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Abstract
We propose a new method for learning compact state representations and policies sepa-
rately but simultaneously for policy approximation in vision-based applications such 
as Atari games. Approaches based on deep reinforcement learning typically map pixels 
directly to actions to enable end-to-end training. Internally, however, the deep neural net-
work bears the responsibility of both extracting useful information and making decisions 
based on it, two objectives which can be addressed independently. Separating the image 
processing from the action selection allows for a better understanding of either task indi-
vidually, as well as potentially finding smaller policy representations which is inherently 
interesting. Our approach learns state representations using a compact encoder based on 
two novel algorithms: (i) Increasing Dictionary Vector Quantization builds a dictionary 
of state representations which grows in size over time, allowing our method to address 
new observations as they appear in an open-ended online-learning context; and (ii) Direct 
Residuals Sparse Coding encodes observations in function of the dictionary, aiming for 
highest information inclusion by disregarding reconstruction error and maximizing code 
sparsity. As the dictionary size increases, however, the encoder produces increasingly 
larger inputs for the neural network; this issue is addressed with a new variant of the Expo-
nential Natural Evolution Strategies algorithm which adapts the dimensionality of its prob-
ability distribution along the run. We test our system on a selection of Atari games using 
tiny neural networks of only 6 to 18 neurons (depending on each game’s controls). These 
are still capable of achieving results that are not much worse, and occasionally superior, 
to the state-of-the-art in direct policy search which uses two orders of magnitude more 
neurons.
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1 Introduction

In deep reinforcement learning, a large network learns to map complex, high dimen-
sional input (often visual) to actions, for direct policy approximation. When a giant net-
work with hundreds of thousands of parameters learns a relatively simple task (such as 
playing the classic action-puzzle game Qbert) it stands to reason that only a small part 
of what is learned is the actual policy. A common understanding is that the network 
internally learns to extract useful information (features) from the image observation in 
its first layers by mapping pixels to intermediate representations, allowing the last few 
layer(s) to map these representations to actions. The fact that such intermediate repre-
sentations are learned by deep neural nets is borne out by numerous studies on super-
vised learning, though the issue is less well-studied in reinforcement learning. Learning 
the policy at the same time as the intermediate representations makes it almost impos-
sible to study the policy in isolation.

Separating representation learning from policy learning allows in principle for higher 
component specialization, enabling smaller networks dedicated to policy learning to 
address problems typically tackled by much larger networks [1, 10, 27]. This size differ-
ence represents a net performance gain, as larger networks can be devoted to address-
ing problems of higher complexity. For example, current results on Atari games are 
achieved using networks of hundreds of neurons and hundreds of thousands of connec-
tions; making the same game playable (with not much lower performance) by a network 
k times smaller paves the way to training larger networks on k independent games, using 
currently available methods and resources.

Separating the policy network from the image parsing also allows to better under-
stand how network complexity contributes to accurately representing the policy. While 
vision-based tasks are often addressed with very large networks, the learned policies by 
themselves should in principle not require such high-capacity models, as these policies 
in themselves often appear to not be very complex. Yet another reason to investigate 
how to learn smaller policy networks by addressing the image processing with a sepa-
rate component is that smaller networks may offer better generalization. This phenom-
enon is well-known from supervised learning, where smaller-capacity models tend to 
overfit less, but has not been explored much in the context of reinforcement learning.

The key contribution of this paper is a new method for learning policy and features 
simultaneously but separately in a complex reinforcement learning setting. This is 
achieved by delegating feature extraction to two novel algorithms (namely Increasing 
Dictionary Vector Quantization (IDVQ) and Direct Residuals Sparse Coding (DRSC)), 
which leaves the neural network to specialize on policy approximation using neuroevo-
lution. Without those two algorithms, performance on all games we played plateaued 
(e.g., we could not score higher than 640 on Qbert). Leveraging those two algorithms 
allow us to be much more competitive while considering surprisingly small networks as 
we will show in Sect. 5.

IDVQ maintains a dictionary of centroids in the observation space, which can then 
be used for encoding. The two main differences with standard VQ are that the cen-
troids are (i) trained online by (ii) disregarding reconstruction error. Online training is 
achieved with the algorithm autonomously selecting images for its training from among 
the observations it receives to be encoded, obtained by the policies as they interact with 
the environment. The disregard for reconstruction error comes instead from shifting the 
focus of the algorithm to the arguably more crucial criterion (from the perspective of 
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the application at hand) of ensuring that all of the information present in the observation 
is represented in the centroids. This is done by means of constructing new centroids as a 
residual image from the encoding while ignoring reconstruction artifacts. See Sect. 3.2 
for further discussion.

The dictionary trained by IDVQ is then used by DRSC to produce a compact code for 
each observation. This code will be used in turn by the neural network (policy) as input to 
select the next action. The code is a binary string: a value of ‘1’ indicates that the corre-
sponding centroid contains information also present in the image, and a limited number of 
centroids are used to represent the totality of the information.

As the training progresses and more sophisticated policies are learned, complex interac-
tions with the environment result in increasingly novel observations; the dictionary reflects 
this by growing in size, including centroids that account for newly discovered features. A 
larger dictionary corresponds to a larger code, forcing the neural network to grow in input 
size. This is handled using a specialized version of Exponential Natural Evolution Strategy 
which adapts the dimensionality of the underlying multivariate Gaussian.

Experimental results show that this approach can effectively learn both components 
simultaneously, achieving performance similar to other evolutionary approaches (and not 
much lower than state-of-the-art approaches) on several ALE games while using a neural 
network of only 6 to 18 neurons, i.e. two orders of magnitude smaller than any known 
previous implementation.

This article is an extended version of our earlier paper, “Playing Atari with Six Neu-
rons”, which appeared at AAMAS 2019 [11]. The present article features a larger set of 
experiments using additional games, more figures, a new discussion section, an example 
of limitations of the feature extraction, and additions to the introduction, background and 
related work sections.

2  Related work

2.1  Video games as AI benchmarks

Games are useful as AI benchmarks as they are designed to challenge human cognitive 
capacities. Board games such as Chess and Go have been used as AI benchmarks since the 
inception of artificial intelligence research, and have been increasingly used for testing and 
developing AI methods [48]. Various video game-based AI competitions and frameworks 
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Fig. 1  System diagram. At each generation the optimizer (1) generates sets of weights (2) for the neural 
network controller (3). Each network is evaluated episodically against the environment (4). At each step the 
environment sends an observation (5) to an external compressor (6), which produces a compact encoding 
(7). The network uses that encoding as input. Independently, the compressor selects observations (8) for its 
training set (9). At the end of the episode, the environment returns the fitness (cumulative reward; 10) to the 
optimizer for training (neuroevolution; 11). Compressor training (12) takes place in between generations
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exist, based on games of different types and ages. Many are based on 2D arcade-style 
games, such as the Mario AI benchmark, based on a clone of the classic platformer Super 
Mario Bros [44]. The General Video Game AI (GVGAI) benchmark features more than a 
hundred 2D games, with the ability to easily change these games and create new ones [36]. 
Others are based on 3D games, for example VizDoom which is based on the classical FPS 
Doom [26], and Obstacle Tower, which is a state-of-the-art 3D platformer developed spe-
cifically to challenge AI agents in various ways [23]. There are also benchmarks based on 
strategy games such as StarCraft  [32, 45]. All of these games pose different challenges 
to AI agents, and in general a model-free solution that works for one of them needs to at 
the very least to be re-trained to work for another (for model-based planning methods the 
situation is different, where MCTS-based agents can do well on many games; see recent 
progress on the GVGAI benchmark [35]). 2D games offer different perceptual and naviga-
tional challenges from 3D games; in some ways navigating a static 2D world can be harder 
than navigating a 3D first-person perspective, as it requires identifying the player avatar on 
screen and planning in static 2D space.

One very popular 2D game-based AI environment and benchmark is the Arcade Learn-
ing Environment (ALE), the introduction of which did much to catalyze the use of arcade 
games as AI benchmarks  [3]. ALE is based on an emulation of the Atari 2600, the first 
widely available video game console with exchangeable games, released in 1977. This was 
a very limited piece of hardware: 128 bytes of RAM, up to 4 kilobytes of ROM per games, 
no video memory, and an 8-bit processor operating at less than 2 MHz. The limitations 
of the original game console mean that the games are visually and thematically simple. 
Most ALE games feature two-dimensional movement and rules mostly triggered by sprite 
intersection. In the most common setup, the raw pixel output of the ALE framework is used 
as inputs to a neural network, and the outputs are interpreted as commands for playing the 
game. No fast forward model is available, so planning algorithms are ineffective. Using 
this setup, Mnih et al. reached above human level results on a majority of 57 Atari games 
that come with the standard distribution of ALE [31]. Since then, a number of improve-
ments have been suggested that have improved game-playing strength on most of these 
games [20, 25].

2.2  Neuroevolution

Neuroevolution refers to the use of evolutionary algorithms to train neural networks [13, 
21, 37, 49]. Typically, this means training the connection weights of a fixed-topology neu-
ral network, though some algorithms are also capable of evolving the topology at the same 
time as the weights [41].

When using neuroevolution for reinforcement learning, a key difference is that the 
network is only trained in between episodes, rather than at every frame or time step. In 
other words, learning happens between episodes rather than during episodes; this has 
been called phylogenetic rather than ontogenetic reinforcement learning  [43]. While it 
could be argued that evolutionary reinforcement learning should learn more slowly than 
ontogenetic approaches such as Q-learning, as the network is updated more rarely and 
based on more aggregated information, the direct policy search performed by evolu-
tionary algorithms allows in principle for a freer movement in policy space. Empiri-
cally, neuroevolution has been found to reach state-of-the-art performance on reinforce-
ment learning problems which can be solved with small neural networks  [15] and to 
reach close to state-of-the-art performance on games in the ALE benchmark played 
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with visual input  [5, 38]. In general, neuroevolution performs worse in high-dimen-
sional search spaces such as induced by deep neural networks, but there have also been 
recent results where genetic algorithms have been shown to be competitive with gra-
dient descent for training deep networks for reinforcement learning  [42]. Neuroevolu-
tion has also been found to learn high-performing strategies for a number of other more 
modern games including racing games and first-person shooters, though using human-
constructed features [37].

For training the weights of a neural network only, modern variants of evolution strate-
gies can be used. The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [18] 
represents the population implicitly as a distribution of possible search points; it is 
very effective at training small-size networks in reinforcement learning settings  [21]. 
Another high-performing development of evolution strategies is the Natural Evolution 
Strategies (NES) family of algorithms [47]. While both CMA and NES suffer from hav-
ing a number of parameters required for evolution growing superlinearly with the size of 
the neural network, there are versions that overcome this problem [9, 39].

2.3  Compressed representation in reinforcement learning

The high dimensionality of visual input is a problem not only for evolutionary meth-
ods, but generally for learning technique. The origin of the success of deep learning 
can be traced to how deep convolutional networks handle large dimensional inputs; up 
until a few years ago, reinforcement learning generally relied on low-dimensional fea-
tures, either by using intrinsically low-dimensional sensors (such as infrared or laser 
range-finders) or by using hard-coded computer vision techniques to extract low-dimen-
sional state representations from image data. Such hard mappings however do not lend 
themselves to generalization; in order to create a more general reinforcement learning 
method, the mapping must be automatically constructed or learned.

It has been suggested that problems have an “intrinsic” dimensionality, meaning how 
many parameters are needed in a model that learns to solve the problem [28]. However, 
this is in itself highly dependent on model architecture, as we shall see.

Several approaches have been proposed that use some kind of preprocessing to create 
a smaller input space for reinforcement learning. Some of them rely on neural networks, 
in particular on various forms of autoencoders [1, 17]. Togelius and Alvernaz present a 
method were an autoencoder to encode a small (approximately dimension 100) encod-
ing of the visual input from the 3D game DOOM; the output from the encoder is fed into 
a smaller network trained through neuroevolution, and the autoencoder is continually 
retrained as the agent encounters visually novel situations [1]. Ha and Schmidhuber also 
used an autoencoder to learn a low-dimensional embedding of a pixel-based view, but 
then also learned a state transition model in the embedding space, and used neuroevolu-
tion to learn to play games in this space. An example of a neural compressor for Rl that 
does not rely on gradient descent is that of Koutnik et  al  [27], where a convolutional 
network was evolved to maximize output variance over a set of images. But neural net-
works such as autoencoders is not the only way to compress visual input. An alternative 
is to use external compressors, for example based on vector quantization [10], where a 
number of prototype vectors are found and each vector is used as a feature detector–the 
value of that feature being the similarity between the actual high-dimensional input and 
the vector, similar to a radial basis function network.
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3  Method

Our system is divided into four main components  (see Fig. 1): i) the Environment is an 
Atari game, taking actions and providing observations; ii) the Compressor extracts a low-
dimensional code from the observation, while being trained online with the rest of the sys-
tem; iii) the Controller is our policy approximizer, i.e. the neural network; finally iv) the 
Optimizer is our policy learning algorithm, improving the performance of the network over 
time, in our case an Evolution Strategy. Each component is described in more detail below.

3.1  Environment

We test our method on the Arcade Learning Environment (ALE), interfaced through the 
OpenAI Gym framework [4]. As discussed above, ALE is built on top of an emulator of 
the Atari 2600, with all the limitations of that console. In keeping with ALE conventions, 
the observation consists of a [210 × 180 × 3] tensor, representing the RGB pixels of the 
screen input. The output of the network is interpreted (using one-hot encoding) as one of 
18 discrete controls, representing the potential inputs from the joystick. The frame-skip-
ping is fixed at 5 by following each action with 5 NOOP commands.

3.2  Compressor

The role of the compressor is to provide a compact representation for each observation 
coming from the environment, enabling the neural network to entirely focus on deci-
sion making. This utilizes unsupervised learning on the very same observations that are 
obtained by the network interacting with the environment, in an online learning fashion.

We address such limitations through a new algorithm based on Vector Quantization 
(VQ), named Increasing Dictionary VQ, coupled with a new Sparse Coding (SC) method 
named Direct Residuals SC. Together they aim at supporting the study of the spaces of 
observations and features, while offering top performance for online learning. While this 
is not the first work to employ unsupervised learning as a pre-processor for neuroevolu-
tion [1, 10], the literature on the subject is fairly limited. The following sections will derive 
IDVQ+DRSC starting from the vanilla VQ, explaining the design choices which led to 
these algorithms

3.2.1  Vanilla vector quantization

The standard VQ algorithm  [16] is a dictionary-based encoding technique with applica-
tions in dimensionality reduction and compression. Representative elements in the space 
(called singularly centroids and collectively called a dictionary) act as references for a sur-
rounding volume, in a manner akin to k-means. The code of an element in the space is 
then a vector where each position corresponds to a centroid in the dictionary. Its values are 
traditionally set to zeros, except for the position corresponding to the closest representa-
tive centroid in the space. Variations use a dense code vector, capturing the contribution of 
multiple centroids for higher precision. In either case the original can be reconstructed as 
a vector product between the code and the dictionary. The difference between the original 
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and its reconstruction is called reconstruction error, and quantifies the information lost 
in the compression/decompression process. The dictionary is trained by adapting the cen-
troids to minimize reconstruction error over a training set.

Applications to online reinforcement learning however present a few limitations. Addi-
tional training data is not only unavailable until late stages, but is also only accessible if 
obtained by individuals through interaction with the environment. Take for example an 
Atari game with different enemies in each level: observing a second-level enemy depends 
on the ability to solve the first level of the game, requiring in turn the compressor to recog-
nize the first-level enemies. A successful run should thereby alternate improving the dic-
tionary with improving the candidate solutions: at any stage, the dictionary should provide 
an encoding supporting the development of sophisticated behavior.

In online learning though, two opposite needs are in play: on one hand, the centroids 
need to be trained in order to provide a useful and consistent code; on the other hand, 
late stage training on novel observations requires at least some centroids to be preserved 
untrained. Comparing to vanilla VQ, we cannot use random centroids for the code. As 
they are uniformly drawn from the space of all possible images, their spread is enormously 
sparse w.r.t. the small sub-volume of an Atari game’s image. The similarity of a random 
centroid to any such image will be about the same: using random centroids as the dic-
tionary consequently produces an almost constant code for any image from a same game.1 
Image differentiation is relegated to the least significant digits, making it suboptimal as a 
neural network input. Directly addressing this problem naturally calls for starting with a 
smaller dictionary size, and increasing it at later stages as new observations call for it.

3.2.2  Increasing dictionary VQ

We introduce Increasing Dictionary VQ (IDVQ, Algorithm 1), a new compressor based on 
VQ which automatically increases the size of its dictionary over successive training itera-
tions, specifically tailored for online learning. Rather than having a fixed-size dictionary, 

1 This has also been empirically verified in earlier iterations of this work
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IDVQ starts with an empty dictionary, thus requiring no initialization, and adds new cen-
troids as the learning progresses.

This is done by building new centroids from the positive part of the reconstruction error, 
which corresponds to the information from the original image (rescaled between 0 and 1) 
which is not reconstructed by the current encoding (see Algorithm 1). Growth in dictionary 
size is regulated by a threshold � , indicating the minimal aggregated residual considered to 
be a meaningful addition. The training set is built by uniformly sampling the observations 
obtained by all individuals in a generation.

Centroids added to the dictionary are not further refined. This is in line with the goal 
of image differentiation rather than minimizing reconstruction error: each centroid is pur-
posely constructed to represents one particular feature, which was found in an actual obser-
vation and was not available in the dictionary before.

Growing the dictionary size however alters the code size, and thus the neural net-
work input size. This requires careful updates in both the controller and the optimizer, as 
addressed in Sects. 3.3 and 3.4 respectively.

3.2.3  Direct residuals sparse coding

The performance of algorithms based on dictionary approaches depends more on the 
choice of encoding than on the dictionary training—to the point where the best performing 
algorithms have but a marginal improvement in performance when using sophisticatedly 
trained centroids versus randomly selected samples [6]. This highlights the importance of 
selecting an effective encoding algorithm to best leverage the characteristics of a dictionary 
trained with IDVQ. In recent years, several studies have shown algorithms based on Sparse 
Coding to consistently perform best on compression and reconstruction tasks  [29, 50]. 
These typically alternate training the centroids and minimizing the �1 norm of the code 
(which approximates �0 norm, i.e., the number of nonzero elements), ultimately yielding a 
code that is mostly composed of zeros. In our case though, the dictionary is already trained 
with IDVQ: we thereby focus on the construction of the sparse code instead.
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The classic way to construct a sparse code is through an iterative approach  [30, 34] 
where at each step (i) few centroids are selected, (ii) a corresponding code is built and (iii) 
the code quality is evaluated based on the reconstruction error, with the �1 norm of the 
code as a regularization term. This process is repeated over different combinations of cen-
troids to incrementally reduce the reconstruction error, at the cost of the algorithm’s per-
formance. Moreover, the reconstruction is computed as a vector product between the code 
and the dictionary: while conceptually elegant, this dot product produces a linear combina-
tion (of the centroids with the code values) where most terms have null coefficients.

In our case though the focus is in differentiating states in order to support the deci-
sion maker, rather than perfecting the reconstruction of the original input. The encoding 
algorithm will be called on each and every observation coming from the environment, pro-
portionally reducing the computational time available for decision making. This forces an 
overhaul of the encoder’s objective function from the ground up, prioritizing distinction 
over precision, i.e. observation differentiation over reconstruction error.

To this end we introduce Direct Residuals Sparse Coding (DRSC, Algorithm 2) as a 
novel sparse coding algorithm specifically tailored to produce highly differentiating encod-
ing in the shortest amount of time. Its key characteristics are: (i) it utilizes centroids con-
structed as residual images from IDVQ, thus avoiding the centroid-train phase; (ii) it pro-
duces binary encodings, reducing the reconstruction process to an unweighted sum over 
the centroids corresponding to the code’s nonzero coefficients; and (iii) it produces the 
code in a single pass, terminating early after a small number of centroids are selected. The 
result is an algorithm with linear performance over dictionary size, which disassembles an 
observation into its consecutive most similar components as found in the dictionary.

3.2.4  Step‑by‑step breakdown

Increasing Dictionary VQ is used to train a dictionary, used by Direct Residuals SC to 
encode (compress, extract features from) an observation (image). To understand how these 
algorithms work together, let us hypothesize a working starting dictionary and see how 
DRSC produces an encoding.

The initialization includes two steps: the code, as an arrays of zeros with the same size 
as the dictionary, and the residual information still needing encoding, initially the whole 
original image. The algorithm then loops to select centroids to add to the encoding, based 
on how much of the residual information can they encode. To select the most similar cen-
troid, the algorithm computes the differences between the residual information and each 
centroid in the dictionary, aggregating each of these differences by summing all values. 
The centroid with the smallest aggregated difference is thereby the most similar to the 
residual information, and is chosen to be included in the encoding. The corresponding bit 
in the binary code is flipped to ‘1’, and the residual information is updated by subtracting 
the new centroid.

The signs of the values in the updated residual information (old residual minus new 
centroid, the order matters) are now significant: (i) values equal to zero mean a perfect 
correspondence between the pixel information in the old residual and the corresponding 
value in the new centroid; (ii) positive values correspond to information that was present 
in the old residual but not covered by the new centroid; (iii) negative values correspond to 
information present in the new centroid, but absent (or of smaller magnitude) in the old 
residual. This is crucial towards the goal of fully representing the totality of the original 
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information, and to this end the algorithm is free to disregard reconstruction artifacts as 
found in (iii).

Most encoding algorithms make no distinction between not-yet-encoded information 
and reconstruction artifacts: as they aim at minimizing reconstruction error, they focus on 
the error’s magnitude rather than its origin. DRSC instead focuses solely on representing 
all the information initially present in the image, and the artifacts found in the negative 
values are thereby disregarded by setting them to zero. The result is a residual image of 
information present in the original image but not yet captured by the reconstruction.

The algorithm then keeps looping and adding centroids until the (aggregated) residual 
information is lower than a threshold, corresponding to an arbitrary precision in captur-
ing the information in the original image. To enforce sparsity in the case that the correct 
centroids are not available in the dictionary, a secondary stopping criterion for the encod-
ing loop is when too many centroids are added to the code, based on another threshold. 
Images with high residual information after encoding are prime candidates for compressor 
training.

The dictionary is trained with IDVQ by adding new centroids to minimize leftover 
residual information in the encoding. The training begins by selecting an image from the 
training set and encoding it with DRSC, producing the binary code as described above. A 
dot product between the code and the dictionary (i.e. summing the centroids selected by 
the code, since it is binary) produces a reconstruction of the original image, similarly to 
other dictionary-based algorithms.

The difference between the training image and the reconstruction then produces a recon-
struction error (-image), where the sign of the values once again correspond to their origin: 
positive values are leftover information from the image which is not encoded in the recon-
struction, while negative values are reconstruction artifacts with no relation to the original 
image. This reconstruction error image is then aggregated (with a sum) to estimate the 
quantity of information missed by the encoding. If it is above a given threshold, a new cen-
troid should be added to the dictionary to enable DRSC to make a more precise reconstruc-
tion. But in that case the residual itself makes for the perfect centroid, as it exactly captures 
the information missed by the current encoding, and is then added to the dictionary. In that 
sense, our algorithm does not directly differentiate between levels, but between observa-
tions. If the new level has the same visual representation, plus a constant (e.g. color shift, 
but same map), then a new centroid is added which captures the new constant shift, while 
the rest of the centroids remain relevant (as does the learned policy).

3.3  Controller

The controller for all experiments is a single-layer fully-connected recurrent neural network 
(RNN). Each neuron receives the following inputs through weighted connections: the inputs to 
the network, the output of all neurons from the previous activation (initially zeros), and a con-
stant bias (always set to 1). The number of inputs is equal at any given point in time to the size 
of the code coming from the compressor. As the compressor’s dictionary grows in size, so 
does the network’s input. In order to ensure continuity in training (i.e. the change needs to be 
transparent to the training algorithm), it is necessary to define an invariance across this change, 
where the network with expanded weights is equivalent to the previous one. This is done by 
setting the weights of all new connections to zero, making the new network mathematically 
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equivalent to the previous one, as any input on the new connections cancels out. The same 
principle can be ported to any neural network application.

The number of neurons in the output layer is kept equal to the dimensionality of the action 
space for each game, as defined by the ALE simulator. This is as low as 6 in some games, and 
18 at most. Actions are selected deterministically in correspondence to the maximum activa-
tion. No hidden layer nor extra neurons were used in any of the presented results. The increase 
in dimensionality in the input connections’ weights corresponds to a growth in the parameter 
vector of the optimizer, as described below in Sect. 3.4.2.

3.4  Optimizer

The optimizer used in the experiments is a variation of Exponential Natural Evolution 
Strategy(XNES; [14]) tailored for evolving networks with dynamic varying size.

The next section briefly introduces the base algorithm and its family, followed by details on 
our modifications.

3.4.1  Exponential NES

Natural Evolution Strategies (NES; [46, 47]) is a family of evolutionary strategy algorithms 
that maintain a distribution over the parameters space rather than an explicit population of 
individuals. It is distinguishable over similarly distribution-based ES (e.g. Covariance Matrix 
Adaptation Evolution Strategy; CMA-ES [18]) for its update function based on the natural 
gradient, constructed by rescaling the vanilla gradient based on the Fischer information matrix 
∇̃ = �

−1∇𝜃J(𝜃).
The expectation of the fitness function f  for a given sample � with respect to parameters � 

is computed as

where p(�|�) is a conditional probability distribution function given parameter � . This 
allows writing the updates for the distribution as

The most representative algorithm of the family is Exponential NES (XNES; [14]), which 
maintains a multivariate Gaussian distribution over the parameters space, defined by the 
parameters � = (�,�) . Based on the equation above, with the addition of Monte Carlo esti-
mation, fitness shaping and exponential local coordinates (see [46] for the full derivation), 
these parameters are updated as:

J(�) = ��[f (�)] = ∫ f (�)p(�|�)d�

𝜃 ← 𝜃 − 𝜂∇̃𝜃J = 𝜃 − 𝜂�−1∇𝜃J(𝜃)

� ← � + ��

�∑
k=1

uk�k

A ← A exp

(
�A

2

�∑
k=1

uk(�k�
⊺

k
−I)
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with �� and �A learning rates, � number of estimation samples (the algorithm’s correspond-
ent to population size), uk fitness shaping utilities, and A upper triangular matrix from the 
Choleski decomposition of � , � = A⊺A.

The update equation for � bounds the performance to  with  number of param-
eters. At the time of its inception, this limited XNES to applications of few hundred 
dimensions. Leveraging modern hardware and libraries though, our current implementa-
tion easily runs on several thousands of parameters in minutes.2 Perhaps more importantly, 
its parametrization makes it a prime candidate for a GPU-based implementation, as long 
as � can be maintained on GPU memory, with only the individuals being fetched at each 
generation.

3.4.2  Dynamically varying the dimensionality

This paper introduces a novel twist to the algorithm as the dimensionality of the distribu-
tion (and thus its parameters) varies during the run. Since the parameters are interpreted as 
network weights in direct encoding neuroevolution, changes in the network structure need 
to be reflected by the optimizer in order for future samples to include the new weights. Par-
ticularly, the multivariate Gaussian acquires new dimensions: � should be updated keeping 
into account the order in which the coefficients of the distribution samples are inserted in 
the network topology.

In Sect. 3.3 we explain how the network update is carried through by initializing the 
new weights to zeros. In order to respect the network’s invariance, the expected value of 
the distribution ( � ) for the new dimension should be zero. As for � , we need values for the 
new rows and columns in correspondence to the new dimensions. We know that (i) the new 
weights did not vary so far in relation to the others (as they were equivalent to being fixed 
to zero until now), and that (ii) everything learned by the algorithm until now was based on 
the samples having always zeros in these positions. So � must have for all new dimensions 
(i) zeros covariance and (ii) arbitrarily small variance (diagonal), only in order to bootstrap 
the search along these new dimensions.

Take for example a one-neuron feed-forward network with 2 inputs plus bias, totaling 3 
weights. Let us select a function mapping the optimizer’s parameters to the weights in the 
network structure (i.e. the genotype to phenotype function), as to first fill the values of all 
input connections, then all bias connections. Extending the input size to 4 requires the opti-
mizer to consider two more weights before filling in the bias:

with cij being the covariance between parameters i and j, �2
k
 the variance on parameter k, 

and � being arbitrarily small (0.0001 here). The complexity of this step of course increases 

� =
�
�1 �2 �b

�
→

�
�1 �2 0 0 �b

�

� =

⎡
⎢⎢⎣

�2
1

c12 c1b
c21 �2

2
c2b

cb1 cb2 �2
b

⎤⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎣

�2
1

c12 0 0 c1b
c21 �2

2
0 0 c2b

0 0 � 0 0

0 0 0 � 0

cb1 cb2 0 0 �2
b

⎤⎥⎥⎥⎥⎥⎦

2 For a NES algorithm suitable for evolving deep neural networks see Block Diagonal NES  [9], which 
scales linearly on the number of neurons / layers.
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considerably with more sophisticated mappings, for example when accounting for recur-
rent connections and multiple neurons, but the basic idea stays the same. The evolution can 
pick up from this point on as if simply resuming, and learn how the new parameters influ-
ence the fitness.

4  Experimental setup

The experimental setup further highlights the performance gain achieved, and is thus cru-
cial to properly understand the results presented in the next section:

• All experiments were run on a single machine, using a 32-core Intel(R) Xeon(R) 
E5-2620 at 2.10GHz, with only 3GB of ram per core (including the Atari simulator and 
Python wrapper).

• The maximum run length on all games is capped to 200 interactions, meaning each 
agent is allotted a mere 1000 frames, given our constant frameskip of 5.

• Population size and learning rates are dynamically adjusted based on the number of 
parameters, based on the XNES minimal population size and default learning rate [14]. 
We scale the population size by 1.5 and the learning rate by 0.5. In all runs on all 
games, the population size is between 18 and 42, again very limited in order to opti-
mize run time on the available hardware.

• The dictionary growth is roughly controlled by � (see Algorithm 1), but depends on 
the graphics of each game. The average dictionary size by the end of the run is around 
30-50 centroids, but games with many small moving parts tend to grow over 100. In 
such games there seems to be direct correlation between higher dictionary size and per-
formance, but our reference machine performed poorly over 150 centroids. We found 
numbers close to � = 0.005 to be robust in our setup across all games.

• Graphics resolution is reduced from [210 × 180 × 3] to [70 × 80] , averaging the color 
channels to obtain a gray-scale image. This also contributes to lower run times.

• Every individual is evaluated 5 times on 5 different simulator seeds to reduce fitness 
variance. Notably the most common method in the literature only requires a single 
game seed but a varying number of time-steps at game start before giving control to the 
agent (frameskip). We found this simple shifting however insufficient to overcome the 
sequence-learning ability of our RNN policies, especially since Neuroevolution train-
ing easily converges to local minima behaviors. We thereby foster improved generaliza-
tion by choosing thereby 5 random seeds for the environment (same 5 throughout the 
learning), which correspond to 5 entirely independent “game trajectories”.

• Experiments are allotted a mere 100 generations, which averages to 2 to 3 hours of run 
time on our reference machine.

Those limitations were put in place to adapt to the available computational resources and 
to limit the run time. As a side-note, we ran experiments that show a minimal increase in 
score with less constraints settings, e.g., with Qbert we were able to reach a score of 1450 
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with unlimited time-steps, 300 generations and doubled population size. We ran experi-
ments up to 1000 generations. The number of centroids however steadily increased in that 
case, until the quadratic complexity kicks in and slowed our progress to a crawl.

These computational restrictions are extremely tight compared to what is typically used 
in studies utilizing the ALE framework. Limited experimentation indicates that accessing 
the kind of hardware usually dedicated to modern deep learning consistently improves the 
results on the presented games. The code was written from scratch in Ruby and is fully 
available on GitHub under MIT license.3 4

5  Results

The goal of this work is not to propose a new generic feature extractor for Atari games, 
nor a novel approach to beat the best scores from the literature. The research for score 
optimization has recently surpassed even human scores, thanks to the 2020 publication of 
Agent57 [2], the culmination of many years of work specifically on the Atari problem from 
multiple large teams, building on top of the advancements of a considerable number of pre-
vious papers. As a result the scores are extraordinary, but the cost in terms of complexity, 
optimization, model size and computational power for training are also disproportionate. 
Still, we include those results in Table 3 for reference, but it is crucial to understand how 
and why these numbers are not comparable.

Our work instead contributes to the field in the exactly opposite direction. Our declared 
goal is not to show how to improve Atari scores, but rather to demonstrate that an explicit 
separation of feature extraction and decision making enables addressing hard problems 
with much smaller resources and simplistic methods, while maintaining promising per-
formance comparable to the top results in direct policy search, where the neural network 
is used to approximate the policy (i.e. neuroevolution) rather than the value function (i.e. 
Agent57). Table 2 emphasizes our findings in this regard.

Under these assumptions, Table 1 presents game scores over a set of 15 Atari games 
available on the ALE simulator. Here are the steps that led to such a selection: (i) games 
available through the OpenAI Gym; (ii) games with the same observation resolution of 
[210, 160] (uniquely for consistency); (iii) games not involving 3D perspective (as our sim-
plistic feature extractor would be ineffective in that case). The resulting list was further 
narrowed down due to hardware limitations and available run time. A broader selection of 
games would support a broader applicability of our particular, specialized setup; our goal 
however is not to suggest its adoption, but to create a solid baseline upon which to build 
more effective feature extractors, highlighting that our simple setup is indeed able to play 
Atari games with competitive results.

To offer a more direct comparison, we opted for using the same settings as described 
above for all games, rather than delving into hyperparameter optimization. Some games 
performed well with these parameters (e.g. Phoenix); others feature many small moving 
parts in the observations, which would require a larger number of centroids for a proper 
encoding (e.g. Name This Game, Kangaroo); still others have complex dynamics, difficult 

4 Methods and tools: https:// github. com/ giuse/ machi ne_ learn ing_ workb ench.
3 Experiments and environment wrappers: https:// github. com/ giuse/ DNE.

https://github.com/giuse/machine_learning_workbench
https://github.com/giuse/DNE
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to learn with such tiny networks (e.g. Demon Attack, Seaquest). Our setup is particularly 
suited to highlight these differences.

The resulting scores are compared with recent papers that offer a broad set of results 
across Atari games on comparable settings  [8, 19, 38, 42]. Our list of games and corre-
spondent results are available in Table 1. Scores were directly taken from the respective 
papers. Notably, our setup achieves high scores on Qbert, arguably one of the harder games 
for its requirement of strategic planning, confirming that the evolved policies are capable of 
some degree of sophistication.

The real results of the paper however are highlighted in Table 2, which compares the 
number of neurons, hidden layers and total connections utilized by each approach. Our 
setup uses up to two orders of magnitude fewer neurons, two orders of magnitude fewer 
connections, and is the only one using no hidden layer (only one layer of neurons, the out-
put layer).

6  Discussion

It is important to note that the particular algorithm stack we have described in this paper 
does not work well on every possible visual problem, or even every Atari game. The 
IDVQ+DRSC pair was not designed as a general-purpose observation encoder, but as the 
simplest method that would work with the simplest games to remove the challenge of fea-
ture extraction, exposing the game’s control complexity to direct policy search. As such, 
it simply fails progressively as the game’s graphics become more convoluted. One can 
easily find counter-examples, such as games where large parts of the screen change with 
little correlation to the game state. This happens in games with forced screen scrolling, 
flashes and blinks, or simply with dynamic decorations playing on screen and unrelated to 
the game state. This limits the applicability of our proof-of-concept system to the games 
with the simplest graphics. It is However a limitation only in terms of implementation, 
which could easily be overcome by using a more generic (and sophisticated) encoder, now 
that the fundamental point put forward by this work has been made. The question, then, 
is whether a suitable form of pre-processing could be automatically learned or whether it 
should be selected for each game.

An obvious alternative for automatically learning pre-processing for new types of visual 
inputs is the autoencoder. Different types of autoencoders have been attempted for success-
fully learning state representation compressors for both 2D and 3D games [1, 17]. How-
ever, it is not clear that the utility of the autoencoder is much more general than the vec-
tor quantization-based approach we have used in this paper. For example, Alvernaz and 
Togelius co-trained autoencoders and policy networks to play Doom, and observed that 
the reconstruction error was higher when the walls in the game had more complex tex-
ture (such as bricks). This is because the autoencoder does not, on its own, know which 
aspects of the visual input are most relevant to preserve in the compressed representation. 
Creating a state compressor which takes the effect of the compressed representation on 
the policy network into account, perhaps by guiding compression with an error signal, is a 
major unsolved problem.

It should be noted that in addition to autoencoders and IDVQ, there are many other 
potential methods that could be used to compress observations for the purpose of rein-
forcement learning. In general, encoders can be rewarded for many other things than 
“simply” reconstructing the input, and several such methods have been proposed to create 
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compressed visual state representations. This includes the evolutionary method described 
above [27], representations learned with inverse-dynamics objectives [33], representations 
rewarded for grouping functionally similar input images together [40], and representations 
that predict rewards [22]. Another simple but potentially useful way of preprocessing rich 
visual data is to simply downscale it [12]. It is not clear that any of these alternatives are 
to as well-suited to 2D games as IDVQ is. Nevertheless, this is a rich space which is worth 
exploring.

Another open question indirectly addressed in this work is to what extent limiting the 
size of the policy network offers any kind of remedy for the problem of overfitting in deep 
reinforcement learning. It has repeatedly been observed that deep reinforcement learning 
tends to learn very brittle solutions, in particular on the kind of third-person, two-dimen-
sional representations that most Atari games offer. For example, we previously found that 
networks trained to particular games not only failed to generalize to other similar games, 
but also to different levels of the same game [24]. This could be mitigated to an extent by 
training on a large number of procedurally generated levels, but it did not seem possible to 
train a single network that could play arbitrary levels in a single game. In general, networks 
performed very badly on levels they were not trained, even if they were similar to levels in 
the training set. Similar results were found independently by [7]. One hypothesis is that the 
trained neural networks in this case simply act as lookup tables, matching particular scenes 
with stored actions. Even if that extreme hypothesis is not correct, it is clear that the trained 
networks overfitted considerably.

In supervised learning, it is standard practice to reduce the model size so as to avoid 
overfitting. The reason for this is that a function plus noise is generally more complex to 
describe than just the function, thus requiring a larger model. Smaller models by necessity 
can only implement simpler, potentially more fundamental functions. Therefore under the 
same training, whereas a huge deep network might overfit on a problem, a smaller network 
is much less likely to do so. The question is to what extent this applies to reinforcement 
learning as well. It stands to reason that a smaller network can only represent a simpler 
policy, and is therefore less able to overfit.

While the networks we produce with the method introduced in this paper are orders of 
magnitude smaller than deep networks, and could not reasonably implement very complex 
strategies, it is not clear that the system as a whole would be incapable of overfitting. In 
particular, the pre-processor creates visual features based on dynamic environmental stim-
uli. It could then be argued that it is the pre-processor that might suffer from overfitting, 
especially in the cases cited above where the stimuli is unrelated to the underlying game 
state. We have not investigated whether the current approach would overfit more or less 
than a more orthodox deep learning approach, or simply in a different way. However, we 
believe that the strategy of learning smaller policy networks holds promise for understand-
ing overfitting in reinforcement learning in general.

Another potential advantage of small networks is interpretability. In principle it is very 
hard to interpret what has been learned when the policy is embedded in a neural network 
with thousands of neurons and hundreds of thousands of parameters; any understanding 
commonly comes from observing the behavior in new environments, or from techniques 
such as neural activation maximization. Networks with very few layers however—or just 
one, such as the networks presented here—are closely related to linear controllers, in our 
case deviating just because of the recurrent connections. This enables understanding the 
fundamental trend of the policy implementation more or less directly.

Our simplistic, explicit algorithms for feature extraction (IDVQ+DRSC) have the added 
advantage that it is easy to visualize the learned centroids, as proposed in Fig.  2. The 
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centroids explicitly and directly represent the presence of determined sprites in fixed loca-
tions in the observation. The code generated from an observation is composed (by design: 
SC) of mostly zeros and few ones. The nonzero elements directly refers to the centroid-fea-
tures identified as most prominent in the observation. The code is then directly fed as input 
to the policy network: each neuron will thus see a combination of weighted inputs, which 
are nonzero only in correspondence to the representative centroids (nonzero elements in 
the code).

(a) Qbert

(b) Berzerk

(c) Bowling

(d) Gravitar

Fig. 2  Trained centroids. Samples of centroids trained with IDVQ during runs on different games. Notice 
how the first centroid typically captures the initial state of the game, often identifiable as the background. 
By design, the following centroids then represent sprites that have changed w.r.t. that first image, thus iden-
tifying active elements of the game, such as avatars, enemy, and interactive props. Colors are inverted for 
printing convenience
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By considering the relative weight magnitude from a nonzero code-entry to each of the 
action-neurons, it is possible to deduce the general policy trend of “when this sprite is 
present in the observation, prefer an action over the others”. For example, if the neuron 
are sorted as {up, left, right, down, jump, noop}, with a code having a 
single nonzero entry, and neural network weights from that one nonzero input to each neu-
ron respectively are {0, 0.3, 0.4, 1.3, 1.0, 0.5}, then we can assume a bias 

Table 1  Game scores. Scores (higher is better) on a sample of Atari games (sorted alphabetically) com-
paring our proposed approach of IDVQ + DRSC + XNES with results from HyperNeat [19] and OpenAI 
ES [38]. Results from GA (1B) [42] and NSRA-ES [8] are also provided to include work aimed at expand-
ing the network size, rather than shrinking it (though the intersection between sets of games is limited). All 
methods were trained from scratch on raw pixel input (NSRA-ES uses a compact state representation read 
from the simulated Atari RAM to compute novelty). Column ‘# neurs’ indicates how many neurons were 
used in our work in a single layer (output) for each game. The number of neurons corresponds to the num-
ber of available actions in each game, i.e. no neurons are added for performance purpose.

Game HyperNeat OpenAI ES GA (1B) NSRA-ES Ours # neurs

Berzerk 1394 686 – – 900 18
Bowling 135.8 30 – – 82 6
DemonAttack 3590 1166.5 – - 325 6
Enduro 93.6 95 60 – 7.4 9
FishingDerby − 49 − 49 – – -10 18
Frostbite 2260 370 4536 3785 300 18
Gravitar 370 805 476 1140 1100 18
Kangaroo 800 11200 3790 – 1200 18
NameThisGame 6742 4503 – – 920 6
Phoenix 1762 4041 – – 4600 8
Qbert 695 147.5 – 1350 1250 6
Seaquest 716 1390 798 960 320 18
SpaceInvaders 1251 678.5 – – 830 6
StarGunner 2720 1470 – – 1200 18
TimePilot 7340 4970 – – 4600 10

Table 2  Results. While our proposed approach of IDVQ + DRSC + XNES achieves not much lower scores 
(sometimes better; see Table 1), it does so using up to two orders of magnitude fewer neurons, and no hid-
den layers. The proposed feature extraction algorithm IDVQ+DRSC is simple enough (using basic, linear 
operations) to be arguably unable to contribute to the decision making process in a sensible manner (see 
Section 3.2.4). This implies that the tiny network trained on decision making alone is of sufficient com-
plexity to learn a successful policy, potentially prompting for reconsidering the actual complexity of this 
standard benchmark. The number of neurons used in our approach solely depends on the size of each game 
actions space (see Table 1 for reference). The number of weights in our approach are scaled to the worst 
case of 150 centroids (1k for 6 neurons, 3k for 18 neurons), which in our runs was only reached by a few 
hard games: averages were more commonly in the 300 to 1k weights range

HyperNeat OpenAI ES GA (1B) NSRA-ES Ours

# neurons ∼ 3034 ∼ 650 ∼ 650 ∼ 650 6 – 18
# hidden layers 2 3 3 3 0
# connections ∼ 906k ∼ 436k ∼ 436k ∼ 436k 1k – 3k
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of the network for selecting the up action when the sprite captured by the centroid of the 
nonzero input is representative of the observation.

Since there are also recurrent connection to take into account however, a more organic 
visualization of the full network would require highlighting dynamic changes in real time, 
and understand the impact of memory over time in biasing action selection. This would 
allow us to understand which parts of the network reacts to which input over time, and con-
sequently produces which behavior.

7  Conclusions

We presented a method to address complex learning tasks such as learning to play Atari 
games by decoupling policy learning from feature construction, learning each indepen-
dently but simultaneously to further specialization. Features are extracted from raw pixel 
observations coming from the game using a novel and efficient sparse coding algorithm 
named Direct Residual Sparse Coding. The resulting compact code is based on a dictionary 
trained online with yet another new algorithm called Increasing Dictionary Vector Quanti-
zation, which uses the observations obtained on-line by the networks’ interacting with the 
environment as the policy search progresses. Finally, tiny neural networks are evolved to 
decide actions based on the encoded observations, to achieve results comparable with the 

Table 3  Comparison with the state of the art on Atari score optimization. For reference, we include 
here the scores for the state of the art in Atari game playing optimizing for in-game scores: Agent57 [2], 
which was in 2020 the first implementation to surpass the reference “average human” performance on all 
57 Atari games. The scores for “Average Human”, “Random“ and “Agent57” in the table are taken directly 
from the paper. Such an impressive achievement utilizes a classic reinforcement learning framework setup, 
where not one but two neural networks are used to approximate the value function, rather than the policy. 
As such, network size comparison is not directly applicable, though Figure 1 in their paper gives us an esti-
mate (for both networks) of over 4’300 neurons and more than 1’600’000 weights. Notice that our method 
notably surpasses the random policy baseline on all games, supporting our “sensible play” thesis, and actu-
ally also overtakes reference human performance on one game: FishingDerby, using only 18 neurons

Game Average human Random Agent57 Ours

Berzerk 2630 124 61508 900
Bowling 161 23 251 82
DemonAttack 1971 152 143161 325
Enduro 861 0 2368 7.4
FishingDerby −39 −92 87 − 10
Frostbite 4335 65 541281 300
Gravitar 3351 173 19214 1100
Kangaroo 3035 52 24034 1200
NameThisGame 8049 2292 54387 920
Phoenix 7243 761 908264 4600
Qbert 13455 164 580329 1250
Seaquest 42055 68 999998 320
SpaceInvaders 1669 148 48681 830
StarGunner 10250 664 839574 1200
TimePilot 5229 3568 405425 4600
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deep neural networks typically used for these problems while being two orders of magni-
tude smaller.

Our work shows how a relatively simple and efficient feature extraction method, which 
counter-intuitively does not use reconstruction error for training, can effectively extract 
meaningful features from a range of different games. On top of that, the neural network 
trained for policy approximation is also very small in size, showing that the decision mak-
ing itself can be done by relatively simple functions. The implication is that both feature 
extraction and actual control on some Atari games are not as complex as often considered, 
with much of the difficulty coming from addressing the two sides of the problem at the 
same time using end-to-end training.

We empirically evaluated our method on a set of well-known Atari games using the 
ALE benchmark in the OpenAI Gym framework. Tight performance restrictions are posed 
on these evaluations, which can run on common personal computing hardware as opposed 
to the large server farms often used for deep reinforcement learning research. The source 
code is open-sourced for further reproducibility. The game scores are comparable with the 
state of the art in neuroevolution, while using but a minimal fraction of the computational 
resources usually devoted to this task. One goal of this paper is to clear the way for new 
approaches to learning, and to call into question a certain orthodoxy in deep reinforcement 
learning, namely that image processing and policy should be learned together (end-to-end).

As future work, we plan to identify the actual complexity required to achieve top scores 
on a (broader) set of games. This requires first applying a feature extraction method with 
state-of-the-art performance, such as based on autoencoders. Our findings though support 
the design of novel variations focused on state differentiation rather than reconstruction 
error minimization. As for the decision maker, the natural next step is to train deep net-
works entirely dedicated to policy learning, capable in principle of scaling to problems of 
unprecedented complexity. Training large, complex networks with neuroevolution requires 
further investigation in scaling sophisticated evolutionary algorithms to higher dimensions. 
An alternative research direction considers the application of deep reinforcement learn-
ing methods on top of the external feature extractor. Finally, a straightforward direction to 
improve scores is simply to release the constraints on available performance: longer runs, 
optimized code and parallelization should still find room for improvement even using our 
current, minimal setup.
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