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Abstract

We build on an emerging line of work which studies strategic manipulations in training data pro-
vided to machine learning algorithms. Specifically, we focus on the ubiquitous task of linear regression.
Prior work focused on the design of strategyproof algorithms, which aim to prevent such manipulations
altogether by aligning the incentives of data sources. However, algorithms used in practice are often
not strategyproof, which induces a strategic game among the agents. We focus on a broad class of
non-strategyproof algorithms for linear regression, namely `p norm minimization (p > 1) with convex
regularization. We show that when manipulations are bounded, every algorithm in this class admits
a unique pure Nash equilibrium outcome. We also shed light on the structure of this equilibrium by
uncovering a surprising connection between strategyproof algorithms and pure Nash equilibria of non-
strategyproof algorithms in a broader setting, which may be of independent interest. Finally, we analyze
the quality of equilibria under these algorithms in terms of the price of anarchy.

1 Introduction

Linear regression aims to find a linear relationship between explanatory variables and response variables.
Under certain assumptions, it is known that minimizing a suitable loss function on training data generalizes
well to unseen test data [3]. However, traditional analysis assumes that the algorithm has access to untainted
data drawn from the underlying distribution. Relaxing this assumption, a significant body of recent work
has focused on making machine learning algorithms robust to stochastic or adversarial noise; the former is
too benign [23, 16, 15, 27], while the latter is too pessimistic [20, 4, 9, 17]. A third model, more recent
and prescient, is that of strategic noise, which is a game-theoretic modeling of noise that sits in between the
two. Here, it is assumed that the training set is provided by self-interested agents, who may manipulate to
minimize loss on their own data.

We focus on strategic noise in linear regression. Dekel et al. [13] provide an example of retailer Zara,
which uses regression to predict product demand at each store, partially based on self-reported data provided
by the stores. Given limited supply of popular items, store managers may engage in strategic manipulation
to ensure the distribution process benefits them, and there is substantial evidence that this is widespread [7].
Strategic behavior by even a small number of agents can significantly affect the overall system, including
agents who have not participated in such behavior. Prior work has focused on designing strategyproof
algorithms for linear regression [30, 13, 10], under which agents provably cannot benefit by misreporting
their data. While strategyproofness is a strong guarantee, it is only satisfied by severely restricted algorithms.
Indeed, as we observe later in the paper, most practical algorithms for linear regression are not strategyproof.
∗During the course of this work, Shah was partially supported by an NSERC Discovery Grant.
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When strategic agents with competing interests manipulate the input data under a non-strategyproof
algorithm, a game is induced between them. Game theory literature offers several tools to analyze such
behaviour, such as Nash equilibria and the price of anarchy [28]. We use these tools to answer three key
questions:

• Does the induced game always admit a pure Nash equilibrium?

• What are the characteristics of these equilibria?

• Is there a connection between strategyproof algorithms and equilibria of non-strategyproof algo-
rithms?

We consider linear regression algorithms which minimize the `p-norm of residuals (where p > 1) with
convex regularization. This class includes most popular linear regression algorithms, including the ordinary
least squares (OLS), lasso, group lasso, ridge regression, and elastic net regression. Our key result is that the
game induced by an algorithm in this class has three properties: a) it always has a pure Nash equilibrium,
b) all pure Nash equilibria result in the same regression hyperplane, and c) there exists a strategyproof al-
gorithm which returns this equilibrium regression hyperplane given non-manipulated data. We also analyze
the quality of this equilibrium outcome, measured by the pure price of anarchy. We show that for a broad
subset of algorithms in this class, the pure price of anarchy is unbounded.

1.1 Related Work

A special case of linear regression is facility location in one dimension [26], where each agent i is located
at some yi on the real line. An algorithm elicits the preferred locations of the agents (who can misreport)
and chooses a location y to place a facility. A significant body of literature in game theory is devoted
to understanding strategyproof algorithms in this domain [26, 6], which includes placing the facility at
the median of the reported locations. A more recent line of work studies equilibria of non-strategyproof
algorithms such as placing the facility at the average of the reported locations [32, 33, 36]. Similarly, in the
more general linear regression setting, prior work has focused on strategyproof algorithms [30, 13, 10]. We
complete the picture by studying equilibria of non-strategyproof algorithms for linear regression.

We use a standard model of strategic manipulations in linear regression [30, 13, 10]. Perote and Perote-
Pena [30] designed a strategyproof algorithm in two dimensions. Dekel et al. [13] proved that least absolute
deviations (LAD), which minimizes the `1-norm of residuals without regularization, is strategyproof. Chen
et al. [10] extended their result to include regularization, and designed a new family of strategyproof algo-
rithms in high dimensions. They also analyzed the loss in mean squared error (MSE) under a strategyproof
algorithm as compared to the OLS, which minimizes MSE. They showed that any strategyproof algorithm
has at least twice as much MSE as the OLS in the worst case, and that this ratio is Θ(n) for LAD. Our result
(Theorem 6) shows that the ratio of the equilibrium MSE under the algorithms we study to the optimal MSE
of the OLS is unbounded. Through the connection we establish to strategyproof algorithms (Theorem 5),
this also implies unbounded ratio for the broad class of corresponding strategyproof algorithms.

Finally, we mention that strategic manipulations have been studied in various other machine learning
contexts, e.g., manipulations of feature vectors [18, 14], strategic classification [25, 18, 14], competition
among different algorithms [24, 19, 2, 1], or manipulations due to privacy concerns [11, 5].
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2 Model

In linear regression, we are given n training data points of the form (xi, yi), where xi ∈ Rd are the
explanatory variables, and yi ∈ R is the response variable.1 Let X ∈ Rn×d be the matrix with xi as its ith

column, and y = (y1, . . . , yn). The goal of a linear regression algorithm is to find a hyperplane with normal
vector β such that βTxi is a good estimate of yi. The residual of point i is ri = |yi − βTxi|.

Algorithms: We focus on a broad class of algorithms parametrized by p > 1 and a regularizing function
R : Rd → R. The (p,R)-regression algorithm minimizes the following loss function over β:

L(y,X,β) =
∑n

i=1|yi − β
Txi|p +R(β). (1)

We assume that R is convex and differentiable. For p > 1, this objective is strictly convex, admitting a
unique optimum β∗. When there is no regularization, we refer to it as the (p, 0)-regression algorithm.

Strategic model: We follow a standard model of strategic interactions studied in the literature [30, 13, 10].
A training data point (xi, yi) is provided by an agent i. N = [n] := {1, . . . , n} denotes the set of all agents.
xi is public information, which is non-manipulable, but yi is held private by agent i. We assume a subset of
agents H ⊂ N (with h = |H|) are honest and always report ỹi = yi. The remaining agents in M = N \H
(with m = |M |) are strategic and may report ỹi 6= yi. Note that we allow all agents in N be strategic; that
is, we allow H = ∅ and M = N . For convenience, we assume that M = [m] and H = {m + 1, . . . , n}.
However, we emphasize that our algorithms do not know which agents are strategic and which are honest.
Given a set of reports ỹ, honest agents’ reports are denoted by ỹH (note that ỹH = yH ) and strategic agents’
reports by ỹM . In accordance with related literature, we focus our analysis to the training set and do not
consider strategic manipulation in test data, leaving this for future work.

The (p,R)-regression algorithm takes as input X and ỹ, and returns β∗ minimizing the loss in Equa-
tion (1). We say that yi = (β∗)Txi is the outcome for agent i. Since X and yH are non manipulable,
we can treat them as fixed. Hence, ỹM is the only input which matters, and yM is the output for these
manipulating agents. For an algorithm f , we use the notation f(ỹM ) = yM , and let fi denote the function
returning agent i’s outcome yi. A strategic agent i manipulates to ensure this outcome is as close to her true
response variable yi as possible. Formally, agent i has single-peaked preferences �i (with strict preference
denoted by �i) over yi with peak at yi. That is, for all a < b ≤ yi or a > b ≥ yi, we have b �i a. Agent i
is perfectly happy when yi = yi. In this work, we assume that for each agent i, both yi and ỹi are bounded
(WLOG, say they belong to [0, 1]).

Nash equilibria: This strategic interaction induces a game among agents in M , and we are interested in the
pure Nash equilibria (PNE) of this game. We say that ỹM is a Nash equilibrium (NE) if no strategic agent
i ∈ M can strictly gain by changing her report, i.e., if ∀i, ∀ ỹ′i, fi(ỹM ) �i fi(ỹ′i, ỹM\{i}). We say that ỹM
is a pure Nash equilibrium (PNE) if it is a NE and each ỹi is deterministic. Let NEf (y) denote the set of
pure Nash equilibria under f when the peaks of agents’ preferences2 are given by y. For ŷM ∈ NEf (y), let
f(ŷM ) be the corresponding PNE outcome.

Strategyproofness: We say that an algorithm f is strategyproof if no agent can benefit by misreporting her
true response variable regardless of the reports of the other agents, i.e., ∀i, ∀ỹM , fi(yi, ỹM\{i}) �i fi(ỹM ).
Note that strategyproofness implies that each agent reporting her true value (i.e. ỹM = yM ) is a pure Nash
equilibrium.

1In the regression literature, these are also called independent and dependent variables, respectively. Following the standard
convention, we assume that the last component of each xi is a constant, say 1.

2 Equilibria can generally depend on the full preferences, but results in Section 4 show only peaks matter.
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Pure price of anarchy (PPoA): It is natural to measure the cost of selfish behavior on the overall system.
A classic notion is the pure price of anarchy (PPoA) [21, 28], which is defined as the ratio between the
maximum social cost under any PNE and the optimal social cost under honest reporting, for an appropriate
measure of social cost. Here, social cost is a measure of the overall fit. In regression, it is typical to measure
fit using the `q norm of absolute residuals for some q. While we study the equilibrium of `p regression
mechanisms for different p values, we need to evaluate them using a single value of q, so that the results are
comparable. For our theoretical analysis, we use mean squared error (which corresponds to q = 2) since
it is the standard measure of fit in the literature [10]. One way to interpret our results is: If our goal were
to minimize the MSE, which `p regression mechanism would we choose, assuming that the strategic agents
would achieve equilibrium? We also present empirical results for other values of q. Slightly abusing the
notation by letting f map all reports to all outcomes (not just for agents in M ), we write:

PPoA(f) = max
y∈[0,1]n

maxŷ∈NEf (y)

∑n
i=1|yi − fi(ŷ)|2∑n

i=1|yi − yOLS
i |2

,

where yOLS is the outcome of OLS (i.e. the (2, 0)-regression algorithm) under honest reporting, which
minimizes mean squared error. Note that the PPoA, as we have defined it, measures the impact of the
behavior of strategic agents on all agents, including on the honest agents.

3 Warm-Up: The 1D Case

As a warm-up, we review the more restricted facility location setting in one dimension. Here, each agent i
has an associated scalar value yi ∈ [0, 1] and the algorithm must produce the same outcome for all agents
(i.e. yi = yj ∀ i, j ∈ N ). Hence, the algorithm is a function f : [0, 1]m → R. This is a special case of linear
regression where agents have identical explanatory variables.

Much of the literature on facility location has focused on strategyproof algorithms. Moulin [26] showed
that an algorithm f is strategyproof and anonymous3 if and only if it is a generalized median given by
f(y1, . . . , yn) = med(y1, . . . , yn, α0, . . . , αn), where med denotes the median and αk is a fixed constant
(called a phantom) for each k. Caragiannis et al. [6] focused on a notion of worst-case statistical efficiency,
and provided a characterization of generalized medians which exhibit optimal efficiency. In particular, they
showed that the uniform generalized median given by f(y1, . . . , yn) = med(y1, . . . , yn, 0, 1/n, 2/n, . . . , 1)
is has optimal statistical efficiency.

A more recent line of literature has focused on manipulations under non-strategyproof rules. Recall that
under a non-strategyproof rule f , each strategic agent i ∈ M reports a value ỹi, which may be different
from yi. For the facility location setting, the (p,R)-regression algorithm described in Section 2 reduces to
f(ỹ1, . . . , ỹn) = arg miny

∑m
i=1 |ỹi − y|p +

∑n
i=m+1 |yi − y|p + R(y). For p = 1, this is known to be

strategyproof [10]. When p > 1, which is the focus of our work, this rule is not strategyproof, as we observe
in Section 4.

In this family, the most natural rule is the average rule given by f(ỹ1, . . . , ỹn) = (1/n)
∑n

i=1 ỹi. This
corresponds to p = 2 with no honest agents or regularization. For this rule, Renault and Trannoy [32]
showed that there is always a pure Nash equilibrium, and the pure Nash equilibrium outcome is unique.
This outcome is given by med(y1, . . . , yn, 0, 1/n, . . . , 1), which coincides with the outcome of the uniform
generalized median, which is strategyproof.

3This is a mild condition which requires treating the agents symmetrically.
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Generalizing this result, Yamamura and Kawasaki [36] proved that any algorithm f satisfying four natu-
ral axioms has a unique PNE outcome, which is given by the generalized median med(y1, . . . , yn, α0, . . . , αn),
where αk = f(0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

k times

) for each k.

We note that the ‘vanilla’ `p-norm algorithm with no honest agents or regularization satisfies the axioms
of Yamamura and Kawasaki [36]. Using the result of Yamamura and Kawasaki [36] described above, this
algorithm has a unique PNE outcome given by the generalized median med(y1, . . . , yn, α0, . . . , αn), where

αk = k
1

p−1

(n−k)
1

p−1+k
1

p−1
for each k ∈ {0, 1, . . . , n}. It is easy to see that α0 = 0 and αn = 1. For k ∈

{1, . . . , n− 1}, αk is the minimizer arg miny∈R k|1− y|p + (n− k)|y|p. Taking the derivative w.r.t. y, we
can see that the optimal solution is given by

−k(1− αk)p−1 + (−k)αp−1k = 0 =⇒ αk =
k

1
p−1

(n− k)
1

p−1 + k
1

p−1

(2)

Below, we extend this to the general (p,R)-regression algorithm with p > 1, convex regularizer R, and
with the possibility of honest agents. We omit the proof because, in the next section, we prove this more
generally for the linear regression setting (Theorems 3, 4, and 5).

Theorem 1. Consider facility location with n agents, of which a subset of agents M are strategic and have
single-peaked preferences with peaks at yM ∈ [0, 1]m. Let f denote the (p,R)-regression algorithm with
p > 1 and convex regularizer R. Then, the following statements hold for f .

1. For each yM , there is a pure Nash equilibrium ŷM ∈ NEf (yM ).

2. For each yM , all pure Nash equilibria ŷM ∈ NEf (yM ) have the same outcome f(ŷM ).

3. There exists a strategyproof algorithm h such that for all yM and all pure Nash equilibria ŷM ∈
NEf (yM ), f(ŷM ) = h(yM ).

Theorem 1 guarantees the existence of a pure Nash equilibrium and highlights an interesting structure
of the equilibrium. The next immediate question is to analyze the quality of this equilibrium. We show that
the PPoA of any (p, 0)-regression algorithm (i.e. without regularization) is Θ(n). Interestingly, this holds
even if only a single agent is strategic, and the bound is independent of p.

Theorem 2. Consider facility location with n agents, of which a subset of agents M are strategic. Let f
denote the (p, 0)-regression algorithm with p > 1. When |M | ≥ 1, PPoA(f) = Θ(n).

Proof. Define a = mini yi and b = maxi yi. As PPoA is measured with MSE, the optimal social cost is
achieved with the location yh = (1/n)

∑
i yi. Let yne denote the unique PNE outcome of the algorithm.

Note that yh, yne ∈ [a, b]. For yh, this holds by definition. To see this for yne, WLOG let yne < a. Then all
manipulating agents must be reporting 1, and the honest agents maintain their honest reports in [a, b] (see
Lemma 5). However, then `p loss optimal outcome on this input cannot be yne < a as a would have a lower
loss. A symmetric argument holds for yne > b. Thus, yne ∈ [a, b].

We first show a lower bound of Ω(n). Suppose a strategic agent j ∈ M has preference with peak at

αn−1 = (n−1)
1

p−1

1+(n−1)
1

p−1
and the remaining agents have preferences with peak at 1. Note that a = yj = αn−1

and b = 1. We note that a PNE equilibrium is given by ỹj = 0 and ỹi = 1∀i 6= j, regardless of which

5



agents other than j are strategic. By Equation (2), the outcome on this input is a = αk. Now, we have that
the MSE in the equilibrium is MSEeq =

∑
i |yi − yne|2 = (n − 1)(b − a)2, whereas the optimal MSE

under honest reports is

MSEh =
∑
i

|yi − yh|2

=

(
b− (n− 1)b+ a

n

)2

(n− 1) +

(
(n− 1)b+ a

n
− a
)2

=

(
b− a
n

)2

(n− 1) +

(
(n− 1)(b− a)

n

)2

=
(b− a)2(n− 1) + (n− 1)2(b− a)2

n2

=
n(n− 1)(b− a)2

n2
=

(n− 1)(b− a)2

n

Hence, we have that PPoA ≥ MSEeq

MSEh
= n.

For the upper bound, since the MSE is a strictly convex function with a minimum at the sample mean
yh, the maximum allowable value of MSEeq is achieved at one of the end-points a or b. Hence, we have

PPoA =

∑
i |yi − yne|2∑
i |yi − y|2

≤ max

{∑
i |yi − a|2∑
i |yi − y|2

,

∑
i |yi − b|2∑
i |yi − y|2

}
.

We show that each quantity inside max in the last expression is O(n). Let us prove this for the first quantity.
The argument is symmetric for the second. Note that for each i and each y ∈ R, we have,

|yi − y|2 + |a− y|2 ≥ |yi − (yi + a)/2|2 + |a− (yi + a)/2|2 =
|yi − a|2

2
.

Hence, we have that for each i,

|yi − a|2 ≤ 2 · |yi − y|2 + |a− y|2 ≤ 2
∑
i

|yi − y|2.

Summing this over all i, we get
∑

i |yi−a|2∑
i |yi−y|2

≤ 2n, as desired.

We remark that both Theorems 1 and 2, due to their generality, are novel results in the facility location
setting.

4 Linear Regression

We now turn to the more general linear regression setting, which is the focus of our work, and highlight
interesting similarities and differences to the facility location setting. Recall that for linear regression, the
(p,R)-regression algorithm finds the optimal β∗ minimizing the loss function:

L(ỹ,X,β) =
m∑
i=1

|ỹi − βTxi|p +
n∑

i=m+1

|yi − βTxi|p +R(β)

6



Let i ∈ M be a strategic agent. Recall that her outcome is denoted by yi = (β∗)Txi. Let bri(ỹ−i) =
{ỹi ∈ [0, 1] : fi(ỹi, ỹ−i) �i fi(ỹ′i, ỹ−i)∀ ỹ′i ∈ [0, 1]} denote the set of her best responses as a function of
the reports ỹ−i of the other agents. Informally, it is the set of reports that agent i can submit to induce her
most preferred outcome.

4.1 Properties of the Algorithm, Best Responses, and Pure Nash Equilibria

We begin by establishing intuitive properties of (p,R)-regression algorithms. We first derive the following
lemmas.

Lemma 1. Fix strategic agent i ∈ M and reports ỹ−i of the other agents. Let ỹ1i and ỹ2i be two possible
reports of agent i, and let β1 and β2 be the corresponding optimal regression coefficients, respectively.
Then, ỹ1i 6= ỹ2i implies β1 6= β2.

Proof. Suppose for contradiction that β1 = β2 = β∗. We note that at the optimal regression coefficients,
the gradient of our strictly convex loss function must vanish. Let the loss functions on the two instances be
given by L1 and L2, respectively. So for k ∈ {1, 2},

Lk(β) = |ỹki − xTi β|p +
∑
j 6=i
|ỹj − xTj β|p +R(β).

Since β∗ is optimal for L1, taking the derivative, we have

∇R(β∗)−
∑
j 6=i

p|ỹj − xTj β∗|p−2(ỹj − xTj β∗)xj

= p|ỹ1i − xTi β∗|p−2(ỹ1i − xTi β∗)xi

6= p|ỹ2i − xTi β∗|p−2(ỹ2i − xTi β∗)xi,

where the last inequality follows because ỹ1i 6= ỹ2i and xi is not the 0 vector (its last element is a non-zero
constant). Hence, the gradient of L2 at β∗ is not zero, which is a contradiction.

Lemma 2. For a1 ≥ a2, b1 ≥ b2, and p ≥ 1, we have

|a1 − b1|p + |a2 − b2|p ≤ |a1 − b2|p + |a2 − b1|p.

Proof. Note that vector (a1 − b2, a2 − b1) majorizes the vector (a1 − b1, a2 − b2). For p ≥ 1, f(x) = |x|p
is a convex function. Hence, by the Karamata majorization inequality, the result follows.

Lemma 3. The outcome yi of agent i is continuous in ỹ, and strictly increasing in her own report ỹi for any
fixed reports ỹ−i of the other agents.

Proof. For continuity, we refer to Corollary 7.43 in Rockafellar and Wets [35], which states that function
F (ỹ) = arg minβ L(ỹ,β) is single-valued and continuous on its domain, when function L : Rm ×Rn →
R ∪ {−∞,∞} is proper4, strictly convex, lower semi-continuous, and has L∞(0, β) > 0, ∀β 6= 0.5 It is
easy to check that our loss function given in Equation (1) satisfies these conditions. Hence, its minimizer
β∗ is continuous in ỹ. Since y = Xβ∗, it follows that y is also continuous in ỹ.

4A function is proper if the domain on which it is finite is non-empty.
5L∞(0, β) is known as the horizon function of L.
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For strict monotonicity, first note that yi = xTi β
∗. Now consider two instances of (p,R)-linear re-

gression, u and w, that differ only in agent i’s reported response, denoted ỹui and ỹwi , respectively in the
two instances. Hence, ỹui 6= ỹwi . Let βu and βw be the corresponding optimal regression parameters.
Without loss of generality, assume ỹui > ỹwi , and for contradiction, suppose that xTi β

w ≥ xTi βu. Using
Lemma 1, we get that βu 6= βw. Because our strictly convex loss function has a unique minimizer, we have
L(ỹu,βu) < L(ỹu,βw) and L(ỹw,βw) < L(ỹw,βu). Let us define Cu =

∑
j 6=i |ỹj − xTj βu|p +R(βu)

and Cw =
∑

j 6=i |ỹj − xTj βw|p +R(βw), we get

|ỹui − xTi βu|p + Cu < |ỹui − xTi βw|p + Cw. (3)

|ỹwi − xTi βw|p + Cw < |ỹwi − xTi βu|p + Cu. (4)

Adding Equations (4) and (3), we have:

|ỹui − xTi βu|p + |ỹwi − xTi βw|p < |ỹui − xTi βw|p + |ỹwi − xTi βu|p (5)

Note that because we assumed ỹui > ỹwi and xTi β
w ≥ xTi βu, using Lemma 2, we get

|ỹui − xtiβw|p + |ỹwi − xtiβu|p ≤ |ỹui − xtiβu|p + |ỹwi − xtiβw|p,

which contradicts Equation 5.

The last lemma demonstrates that (p,R)-regression cannot be strategyproof. Consider an instance where
each strategic agent i has yi /∈ {0, 1} and these true data points do not all lie on a hyperplane. Then under
honest reporting, not all strategic agents can be perfectly happy, and any agent i with yi > yi (or yi < yi)
can slightly decrease (or increase) her report to achieve a strictly more preferred outcome. Next, we show
that the best response of an agent is always unique and continuous in the reports of the other agents.

Lemma 4. For each strategic agent i, the following hold about the best response function bri.

1. The best response is unique, i.e., |bri(ỹ−i)| = 1 for any reports ỹ−i of the other agents.

2. bri is a continuous function of ỹ−i.

Proof. We first show uniqueness of the best response. By Lemma 3, fi is continious and strictly increasing
in ỹi. Consider the minimization problem: arg minỹi∈[0,1] |yi − fi(ỹi, ỹ−i)|

p, where ỹ−i is constant. So for
now, let us consider fi to be a function of only ỹi. Since ỹi ∈ [0, 1], it achieves a minimum at a = fi(0)
and a maximum at b = fi(1). If a ≤ b ≤ yi, then the minimum of the problem is achieved at ỹi = 1.
Symmetric case holds for yi ≤ a ≤ b where minimum is achieved at ỹi = 0. Lastly, if yi ∈ [a, b], by
intermediate value theorem, ∃ ỹi s.t fi(ỹi) = yi, which is then the minimum. In all cases, the minimum is
unique since fi is strictly increasing. We now show that this unique minimum ỹ∗i is indeed the unique best
response. If yi ∈ [a, b] then reporting ỹ∗i makes agent i perfectly happy as her outcome matches the peak of
her preference, which is clearly best response. If yi > b, then ỹ∗i = 1 and her outcome is yi = b. Under any
other report, her outcome would be yi ≤ b, which cannot be more preferred. A symmetric argument holds
for yi < a case.

Now we can use the uniqueness of the best response to argue its continuity. More specifically, we want
to show that bri(ỹ−i) = arg minỹi∈[0,1] g(ỹi, ỹ−i) is continuous, where g(ỹi, ỹ−i) = |yi − fi(ỹi, ỹ−i)|p is
jointly continious due to the continuity of fi. We use the sequence definition of continuity. Fix a conver-
gent sequence {ỹn−i} → ỹ−i. Since there is always a unique minimum, the sequence {bri(ỹn−i)} is well-
defined. We want to show {bri(ỹn−i)} → bri(ỹ−i). By the Bolzano-Weirstrass theorem, every bounded

8



sequence in R has a convergent sub-sequence. Therefore, this has a convergent sub-sequence {bri(ỹnk
−i)}

that converges to some θ. Let bri(ỹ−i) = θ∗. We want to first show θ = θ∗. By the continuity of g,
{g(θ∗, ỹnk

−i)} → g(θ∗, ỹ−i). Also by the minimum, for every individual element of the subsequence nk, we
have that g(θ∗, ỹnk

−i) ≥ g(bri(ỹ
nk
−i), ỹ

nk). Now again by continuity of g, both the above sequences converge
and we have: g(θ∗, ỹ−i) ≥ g(θ, ỹ−i)). Since θ∗ is the unique minimizer for ỹ−i, we have that θ = θ∗. So,
every convergent sub-sequence of bri(ỹn−i) converges to bri(ỹ−i). Since this is a bounded sequence, we
have that if {ỹn−i} → ỹ−i, then {bri(ỹn−i)} → bri(ỹ−i). Thus, bri is continuous.

We remark that part 1 of Lemma 4 is a strong result: it establishes a unique best response for every
possible single-peaked preferences that an agent may have (in fact, our proof shows that this best response
depends only on the peak and not on the full preferences). This allows us to avoid further assumptions on
the structure of the agent preferences.

Finally, we derive a simple characterization of pure Nash equilibria in our setting. We show that under a
PNE, each strategic agent imust be in one of three states: either she is perfectly happy (yi = yi), or wants to
decrease her outcome (yi > yi) but is already reporting ỹi = 0, or wants to increase her outcome (yi < yi)
but is already reporting ỹi = 1.

Lemma 5. ỹM is a pure Nash Equilibrium if and only if (yi < yi∧ỹi = 1) ∨ (yi > yi∧ỹi = 0) ∨ (yi = yi)
holds for all i ∈M .

Proof. For the ‘if’ direction, we check that in each case, agent i ∈ M cannot change her report to attain a
strictly better outcome. When yi < yi and ỹi = 1, every other report ỹ′i < ỹi = 1 will result in an outcome
y′i < yi < yi (Lemma 3), which the agent prefers even less. A symmetric argument holds for the yi > yi
and ỹi = 0 case. Finally, when yi = yi, the agent is already perfectly happy.

For the ‘only if’ direction, suppose ỹM is a PNE. Consider agent i ∈ M . The only way the condition
is violated is if yi < yi and ỹi 6= 1 or yi > yi and ỹi 6= 0. In the former case, Lemma 3 implies that for a
sufficiently small ε > 0, agent i increasing her report to ỹ′i = 1 + ε must result in an outcome y′i ∈ (yi, yi],
which the agent strictly prefers over yi. This contradicts the assumption that ỹM is a PNE. A symmetric
argument holds for the second case.

Note that Lemma 5 immediately implies a naı̈ve but simple algorithm to find a pure Nash equilibrium.
Since ỹi ∈ {0, yi, 1} for each i, this induces 3m possible ỹM vectors. For each such vector, we can compute
the outcome of the mechanism y, and check whether the conditions of Lemma 5 are satisfied. This might
lead one to believe that the strategic game that we study is equivalent to the finite game induced by the 3m

possible strategy profiles. However, this is not true because limiting the strategy set of the agents can give
rise to new equilibria which are not equilibria of the original game. We give an explicit example illustrating
this below. We further discuss the issue of computing a PNE in Section 5.

Example 1: Finite game leading to different equilibria. We use an example from 1D facility location with
the average rule — recall that this is a special case of linear regression — to illustrate this point. Consider
an example with two agents 1 and 2 with true points y1 = 0.4 and y2 = 0.5, respectively, whose preferences
are such that each agent i strictly prefers outcome y1 to y2 when |y1 − yi| < |y2 − yi|.

If the agents are allowed to report values in the range [0, 1], then the unique PNE of the game is agent 1
reporting ỹ1 = 0 and agent 2 reporting ỹ2 = 1, and the PNE outcome is y = 0.5.

Now, consider the version with finite strategy spaces, where each agent i must report ỹi ∈ {0, 1, yi}.
Suppose the agents report honestly, i.e., ỹ = y = (0.4, 0.5). Then, the outcome is y = 0.45. The only way
agent 1 could possibly improve is by reporting 0, but in that case the outcome would be y = 0.25, increasing
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|y − y1|. A similar argument holds for agent 2. Hence, honest reporting is a PNE of the finite game, but not
of the original game.

4.2 Analysis of Pure Nash Equilibria

We are now ready to prove the main results of our work. We begin by showing that a PNE always exists,
generalizing the first statement of Theorem 1 from 1D facility allocation to linear regression.

Theorem 3. For p > 1 and convex regularizer R, the (p,R)-regression algorithm admits a pure Nash
Equilibrium.

Proof. Consider the mapping T from the reports of strategic agents to their best responses, i.e., T (ỹ1, . . . , ỹm) =
(br1(ỹ−1), . . . , brm(ỹ−m)). Recall that best responses are unique due to Lemma 4. Also, note that pure
Nash equilibria are precisely fixed points of this mapping.

Brouwer’s fixed point theorem states that any continuous function from a convex compact set to itself
has a fixed point [31]. Note that T is a function from [0, 1]m to [0, 1]m, and [0, 1]m is a convex compact set.
Further, T is a continuous function since each bri is a continuous function (Lemma 4). Hence, by Brouwer’s
fixed point theorem, T has a fixed point (i.e. pure Nash equilibrium).

Next, we show that there is a unique pure Nash equilibrium outcome (i.e. all pure Nash equilibria lead
to the same hyperplane β∗), generalizing the second statement in Theorem 1.

Theorem 4. For any p > 1 and convex regularizer R, the (p,R)-regression algorithm has a unique pure
Nash equilibrium outcome.

Proof. Assume by contradiction that there are two equilibria ỹ1 and ỹ2, which result in distinct outcomes
β1 and β1, respectively. By Lemma 5, any agent i with yi > max(y1i , y

2
i ) or yi < min(y1i , y

2
i ) must have

the same report in both cases. Similarly, any agent i with y2i < yi < y1i must have ỹ1i = 0 and ỹ2i = 1. A
symmetric case holds for agents i with y1i < yi < y2i . Lastly, any agent i with yi = y2i < y1i must have
ỹ2i ∈ [0, 1] and ỹ1i = 0. Similar arguments hold for the remaining symmetric cases. In all such instances, we
note that agents change their reports weakly in the opposite direction to their respective projections. If only
one agent changed, Lemma 3 shows that it leads to a contradiction. We rely on a similar technique to show
that multiple agents changing also leads to a contradiction. Note that the only exception to this are agents
k ∈ D, whose preference lies on both hyperplanes (i.e. on their intersection).

LetA be the set of points who change their reports weakly in the opposite direction as their projections,
D as defined above, and S, the remaining agents who either do not change or are honest. Recall yi = xTi β.
Then ∀ k ∈ D ,xTkβ1 = xTkβ

2 and ∀ i ∈ A:(
ỹ1i ≥ ỹ2i ⇒ xTi β

2 ≥ xTi β1
)
∧
(
ỹ2i ≥ ỹ1i ⇒ xTi β

1 ≥ xTi β2
)
. (6)

Let C1 =
∑

j∈S |ỹj − xTj β1|p+R(β1) and C2 =
∑

j∈S |ỹj − xTj β2|p +R(β2). Noting that β1 and β2

uniquely minimize the loss for instances 1 and 2, respectively, and β1 6= β2, we have:∑
i∈A
|ỹ1i − xTi β1|p +

∑
k∈B
|ỹ1k − xTkβ1|p + C1 <

∑
i∈A
|ỹ1i − xTi β2|p +

∑
k∈B
|ỹ1k − xTkβ2|p + C2,

and ∑
i∈A
|ỹ2i − xTi β2|p +

∑
k∈B
|ỹ2k − xTkβ2|p + C2 <

∑
i∈A
|ỹ2i − xTi β1|p +

∑
k∈B
|ỹ2k − xTkβ1|p + C1.
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Adding two equations above, we have∑
i∈A

{
|ỹ1i − xTi β1|p + |ỹ2i − xTi β2|p

}
<
∑
i∈A

{
|ỹ1i − xTi β2|p + |ỹ2i − xTi β1|p

}
. (7)

Due to Equation (6), when we apply Lemma 2 to each i ∈ A:

|ỹ1i − xTi β2|p + |ỹ2i − xTi β1|p ≤ |ỹ1i − xTi β∗1 |p + |ỹ2i − xTi β2|p.

Thus adding this up for all i, we have:∑
i∈A

{
|ỹ1i − xTi β2|p + |ỹ2i − xTi β1|p

}
≤
∑
i∈A

{
|ỹ1i − xTi β1|p + |ỹ2i − xTi β2|p

}
,

which contradicts Equation (7).

While the result above illustrates that the PNE outcome is unique, the equilibrium strategy may not
be. This stems from different sets of reports mapping to the same regression hyperplane. In the simplest
case, consider the ordinary least squares (OLS) with no regularization, i.e., the (2, 0)-regression, where all
n agents are strategic. Given X ∈ Rd×n, the OLS produces a linear mapping from the reports ỹ to the
outcomes y given by Hỹ = y, where H = X(XTX)−1XT ∈ Rn×n is a symmetric idempotent matrix
of rank d (known as the hat matrix). When n > d,H is singular, leading to infinitely many ỹ which map to
the same y. Of course, they need to still satisfy the conditions of being a PNE (Lemma 5). For a concrete
example, if the n true data points lie on a hyperplane, any of the infinitely many reports ỹ under which OLS
returns this hyperplane — making all n agents perfectly happy — is a PNE.

Given the linear structure of OLS, one wonders if our results can be extended to all linear mappings.
We say a game is induced by a linear mapping if a matrix H relates the agents’ outcomes y to their reports
ỹ by the equation Hỹ = y. When H is a hat matrix arising from OLS, Theorems 3 and 4 show that
the induced game admits a PNE with a unique outcome. Interestingly, it is easy to show that the proof of
Theorem 3 (existence of PNE) can be extended to all matrices H . However, there are matricies for which
the corresponding game has multiple PNE outcomes. We give an example below. It is an interesting open
question to identify the precise conditions onH for the induced game to satisfy Theorem 4 and thus have a
unique PNE outcome.

Example 2: Multiple PNE Outcomes in General Linear Mappings Consider the following matrix:

H =

[
0.8 −1
−1.2 1

]
Suppose the agents’ preferred values are given by y = (0, 0). Then, when they report ỹ = (0, 0), the
outcome is y = (0, 0). This is clearly a PNE as both agents are perfectly happy. When they report ỹ =
(1, 1), the outcome is y = (−0.2,−0.2). While neither agent is perfectly happy as the outcome is lower
than their preferred value, neither can increase their outcome because they are already reporting 1. Hence,
this is also a PNE with a different outcome.

4.3 Connection to Strategyproofness

A social choice rule maps true preferences of the agents (y) to a socially desirable outcome (y or β∗).
Strategyproofness is a strong requirement: when f is strategyproof, honest reporting is a dominant strategy
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for each agent (i.e., it is an optimal strategy regardless of the strategies of other agents). We say that rule f is
implementable in dominant strategies if there exists a rule g such that f(y) is a dominant strategy outcome
under g. Although a seemingly weaker requirement (since for a strategyproof rule f , one can set g = f ), the
classic revelation principle argues otherwise: if f can be implemented in dominant strategies, then directly
eliciting agents’ preferences and implementing f must be strategyproof.

A weaker requirement is that f be Nash-implementable, i.e., there exists g such that the Nash equilib-
rium outcome under g is f(y).6 Generally, not every Nash-implementable rule is strategyproof. However,
a classic line of work in economics [34, 12, 22] proves that Nash-implementable rules are strategyproof
for “rich” preference domains. It is easy to check that our domain with single-peaked preferences does
not satisfy their “richness” condition. For single-peaked preferences, we noted in Section 3 that Yamamura
and Kawasaki [36] proved such a result in 1D facility location for a family of algorithms with unique PNE
outcomes. We extend this to the more general linear regression setting. At this point, we make two re-
marks. First, the result we establish is stronger than the revelation principle (albeit in this specific domain)
as it “converts” Nash-implementability (rather than the stronger dominant-strategy-implementability) into
strategyproofness. Second, the result of Yamamura and Kawasaki [36] for 1D facility location relied on the
analytical form of the PNE outcome, so strategyproofness could be explicitly checked. However, the ana-
lytical form of the PNE outcome is unknown in the linear regression setting, requiring an indirect argument
to establish strategyproofness.

We note that our result actually applies to a even broader setting than linear regression: specifically, it
applies to any function f : [0, 1]m → Rm which has a unique PNE outcome and satisfies an additional
condition (stated in the next theorem). We believe that this could have further implications in the theory
about implementability of rules, and may be of independent interest. Lastly, as noted by Chen et al. [10],
strategyproof mechanisms for linear regression are scarce. This result introduces a new parametric family of
strategyproof mechanisms: for given (p,R), the corresponding strategyproof mechanism outputs the unique
PNE outcome of (p,R)-regression.

Theorem 5. Let M be a set of agents with |M | = m. Each agent i holds a private yi ∈ [0, 1]. Let f
be a function which elicits agent reports ỹ ∈ [0, 1]m and returns an outcome y ∈ Rm. Each agent i has
single-peaked preferences over yi with peak at yi. Suppose the following are satisfied:

1. For each i ∈ M and each ỹ−i ∈ [0, 1]m−1, yi = fi(ỹi, ỹ−i) is continuous and strictly increasing in
ỹi.

2. For each y ∈ [0, 1]m and each T ⊆ M , f has a unique pure Nash equilibrium outcome when agents
in T report honestly and agents in M \ T strategize.

For y ∈ [0, 1]m, let h(y) denote the unique pure Nash equilibrium outcome under f when all agents
strategize. Then, h is strategyproof.

Proof. Let y denote the true peaks of agent preferences. To show that h is strategyproof, we need to show
that each agent i weakly prefers reporting her true yi to any other y′i, regardless of the reports y′−i submitted
to h by the other agents. Fix y′−i. Let hi denote the outcome of h for agent i. We want to show that
hi(yi,y

′
−i) �i hi(y′i,y′−i) for all y′i ∈ [0, 1].

Note that h(y′i,y
′
−i) finds the unique PNE outcome under f in the hypothetical scenario where the

agents’ preferences have peaks at y′, as opposed to the real scenario in which the peaks are at y. Let us
6This is weaker because for a strategyproof rule f , f(y) is a dominant strategy equilibrium outcome (and thus also a Nash

equilibrium outcome) under f itself.
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define a helper function gi : [0, 1] → R such that gi(λ) returns the unique PNE outcome for agent i under
f , when the report of agent i is fixed to λ and the other agents strategize according to their preferences y′−i
and reach equilibrium (this is well-defined due to condition 2 of the theorem). Note that this is independent
of agent i’s preferences as we fixed her report to λ. Let ŷ−i be an equilibrium strategy of the other agents
in this case. Then, (λ, ŷ−i) is a PNE under f for all m agents with preferences y′ if and only if agent i is
happy with reporting λ. The other agents are already happy given agent i’s report. Using condition 1 of the
theorem and an argument similar to Lemma 5, this is equivalent to

(gi(λ) > y′i ∧ λ = 0) ∨ (gi(λ) < y′i ∧ λ = 1) ∨ (gi(λ) = y′i) (8)

By condition 2 of the theorem, we know that for each y′i ∈ [0, 1], there exists a unique λ∗(y′i) satisfying
Equation (8). Note that hi(y′i,y

′
−i) = gi(λ

∗(y′i)). Using this, we can derive three key properties of the
function gi. Let a = gi(0) and b = gi(1).

• a ≤ b : Assume for contradiction that a > b. Choose y′i ∈ (b, a). Note that λ = 0 implies
gi(λ) = a > y′i, which satisfies the first clause of Equation (8), while λ = 1 implies gi(λ) = b < y′i,
which satisfies the second clause of Equation (8). Hence, both λ = 0 and λ = 1 satisfy Equation (8),
which is a contradiction, since λ∗ is unique.

• ∀λ ∈ [0,1], gi(λ) ∈ [a, b] : Assume for contradiction that there exists λ̂ ∈ [0, 1] such that gi(λ̂) /∈
[a, b]. WLOG, assume gi(λ̂) = k < a (hence, λ̂ 6= 0). Choose y′i = k. Note that λ = 0 implies
g(λ) = a > k = y′i, which satisfies the first clause of Equation (8). Similarly, for λ = λ̂, we have
gi(λ̂) = k = y′i, which satisfies the third clause of Equation (8). Hence, both λ = 0 and λ = λ̂ 6= 0
satisfy Equation (8), which is a contradiction.

• gi : [0,1] → [a, b] is surjective/onto: Assume for contradiction that there exists ∃c ∈ (a, b) such
that g(λ) 6= c for any λ ∈ [0, 1]. Choose y′i = c. Hence, there is no λ satisfying the third clause in
Equation (8). We see that for λ = 0, we have gi(λ) = a < c, which violates the first clause. Similarly,
for λ = 1, we have gi(λ) = b > c, which violates the second clause. Hence, there is no λ satisfying
Equation (8), which is again a contradiction.

We are now ready to show that hi(yi,y′−i) = gi(λ
∗(yi)) �i gi(λ∗(y′i)) = hi(y

′
i,y
′
−i) for all y′i ∈ [0, 1].

If yi ∈ [a, b], then it is easy to see that λ∗(yi) is the unique value which satisfies gi(λ∗(yi)) = yi (this exists
because gi is onto). That is, in the equilibrium where agent i reports her true preference, she is perfectly
happy. If yi < a, then it is easy to check that λ∗(yi) = 0 satisfies Equation (8), and we have gi(λ∗(yi)) = a.
Since gi(λ∗(y′i)) ∈ [a, b] for any y′i, she will not strictly prefer this outcome. A symmetric argument holds
for the yi > b case. This establishes strategyproofness of h.

Corollary 1. Let f denote the (p,R)-regression algorithm with p > 1 and convex regularizer R. Then,
there exists a strategyproof algorithm h such that ∀y ∈ [0, 1]m and ŷ ∈ NEf (y), f(ŷ) = h(y).

Proof. We already established that the (p,R)-regression algorithm satisfies the conditions of Theorem 5.
Specifically, fi is continuous and strictly increasing in the report of agent i (Lemma 3). The second condition
follows from Theorems 3 and 4, which hold irrespective of which agents are strategic and which are honest.
Hence, the result follows immediately from Theorem 5.
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4.4 Pure Price of Anarchy

So far, our results in linear regression draw conclusions that are similar to those in the 1D facility location
setting. We proved that in both cases, a PNE exists, the PNE outcome is unique, and it coincides with the
outcome of a strategyproof algorithm. However, there are fundamental differences between the two settings,
which we now highlight. The pure price of anarchy is one such difference. In the 1D case, we illustrated
that the PPoA is Θ(n) when no regularizer is used (Theorem 2). While high, this is still bounded. In linear
regression, we will show that the PPoA is unbounded when no regularizer is used. What if we do use a
convex regularizer? In practice, the regularizer is often multiplied by a real number λ, denoting the weight
given to regularization, which is tuned by the algorithm designer. We show that for any convex function
R, the PPoA remains unbounded if λR is used as the regularizer for a large enough λ. This does leave
open the question whether the PPoA might be bounded for some regularizer with a small weight; we leave
this for future work. Informally, the next result shows that strategic behavior can make the overall system
unboundedly worse-off.

Figure 1: Diagram for Theorem 6 and Proposition 1 with p = 2 and R = 0. Blue denotes the honest points
and the corresponding line, and red denotes the points at a pure Nash equilibrium and the corresponding
equilibrium line.

Theorem 6. For any p > 1 and convex regularizer R, there exists λ∗ > 0 such that the PPoA of the (p, λR)
regression algorithm is unbounded for every λ ≥ λ∗. In particular, when there is no regularizer (i.e. R = 0),
the PPoA of (p, 0) regreesion algorithm is unbounded for every p > 1.

Proof. We consider cases depending on whether the regularizerR is constant or not. Starting with the latter,
when R is not a constant function, there exist β1 and β2 such that R(β1) < R(β2). Recall that the (p, λR)-
regression objective is to minimize

∑n
i=1 |ỹi − βTxi|p +λR(β) given the agent reports ỹ. Choose λ∗ > n.

Note that

sup
ỹ1,ỹ2

∣∣∣∣∣
n∑
i=1

|ỹ1i − βTxi|p −
n∑
i=1

|ỹ2i − βTxi|p
∣∣∣∣∣ ≤ sup

ỹ1,ỹ2

∣∣∣∣∣
n∑
i=1

|ỹ1i − ỹ2i |

∣∣∣∣∣ ≤ n < λ∗.

We show that the PPoA of (p, λR)-regression is unbounded for all λ ≥ λ∗. Consider an instance with
n > d agents whose honest points all lie on the hyperplane β2. Let ŷ denote agent reports under some
PNE. By our choice of λ∗, it follows that

∑n
i=1 |ŷi − βT1 xi|p + λR(β1) <

∑n
i=1 |ŷi − βT2 xi|p + λR(β2)

regardless of the value of ŷ. Hence, the uniquely optimal hyperplane returned by (p, λR)-regression is not
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β2, and therefore has non-zero MSE. In contrast, the OLS trivially returns β2 and has zero MSE, resulting
in unbounded PPoA for the (p, λR)-regression.

We now consider the case where R is a constant function. Hence, it does not affect the minimization
objective of (p, λR)-regression. Thus, without loss of generality, let R = 0. We will be using ypi to denote
the projection of the (p, 0)-regression equilibrium plane at some xi and yp for the vector of all projections.
We use yOLSi to denote the projection at xi of the (2, 0)-regression line using the honest points and yOLS

for the vector of all such projections. Thus, PPoA ≥ MSEeq/MSEh, where MSEeq =
∑

i (yi − ypi )2
and MSEh =

∑
i (yi − yOLSi )2.

Consider the following example. There are four agents with reported values (0, 0), (1−ε2 , 1), (1+ε2 , 0),
(1, 1). That is, ỹ = (0, 1−ε

2 , 1+ε
2 , 1). Let the (p, 0)-regression line for these points pass through (0, yp1),

(1−ε2 , yp2), (
1+ε
2 , yp3), (1, y

p
4). By the symmetry of the problem this line must also pass through (12 ,

1
2). For

p = 1, we have that y1 = [0, 1−ε2 , 1+ε2 , 1]. Note that the residuals for points 2 and 3 are higher than for points
1 and 4, and observe that for p > 1, the (p, 0)-linear regression algorithm progressively tries to minimize
the larger residuals. One can check that for p > 1, yp2 = y12 + a = 1−ε

2 + a and yp3 = y13 − a = 1+ε
2 − a for

some a > 0. Since all `p-regression lines pass through (12 ,
1
2), by similar triangles we have that for p > 1,

yp1 = y11 + a
ε = a

ε . Now if the preferred/true values of the 4 agents are y = (0, yp2, y
p
3, 1), the reported

values above are a pure Nash Equilibrium, and the projection values are unique (by Theorem 4). Note this
is regardless of whether agents 1 and 4 are strategic or honest. As such, we have MSEeq = 2

(
a
ε

)2.
For MSEh, note that the hat matrix for (2, 0)-regression depends only on X , and has the form H =

X(XTX)−1XT and yOLS = Hy. The symmetry of the honest points for any p means that the (2, 0)-
regression line always passes through (12 ,

1
2) as well. For p = 1, the honest points are co-linear, meaning the

(2, 0)-regression line of these points have 0 residual for all points (in fact, it’s the same as the equilibrium
line). For p > 1, as we mentioned above, honest points 2 and 3 adjust by some a and we have y =
(0, y12 + a, y13 − a, 1). We now consider the affect of these two changed honest points on the residual at x1
and x2. That is, we consider rh1 = |yOLS1 − y1| and rh2 = |yOLS2 − y2| respectively - noting a symmetric
case exists for rh3 and rh4 . First, we have the following values for the matrix H:

H12 = H21 =
(1 + ε)2

4(1 + ε2)
H13 = H31 =

(ε− 1)2

4(1 + ε2)

H22 =
3ε2 + 1

4(1 + ε2)
H23 = H32 =

1− ε2

4(1 + ε2)

(9)

Note that rh1 = rh2 = 0 when p = 1, and only y2 and y3 have changed (by +a and −a respectively) for
p 6= 1. Recall, y1 = 0 and y2 = yp2 = y12 + a. Denote the ith row of H by hi. Then we have:

rh1 = h1 ·


0

y12 + a
y13 − a

1

− 0 = h1 ·


0
y12
y13
1

+ h1 ·


0
a
−a
0

 = h1 ·


0
a
−a
0


∴ rh1 = a

(1 + ε)2

4(1 + ε2)
− a (ε− 1)2

4(1 + ε2)
=

aε

(1 + ε2)
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Similarly, for rh2 , we have that:

rh2 =

(
1− ε

2
+ a

)
− h2 ·


0

y12 + a
y13 − a

1

 =

(
1− ε

2
+ a

)
−

1− ε
2

+ h2 ·


0
a
−a
0




∴ r2 = a− a 3ε2 + 1

4(1 + ε2)
+ a

1− ε2

4(1 + ε2)
=

a

1 + ε2

By symmetry, r1 = r4 and r2 = r3. Thus, we have that the PPoA of (p, 0)-regression satisfies:

PPoA ≥
2
(
a
ε

)2
2

[(
aε

(1+ε2)

)2
+
(

a
1+ε2

)2] =
1
ε2

1
1+ε2

= 1 +
1

ε2

As ε→ 0, the PPoA becomes unbounded.

5 Implementation and Experiments

While the main goal of this paper is to understand the structure of pure Nash equilibria under linear regres-
sion, one might wonder whether, given honest inputs, the unique PNE outcome can be computed efficiently.
In this section, we briefly examine this, discover another aspect in which linear regression departs from 1D
facility location, and describe some interesting phenomena regarding the PPoA of (p,R)-regression mech-
anisms in practice. We leave detailed computational and empirical analysis of (p,R)-regression to future
work.

5.1 Computation of Pure Nash Equilibria

In facility location, a fully constructive characterization of strategyproof algorithms is known [26]. This,
along with Theorem 1 and a formula of Yamamura and Kawasaki [36], allows easy computation of the PNE
outcome of any (p,R)-regression; details are in section 3. However, characterizing strategyproof algorithms
is a challenging open question for the linear regression setting [10]. Thus, while Theorem 5 demonstrates
that the PNE outcome is also the outcome of a strategyproof algorithm, it does not allow us to derive an
analytic expression for the unique PNE outcome.

In Section 4.1, we outlined an exponential-time approach that follows immediately from Lemma 5.
However, this is impractical unless there are very few agents. Turning elsewhere, a standard approach
to computing Nash equilibria is through best-response updates [2, 1, 36]. Specifically, we start from an
(arbitrary) profile of reports by the agents, and in each step, allow an agent not already playing her best
response, to switch to her best response. If this process terminates, it must do so at a PNE, regardless
of initial conditions. For 1D facility location, it is easy to show that this terminates at a PNE in finitely
many steps (see below). For linear regression, however, we show in Proposition 1 that the process need not
terminate in finitely many steps even for the most simple OLS algorithm.

Best response dynamics converges in finite iterations for 1d facility location We give an informal argument
that under the average rule in 1D, starting from any reports, there is always a best response path that termi-
nates at a PNE in finitely many iterations. For n agents (of which m are strategic), to move the mean by an
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amount ∆, an agent has to move their report by an amount n∆. Now fix an initial set of reports. Consider
only the 2 strategic agents with the lowest and the highest preferred values, say these are y1 and ym, respec-
tively. Consider best response updates by only one of these two agents. If initially y /∈ [y1, ym], both agents
increase their reports until y ∈ [y1, ym]. The only case where this does not happen is if both agents become
saturated by reporting 1. If they do bring y ∈ [y1, ym], then after each move of agent 1: (a) she is perfectly
happy, causing the agent m to move up by n(ym − y1) or become saturated at ỹm = 1, or (b) she goes to 0
and becomes saturated. Hence, in each iteration, either one agent moves (in a constant direction) by at least
n(ym − y1), or one agent becomes saturated. Hence, in finitely many steps, either agent 1 is saturated at 0
with y ≥ y1 or agent m is saturated at 1 with y ≤ ym. It is easy to see that this agent will never move again.
We can now ignore the saturated agent, and repeat the process with the remaining m − 1 strategic agents.
Using this approach inductively, it follows that an equilibrium will be reached in finitely many iterations.

Proposition 1. For the OLS (i.e. (2, 0)-regression algorithm), there exists a family of instances in which no
best-response path starting from honest reporting terminates in finite steps.

Proof. Consider the 4 agent setting (also used in Theorem 6) illustrated in Figure 1. That is, let the pre-
ferred/true values be: (0, 0), (1−ε2 , y2), (1+ε2 , y3), (1, 1), where y2 and y3 are such that when ỹ = [0, 1, 0, 1],
the corresponding projections are: y2 = y2 and y3 = y3. Thus, ỹ = [0, 1, 0, 1] is an equilibrium strategy.
Let agents 2 and 3 be strategic.7 Since p = 2, we have a linear mapping characterized by Hỹ = y. Hij

reflects the effect ỹi has on yj , and H is symmetric. By strong monotonicity (Lemma 3), Hii is always
positive. It is easy to compute that H23 = H32 = 1−ε2

4(1+ε2)
> 0. Let the agents initially start by reporting

honestly, and as such y2 < y2 = ỹ2 and y3 > y3 = ỹ3.
Since there are only 2 strategic agents, they take turns playing best response alternatively. Consider a

round in which agent 2 plays best response, and at the start of the round, the following hold: (1) ỹ2 ≥ y2,
ỹ3 ≤ y3, and (2) y2 ≤ y2 and y3 ≥ y3. Since agent 2 is playing best response, she is not perfectly happy.
Hence, y2 < y2. Thus, by Lemma 3, agent 2 must increase ỹ2 by some a > 0. SinceH23 > 0, this maintains
y3 > y3. Similarly, when agent 3 plays a best response, it maintains y2 < y2. Since the initial conditions
(honest reporting) satisfy (1) and (2), they will always be satisfied. That is, player 2 will always report less
than 1 and have y2 < y2, and player 3 will always report greater than 0 and have y3 > y3. Thus, the PNE
will never be reached in finitely many steps.

To see this formally, consider a stage satisfying (1) and (2) wherein the best response of agent 2 is ỹ2 = 1
and ỹ3 6= 0. Since this is a best response, y2 ≤ y2 (¡ in case she isn’t perfectly happy) and thus y3 > y3.
If agent 3 now under-reports and plays ỹ3 = 0, then since H32 > 0, y2 < y2. However, we now have
ỹ = (0, 1, 0, 1) where we know the outcome is: y2 = y2 and y3 = y3. Since the regression outcome is
unique, this is a contradiction. A similar situation hold for agent 3. Thus if ỹ3 6= 0, best response of agent
2, 6= 1 and if ỹ2 6= 1, the best response of agent 3, 6= 0. Since these conditions hold initially, they hold in all
rounds.

Thus starting from honest values, agent 2 always over-reports and 3 under-reports and the outcome is
never the unique equilibrium outcome. Moreover, at no round does agent 2 or 3 ever reach their equilibrium
strategy. Thus at this initial value, no possible best response sequence will terminate in finite iterations.

However, we emphasize that the example in the proof of Proposition 1 is a worst-case example. In
practice, best-response update works quite well for finding the unique PNE outcome quickly; we use this
approach successfully in the experiments described next.

7Whether agents 1 and 4 are strategic or honest does not matter in this example.
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5.2 Experiments

We conduct experiments on both synthetic data and real data to measure two aspects of strategic manip-
ulation: the number of best-response updates needed to reach a pure Nash Equilibrium (red line) and the
average PPoA8 (solid blue line), which we compare against the average PPoA of the strategyproof LAD
(i.e. (1, 0)-regression) algorithm. We focus on four key parameters: the number of agents n, the dimen-
sion of explanatory variables d, the norm value p, and the fraction of agents who are strategic, denoted
α = m/n ∈ [0, 1]. The regularizer R is always set to 0. We also vary the norm q (default is q = 2) with
regards to which the loss is measured in the PPoA definition. To find the unique PNE outcome, we used
best-response updates to obtain outcome they converged to, and verified that it was a PNE (and it always
was).

(a) n ∈ [10, 3000] (b) d ∈ [1, 90] (c) p ∈ [1.1, 10]

Figure 2: The effect of varying n, d, and p on synthetic data with 95% confidence intervals

(a) α ∈ [0.1, 1], synthetic data (b) α ∈ [0.1, 1], Kaggle dataset (c) α ∈ [0.1, 1], UCI dataset

Figure 3: The effect of varying α on synthetic and real data. Plots with synthetic data have 95% confidence
intervals.

Synthetic experiments: In each experiment, we vary one parameter, while using default values for the others.
The default values are n = 100, d = 6, p = 2, and α = 1.9 We plot the average results over 1, 000 random
instances along with 95% confidence bounds (although they are too narrow to be visible in most plots). The
data generation process is as follows. First, we sample β∗ ∈ [−1, 1]d+1 uniformly at random. Next, we
sample each entry in X ∈ Rd×n iid from the standard normal distribution and set each yi = (β∗)Txi + εi,
where εi is Gaussian noise with zero mean and s.d. 0.5. Finally, we normalize y to lie in [0, 1]n.

8We abuse the terminology slightly for simplicity. The average PPoA refers to the average ratio of the loss under the PNE
outcome of a mechanism to the loss under the OLS with honest reporting in our experiments.

9We choose α = 1, which corresponds to all agents being strategic, as the default value in our experiments because this is the
standard setting studied in the game-theoretic literature on regression. Note that our theoretical results allow some of the agents to
be honest.
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Real experiments: We also conduct experiments with two real-world housing datasets: the California Hous-
ing Prices dataset from Kaggle with n ≈ 2000 and d = 9 (Figure 3b) and the real estate valuation dataset
from UCI with n ≈ 400 and d = 7 (Figure 3c) [29, 37]. In these experiments, we also normalize y to lie in
[0, 1]n.

Figures 2a, 2b, 2c and 3a show the effect of varying n, d, p, and α, respectively, in our synthetic
experiments. With a higher number of agents n, the best-response process takes longer, but the PPoA
decreases quickly. The dependence on d is more interesting. For d < n, the number of best-response steps
and the PPoA increase with d (with a slight decrease in the former and a quicker increase in the latter as d
approaches n = 100). Of course, when d = n, the only PNE is where all agents are perfectly happy, which
means the number of best-response steps drop to zero and PPoA drop to 1. Hence, for d < n, there is a
curse of dimensionality, even though d = n is an ideal scenario.

The effect of p is also surprising. With p ∈ (1, 2], intuitively, one would expect a tradeoff. Mechanisms
with p closer to 1 may be less vulnerable to manipulation than the OLS (p = 2); indeed, p = 1 is known to
be strategyproof. But given the equilibrium reports, OLS at least minimizes the MSE, which is the objective
underlying our PPoA definition, whereas mechanisms with p < 2 optimize a different objective. Given this,
we find it surprising that, not only does p < 2 result in a lower PPoA than p = 2, but PPoA seems to increase
monotonically with p (Figure 4 below shows that this is also true when PPoA is measured using the q-norm
for other values of q). We also note that the strategyproof (1, 0)-regression algorithm performs no worse
than the PNE of the (p, 0)-regression algorithm for any p > 1 in terms of MSE. Another observation of
note is that the number of best-response updates increases until p ≈ 2 and then decreases. In our synthetic
and real experiments, both the number of best-response updates and the PPoA generally increase with α,
which is expected. However, it is worth noting that in Fig. 2b, even as few as 10% of the agents strategizing
leads to a 27% increase in the overall MSE, and with all agents strategizing, the MSE doubles. In Fig 2c,
the effect of strategizing is more restrained. Surprisingly, in this case, the OLS equilibrium outperforms the
(1, 0)-regression algorithm for small α.

Experiment - PPoA with different q So far we consider PPoA measured with respect to mean squared error
(q = 2), which is the squared `2 norm of residuals. We now experimentally evaluate PPoA measured with
respect to other values of q, as defined below:

PPoAq(f) = max
y∈[0,1]n

maxy∈NEf (y)

∑n
i=1|yi − yi|q∑n

i=1|yi − y
q-opt
i |q

,

where yq-opt
i is the outcome of the mechanism minimizing `q norm of residuals with honest reports.

Figure 4 shows PPoAq for different `p regression algorithms. Once again, we notice the same pattern
for each value of q as we did in Figure 1c for q = 2: the PPoA increases monotonically with p.

6 Discussion and Future Work

This work focused on the role of strategic noise in linear regression, where data sources manipulate their
inputs to minimize their own loss. We established that a popular class of linear regression algorithms —
minimizing the `p loss with a convex regularizer — has a unique pure Nash equilibrium outcome. Our
theoretical results show that in the worst case, strategic behavior can cause a significant loss of efficiency, but
experiments highlight a less pessimistic average case, which future work can focus on rigorously analyzing.

It is also interesting to ponder the implications of our general result connecting strategyproof algorithms
to the unique PNE of non-strategyproof algorithms beyond linear regression. Similar results are known
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Figure 4: Varying p between 1.1 and 10 and graphing the PPoA using different values of q. The same
defaults are used as in other synthetic experiments (n = 100, d = 6, α = 1) and the average of 1000 random
instances are plotted with 95% confidence intervals (though too narrow to be visible on some curves).

in other domains [34, 12, 22], including unique equilibria of first-price auctions [8]. This indicates the
possibility of a more general result along these lines.

Lastly, the study of strategic noise in machine learning environments is still in its infancy. We view our
work as not only advancing the state-of-the-art, but also as a stepping stone to more realistic analysis. For
example, future work can move past assuming that agents have complete information about others’ strategies
— a common assumption in the literature [13, 2, 1] — and consider Bayes-Nash equilibria. Considering
other equilibrium concepts relevant to machine learning settings may also prove fruitful. Other extensions
include studying non-strategyproof algorithms in environments such as classification or generative model-
ing, and investigating generalization of equilibria (i.e. whether the equilibrium with many agents can be
approximated by sampling a few agents).
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