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Abstract

Inverse reinforcement learning (IRL) is the problem of learning the preferences of
an agent from the observations of its behavior on a task. While this problem has
been well investigated, the related problem of online IRL—where the observations
are incrementally accrued, yet the demands of the application often prohibit a full
rerun of an IRL method—has received relatively less attention. We introduce the
first formal framework for online IRL, called incremental IRL (I2RL), and a new
method that advances maximum entropy IRL with hidden variables, to this setting.
Our formal analysis shows that the new method has a monotonically improving
performance with more demonstration data, as well as probabilistically bounded
error, both under full and partial observability. Experiments in a simulated robotic
application of penetrating a continuous patrol under occlusion shows the relatively
improved performance and speed up of the new method and validates the utility of
online IRL.

1 Introduction

Inverse reinforcement learning (IRL) [11, 15] refers to the problem of ascertaining an agent’s
preferences from observations of its behavior on a task. It inverts RL with its focus on learning
the reward function given information about optimal action trajectories. IRL lends itself naturally
to a robot learning from demonstrations by a human teacher (often called the expert) in controlled
environments, and therefore finds application in robot learning from demonstration [2] and imitation
learning [12].

Previous methods for IRL [1, 3, 7, 8, 13, 19] typically operate on large batches of observations and
yield an estimate of the expert’s reward function in a one-shot manner. These methods fill the need
of applications that predominantly center on imitation learning. Here, the task being performed is
observed and must be replicated subsequently. However, newer applications of IRL are motivating
the need for continuous learning from streaming data or data in mini-batches. Consider, for example,
the task of forecasting a person’s goals in an everyday setting from observing his activities using a
body camera [14]. Alternately, a robotic learner observing continuous patrols from a vantage point
is tasked with penetrating the patrolling and reaching a goal location speedily and without being
spotted [4]. Both these applications offer streaming observations, no episodic tasks, and would benefit
from progressively learning and assessing the other agent’s preferences.
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In this paper, we present the first formal framework to facilitate investigations into online IRL. The
framework, labeled as incremental IRL (I2RL), establishes the key components of this problem and
rigorously defines the notion of an incremental variant of IRL. Next, we focus on methods for online
IRL. Very few methods exist [10, 14] that are suited for online IRL, and we cast these in the formal
context provided by I2RL. More importantly, we introduce a new method that generalizes recent
advances in maximum entropy IRL with hidden training data to an online setting. Key theoretical
properties of this new method are also established. In particular, we show that the performance of the
method improves monotonically with more data and that we may probabilistically bound the error
in estimating the true reward after some data both under full observability and when some data is
hidden.

Our experiments evaluate the benefit of online IRL on the previously introduced robotic application
of penetrating continuous patrols under occlusion [4]. We comprehensively demonstrate that the
proposed incremental method achieves a learning performance that is similar to that of the previously
introduced batch method. More importantly, it does so in significantly less time thereby suffering
from far fewer timeouts and a significantly improved success rate. Consequently, this paper makes
important initial contributions toward the nascent problem of online IRL by offering both a formal
framework, I2RL, and a new general method that performs well.

2 Background on IRL

Informally, IRL refers to both the problem and method by which an agent learns preferences of
another agent that explain the latter’s observed behavior [15]. Usually considered an “expert” in the
task that it is performing, the observed agent, say E, is modeled as executing the optimal policy of a
standard MDP defined as 〈SE , AE , TE , RE〉. The learning agent L is assumed to perfectly know the
parameters of the MDP except the reward function. Consequently, the learner’s task may be viewed
as finding a reward function under which the expert’s observed behavior is optimal.

This problem in general is ill-posed because for any given behavior there are infinitely-many reward
functions which align with the behavior. Ng and Russell [11] first formalized this task as a linear
program in which the reward function that maximizes the difference in value between the expert’s
policy and the next best policy is sought. Abbeel and Ng [1] present an algorithm that allows the
expert E to provide task demonstrations instead of its policy. The reward function is modeled
as a linear combination of K binary features, φk: SE × AE → [0, 1] , k ∈ {1, 2 . . .K}, each
of which maps a state from the set of states SE and an action from the set of E’s actions AE
to a value in [0,1]. Note that non-binary feature functions can always be converted into binary
feature functions although there will be more of them. Throughout this article, we assume that
these features are known to or selected by the learner. The reward function for expert E is then
defined as RE(s, a) = θTφ(s, a) =

∑K
k=1 θk · φk(s, a), where θk are the weights in vector θ; let

R = R|SE×AE | be the continuous space of the reward functions. The learner’s task is reduced to
finding a vector of weights that complete the reward function, and subsequently the MDP such that
the demonstrated behavior is optimal.

To assist in finding the weights, feature expectations are calculated for the expert’s demonstration and
compared to those of possible trajectories [19]. A demonstration is provided as one or more trajecto-
ries, which are a sequence of length-T state-action pairs, (〈s, a〉1, 〈s, a〉2, . . . 〈s, a〉T ), corresponding
to an observation of the expert’s behavior across T time steps. Feature expectations of the expert
are discounted averages over all observed trajectories, φ̂k = 1

|X|
∑
X∈X

∑T
t=1 γ

t φk(〈s, a〉t), where
X is a trajectory in the set of all observed trajectories, X , and γ ∈ (0, 1) is a discount factor. Given
a set of reward weights the expert’s MDP is completed and solved optimally to produce π∗E . The
difference φ̂− φπ∗E provides a gradient with respect to the reward weights for a numerical solver.

2.1 Maximum Entropy IRL

While expected to be valid in some contexts, the max-margin approach of Abeel and Ng [1] introduces
a bias into the learned reward function in general. To address this, Ziebart et al. [19] find the
distribution with maximum entropy over all trajectories that is constrained to match the observed
feature expectations.
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max
∆

(
−
∑
X∈X Pr(X) log Pr(X)

)
subject to

∑
X∈X Pr(X) = 1∑

X∈X Pr(X)
∑T
t=1 γ

tφk(〈s, a〉t) = φ̂k ∀k

(1)

Here, ∆ is the space of all distributions over the space X of all trajectories. We denote the analytical
feature expectation on the left hand side of the second constraint above as EX[φk].Equivalently, as
the distribution is parameterized by learned weights θ, EX[φk] represents the feature expectations
of policy π∗E computed using the learned reward function. The benefit is that distribution Pr(X;θ)
makes no further assumptions beyond those which are needed to match its constraints and is maximally
noncommittal to any one trajectory. As such, it is most generalizable by being the least wrong most
often of all alternative distributions. A disadvantage of this approach is that it becomes intractable
for long trajectories because the set of trajectories grows exponentially with length. In this regard,
another formulation defines the maximum entropy distribution over policies [7], the size of which is
also large but fixed.

2.2 IRL under Occlusion

Our motivating application involves a subject robot that must observe other mobile robots from a
fixed vantage point. Its sensors allow it a limited observation area; within this area it can observe
the other robots fully, outside this area it cannot observe at all. Previous methods [4, 5] denote this
special case of partial observability where certain states are either fully observable or fully hidden as
occlusion. Subsequently, the trajectories gathered by the learner exhibit missing data associated with
time steps where the expert robot is in one of the occluded states. The empirical feature expectation
of the expert φ̂k will therefore exclude the occluded states (and actions in those states).

To ensure that the feature expectation constraint in IRL accounts for the missing data, Bogert and
Doshi [4] while maximizing entropy over policies [7] limit the calculation of feature expectations
for policies to observable states only. A recent approach [6] improves on this method by taking an
expectation over the missing data conditioned on the observations. Completing the missing data in
this way allows the use of all states in the constraint and with it the Lagrangian dual’s gradient as
well. The nonlinear program in (1) is modified to account for the hidden data and its expectation.

Let Y be the observed portion of a trajectory, Z is one way of completing the hidden portions of this
trajectory, Z is the set of all possible Z, and X = Y ∪ Z. Now we may treat Z as a latent variable
and take the expectation to arrive at a new definition for the expert’s feature expectations:

φ̂
Z|Y
k ,

1

|Y|
∑
Y ∈Y

∑
Z∈Z

Pr(Z|Y ;θ)
∑T

t=1
γtφk(〈s, a〉t) (2)

where 〈s, a〉t ∈ Y ∪ Z, Y is the set of all observed Y and X is the set of all complete trajectories.
The program in (1) is modified by replacing φ̂k with φ̂Z|Yk , as we show below. Notice that in the case
of no occlusion Z is empty and X = Y . Therefore φ̂Z|Yk = φ̂k and this method reduces to (1). Thus,
this method generalizes the previous maximum entropy IRL method.

max
∆

(
−
∑
X∈X Pr(X) log Pr(X)

)
subject to

∑
X∈X Pr(X) = 1∑

X∈X Pr(X)
∑T
t=1 γ

tφk(〈s, a〉t) = φ̂
Z|Y
k ∀k

(3)

However, the program in (3) becomes nonconvex due to the presence of Pr(Z|Y ). As such, finding
its optima by Lagrangian relaxation is not trivial. Wang et al. [18] suggests a log linear approximation
to obtain maximizing Pr(X) and casts the problem of finding the reward weights as likelihood
maximization that can be solved within the schema of expectation-maximization [9]. An application
of this approach to the problem of IRL under occlusion yields the following two steps with more
details in [6]:

E-step This step involves calculating Eq. 2 to arrive at φ̂Z|Y ,(t)k , a conditional expectation of the
K feature functions using the parameter θ(t) from the previous iteration. We may initialize the
parameter vector randomly.
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M-step In this step, the modified program (3) is optimized by utilizing φ̂Z|Y ,(t)k from the E-step above
as the expert’s constant feature expectations to obtain θ(t+1). Normalized exponentiated gradient
descent [16] solves the program.

As EM may converge to local minima, this process is repeated with random initial θ and the solution
with the maximum entropy is chosen as the final one.

3 Incremental IRL (I2RL)

We present our framework labeled I2RL in order to realize IRL in an online setting. Then, we present
an initial set of methods cast into the framework of I2RL. In addition to including previous techniques
for online IRL, we introduce a new method that generalizes the maximum entropy IRL involving
latent variables.

3.1 Framework

Expanding on the notation and definitions given previously in Section 2, we introduce some new
notation, which will help us in defining I2RL rigorously.
DEFINITION 1 (SET OF FIXED-LENGTH TRAJECTORIES). The set of all trajectories of fi-
nite length T from an MDP attributed to the expert E is defined as, XT = {X|X =
(〈s, a〉1, 〈s, a〉2, . . . 〈s, a〉T ),∀s ∈ SE ,∀a ∈ AE}.

Let N+ be a bounded set of natural numbers. Then, the set of all trajectories is X =

X1 ∪ X2 ∪ . . . ∪ X|N+|. Recall that a demonstration is some finite set of trajectories of varying
lengths, X = {XT |XT ∈ XT , T ∈ N+}, and it includes the empty set. 1 Subsequently, we may
define the set of demonstrations.
DEFINITION 2 (SET OF DEMONSTRATIONS). The set of demonstrations is the set of all subsets of

the spaces of trajectories of varying lengths. Therefore, it is the power set, 2X = 2X
1∪X2∪...∪X|N

+|
.

In the context of the definitions above, traditional IRL attributes an MDP without the reward function
to the expert, and usually involves determining an estimate of the expert’s reward function, R̂E ∈ R,
which best explains the observed demonstration, X ∈ 2X. As such, we may view IRL as a function:
ζ(MDP/RE

,X ) = R̂E .

To establish the definition of I2RL, we must first define a session of I2RL. Let R̂0
E be an initial

estimate of the expert’s reward function.
DEFINITION 3 (SESSION). A session of I2RL represents the following function:
ζi(MDP/RE

,X i, R̂i−1
E ) = R̂iE . In this ith session where i > 0, I2RL takes as input the

expert’s MDP sans the reward function, the demonstration observed since the previous session,
X i ∈ 2X, and the reward function estimate learned from the previous session. It yields a revised
estimate of the expert’s rewards from this session of IRL.

Note that we may replace the reward function estimates with some statistic that is sufficient to
compute it (e.g., θ).

We may let the sessions run infinitely. Alternately, we may establish stopping criteria for I2RL,
which would allow us to automatically terminate the sessions once the criterion is satisfied. Let
LL(R̂iE |X 1:i) be the log likelihood of the demonstrations received up to the ith session given the
current estimate of the expert’s reward function. We may view this likelihood as a measure of how
well the learned reward function explains the observed data.

DEFINITION 4 (STOPPING CRITERION #1). Terminate the sessions of I2RL when |LL(R̂iE |X 1:i)−
LL(R̂i−1

E |X 1:i−1)| 6 ε, where ε is a very small positive number and is given.

Definition 4 reflects the fact that additional sessions are not impacting the learning significantly. On
the other hand, a more effective stopping criterion is possible if we know the expert’s true policy.
We utilize the inverse learning error [8] in this criterion, which gives the loss of value if L uses the

1Repeated trajectories in a demonstration can usually be excluded for many methods without impacting the
learning.
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learned policy on the task instead of the expert’s: ILE(π∗E , π
L
E) = ||V π∗E − V πL

E ||1. Here, V π
∗
E is

the optimal value function of E’s MDP and V π
L
E is the value function due to utilizing the learned

policy πLE in E’s MDP. Notice that when the learned reward function results in an identical optimal
policy to E’s optimal policy, π∗E = πLE , ILE will be zero; it increases monotonically as the two
policies increasingly diverge in value.

DEFINITION 5 (STOPPING CRITERION #2). Terminate the sessions of I2RL when ILE(π∗E , π
i−1
E )−

ILE(π∗E , π
i
E) 6 ε, where ε is a very small positive error and is given. Here, πiE is the optimal policy

obtained from solving the expert’s MDP with the reward function R̂iE learned in session i.

Obviously, prior knowledge of the expert’s policy is not common. Therefore, we view this criterion
as being more useful during the formative assessments of I2RL methods.

Utilizing Defs. 3, 4, and 5, we formally define I2RL next.

DEFINITION 6 (I2RL). Incremental IRL (I2RL) is a sequence of learning sessions
{ζ1(MDP/RE

,X 1, R̂
0
E), ζ2(MDP/RE

,X 2, R̂
1
E), ζ3(MDP/RE

,X 3, R̂
2
E), . . . , }, which continue

infinitely, or until either stopping criterion #1 or #2 is met depending on which one is chosen
a’priori.

3.2 Methods

Our goal is to facilitate a portfolio of methods each with its own appealing properties under the
framework of I2RL. This would enable online IRL in various applications. An early method for
online IRL [10] modifies Ng and Russell’s linear program [11] to take as input a single trajectory
(instead of a policy) and replaces the linear program with an incremental update of the reward
function. We may easily present this method within the framework of I2RL. A session of this method
ζi(MDP/RE

,X i, R̂i−1
E ) is realized as follows: Each X i is a single state-action pair 〈s, a〉; initial

reward function R̂0
E = 1√

|SE |
, whereas for i > 0 R̂iE = R̂i−1

E + α · vi, where vi is the difference

in expected value of the observed action a at state s and the (predicted) optimal action obtained by
solving the MDP with the reward function R̂i−1

E , and α is the learning rate. While no explicit stopping
criterion is specified, the incremental method terminates when it runs out of observed state-action
pairs. Jin et al. [10] provide the algorithm for this method as well as error bounds.

A recent method by Rhinehart and Kitani [14] performs online IRL for activity forecasting. Casting
this method to the framework of I2RL, a session of this method is ζi(MDP/RE

,X i,θi−1), which
yields θi. Input observations for the session, X i, are all the activity trajectories observed since the
end of previous goal until the next goal is reached. The session IRL finds the reward weights θi that
minimize the margin φπ

∗
E − φ̂ using gradient descent. Here, the expert’s policy π∗E is obtained by

using soft value iteration for solving the complete MDP that includes a reward function estimate
obtained using previous weights θi−1. No explicit stopping criterion is utilized for the online learning
thereby emphasizing its continuity.

3.2.1 Incremental Latent MaxEnt

We present a new method for online IRL under the I2RL framework, which modifies the latent
maximum entropy (LME) optimization of Section 2.2. It offers the capability to perform online IRL
in contexts where portions of the observed trajectory may be occluded.

For differentiation, we refer to the original method as the batch version. Recall the kth feature
expectation of the expert computed in Eq. 2 as part of the E-step. If Xi = Yi ∪ Zi is a trajectory in
session i composed of the observed portion Yi and the hidden portion Zi, φ̂

Z|Y ,1:i
k is the expectation

computed using all trajectories obtained so far, we may rewrite Eq. 2 for feature k as:
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φ̂
Z|Y ,1:i
k ,

1

|Y1:i|
∑

Y ∈Y1:i

∑
Z∈Z

Pr(Z|Y ;θ)

T∑
t=1

γtφk(〈s, a〉t)

=
1

|Y1:i|

 ∑
Y ∈Y1:i−1

∑
Z∈Z

Pr(Z|Y ;θ)

T∑
t=1

γtφk(〈s, a〉t) +
∑

Y ∈Yi

∑
Z∈Z

Pr(Z|Y ;θ)

T∑
t=1

γtφk(〈s, a〉t)


=

1

|Y1:i|

(
|Y1:i−1| φ̂Z|Y ,1:i−1

k + |Yi| φ̂Z|Y ,i
k

)
(by definition)

=
|Y1:i−1|

|Y1:i−1|+ |Yi|
φ̂
Z|Y ,1:i−1
k +

|Yi|
|Y1:i−1|+ |Yi|

φ̂
Z|Y ,i
k (4)

A session of our incremental LME takes as input the expert’s MDP sans the reward function, the
current session’s trajectories, the number of trajectories observed until the start of this session, the
expert’s empirical feature expectation and reward weights from previous session. More concisely,
each session is denoted by, ζi(MDP/RE

,Yi, |Y1:i−1|, φ̂Z|Y ,1:i−1,θi−1). In each session, the fea-
ture expectations using that session’s observed trajectories are computed, and the output feature
expectations are obtained by including these as shown above in Eq. 4. Of course, each session may
involve several iterations of the E- and M-steps until the converged reward weights θi is obtained
thereby giving the corresponding reward function estimate. Here, the expert’s feature expectation is a
sufficient statistic to compute the reward function. We refer to this method as LME I2RL.

Wang et al. [17] shows that if the distribution over the trajectories in (3) is log linear, then the
reward function that maximizes the entropy of the trajectory distribution also maximizes the log
likelihood of the observed portions of the trajectories. Given this linkage with log likelihood, the
stopping criterion #1 as given in Def. 4 is utilized. In other words, the sessions will terminate when,
|LL(θi|Y1:i)− LL(θi−1|Y1:i−1)| ≤ ε, where θi fully parameterizes the reward function estimate
from the ith session and ε is a given acceptable difference. The algorithm for this method is presented
in the supplementary file.

Incremental LME admits some significant convergence guarantees with a confidence of meeting the
desired error-specification on the demonstration likelihood. We state these results with discussions
but defer the detailed proofs to the supplementary file.
LEMMA 1 (MONOTONICITY). Incremental LME increases the demonstration likelihood monotoni-
cally with each new session, LL(θi|Y1:i)− LL(θi−1|Y1:i−1) > 0, when |Y1:i−1| � |Yi|, yielding
a feasible solution to I2RL with missing training data.

While Lemma 1 suggests that the log likelihood of the demonstration can only improve from session to
session after a significant amount of training data has been accumulated, a stronger result illuminates
the confidence with which it approaches, over a series of sessions, the log likelihood of the expert’s
true weights θE . To establish this convergence result, we first focus on the full observability setting.
For a desired bound ε on the log-likelihood loss (difference in likelihood w.r.t expert’s θE and that
w.r.t learned θi) for session i in this setting, the confidence is bounded as follows:
THEOREM 1 (CONFIDENCE FOR INCREMENTAL MAX-ENTROPY IRL). Given X 1:i as the (fully
observed) demonstration till session i, θE ∈ [0, 1]K is the expert’s weights, and θi is the solution of
session i for incremental max-entropy IRL, we have

LL(θE |X 1:i)− LL(θi|X 1:i) 6 ε

with probability at least 1− δ, where δ = 2K exp
[
− |X 1:i|ε2(1−γ)2

2K2

]
.

As a step toward relaxing the assumption of full observability made above, we first consider the error
in approximating the feature expectations of the unobserved portions of the data, accumulated from
the first to the current session of I2RL. Notice that φ̂Z|Y ,1:i

k given by Eq. 4, is an approximation of the
full-observability expectation φ̂1:i

k , estimated by sampling the hidden Z from Pr(Z|Y,θi−1) [6]. The

following lemma relates the error due to this sampling-based approximation, i.e.,
∣∣∣φ̂1:i
k − φ̂

Z|Y ,1:i
k

∣∣∣,
to the difference between feature expectations for learned policy and that estimated for the expert’s
true policy.
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LEMMA 2 (CONSTRAINT BOUNDS FOR INCREMENTAL LME ). Suppose X 1:i has portions of
trajectories in Z1:i = {Z|(Y, Z) ∈ X 1:i} occluded from the learner. Let εsampling be a bound on the

error
∣∣∣φ̂1:i
k − φ̂

Z|Y ,1:i
k

∣∣∣
1
, k ∈ {1, 2 . . .K} after N samples for approximation. Then, with probability

at least 1− (δ + δsampling), the following holds:∣∣∣EX[φk]− φ̂Z|Y ,1:i
k

∣∣∣
1
6 ε/2K + εsampling, k ∈ {1, 2 . . .K}

where ε, δ are as defined in Theorem 1, and δsampling = 2K exp(−2(1− γ)2(εsampling)
2N).

Theorem 1 combined with Lemma 2 now allows us to completely relax the assumption of full
observability as follows:
THEOREM 2 (CONFIDENCE FOR INCREMENTAL LME). Let Y1:i = {Y |(Y, Z) ∈ X 1:i} be the
observed portions of the demonstration until session i, ε, εsampling are inputs as defined in Lemma 2,
and θi is the solution of session i for incremental LME, then we have

LL(θE |Y1:i)− LL(θi|Y1:i) ≤ εlatent
with a confidence at least 1−δlatent, where εlatent = ε+2Kεsampling , and δlatent = δ+δsampling .

Given required inputs and fixed εlatent, Theorem 2 computes a confidence 1− δlatent. The amount
of required demonstration, |Y1:i|, can be decided based on the desired magnitude of the confidence.

4 Experiments
We evaluate the benefit of online IRL on the perimeter patrol domain, introduced by Bogert and
Doshi [4], and simulated in ROS using data and files made publicly available. It involves a robotic
learner observing two guards continuously patrol a hallway as shown in Fig. 1(left). The learner is
tasked with reaching the cell marked ’X’ (Fig. 1(right)) without being spotted by any of the patrollers.
Each guard can see up to 3 grid cells in front. This domain differs from the usual applications of
IRL toward imitation learning. In particular, the learner must solve its own distinct decision-making
problem (modeled as another MDP) that is reliant on knowing how the guards patrol, which can be
estimated from inferring each guard’s preferences. The guards utilized two types of binary state-action
features leading to a total of six: does the current action in the current state make the guard change its
grid cell? And, is the robot’s current cell (x, y) in a given region of the grid, which is divided into 5
regions? The true weight vector θE for these feature functions is 〈.57, 0, 0, 0, .43, 0〉.

GOAL

Guard 1

Guard 2

GOAL

Figure 1: The map and corresponding
MDP state space for each patroller [4].
Shaded squares are the turn-around states
and the red ’X’ is L’s goal state. L is
unaware of where each patroller turns
around or their navigation capabilities.

Notice that the learner’s vantage point limits its observability.
Therefore, this domain requires IRL under occlusion. Among
the methods discussed in Section 2, LME allows IRL when
portions of the trajectory are hidden, as mentioned previously.
To establish the benefit of I2RL, we compare the performances
of both batch and incremental variants of this method.

Efficacy of the methods was compared using the following
metrics: learned behavior accuracy (LBA), which is the per-
centage of overlap between the learned policy’s actions and
demonstrated policy’s actions; ILE, which was defined previ-
ously in Section 3.1; and success rate, which is the percentage
of runs where L reaches the goal state undetected. Note that
when the learned behavior accuracy is high, we expect ILE to
be low. However, as MDPs admit multiple optimal policies, a
low ILE need not translate into a high behavior accuracy. As
such, these two metrics are not strictly correlated.

We report the LBA, ILE, and the time duration in seconds of
the inverse learning for both batch and incremental LME in
Figs. 2(a) and 2(b); the latter under a 30% degree of observ-
ability and the former under 70%. Each data point is averaged over 100 trials for a fixed degree
of observability and a fixed number of state-action pairs in the demonstration X . While the entire
demonstration is given as input to the batch variant, the X i for each session has one trajectory. As
such, the incremental learning stops when there are no more trajectories remaining to be processed.
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(a) Learned behavior accuracy, ILE, and learning duration under a 30% degree of observability.
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(b) Learned behavior accuracy, ILE, and learning duration under a 70% degree of observability.
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(c) Success rates and timeouts under both 30%, 70%, and full observability. The success rate obtained by a
random baseline is shown as well. This method does not perform IRL and picks a random time to start moving
to the goal state.

Figure 2: Various metrics for comparing the performances of batch and incremental LME on Bogert and
Doshi’s [4] perimeter patrolling domain. Our experiments were run on a Ubuntu 16 LTS system with an Intel i5
2.8GHz CPU core and 8GB RAM.

To better understand any differentiations in performance, we introduce a third variant that implements
each session as, ζi(MDP/RE

,Yi, |Yi:i−1|, φ̂Z|Y ,1:i−1). Notice that this incremental variant does not
utilize the previous session’s reward weights, instead it initializes them randomly in each session; we
label it as incremental LME with random weights.

As the size of demonstration increases, both batch and incremental variants exhibit similar quality of
learning although initially the incremental performs slightly worse. Importantly, incremental LME
achieves these learning accuracies in significantly less time compared to batch, with the speed up
ratio increasing to four as |X | grows.

Is there a benefit due to the reduced learning time? We show the success rates of the learner when
each of the three methods are utilized for IRL in Fig. 2(c). Incremental LME begins to demonstrate
comparatively better success rates under 30% observability itself, which further improves when the
observability is at 70%. While the batch LME’s success rate does not exceed 40%, the incremental
variant succeeds in reaching the goal location undetected in about 65% of the runs under full
observability (the last data point). A deeper analysis to understand these differences reveals that batch
LME suffers from a large percentage of timeouts – more than 50% for low observability, which drops
down to 10% for full observability. A timeout occurs when IRL fails to converge to a reward estimate
in the given amount of time for each run. On the other hand, incremental LME suffers from very few
timeouts. Of course, other factors play a role in success as well.

5 Concluding Remarks
This paper makes an important contribution toward the nascent problem of online IRL by offering the
first formal framework, I2RL, to help analyze the class of methods for online IRL. We presented
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a new method within the I2RL framework that generalizes recent advances in maximum entropy
IRL to online settings. Our comprehensive experiments show that the new I2RL method indeed
improves over the previous state-of-the-art in time-limited domains, by approximately reproducing its
accuracy but in significantly less time. In particular, we have shown that given practical constraints
on computation time for an online IRL application, the new method suffers fewer timeouts and is
thus able to solve the problem with a higher success rate. In addition to experimental validation, we
have also established key theoretical properties of the new method, ensuring the desired monotonic
progress within a pre-computable confidence of convergence. Future avenues for investigation include
understanding how I2RL can address some of the challenges related to scalability to a larger number
of experts as well as the challenge of accommodating unknown dynamics of the experts.
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