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Abstract
Learning models of user behaviour is an important problem that is broadly applicable 
across many application domains requiring human–robot interaction. In this work, we 
show that it is possible to learn generative models for distinct user behavioural types, 
extracted from human demonstrations, by enforcing clustering of preferred task solutions 
within the latent space. We use these models to differentiate between user types and to find 
cases with overlapping solutions. Moreover, we can alter an initially guessed solution to 
satisfy the preferences that constitute a particular user type by backpropagating through the 
learned differentiable models. An advantage of structuring generative models in this way is 
that we can extract causal relationships between symbols that might form part of the user’s 
specification of the task, as manifested in the demonstrations. We further parameterize 
these specifications through constraint optimization in order to find a safety envelope under 
which motion planning can be performed. We show that the proposed method is capable 
of correctly distinguishing between three user types, who differ in degrees of cautiousness 
in their motion, while performing the task of moving objects with a kinesthetically driven 
robot in a tabletop environment. Our method successfully identifies the correct type, within 
the specified time, in 99% [97.8–99.8] of the cases, which outperforms an IRL baseline. 
We also show that our proposed method correctly changes a default trajectory to one sat-
isfying a particular user specification even with unseen objects. The resulting trajectory is 
shown to be directly implementable on a PR2 humanoid robot completing the same task.
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1  Introduction

As we move from robots dedicated to a restricted set of pre-programmed tasks to being 
capable of more general purpose behaviour, there is a need for easy re-programmability of 
these robots. A promising approach to such easy re-programming is Learning from Dem-
onstration, i.e., by enabling the robot to learn from and reproduce behaviors shown to it by 
a human expert—Fig. 1.

This paradigm lets us get away from having to handcraft rules and allows the robot to 
learn by itself, including modelling the specifications the teacher might have used during 
the demonstration. Often such innate preferences are not explicitly articulated, typically 
being in the form of biases resulting from experience with other potentially unrelated tasks 
sharing parallel environmental corpora—Fig.  2(1). The ability to notice, understand and 
reason causally about these ‘deviations’, whilst still learning to perform the demonstrated 
task is of significant interest.

Similarly, other methods for Learning from Demonstration as discussed by Argall et al. 
[2] and Wirth et al. [37] in the Reinforcement Learning domain are focused on finding a 
general mapping from observed state to an action, thus modeling the system or attempt-
ing to capture the high-level user intentions within a plan. The resulting policies are not 

Fig. 1   Example setup—the 
demonstrated task is to return 
the pepper shaker to its original 
location—next to the salt shaker. 
Deciding which objects to avoid 
when performing the task can be 
seen as conditioning on the user 
specifications, implicitly given 
during a demonstration phase

Fig. 2   1 Demonstrations that satisfy the user task specification maintain a distance from fragile objects (i.e. 
a wine glass), or fail to satisfy the specification by moving over sharp items. 2 An environment can have 
multiple clusters of valid trajectories in the latent space, conditioned on user type. 3 The validity of trajec-
tories can be represented as a causal model. Whether a trajectory is part of a cluster v is conditioned on the 
specific path z

�
 , the environment zI , and the specification s. 4 The minimum radius from the object cen-

tre—Tmin , which would change the validity of a trajectory
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generally used as generative models. As highlighted by Sünderhauf et  al. [34] one of 
the fundamental challenges with robotics is the ability to reason about the environment, 
beyond a state-action mapping.

Thus, when receiving a positive demonstration, we should aim to understand the causal 
reasons differentiating it from a non-preferential one, rather than merely mimicking the 
particular trajectory. When people demonstrate a movement associated with a concept, 
they rarely mean to refer to one singleton trajectory alone. Instead, that instance is typically 
an element of a set of trajectories sharing particular features. So, we want to find groups 
of trajectories with similar characteristics that may be represented as clusters in a suitable 
space. We are interested in learning these clusters so that subsequent new trajectories can 
be classified according to whether they are good representatives of the class of intended 
feasible behaviors. Further, we want to distill these specifications into a set of parameter-
ized rules and find a safety envelope that can represent the learned model. For instance, one 
such rule may be “The robot should not get closer than Tmin away from an object”. These 
rules would generalize to unseen world configurations, as they are dependent on object 
characteristics.

It is often the case that in problems that exhibit great flexibility in possible solutions, 
different experts may generate solutions that are part of different clusters—Fig.  2(2). In 
cases where we naively attempt to perform statistical analysis, we may end up collapsing to 
a single mode or merging the modes in a manner that doesn’t entirely reflect the underlying 
semantics (e.g., averaging trajectories for going left/right around an object).

When we talk about task specification, we understand the high-level descriptions of a 
task based trajectory and its desired behavior/interaction with a cluttered environment and 
its symbolic representation through causal analysis. For instance learning the manner, by 
which the robot end-effector may move above or around objects in the scene. The speci-
fications, as learned by the network, are the observed regularities in the human behavior. 
These rules are then parameterized by performing constrained optimization based on the 
demonstrations or samples from the learned model.

We present a method for introspecting in the latent space of a model which allows us to 
relax some of the assumptions illustrated above and more concretely to:

–	 find varied solutions to a task by sampling a learned generative model, conditioned on 
ka particular user specification.

–	 backpropagate through the model to change an initially guessed solution towards an 
optimal one with respect to the user specification of the task.

–	 counterfactually reason about the underlying feature preferences implicit in the demon-
stration, given key environmental features, and to build a causal model describing this.

–	 find a safety envelope of parameters to sets of rules representing the specifications 
though constraint optimization that allows their future use in motion planning.

2 � Related work

2.1 � Learning from demonstration

Learning from demonstration involves a variety of different methods for approximating 
the policy. In some related work, the state space is partitioned and the problem is viewed 
as one of classification. This allows for the environment state to be in direct control of 
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the robot and to command its discrete actions—using Neural Networks J Matari’c [25], 
Bayesian Networks Inamura [19], or Gaussian Mixture Models Chernova and Veloso [8]. 
Alternatively, it can be used to classify the current step in a high-level plan Thomaz and 
Breazeal [35] and execute predetermined low-level control.

In cases where a continuous action space is preferred, regressing from the observation 
space can be achieved by methods such as Locally Weighted Regression Cleveland and 
Loader [9].

Roboticists e.g., Sünderhauf et al. [34], have long advocated the position that reasoning 
as part of planning is dependent on reasoning about objects, their geometric manifesta-
tions, and semantics. This is based on the view that structure within the demonstration 
should be exploited to better ground symbols between modalities and to the plan.

One way to learn such latent structure can be in the form of a reward function obtained 
from Inverse Reinforcement Learning as described in Ng et  al. [28], Zhifei and Meng 
Joo [38], Brown and Niekum [4]. However, it is not always clear that the underlying true 
reward, in the sense of being the unique reward an expert may have used, is re-constructa-
ble or even if it can be sufficiently approximated. Combining multiple demonstrations 
to blend a desired expert response as in Vukoviundefined et al. [36] may not recreate an 
expected output with divergent multi-clustered demonstrations, which we are interested 
in the current work. Alternatively, Angelov et  al. [1] and Gombolay et  al. [14] propose 
a solution that is based on composing smaller policies to mitigate the search for hierar-
chical decomposition of the demonstration through direct learning of a goal scoring met-
ric or through pair-wise ranking. Alternatively, preference-based reinforcement learning 
(PbRL), Wirth et  al. [37], offers methods whose focus is on learning from non-numeric 
rewards, directly from the guidance of a demonstrator. Such methods are particularly use-
ful for problems in high-dimensional domains, e.g. robotics—[18, 20, 21], where a concise 
numeric reward (unless highly shaped) might not be able to correctly capture the semantic 
subtleties and variations contained in the expert’s demonstration. Thus, in the context of 
PbRL, the method we propose learns a user specification model using user-guided explo-
ration and trajectory preferences as a feedback mechanism, using definitions from Wirth 
et al. [37].

2.2 � Causality and state representation

The variability of environmental factors makes it hard to build systems relying only on cor-
relation data statistics for specifying their state space. Methods that rely on causality, Pearl 
[30], Harradon et al. [15], and learning the cause and effect structure, Rojas-Carulla et al. 
[32], are much better suited to supporting the reasoning capabilities required for transfer 
of core knowledge between situations. Interacting with the environment allows robots to 
perform manipulations that can convey new information to update the observational distri-
bution or change their surrounding, and in effect perform interventions within the world. 
Counterfactual analysis helps in a multi-agent situation with assignment of credit as shown 
by Foerster et al. [12]. It shows that marginalizing an agents actions in a multi-agent envi-
ronment through counterfactuals allows to learn a better representative Q-function. In this 
work, we similarly employ a causal view of the world where we capture the expert prefer-
ence in the model and evaluate it against a different set of environments, which is prohibi-
tive if we used human subjects.

Learning sufficient state features has been highlighted by Argall et  al. [2] as an open 
challenge for LfD. The problem of learning disentangled representations aims at generating 
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a good composition of the latent space, separating the different modes of variation within 
the data. Higgins et al. [16], Chen et al. [6] have shown promising improvements in dis-
entangling of the latent space with few a priori assumptions, by manipulating the Kull-
back–Leibler divergence loss of a variational auto-encoder. Denton and Birodkar [10] 
show how the modes of variation for content and temporal structure should be separated 
and can be extracted to improve the quality of the next frame video prediction task if the 
temporal information is added as a learning constraint. While the disentangled representa-
tions may not directly correspond to the factors defining action choices, Johnson et al. [22] 
adds a factor graph and composes latent graphical models with neural network observation 
likelihoods.

The ability to manipulate the latent space and separate variability as well as obtain 
explanation about behavior is also of interest to the interpretable machine learning field, as 
highlighted by Doshi-Velez and Kim [11].

2.3 � Constrained optimization

The ability to find an optimal solution under a set of constraints has been well studied, 
e.g., in [3, 5]. Moskewicz et al. [27] is one representative and state of the art method for 
propositional satisfiability (SAT). These methods have a history of being applied to robot-
ics problems for high-level planning, motion planning [13] and stability analysis [24].

In this paper, we use these methods to efficiently navigate the search space whilst adher-
ing to a set of non-linear constraints. With the development of increasingly more mature 
libraries for constrained optimization and SAT solving, such as [29], whose CP–SAT 
solver is based on [33], we can efficiently rewrite the set of specifications as parametrised 
channelling rules activated under different conditions, which partition the state space of the 
problem. As a result, we can optimize their respective parameters from the demonstrations.

3 � Problem formulation

In this work, we assume that the human expert and robotic agent share multiple static 
tabletop environments where both the expert and the agent can fully observe the world 
and can interact with an object being manipulated. The agent can extract RGB images of 
static scenes and can also be kinesthetically driven while a demonstration is performed. 
The task at hand is to move an object held by the agent from an initial position pinit to 
a final position pf  on the table, while abiding by certain user-specific constraints. Both 
pinit and pf ∈ ℝ

P . The user constraints are determined by the demonstrator’s type s, where 
s ∈ S = {s1,… , sn} for n user types.

Let D = {{�1, v1},… , {�N , vN}} be a set of N expert demonstrations, where �i = {I, trs
i
} , 

I ∈ ℝ
M is an RGB image of the tabletop scene, trs

i
 is the trajectory and vi is a binary label 

denoting the validity of the trajectory with respect to the user type s. Each trajectory trs
i
 is a 

sequence of points {p0,… , pTi} , where p0 = pinit and pTi = pf  . The length of the sequences 
is not constrained—i.e. T is not necessarily the same for different trajectories.

The learning task is to project each � ∈ ℝ
M into �

�
∈ ℝ

K , by an encoder ZI = E(I) , and 
trs
i
∈ ℝ

PTi into �
�
∈ ℝ

L , by Bèzier curve reparameterization, Z
�
= Bz(trs

i
) , with signifi-

cantly reduced dimensionality K ≪ M , L ≪ PTi . Both ZI and Z
�
 are used in order to pre-

dict the validity v̂i, v̂i = Cs(ZI , Z𝜃) of the trajectory trs
i
 with respect to the user type s. With 

an optimally-performing agent, v̂i ≡ vi . For more details see Fig. 3.
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In order to alter an initial trajectory, we can find the partial derivative of the model 
with respect to the trajectory parameters with the model conditioned on a specific user 
type s,

We can take a gradient step � and re-evaluate. Upon achieving a satisfactory outcome, we 
can re-project z

�
 back to a robot-executable trajectory trs = Bz−1(z

�
).

The main feature we want in our model is for the the latent space to be structured in a 
way that would allow us to distinguish between trajectories conforming (or not) to the user 
specifications. In turn, this generates good trajectories. We further need the model to main-
tain certain kinds of variability in order to allow us to estimate the causal link between the 
symbols within the world and the validity of a trajectory, given a specification.

4 � Specification model

We use the Deep Variational Auto-Encoder Framework—see [23]—as a base architec-
ture. The full model consists of a convolutional encoder network q

�
 , parametrised by � , 

a deconvolutional decoder network p
�

 , parametrised by � , and a classifier network C, 
comprised of a set of fully-connected layers. The encoder network is used to compress 
the world representation I to a latent space ZI , disjoint from the parameterization of the 
trajectories Z

�
 . The full latent space is modeled as the concatenation of the world space 

and trajectory space Z = ZI ∪ Z
�
 as seen on Fig. 3.

Parameters—�, �, �—are added to the three terms of the overall loss function—see 
Eq.  1—so that their importance during learning can be leveraged. In order to better 
shape the latent space and to coerce the encoder to be more efficient, the Kullback–Lei-
bler divergence loss term is scaled by a � parameter, as in [16].

𝛥 =
𝜕Cs(z|v̂ = 1)

𝜕z
𝜃

Fig. 3   Left: Specification model architecture. The environmental image I, I ∈ R100×100×3 , is passed through 
an Encoder–Decoder Convolutional Network, with a 16–8–4 3 × 3 convolutions, followed by fully con-
nected layer, to create a compressed representation ZI ,ZI ∈ R15 . It is passed along with the trajectory 
parameterization Z

�
,Z

�
∈ R2 through a 3-layer fully connected classifier network that checks the validity 

of the trajectory Cs(z) with respect to the spec. s. Right: The environment, compressed to zI , is composed of 
objects ( o1,… , oK ). A trajectory T is parameterized by z

�
 , which alongside the factors zI and user specifica-

tion s are part of the specification model
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By tuning its value we can ensure that the distribution of the latent projections in ZI do 
not diverge from a prior isotropic normal distribution and thus influence the amount of 
disentanglement achieved in the latent space. A fully disentangled latent space has factor-
ised latent dimensions—i.e. each latent dimension encodes a single data-generative fac-
tor of variation. It is assumed that the factors are independent of each other. For example, 
one dimension would be responsible for encoding the X position of an objectin the scene, 
another for the Y position, third for the color, etc. Higgins et al. [17] and Chen et al. [7] 
argue that such low-dimensional disentangled representations, learned from high-dimen-
sional sensory input, can be a better foundation for performing separate tasks—trajectory 
classification in our case. Moreover, we additionally add a binary cross-entropy loss (scaled 
by � ) associated with the ability of the full latent space Z to predict whether a trajectory trs 
associated a world I satisfies the semantics of the user type s—v̂ . We hypothesise that by 
backpropagating the classification error signal through ZI would additionally enforce the 
encoder network to not only learn factorised latent representations that ease reconstruction, 
but also trajectory classification. The full loss can be seen in Eq. 1.

The values for the three coefficients were empirically chosen in a manner such that 
none of the separate loss terms overwhelms the gradient updates while optimising L.

5 � Causal modeling

Naturally, our causal understanding of the environment can only be examined through 
the limited set of symbols, O, that we can comprehend about the world. In this part, 
we work under the assumption that an object detector is available for these objects (as 
the focus of this work is on elucidating the effect of these objects on the trajectories 
rather than on the lower level computer vision task of object detection per se). Given 
this, we can construct specific world configurations to test a causal model and use the 
above-learned specification model as a surrogate to inspect the validity of proposed 
trajectories. We assume that by understanding the minimum number of required dem-
onstrations per scene, we can learn a model that reflects the expert decisions.

If we perform a search in the latent space z
�
 , we can find boundaries of trajectory 

validity. We can intervene and counterfactually alter parameters of the environment 
and specifications and see the changes of the trajectory boundaries. By looking at the 
difference of boundaries in cases where we can test for associational reasoning, we can 
causally infer whether

–	 the different specifications show alternate valid trajectories
–	 a particular user type reacts to the existence of a specific symbol within the world.

(1)

min
� ,�,�

L(� ,�;I, zI , z� , v)

= −��E
�
(zI |I)(logD�

(I|zI))
+ �DKL(E�

(zI|I)||D�
(zI))

− �
[
v log(C(z)) + (1 − v) log(1 − C(z))

]
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5.1 � Specification model differences

We are interested in establishing the causal relationship within the specification model as 
shown on Fig. 3. We define our Structural Causal Model (SCM), following the notation of 
[31] as

where nodes � = {Z
�
, ZI , S,V} and ��j = {X1,X2,…Xn}�{Xj} . Given some observation 

x, we can define a counterfactual SCM ℭ
�=� ∶= (�,P

ℭ|�=�
�

) , where Pℭ|�=�
�

∶= PN|�=�.
We cannot logistically perform counterfactuals using the data and humans, but by relying 

on the learned models to have encapsulated the expert representations, we can perform the 
causal analysis on those surrogate models.

We can choose a particular user specification s ∼ p(S), s ≠ s
�
 and use the specification 

model to confirm that the different specification models behave differently given a set of tra-
jectories and scenes, i.e. the causal link s → v exists by showing:

We expect different user types to generate a different number of valid trajectories for a 
given scene. Thus, by intervening on the user type specification we anticipate the distribu-
tion of valid trajectories to be altered, signifying a causal link between the validity of a 
trajectory within a scene to a specification.

5.2 � Symbol influence on specification models

We want to measure the response of the specification models of intervening in the scene and 
placing additional symbols within the world. We use the symbol types O = {o1,… , ok} as 
described in Sect. 7.1. To accomplish this, for each symbol within the set we augment the 
scene I, part of the observation x with symbol o, such that Inew = I ∪ o . We do not have 
the ability to realistically remove objects from the scene, for this reason, our augmentation 
involves adding such objects, which can be interpreted as applying an additional overlay of the 
object on the image. If we observe that the entailed distributions of Pℭ|�=�;do(ZI∶=zInew)

v  changes 
i.e.

then the introduced object o has a causal effect upon the validity of trajectories conditioned 
upon the task specification s�.

We investigate the intervention of all symbol types permutated with all task-space specifi-
cations to build an understanding of the relationship between the manner of execution and the 
influence of the symbols on it.

ℭ ∶= (�,P
�
), S = {Xj ∶= fj(��j,Nj)}

(2)�

[
P
ℭ|� = �
v

]
≠ �

[
P
ℭ|� = �;do(S ∶= s)
v

]

(3)�

[
P
ℭ|� = �
v

]
≠ �

[
P
ℭ|� = �;do(ZI ∶= zInew)
v

]
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6 � Parameterization of specifications

The aim of this work is to provide a closed system that decomposes demonstrations into 
a set of parametrized rules. We have shown methods for ways to construct a model that 
encapsulates such specifications, using causal analysis to extract symbols which influence 
the demonstrations. Further, relying on these outputs, we use constraint optimization to 
find optimal parameters for a set of predefined rules representing the specifications.

We rely on the CP-SAT solver in Or-tools, [29], and formulate a set of rules that can be 
understood as corresponding to a point in the trajectory being in collision with an object, 
being in a region of influence of an object or in free-space. We formally define this in the 
following manner:

We would have a penalty constraint that 
∑

i f (pi) < Fmax for any trajectory 
tr = {p1, p2,… , pTi} , where Fmax is chosen as the attention buffer for the demonstrator. 
We are interested in providing a maximum or minimum safety envelope for the trajectory 
and would, thus maximize/minimize LT =

∑
k Tobject−k + Tmin . We can observe how the 

requirements for positive or negative change with the different safety target.
For each point in a trajectory, we add a set of constraints representing the different chan-

nels as seen under Eq. 4. The sum of penalties for each trajectory is added as a constraint 
conditioned on the validity of the trajectory. We would then find a feasible or optimal solu-
tion for the parameters—Tmin, Tobject−1,… , Tobject−K under the minimum/maximum cost 
function.

7 � Experimental setup

7.1 � Dataset

The environment chosen for the experiment consists of a top down view of a tabletop on 
which a collection of items, O = {utensils, plates, bows, glasses}—Fig. 4, usually found in 
a kitchen environment, have been randomly distributed. The task that the demonstrator has 
to accomplish is to kinestetically move a robotic arm gently holding a pepper shaker from 
one end on the table to the other ( pinit = bottom left, pf  = top right) by demonstrating a 
trajectory, whilst following their human preferences around the set of objects—see Fig. 5. 
The demonstrators are split into user types S, S = {careful, normal, aggressive} based 
on the trajectory interaction with the environment. The semantics behind the types are as 
follows: the careful user tries to avoid going near any objects while carrying the pepper 
shaker, the normal user tries to avoid only cups and the aggressive user avoids nothing and 
tries to finish the task by taking the shortest path from pinit to pf .

The agent observes the tabletop world and the user demonstrations in the form of 
100x100 pixel RGB images I, I ∈ ℝ

100×100×3 . The demonstrator—see Fig. 1—is assigned 
one of the types in S, has to produce a number of possible trajectories, some that satisfy 
the semantics of their type and some that break it—Fig. 2(1). As specified in Sect. 3, each 

(4)f (pi) =

⎧
⎪⎨⎪⎩

inf , if pi ≤ Tmin��pi − pobj−k��2, if pi ≤ Tmin + Tobject−k for any object k

0, otherwise.
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trajectory trs is a sequence if points {p0,… , pT} , where p0 = pinit and pTi = pf  . Each point 
pj, j ∈ {0,… , T} represents the 3D position of the agent’s end effector with respect to a 
predefined origin. However, all kinesthetic demonstrations are performed in a 2D (XY) 
plane above the table, meaning that the third coordinate of each point pj carries no infor-
mation ( P = 2 ). An efficient way to describe the trajectories is by using a Bèzier curve rep-
resentation—see [26]. The parameterization of a single trajectory becomes the 2D location 

Fig. 4   Items used for the generation of the training (green/left) and test (red/right) scenes (Color figure 
online)

Fig. 5   Sample images used to represent example scenes. pinit and pf  are as defined in Sect. 3. Blue blobs 
represent potential obstacles in the scene, which some user types might want to avoid, and are only drawn 
for illustrative purposes (Color figure online)
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of the central control point parametrized by � , together with pinit and pf  . However, the 
initial and final points for each trajectory are the same and we can omit them. Thus, with 
respect to the formulations in Sect. 3 L = 2 and Z

�
∈ ℝ

2.
In total, for each user type s ∈ S , 20 scenes are used for training, with 10 trajectories 

per scene. The relationship between the number of trajectories per scene and the model’s 
performance is explored in Sect. 8. For evaluation purposes additional 20 scenes are gener-
ated, using a set of new items that have not been seen before—see Fig. 4.

7.2 � Evaluation

We evaluate the performance of the model by its ability to correctly predict the validity 
of a trajectory with a particular specification. We perform an ablation study with the full 
model ( � ≠ 0, � ≠ 0, � ≠ 0, ), AE model ( � = 0 ), and classifier ( � = 0, � = 0 ). We inves-
tigate how the performance of the model over unseen trajectories varies with a different 
number of trajectories used for training per scene. We randomize the data used for training 
10 times and report the mean.

As a baseline we use an IRL model rs(p, I) , such that the policy � producing a trajectory 
trs that is optimal wrt:

Additionally, we test the ability of the learned model to alter an initially suggested trajec-
tory to a valid representative of the user specification. We assess this on the test set with 
completely novel objects by taking 30 gradient steps and marking the validity of the result-
ing trajectory.

We perform a causal analysis of the model with respect to the different user specifi-
cations and evaluate the difference in their expected behavior. Additionally, we intervene 
by augmenting the images to include specific symbols and evaluate the difference of the 
expectation of their entailed distribution. This highlights how the different specifications 
react differently to certain symbols.

We conclude by finding optimal maximum and minimum parameters for a set of rules 
that the motion controller can use to plan with varying levels of safety vs travel time. 
We perform constrain optimization on the task of moving a drill on a workbench robot 

argmax
trs

N∑
i=0

rs(pi, I)

Fig. 6   An additional task of 
moving the the drill to the work 
space of the other robot
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assembly area as shown on Fig. 6 and report results in Sect. 8.4. We obtain demonstrations 
in a representative simulated 2D environment, such that the demonstrated trajectories no 
longer need to adhere to the Bèzier representation.

The aim is to find the rule parameterization based on Eq. 4, such that this representa-
tion can later on be used for motion planning optimization as an additional cost. We would 
aim to extract the limits of the parameters to create an envelope of possible costs and not a 
bound of the geometric models that represent the objects.

8 � Results

In this section we show how modeling the specifications of a human demonstrator’s tra-
jectories, in a table-top manipulation scenario within a neural network model, can be later 
used to infer causal links through a set of known features about the environment.

8.1 � Model accuracy

We show the accuracy of the specification model in Fig. 7 and on our websi​te.1 Changing 
the number of trajectories shown within a scene has the highest influence on the perfor-
mance going from 72% [67.3–77.5] for a single trajectory to 99% [97.8–99.8]2 when using 
9 trajectories. The results illustrate that the models benefit from having an auto-encoder 
component to represent the latent space. However, they asymptotically approach perfect 
behavior as the number of trajectories per scene increases. Interestingly, the IRL baseline 
shows the need for much more information in order to create an appropriate policy.

If we look into the latent space of the trajectory—Fig. 8—we can see that the trajec-
tory preferences have clustered and there exists an overlap between the different model 

Fig. 7   The accuracy of the differ-
ent models with respect the num-
ber of trajectories used within 
a scene. The lines indicate the 
mean accuracy with 10 different 
seed randomizations of the data. 
As the number of trajectories per 
scene increases, the performance 
of all models improves, but espe-
cially with a lower number of 
trajectories, our full model shows 
the biggest gains

1  Website on https​://sites​.googl​e.com/view/learn​speci​ficat​ions.
2  The numbers in brackets indicate the first and third quartile.

https://sites.google.com/view/learnspecifications
https://sites.google.com/view/learnspecifications
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specifications. It also illustrates what the models’ specifications can show about the valid-
ity of the trajectory.

8.2 � Trajectory backpropagation

We can use the learned specification model and perturb an initially suggested trajectory to 
suit the different user types by backpropagating through it and taking gradient steps within 
the trajectory latent space.

Based on the unseen object test scenes, the models were evaluated under the different 
specifications and the results can be found in Table 1. Individual trajectory movements can 
be seen in Fig. 9.

The first row of Fig.  9 shows that the careful user type steering away from both the 
cup and bowl/cutlery, whereas in the normal user type, the model prefers to stay as far 
away from the cup as possible, ignoring the bowl. The model conditioned on the aggres-
sive user type does not alter its preference of the trajectory, regardless of it passing through 
objects. The second row illustrates a situation, where the careful model shifts the trajectory 
to give more room to the cutlery, in contrast to the normal case. The final row highlights a 

(a) Careful (b) Normal (c) Aggressive

Fig. 8   Sampling of the latent trajectory space—Z
�
—of the preference model with different specifications. 

It can be observed how for the same region in the latent trajectory space—e.g. bottom right—the differ-
ent user types have different validity values for the same trajectory—e.g. normal versus careful user types 
around the cutlery and glass

Table 1   The success rate of 
perturbing a non valid trajectory 
into a valid one under different 
user specifications

User types Success rate (%)

Careful 75
Normal 95
Aggressive 100
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situation, where the resulting trajectories vastly differ depending on the conditioning of the 
specification model.

8.3 � Causal analysis

On Table 2 we can see the mean of the entailed distribution depending on the type of inter-
vention performed. The results of Eq. 2 can be seen in the first column under “No interven-
tion”. It shows the expected likelihood E[p(v|X = x, S = s)] of validity of a trajectory given 
a set of observations with different user specifications. Conditioning on the different types 
of user specifications, we can see that the validity increases (from 0.43 to 1.0), meaning a 

(a) Careful (b) Normal (c) Aggressive

Fig. 9   An initial trajectory (seen in dark blue) is used as a base solution to the task for difference scenes—
rows 1, 2, 3. Furthermore, the parametrisation z

�
 for each initial trajectory is continuously updated so that it 

better abides by the semantics of the different user specifications—columns a, b, c. It can be seen that as the 
gradient steps in Z

�
 are taken, the resulting intermediate trajectories are shifted to accommodate the prefer-

ence of the model until the final trajectory (light blue) is reached. Color change from dark to light blue des-
ignates progressive gradient steps (Color figure online)
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higher number of possible solutions can be identified. The variety of solutions can be seen 
in Fig. 8. This naturally follows the human assumption about the possible ways to solve a 
task with different degrees of carefulness. In the case of the final user type, all of the pro-
posed trajectories have successfully solved the problem.

In the subsequent columns on Table 2 we can see the mean probability of validity for 
when we intervene in the world and position randomly a symbol of different type within 
the scene. By comparing the value with the ones in the first column (as discussed above), 
we can assess the inequality in Eq. 3.

In the case of a safe user specification, adding a symbol of any type decreases the proba-
bility of choosing a valid trajectory (from 0.43 down to 0.27). This indicates that the model 
reacts under the internalized specification to reject previously valid trajectories that interact 
with the intervened object.

For the normal user type, significant changes are observed only when we introduce a 
glass within the scene. This means it doesn’t alter its behavior with respect to any of the 
other symbols.

In the last case, the aggressive user type doesn’t reject any of the randomly proposed 
trajectories and that behavior doesn’t change with the intervention. It suggests the specifi-
cation model, in that case, is not reacting to the scene distribution.

Based on these observations, we can postulate that the specification model has internal-
ized rules such as “If I want to be careful, I need to steer away from any objects on the 
table” or “To find a normal solution, look out for glass-like objects.”.

This type of causal analysis allows us to introspect in the model preference and gives us 
an understanding of the decision making capabilities of the model.

8.4 � Parameterization of task‑space specifications

Based on the demonstrated trajectories, we can find parameterization of the rules specified 
in Eq. 4 for a world with 2 distinct objects. We can observe the resulting parameters for 
object distance for 3 different participants in Table 3. We are measuring the distances in 
pixel units, and as the camera is orthogonal to the surface, they can be transformed to real 
world distances.

On Fig.  10 we can observe the progression of these threshold distances when we 
alter the number of valid and invalid examples. This allows us to better choose where 
future focus should be when obtaining demonstrations for alternative tasks. If we look 
at Fig. 10a, b to increase the confidence that we have found a maximum safety bound-
ary, we need to counter-intuitively provide more positive examples. Whereas if we 

Table 2   The respective distributions of validity p(v|X = x, S = s) with different user types depending on the 
intervention performed for a random trajectory to be valid under the user specification

The first column shows the mean distribution over the information obtained over the observations. The 
cells in bold indicate significant change with respect to the no intervention column. Those cells highlight a 
change, which is interpreted as a causal link between the intervened symbol and the user type

User types No intervention Bowl Plate Cutlery Glass

Safe 0.43 0.27 0.28 0.31 0.30
Normal 0.62 0.62 0.63 0.62 0.48
Aggressive 1.00 1.00 1.00 1.00 1.00
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are interested in the minimum safety envelope, Fig.  10c, d illustrates that we need to 
give invalid trajectories. Thus, the true underlying object distance will lie between the 
observed maximum and minimum boundaries.

The resulting boundaries around the symbols do not necessarily represent the object 
boundaries, but the expert representation of the min/max expected distance of interac-
tion around them. Combining the rules in Eq. 4 and the values in Table 3 allows us to 
create an additional cost map that can be used to perform motion planning in the scene 

Table 3   The object threshold 
distances found from 
demonstrations of different 
participants

The values in brackets indicate the radius when optimizing for the 
minimal L

T
 vs the maximum

Tmin Tmin + Tobject−1 Tmin + Tobject−2

User 1 (36) 59 (37) 135 (37) 159
User 2 (37) 45 (38) 145 (38) 145
User 3 (48) 52 (49) 152 (49) 152
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Fig. 10   The transition of the threshold distance ( Tmin + Tobject−k ) for different number of positive and nega-
tive examples. We can see the impact of increasing the number of trajectories when we want to find an opti-
mally maximum/minimum distance around and object
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following the user expectations. Combining this with the causal analysis gives us the 
ability to incorporate only the required symbols within the planning framework.

9 � Conclusion

Learning behavioural types is essential for completing interactive human–robot tasks. It 
helps avoid nuisance and promotes better foresight into human actions and plans. Being 
able to decompose those user types into interpretable and reusable models is of high 
importance.

In this work, we demonstrate how to construct and use a generative model to differenti-
ate between behavioral types, derived from expert demonstrations. We show how perfor-
mance changes with the number of trajectories illustrated in a scene. Additionally, by using 
the same learned model, it is possible to change any solution to satisfy the preference of a 
particular user type, by taking gradient steps in the latent space of the obtained model.

Performing causal analysis allows for the extraction of causal links between the occur-
rence of specific symbols within the scene and the expected validity of a trajectory. The 
models exhibit different behaviors with regard to the different symbols within the scene 
leading to correctly inferring the underlying specifications that the humans were using dur-
ing the demonstrations.

Further, by assuming an underlying set of specifications that users follow, it is possible 
to find the safety envelope boundaries for the objects within the scene. Additionally, we 
investigate what type of demonstrations would help move the minimum/maximum side of 
this boundary toward the optimum.

This paper demonstrates a method that converts demonstrations into a set of functions 
that represent the underlying specifications. Those are specifically linked to objects within 
the world and are causally discarded for uninteresting objects.
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