awx , this implies that, since awx[B] ∈ M and 

bzx is compliant w.r.t. both Lj and Li , then for every other norm violated by bzx , the sanc-
tion associated to such norm is bigger than max(B) (otherwise awx ∉ M and at least one 
alternative bzx ∈ M ). But if this is the case, also bzy[B�] ∉ M� , since the only sanction that 
we change is sj , and again we have a contradiction.

Preference
In the case of preference T = (A,⪰) , the k basic preferences composing A adhere 

to either Definition  2a or Definition  2b. The only case non considered above is when 
awx[B] ∈ Ai, bzy[B

�] ∈ Ap and it does not exists an alternative c ∈ Ap s.t. awx[B] ≻ c , and 
it does not exists an alternative c� ∈ Aq s.t. c� ≻ bzy[B�] , for two basic preferences Ap , Aq 
composing A, with 1 ⩽ p < q ⩽ k . Since all alternatives in Ai have required budget lower or 
equal than max(Bi) , then, due to Definition 2, among Ap there is at least one fully compliant 
alternative with required budget ⩽ max(Bi) . Therefore, even if sanction for Nj is increased 

10 We call a and b the list of propositional atoms that are different from w, x, y, z respectively in awx and 
bzy . Also, we use notation c[B] to indicate an alternative c with list of budgets B, as described in Sect. 3.2.
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to a value s > max(B) , M′ does not contain any alternative from Aq that was not already in 
M, therefore bzy[B�] ∉ M� , and again we have a contradiction.   ◻

Appendix 2: Experiments agent types

We report here the full preferences of the four types of agents considered in our experimen-
tation, described in Sect. 6.

• BraveRich

(⟨sp15, 0⟩, ⟨dist0.5, 0⟩) ≻ (⟨sp15, 0⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp15, 1⟩, ⟨dist0.5, 0⟩)
≻ (⟨sp15, 1⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp15, 0⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist0.5, 0⟩)
≻ (⟨sp15, 1⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist0.5, 1⟩)
≻ (⟨sp15, 2⟩, ⟨dist0.5, 2⟩)
≻ (⟨sp8, 0⟩, ⟨dist0.5, 0⟩) ≻ (⟨sp8, 0⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp8, 1⟩, ⟨dist0.5, 0⟩)
≻ (⟨sp8, 1⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp8, 0⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist0.5, 0⟩)
≻ (⟨sp8, 1⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist0.5, 1⟩) ≻ (⟨sp8, 2⟩, ⟨dist0.5, 2⟩)
≻ (⟨sp3, 0⟩, ⟨dist0.5, 0⟩) ≻ (⟨sp3, 0⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist0.5, 0⟩)
≻ (⟨sp3, 1⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp3, 0⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist0.5, 0⟩)
≻ (⟨sp3, 1⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist0.5, 1⟩)
≻ (⟨sp3, 2⟩, ⟨dist0.5, 2⟩) ≻ (⟨sp15, 0⟩, ⟨dist1, 0⟩) ≻ (⟨sp15, 0⟩, ⟨dist1, 1⟩)
⪰ (⟨sp15, 1⟩, ⟨dist1, 0⟩) ≻ (⟨sp15, 1⟩, ⟨dist1, 1⟩) ⪰ (⟨sp15, 0⟩, ⟨dist1, 2⟩)
⪰ (⟨sp15, 2⟩, ⟨dist1, 0⟩) ≻ (⟨sp15, 1⟩, ⟨dist1, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist1, 1⟩)
≻ (⟨sp15, 2⟩, ⟨dist1, 2⟩) ≻ (⟨sp8, 0⟩, ⟨dist1, 0⟩) ≻ (⟨sp8, 0⟩, ⟨dist1, 1⟩)
⪰ (⟨sp8, 1⟩, ⟨dist1, 0⟩) ≻ (⟨sp8, 1⟩, ⟨dist1, 1⟩) ⪰ (⟨sp8, 0⟩, ⟨dist1, 2⟩)
⪰ (⟨sp8, 2⟩, ⟨dist1, 0⟩) ≻ (⟨sp8, 1⟩, ⟨dist1, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist1, 1⟩)
≻ (⟨sp8, 2⟩, ⟨dist1, 2⟩) ≻ (⟨sp3, 0⟩, ⟨dist1, 0⟩) ≻ (⟨sp3, 0⟩, ⟨dist1, 1⟩)
⪰ (⟨sp3, 1⟩, ⟨dist1, 0⟩) ≻ (⟨sp3, 1⟩, ⟨dist1, 1⟩) ⪰ (⟨sp3, 0⟩, ⟨dist1, 2⟩)
⪰ (⟨sp3, 2⟩, ⟨dist1, 0⟩) ≻ (⟨sp3, 1⟩, ⟨dist1, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist1, 1⟩)
≻ (⟨sp3, 2⟩, ⟨dist1, 2⟩) ≻ (⟨sp15, 0⟩, ⟨dist2, 0⟩) ≻ (⟨sp15, 0⟩, ⟨dist2, 1⟩)
⪰ (⟨sp15, 1⟩, ⟨dist2, 0⟩) ≻ (⟨sp15, 1⟩, ⟨dist2, 1⟩) ⪰ (⟨sp15, 0⟩, ⟨dist2, 2⟩)
⪰ (⟨sp15, 2⟩, ⟨dist2, 0⟩) ≻ (⟨sp15, 1⟩, ⟨dist2, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist2, 1⟩)
≻ (⟨sp15, 2⟩, ⟨dist2, 2⟩) ≻ (⟨sp8, 0⟩, ⟨dist2, 0⟩) ≻ (⟨sp8, 0⟩, ⟨dist2, 1⟩)
⪰ (⟨sp8, 1⟩, ⟨dist2, 0⟩) ≻ (⟨sp8, 1⟩, ⟨dist2, 1⟩) ⪰ (⟨sp8, 0⟩, ⟨dist2, 2⟩)
⪰ (⟨sp8, 2⟩, ⟨dist2, 0⟩) ≻ (⟨sp8, 1⟩, ⟨dist2, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist2, 1⟩)
≻ (⟨sp8, 2⟩, ⟨dist2, 2⟩) ≻ (⟨sp3, 0⟩, ⟨dist2, 0⟩) ≻ (⟨sp3, 0⟩, ⟨dist2, 1⟩)
⪰ (⟨sp3, 1⟩, ⟨dist2, 0⟩) ≻ (⟨sp3, 1⟩, ⟨dist2, 1⟩) ⪰ (⟨sp3, 0⟩, ⟨dist2, 2⟩)
⪰ (⟨sp3, 2⟩, ⟨dist2, 0⟩) ≻ (⟨sp3, 1⟩, ⟨dist2, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist2, 1⟩)
≻ (⟨sp3, 2⟩, ⟨dist2, 2⟩)
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• BraveMiddleClass

 #from here ordered by budget

(⟨sp15, 0⟩, ⟨dist0.5, 0⟩) ≻ (⟨sp15, 0⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp15, 1⟩, ⟨dist0.5, 0⟩)
≻ (⟨sp15, 1⟩, ⟨dist0.5, 1⟩) ≻ (⟨sp8, 0⟩, ⟨dist0.5, 0⟩) ≻ (⟨sp8, 0⟩, ⟨dist0.5, 1⟩)
⪰ (⟨sp8, 1⟩, ⟨dist0.5, 0⟩) ≻ (⟨sp8, 1⟩, ⟨dist0.5, 1⟩) ≻ (⟨sp3, 0⟩, ⟨dist0.5, 0⟩)
≻ (⟨sp3, 0⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist0.5, 0⟩) ≻ (⟨sp3, 1⟩, ⟨dist0.5, 1⟩)
≻ (⟨sp15, 0⟩, ⟨dist1, 0⟩) ≻ (⟨sp15, 0⟩, ⟨dist1, 1⟩) ⪰ (⟨sp15, 1⟩, ⟨dist1, 0⟩)
≻ (⟨sp15, 1⟩, ⟨dist1, 1⟩) ≻ (⟨sp8, 0⟩, ⟨dist1, 0⟩) ≻ (⟨sp8, 0⟩, ⟨dist1, 1⟩)
⪰ (⟨sp8, 1⟩, ⟨dist1, 0⟩) ≻ (⟨sp8, 1⟩, ⟨dist1, 1⟩) ≻ (⟨sp3, 0⟩, ⟨dist1, 0⟩)
≻ (⟨sp3, 0⟩, ⟨dist1, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist1, 0⟩) ≻ (⟨sp3, 1⟩, ⟨dist1, 1⟩)
≻ (⟨sp15, 0⟩, ⟨dist2, 0⟩) ≻ (⟨sp15, 0⟩, ⟨dist2, 1⟩) ⪰ (⟨sp15, 1⟩, ⟨dist2, 0⟩)
≻ (⟨sp15, 1⟩, ⟨dist2, 1⟩) ≻ (⟨sp8, 0⟩, ⟨dist2, 0⟩) ≻ (⟨sp8, 0⟩, ⟨dist2, 1⟩)
⪰ (⟨sp8, 1⟩, ⟨dist2, 0⟩) ≻ (⟨sp8, 1⟩, ⟨dist2, 1⟩) ≻ (⟨sp3, 0⟩, ⟨dist2, 0⟩)
≻ (⟨sp3, 0⟩, ⟨dist2, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist2, 0⟩) ≻ (⟨sp3, 1⟩, ⟨dist2, 1⟩) ≻

(⟨sp15, 0⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist0.5, 0⟩) ⪰ (⟨sp8, 0⟩, ⟨dist0.5, 2⟩)
⪰ (⟨sp8, 2⟩, ⟨dist0.5, 0⟩) ⪰ (⟨sp3, 0⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist0.5, 0⟩)
⪰ (⟨sp15, 0⟩, ⟨dist1, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist1, 0⟩) ⪰ (⟨sp8, 0⟩, ⟨dist1, 2⟩)
⪰ (⟨sp8, 2⟩, ⟨dist1, 0⟩) ⪰ (⟨sp3, 0⟩, ⟨dist1, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist1, 0⟩)
⪰ (⟨sp15, 0⟩, ⟨dist2, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist2, 0⟩) ⪰ (⟨sp8, 0⟩, ⟨dist2, 2⟩)
⪰ (⟨sp8, 2⟩, ⟨dist2, 0⟩) ⪰ (⟨sp3, 0⟩, ⟨dist2, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist2, 0⟩)
≻ (⟨sp15, 1⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp8, 1⟩, ⟨dist0.5, 2⟩)
⪰ (⟨sp8, 2⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist0.5, 1⟩)
⪰ (⟨sp15, 1⟩, ⟨dist1, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist1, 1⟩) ⪰ (⟨sp8, 1⟩, ⟨dist1, 2⟩)
⪰ (⟨sp8, 2⟩, ⟨dist1, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist1, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist1, 1⟩)
⪰ (⟨sp15, 1⟩, ⟨dist2, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist2, 1⟩) ⪰ (⟨sp8, 1⟩, ⟨dist2, 2⟩)
⪰ (⟨sp8, 2⟩, ⟨dist2, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist2, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist2, 1⟩)
≻ (⟨sp15, 2⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist0.5, 2⟩)
⪰ (⟨sp15, 2⟩, ⟨dist1, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist1, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist1, 2⟩)
⪰ (⟨sp15, 2⟩, ⟨dist2, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist2, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist2, 2⟩)
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⟨sp15, 0⟩, ⟨dist0.5, 0⟩) ⪰ (⟨sp8, 0⟩, ⟨dist0.5, 0⟩) ⪰ (⟨sp3, 0⟩, ⟨dist0.5, 0⟩)
⪰ (⟨sp15, 0⟩, ⟨dist1, 0⟩) ⪰ (⟨sp8, 0⟩, ⟨dist1, 0⟩) ⪰ (⟨sp3, 0⟩, ⟨dist1, 0⟩)
⪰ (⟨sp15, 0⟩, ⟨dist2, 0⟩) ⪰ (⟨sp8, 0⟩, ⟨dist2, 0⟩) ⪰ (⟨sp3, 0⟩, ⟨dist2, 0⟩)
≻ (⟨sp15, 0⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp15, 1⟩, ⟨dist0.5, 0⟩) ⪰ (⟨sp8, 0⟩, ⟨dist0.5, 1⟩)
⪰ (⟨sp8, 1⟩, ⟨dist0.5, 0⟩) ⪰ (⟨sp3, 0⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist0.5, 0⟩)
⪰ (⟨sp15, 0⟩, ⟨dist1, 1⟩) ⪰ (⟨sp15, 1⟩, ⟨dist1, 0⟩) ⪰ (⟨sp8, 0⟩, ⟨dist1, 1⟩)
⪰ (⟨sp8, 1⟩, ⟨dist1, 0⟩) ⪰ (⟨sp3, 0⟩, ⟨dist1, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist1, 0⟩)
⪰ (⟨sp15, 0⟩, ⟨dist2, 1⟩) ⪰ (⟨sp15, 1⟩, ⟨dist2, 0⟩) ⪰ (⟨sp8, 0⟩, ⟨dist2, 1⟩)
⪰ (⟨sp8, 1⟩, ⟨dist2, 0⟩) ⪰ (⟨sp3, 0⟩, ⟨dist2, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist2, 0⟩)
≻ (⟨sp15, 1⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp15, 0⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist0.5, 0⟩)
⪰ (⟨sp8, 1⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp8, 0⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist0.5, 0⟩)
⪰ (⟨sp3, 1⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp3, 0⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist0.5, 0⟩)
⪰ (⟨sp15, 1⟩, ⟨dist1, 1⟩) ⪰ (⟨sp15, 0⟩, ⟨dist1, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist1, 0⟩)
⪰ (⟨sp8, 1⟩, ⟨dist1, 1⟩) ⪰ (⟨sp8, 0⟩, ⟨dist1, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist1, 0⟩)
⪰ (⟨sp3, 1⟩, ⟨dist1, 1⟩) ⪰ (⟨sp3, 0⟩, ⟨dist1, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist1, 0⟩)
⪰ (⟨sp15, 1⟩, ⟨dist2, 1⟩) ⪰ (⟨sp15, 0⟩, ⟨dist2, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist2, 0⟩)
⪰ (⟨sp8, 1⟩, ⟨dist2, 1⟩) ⪰ (⟨sp8, 0⟩, ⟨dist2, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist2, 0⟩)
⪰ (⟨sp3, 1⟩, ⟨dist2, 1⟩) ⪰ (⟨sp3, 0⟩, ⟨dist2, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist2, 0⟩)
≻ (⟨sp15, 1⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp8, 1⟩, ⟨dist0.5, 2⟩)
⪰ (⟨sp8, 2⟩, ⟨dist0.5, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist0.5, 1⟩)
⪰ (⟨sp15, 1⟩, ⟨dist1, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist1, 1⟩) ⪰ (⟨sp8, 1⟩, ⟨dist1, 2⟩)
⪰ (⟨sp8, 2⟩, ⟨dist1, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist1, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist1, 1⟩)
⪰ (⟨sp15, 1⟩, ⟨dist2, 2⟩) ⪰ (⟨sp15, 2⟩, ⟨dist2, 1⟩) ⪰ (⟨sp8, 1⟩, ⟨dist2, 2⟩)
⪰ (⟨sp8, 2⟩, ⟨dist2, 1⟩) ⪰ (⟨sp3, 1⟩, ⟨dist2, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist2, 1⟩)
≻ (⟨sp15, 2⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist0.5, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist0.5, 2⟩)
⪰ (⟨sp15, 2⟩, ⟨dist1, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist1, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist1, 2⟩)
⪰ (⟨sp15, 2⟩, ⟨dist2, 2⟩) ⪰ (⟨sp8, 2⟩, ⟨dist2, 2⟩) ⪰ (⟨sp3, 2⟩, ⟨dist2, 2⟩)
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