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Abstract
Deep reinforcement learning methods have achieved significant successes in complex 
decision-making problems. In fact, they traditionally rely on well-designed extrinsic 
rewards, which limits their applicability to many real-world tasks where rewards are natu-
rally sparse. While cloning behaviors provided by an expert is a promising approach to 
the exploration problem, learning from a fixed set of demonstrations may be impracticable 
due to lack of state coverage or distribution mismatch—when the learner’s goal deviates 
from the demonstrated behaviors. Besides, we are interested in learning how to reach a 
wide range of goals from the same set of demonstrations. In this work we propose a novel 
goal-conditioned method that leverages very small sets of goal-driven demonstrations to 
massively accelerate the learning process. Crucially, we introduce the concept of active 
goal-driven demonstrations to query the demonstrator only in hard-to-learn and uncertain 
regions of the state space. We further present a strategy for prioritizing sampling of goals 
where the disagreement between the expert and the policy is maximized. We evaluate our 
method on a variety of benchmark environments from the Mujoco domain. Experimental 
results show that our method outperforms prior imitation learning approaches in most of 
the tasks in terms of exploration efficiency and average scores.

Keywords  Deep reinforcement learning · Imitation learning · Goal-conditioned learning · 
Active learning

1  Introduction

Recent successes in deep reinforcement learning (DRL) have been achieved in domains 
with a well-specified reward function such as in game-playing [53] or robot control [49]. 
Unfortunately, many real-world tasks involve rewards that are poorly-defined, sparse, or 
delayed. Moreover, these algorithms typically require a large number of interactions to 
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reach decent performance, which can be intractable in real-world settings. Overcoming 
these pitfalls could help to expand the possible applications of DRL.

A line of work for overcoming the above-mentioned issues is goal-conditioned learn-
ing, a form of self-supervision that constructs a goal-conditioned policy to learn how to 
reach multiple goals [44, 68]. This idea was extended in Hindsight Experience Replay 
(HER) [4] to artificially generate new transitions by relabeling goals seen along the state 
trajectory. Nevertheless, it may still require a large amount of data to capture complex 
policies. Since it is often unrealistic to expect an end-to-end reinforcement learning 
system to rapidly succeed with no prior assumptions about the domain (i.e. learning a 
task from scratch), several methods have attempted to introduce external supervision 
into reinforcement learning systems. For instance, an approach [39] leverages human 
preferences as feedback signal. Nonetheless, it was shown that preferences are an inef-
ficient way of soliciting information from humans [39]. In the context of reinforcement 
learning, the most common form of external supervision is imitation learning. Imita-
tion learning seeks to learn tasks from demonstrated state-action trajectories [1, 67]. For 
instance, Deep Q-learning from Demonstrations (DQfD) [34] improves initial perfor-
mance by pre-training the policy with demonstrations. However, learning from human 
demonstrations suffers from three problems: (1) it is hard to obtain a broad state cover-
age of task-relevant regions from trajectories demonstrated without a specific goal, (2) it 
usually has an abundance of irrelevant or redundant information, (3) it assumes that the 
learner’s goal matches the teacher’s demonstrated behaviors. Additionally, most imita-
tion learning algorithms learn policies that achieve a single task.

In this work, we contribute an active goal-conditioned approach that drastically 
reduces expert workload by incrementally requesting partial demonstrations towards 
specific goals, goal-driven demonstrations. Contrary to pure demonstrations, goal-
driven demonstrations do not aim to demonstrate the overall task or all possible situ-
ations. Instead, goal-driven demonstrations fulfill particular goals that are actively 
selected based on the agent’s knowledge about its environment. Especially, the proposed 
framework allows an agent to jointly identify states where feedback is most needed 
and communicate for specific domain knowledge throughout the training process. Our 
method relies on an imitator network trained to clone a novel form of human feedback: 
goal-driven demonstrations. Given its prediction, we augment the policy loss with a 
simple auxiliary objective. Rather than using a fixed set of demonstrations, goal-driven 
demonstrations are actively queried based on the imitator’s confidence and the ability 
of the agent to reach the goal being pursued. We build and compare two techniques to 
estimate the agent’s confidence: (1) Bayesian-confidence, (2) quantile-confidence; and 
study a relabeling strategy that extracts additional information from the demonstrated 
trajectories. We found goal-driven demonstrations to be easier to demonstrate for a 
human than full demonstrations, while significantly increasing the value information of 
the queries by matching the agent’s needs. We further propose a method for prioritizing 
the sampling of important goals—in places where the disagreement between the expert 
and the policy is large.

We evaluate our approach on several tasks from the Mujoco benchmark suite [61, 77] 
including Fetch and ShadowHand. Experimental results show that GoAL outperforms pre-
vious approaches in most of the tasks with a significantly lower number of demonstra-
tions. We also show that our method can generalize to unseen states while being robust to 
incomplete or noisy demonstrations. Remarkably, GoAL produced agents that exceeded 
the expert performance in multiple tasks.

The main contributions of this paper are summarized as follows:
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•	 We propose a new framework, Goal-driven Active Learning (GoAL), which is the first 
work to use active goal-driven demonstrations to the best of our knowledge.

•	 We contribute a method to query the demonstrator only in states where the agent strug-
gles and is not confident, maximizing the expected value of information of the queries 
and drastically reducing human effort.

•	 We propose two novel confidence-based query strategies to evaluate the confidence 
along a state-action trajectory.

•	 We contribute a goal-sampling technique that maximizes the agent’s learning progress.
•	 We provide a comprehensive comparison between the proposed methodology and a 

number of baselines, evaluated on complex robotic tasks.

The remainder of the paper is organized as follows. Section 2 reviews related literature. 
Section 3 provides the necessary background to the research topics presented in the paper. 
Section 4 details the description of the proposed algorithm, and Sect. 5 reviews the experi-
ments to verify the algorithm. Finally, Sect.  6 provides a summary and suggests future 
research, and Sect. 7 concludes this work.

2 � Related work

Learning when rewards are sparse is a notoriously challenging problem in the field of rein-
forcement learning. One solution to tackle sparse rewards is to introduce an intrinsic incen-
tive into reinforcement learning, curiosity. On the other hand, methods for providing exter-
nal supervision largely divide into two categories: imitation learning and learning from 
interactive human feedback. Our work is built upon goal-conditioned learning. We briefly 
introduce these techniques in this section.

2.1 � Curiosity‑driven exploration

Inspired by curious behavior in animals, the use of intrinsic motivation has been devel-
oped to encourage agents to learn about their environments even when extrinsic feedback is 
rarely provided. Some techniques [59, 71] rely on predicting environment dynamics using 
an inverse or forward dynamic model. Another class of approaches uses prediction errors in 
the feature space as measure of the importance of states [47]. For example, RND [11] pre-
dicts the output of a randomly initialized neural network on the current state, and encour-
ages revisits of states with large prediction errors. Episodic curiosity through reachability 
[66] addresses the “noisy TV” issue of prior work by considering the distance between two 
states as curiosity measure. Exploration bonus can also be based on maximizing informa-
tion gain about the agent’s knowledge of the environment [36]. In GoCu [9] curiosity is 
formulated as the capability of the agent to learn a set of skills. Another line of work is to 
keep visit counts for states to favor exploration of rarely visited states [7, 50, 72]. In order 
to enable count-based exploration in continuous state spaces, a solution [57] is to train an 
observation density model to supply counts. Another strategy [75] is to map states to hash 
codes and count state visitations with a hash table. In this setting, the counts are used as 
exploration bonus to guide exploration. A prior work [51] introduces a count-based opti-
mistic algorithm by estimating the uncertainty associated with each state. In a slightly dif-
ferent spirit, DIAYN [21] proposes to learn useful skills without a reward function—they 
learn skills by optimizing an information theoretic objective using a maximum entropy 
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policy. While curiosity was shown to be useful when rewards are sparse, training an end-
to-end reinforcement learning system with no prior assumptions about the domain often 
requires millions or billions of interactions to reach reasonable performance, which can be 
impractical in real-world settings. On the other hand, our work leverages small amounts of 
human feedback to massively accelerate the learning process. Besides, we are often inter-
ested in learning to reach a wide range of goals without re-training the agent or designing 
a different reward every time. This capability is essential in many real-world domains such 
as robot control.

2.2 � Imitation learning (IL) and RL

One of the earliest attempts at end-to-end behavioral cloning was ALVINN [62], for lateral 
motion control of an autonomous vehicle. In recent years, multiple work have attempted 
to combine deep reinforcement learning with human demonstrations. For instance, 
DQfD [34] pre-trains a Q-learning agent on the expert demonstration data. This idea was 
extended to handle continuous action spaces such as in robotic tasks [78], as well as to 
actor-critic architectures [84]. POfD [45] proposes to follow demonstrations in early learn-
ing stages for exploration and let the agent explore new states on its own. In contrast, we 
are interested in actively sharing insights between the teacher and the agent. Therefore, 
we propose a novel imitation loss function that leverages goal-driven demonstrations and 
a goal-conditioned framework to actively request feedback to the teacher when the agent 
struggles, reducing both the training time and the number of demonstrations [18]. A recent 
follow-up [54] introduces an expert loss in DDPG [49] and proposes to filter suboptimal 
demonstrations based on the Q-values (Q-filter). It is assumed that there is a fixed set of 
demonstration data. In this work, we use the Q-filter method [54] in a goal-conditioned set-
ting, and we further adapt it to filter transitions where the agent action is significantly better 
than the demonstrator action. Another solution is to represent a policy as a set of Gaussian 
mixture models [16]. However, they consider a fixed target goal setting, and the method 
is not directly applicable to continuous action spaces. In a different spirit, AlphaGo [70] 
trains a policy network to classify positions according to expert moves. A way of dealing 
with sparse rewards consists in introducing a curious replay mechanism and demonstra-
tions [86]. DAGGER [48] requests supervision at each step and takes an action sampled 
from a mixture distribution of the demonstrator and the agent. The idea was extended in 
Deeply AggreVaTeD [73] to work in environments with continuous action spaces. Another 
method [19] constructs a goal-conditioned policy to visit similar states as the expert. That 
is, they employ the idea of discriminability as a central theme in building agents that can 
leverage demonstrations. Rather than solely using goals to condition the policy, we use 
goals to enable active cooperation between the teacher and the agent. Namely, we propose 
a novel form of human guidance, goal-driven demonstrations. Goal-driven demonstrations 
do not intend to cover all possible scenarios or demonstrate the overall task, but guide the 
agent to fulfill particular goals when the agent struggles, being more intuitive for the dem-
onstrator than pure demonstrations. In addition, the imitation loss is used in a different way 
in our method; and we develop a different strategy for relabeling goal-driven demonstra-
tions, which ensures that only optimal transitions are recorded. Another form of imitation 
learning is inverse reinforcement learning (IRL) [56] where a reward function is inferred 
from the demonstrated trajectories. IRL has been applied to several domains including 
navigation [5], and autonomous flight [1]. In recent years, an emerging strategy at the inter-
section of imitation learning and IRL has combined generative adversarial networks and 
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reinforcement learning (GAIL) [35]. However, IRL algorithms assume that the observed 
behavior is optimal, and most agents focus on learning a single task from a set of demon-
strations. Another issue concerns IL and IRL approaches that leverage expert rewards (e.g. 
demonstrations). In many cases, it is impractical to generate large amounts of high-quality 
demonstrations, especially for long-term tasks. In order to practically train RL systems 
with human feedback, we need to decrease the amount of human effort. Many work in the 
imitation learning literature assume that an expert cannot be queried because it is impracti-
cal and costly. On the other hand, we argue that querying an expert can be a strength since 
it allows us to reduce the number of necessary demonstrations by adapting demonstration 
data to match the agent’s needs, ultimately reducing human effort. A constant supervision 
is very impractical, so our method lets the agent identify querying opportunities so that 
the expert is not required to constantly monitor the agent. In order to identify the need for 
specific domain knowledge throughout the agent’s training, we contribute a framework to 
identify areas where feedback is most needed based on the agent’s confidence and its abil-
ity to reach the goal pursued. On the other hand, in the absence of active cooperation, it is 
often challenging for an expert to know in advance what will be the agent’s needs.

2.3 � Learning from interactive human feedback

Most methods that focus on learning from interactive human feedback [17, 39, 52, 80, 81] 
query the human to drive learning [18]. For example, TAMER [79] trains the policy from 
feedback in high-dimensional state space. The learner may receive feedback in the form 
of sequences of actions planned by a teacher [10]. Uncertainty-based query was used in 
[14] but is limited to DQN [53], limiting the possible applications of this method. In con-
trast, our method can be combined with most of off-policy RL algorithms; and introduces 
the idea of goal-driven demonstrations. Some authors [69] consider multiple demonstra-
tors performing different tasks and the agent must actively select which one to request for 
advice. Another solution [65] is to block unsafe actions by training a module from expert 
feedback. However, it requires the expert to identify all unsafe situations by watching an 
agent play. To deal with the problem of query selection, it is possible to select sufficiently 
different unqueried data [37]. In a similar spirit, algorithms in the field of action advising 
aim to transfer action advice under a budget from a teacher to the agent [22]. For instance, 
in L2T [23] a teacher model leverages the feedback from the student model in order to opti-
mize its own teaching strategies, achieving teacher-student co-evolution. Despite L2T per-
formance on image classification and sentiment analysis, it remains unclear how to apply 
this approach to more complex environments. Another algorithm [85] consists in letting 
the student announce his recommended action and the teacher can decide whether to pro-
vide some advice. In the same spirit, a work has considered multiple teaching algorithms 
[76] and applied them to game-playing. While these methods effectively accelerate agent 
training, they assume that the teacher constantly monitors the agent. This assumption may 
not hold with human teachers, as humans have temporally limited attention, and the cost of 
monitoring may be prohibitive. To overcome these pitfalls, it is possible to identify advis-
ing opportunities so that the teacher is not required to constantly monitor the student [3]. 
These approaches assume that a piece of advice consists in suggesting the action that the 
student should do. Our work differs by leveraging goal-driven demonstrations, allowing us 
to transfer more complex domain knowledge and removing the need for constant monitor-
ing. In addition, we propose a strategy to only request feedback to the supervisor in states 
where the agent is unsure and struggles.
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2.4 � Curriculum learning

The idea of active queries to an expert is also closely related to the field of curricu-
lum learning [8]. Unlike machine learning, human learning is often accompanied by a 
curriculum. That is, the order of presented examples is rarely random when a human 
teacher teaches another human. One popular approach is to decide which task to solve 
next based on the agent’s learning progress [58]. This strategy can be extended to con-
sider learning progress in terms of rate of increase in prediction accuracy and rate 
of increase in network complexity [33]. A recent follow-up [6] proposed a novel cur-
riculum generation method using different progression functions, including a function 
based on the performance of the agent. The authors also use the progression function 
to determine how long the agent should train on each intermediate task. In order to 
prevent forgetting of earlier tasks, a probability of returning to earlier tasks can be 
defined [83]. Another approach relies on providing to the agent increasingly difficult 
goals [26]. A few studies have considered setter-solver paradigm; e.g. [64] considered 
goal feasibility and goal coverage to construct curricula. In the proposed method, we 
assign high sampling priority to goals where the expert and the agent strongly disa-
gree. Another form of curriculum learning is PLO that constructs auxiliary policies 
that learn from shaped reward functions, allowing the main policy to gradually get 
more independent and execute more actions sampled from its own policy [38]. In order 
to learn from sparse rewards, one solution is to use curriculum learning that breaks a 
complex task into sub-tasks of gradually increasing complexity and learning them con-
currently [2]. The presented work forms an implicit curriculum by gradually querying 
more complex goal-driven demonstrations as the agent’s knowledge about the environ-
ment increases. It can be combined with an arbitrary off-policy RL algorithm and may 
be seen as a form of implicit curriculum. Our method is based on hindsight experience 
replay [4] that may also be seen as a form of implicit curriculum. The central idea is 
to replay each episode by replacing the desired goals of training trajectories with the 
achieved goals of the failed experience.

2.5 � Few‑shot imitation learning

Few-shot imitation learning was proposed as a way to leverage a few demonstrations 
of a certain task, and have these demonstrations instantly generalize to new situations 
of the same task. For instance, a work aims to maximize the expected performance of 
the learned policy when facing a new task, without receiving additional demonstra-
tions [20]. In order to reduce the number of demonstrations needed for an individual 
task, a strategy is to share data across tasks and learn a parameterized policy that can 
be adapted to different tasks through gradient updates [25]. Another related work is 
MAML [24], where the agent learns a set of weights that can be quickly adapted to 
new tasks from one visual demonstration. Another approach employs ideas from met-
ric learning in order to learn a task embedding that can be used to learn new tasks 
from a few demonstrations [40]. In this work, we focus on settings where the agent 
learns a single task with multiple goals. Moreover, our approach is centered around the 
idea that learning efficiency can be greatly improved by allowing active cooperation 
between the agent and a teacher.
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2.6 � Goal‑conditioned RL

Goal-conditioned reinforcement learning [44] constructs a goal-conditioned policy to push the 
agent to acquire new skills and explore novel states. Universal value function approximators 
[68] sample a fixed goal at the beginning of each episode and reward the agent when the cur-
rent goal can be achieved. Nonetheless, selecting relevant goals remains an open problem. A 
solution [26] and its recent follow-up [55], proposed to generate increasingly difficult goals 
to drive the agent towards the final goal. The method [60] learns an embedding for the goal 
space using unsupervised learning and then choose the goals from that space. The recent work 
[63], Skew-fit, proposes an exploration objective that maximizes state diversity. The key idea 
is to learn a maximum-entropy goal distribution to match the weighted empirical distribu-
tion, where the rare states receive larger weights. Another line of work [28] focuses on goals 
that provide maximal learning progress. However, defining when, to whom, and how to ask 
instructions to the demonstrator remains an open problem [18]. Our method, which builds 
on top of HER, provides an order of magnitude of speedup by taking advantage of very few 
goal-driven demonstrations. We further introduce a novel goal sampling strategy based on the 
disagreement with the demonstrator.

3 � Background

In this section, we briefly review the reinforcement learning techniques that our method is 
built on, including goal-conditioned learning and hindsight experience replay.

We consider a finite-horizon Markov decision process (MDP) as a tuple (S,A,P, r, �) , where 
S is a set of states, A is a set of possible actions, P ∶ S × A × S → ℝ is a transition function, 
r ∶ S × A → ℝ is a reward function, and � ∈ [0, 1] is a discount factor. We aim to find a policy 
� ∶ S → A that maximizes the expected discounted reward, Rt = �[

∑T

t=0
� tr(st, at, st+1)].

In this work, we use a goal-conditioned formulation where the reward function and the pol-
icy are additionally conditioned on a goal, g ∈ G . At every timestep the agent gets as input not 
only the current state but also the current goal, thus the policy selects the next action given a 
state and a goal � ∶ S × G → A . The reward function becomes rt = rg(st, at) where rg is often 
a binary function which represents whether the agent could reach the goal (i.e. �[st+1 == g] . 
HER [4] showed that gathered trajectories can be artificially relabeled with new goals. The 
central idea is to replay each episode with additional goals than the one the agent was trying 
to reach. Namely, they replay each transition with the original goal pursued in the episode as 
well as randomly selected goals along the trajectory. Since the transition probability is not 
affected by the goal being pursued g, the tuple can be relabeled in hindsight. Thus, a transition 
(st, at, st+1, g, r = 0) can be treated as (st, at, st+1, g

�

= st+1, r = 1) . By doing so, it drives the 
agent to learn how to achieve multiple goals without simulating interactions—generating and 
recomputing rewards of a single transition can be converted into many valid training examples.
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4 � Method

The challenges of injecting expert feedback into DRL are twofold. First, expert demonstra-
tions are limited, which entails that the agent needs to efficiently leverage a small amount 
of demonstration data. Although a number of algorithms could in principle be used to learn 
from demonstrations, standard methods can suffer from poor performance. This can hap-
pen when the state coverage of the expert trajectories is too narrow, or due to a discrepancy 
between the agent’s goal and the demonstrated data. Second, demonstrating the entire task 
trajectory multiple times is an inefficient way of soliciting information from humans, lack-
ing of generalization capability to new target goals.

The framework of Goal-driven Active Learning (GoAL) provides us a mechanism to 
mitigate these problems by incrementally querying goal-driven demonstrations (Fig. 1). 
Our approach (Algorithm 1) introduces human feedback into goal-conditioned learning 
via Hindsight Experience Replay. Specifically, the agent receives feedback in the form 
of short goal-driven demonstrations—the tutor is requested to reach a specific goal. We 
decide how to query goal-driven demonstrations based on the agent’s needs and the 
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expected value of information of the query, drastically reducing the number of required 
demonstrations.

Our method works as follows (see Algorithm 1). We first collect a trajectory based 
on the goal being pursued (lines 4–10). Then, the agent decides whether it should 
query a goal-driven demonstration to the demonstrator (line 11–12). After each query 
(line 13), we perform expert relabeling to artificially generate more expert data (line 
14). Expert relabeling is a type of data augmentation on the provided goal-driven 
demonstrations. As an intuition, if the agent receives a demonstrated trajectory 
(s0, a0, g), (s1, a1, g),… , (sk, sk, g) with g the goal being pursued, we can relabel transi-
tions with additional goals seen along the state trajectory. For instance, we can add new 
transitions (s0, a0, s1), (s0, a0, s2) to the expert trajectory buffer. The imitator policy is 
then trained to imitate the demonstration data (line 15). Then, we augment the policy 
loss with an extra objective that aims to mimic the demonstrated behaviors (line 20–23). 
The transitions used to train the policy are generated following a similar strategy as in 
HER (line 16–19), except that we modified the goal sampling to take advantage of the 
demonstrations (line 17). This process continues until the task is mastered. In the fol-
lowing section we describe the key components of our method.

4.1 � Goal‑driven imitation

We assume a small dataset of tuples (si, ai, gi) extracted from expert trajectories, � . A 
trajectory segment (also called goal-driven demonstration) is a sequence of observations 
and actions, � = {(s0, a0, g), (s1, a1, g),… , (sk, ak, g)} , where g indicates the goal pursued 
by the demonstrator. Our method involves an imitator policy f ∶ S × G → A that mimics 
expert behaviors, parameterized by a set of trainable parameters � . The imitator policy 
is trained with a regression loss L̄ : it predicts the action the demonstrator would have 
taken given a pair of state and goal (si, gi) , a∗i ∼ f (a∗

i
|si, gi;�) . In the absence of domain 

knowledge, a general-purpose choice is to train f� with a regression loss, the mean-
squared-error, L̄ =

1

�𝛺�
∑�𝛺�

i=1
��a∗

i
− ai��22.

A contribution of our paper consists in augmenting the policy loss with an extra term 
to accommodate the goal-driven expert data. Given a minibatch of T transitions, the 
imitation loss is given by:

Fig. 1   Goal-driven Active 
Learning (GoAL). The imitator I 
predicts the action the demon-
strator would have taken given 
a pair of state and goal ( st, gt ) 
provided by the environment E. 
When the agent A fails to reach 
the goal being pursued gt , a new 
demonstration � with gt as the 
target goal may be queried
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where � is the current policy parameterized by � . In order to allow the agent to signifi-
cantly outperform the demonstrator—deviate significantly from the expert demonstrations, 
we use a Q-filter function [54] in a goal-conditioned setting, which we extend to increase 
the gap between “optimal” and “sub-optimal” transitions. In order to ensure that a transi-
tion provided by the demonstrator is significantly better than the agent’s policy, we propose 
to filter irrelevant transitions via: �Q(st ,f (at|st ,gt),gt)−(Q(st ,𝜋(at|st ,gt),gt)−𝜂|Q(st ,𝜋(at|st ,gt),gt)|)>0 , where � 
is a positive constant. This filtering enables our agent to improve significantly beyond the 
expert demonstrations (see Sect. 5.4.2), which is especially relevant in the situation where 
the demonstrators are non-experts or themselves learning the task [18].

The overall loss used to update the policy network is a combination of two losses:

where L indicates the loss function of any arbitrary DRL algorithms, and �1 and �2 are 
hyperparameters to weight the importance of both loss components. Adding this auxiliary 
objective provides the agent both the intention of the demonstrator and the ability to dis-
cover alternative strategies. Next, we show how to artificially increase the amount of dem-
onstrations by relabeling expert data.

4.1.1 � Expert relabeling

To further enable sample-efficient learning in the real world, we present a relabeling strategy 
to artificially generate more expert data. In other words, expert relabeling is a type of data 
augmentation on the provided goal-driven demonstrations. As mentioned earlier, we collect 
expert demonstrations in the form of trajectories, � = {(s0, a0, g), (s1, a1, g),… , (sk, sk, g)} , 
where g is the goal being pursued. The idea behind this method is that in a state si , the 
associated action ai can be used to reach g, as well as new goals {si+1,… , sk}—the transi-
tion probability is not affected by the goal being pursued g. Therefore, we have the freedom 
to artificially generate more expert data without additional queries, which are referred to as 
imaginary samples since they are imagined by the agent.

(1)Le =
1

T

T∑

t=1

||�(at|st, gt;�) − f (at|st, gt;�)||22

(2)LD = �1L + �2Le

Fig. 2   Relabeling strategy. Given a human trajectory, we artificially generate more expert data by using as 
the active goal the states within a reachability threshold N. The threshold N is necessary to discard poten-
tially sub-optimal examples (temporally far states)
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In practice, we found that selecting all the future states like done in goalGail [19] not 
an ideal solution, since distant goals can be reached using different actions. Besides, in 
the context of active learning, adding imaginary sub-optimal samples may create conflicts 
when the agent later on receives new feedback from the expert. Instead, we restrict the 
creation of new imaginary samples to only short slices of the original trajectory. To do 
so, we propose to use the number of times-steps to approximate the distance between two 
states. The intuition behind is that temporally far states are more likely to be reached via 
a different sequence of state-actions than close ones. Thus, the number of times-steps pro-
vides a simple strategy to discard sub-optimal samples. We relabel future states when this 
distance is lower than a threshold N (Fig. 2): {si+1,… , smin(i+N,k)} . In our experiments, we 
found that the GoAL performance is reasonably robust to the choice of this threshold and 
that N can be simply selected based on the maximum number of time-steps per episode 
(see Sect.  5.4.1 for more details). By artificially generating new demonstrations, we can 
convert a single transition (s, g, a) into potentially many valid training examples, which is 
particularly useful to decrease the number of queries to the demonstrator.

4.2 � Query selection

An important component in this method is query selection, in which the agent needs to 
decide which goals to query for demonstration. Our approach to decide when to query is 
based on (1) the ability of the agent to reach the goal pursued in the episode, (2) the confi-
dence in the action prediction of the imitator policy. By requesting demonstrations in hard-
to-learn and low confidence situations, the depicted algorithm eliminates repetitive dem-
onstrations of already learned goals of the task and provides human feedback to the agent 
when it struggles.

After experiencing each episode � , we evaluate the confidence of the imitator along the 
state-action trajectory, if the goal was failed. For simplicity, a slight abuse of notation is 
made by using C to denote the query score. A score above a threshold tqry results in a goal-
driven query—the demonstrator is requested to demonstrate how to achieve the failed goal. 
We formally define the overall function to estimate C as:

where sk is the final state of the trajectory, g is the goal being pursued, and c is an estima-
tion function of the confidence for the pair (st, g) . Every time a new demonstration is col-
lected, the training transitions are recorded in � and we make 50 epochs of training. Rather 
than using an ensemble-based uncertainty estimate as in prior work—bootstrap samples 
evaluated by multiple models are used to estimate variance, we propose two novel methods 
(quantile-confidence and bayesian-confidence) to estimate prediction confidence, c(st, g) . 
In contrast with ensemble-based methods that add a significant overload, the proposed 
strategies drastically reduce the computational cost. The parametrization is discussed fur-
ther in the next section.

4.2.1 � Quantile‑confidence

One common solution for estimating confidence in the prediction relies on ensemble-based 
uncertainty estimates, as done by Christiano et al. [17]. However, such an approach tends 
to be computationally expensive [39] and inaccurate when operating in the low data regime 
(with very few data). Instead, we develop a simple architecture for estimating confidence in 

(3)C(�) = �[sk ≠ g]�(st ,g)∼�
c(st, g)
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the prediction, which has little/no computational cost, works with most existing imitation-
based models, and is more robust against outliers [41, 74]. We propose to embrace deep 
quantile regression to estimate model confidence. Rather than only predicting the mean, 
the last layer of f� is used to predict each quantile separately. Assuming a set of goal-driven 
demonstration data � , we run a regression algorithm to train f� with the following loss:

where

where q is the required quantile ( 0 < q < 1 ), and ai is the action the demonstrator took. We 
typically use (0.3,0.5,0.8) as quantiles. We can express quantile-confidence, c(st, g) , by 
measuring the prediction interval between the largest q′′ and smallest q′ quantile, 
c(st, g) =

|||f (at|st, g;�)q�� − f (at|st, g;�)q�
||| . Please note that we use the median quantile (q = 

0.5) in Eq. 1.

4.2.2 � Bayesian‑confidence

Imitator policy confidence can also be modeled using bayesian models. However, in the 
context of RL, their computational cost can be prohibitive. This problem can be mitigated 
by using an estimation of Bayesian inference. It was shown that the use of dropout can be 
interpreted as a Bayesian approximation of Gaussian process [31]. Therefore, we introduce 
a dropout layer before every weight layer of our imitator policy network. To estimate pre-
dictive confidence, we collect the results of stochastic forward passes through the imitator 
policy network:

where f dj (at|st, g;�) represents the model with dropout mask dj , D is a set of dropout 
masks, and p is the predictive posterior mean, p = �dj∼D

f dj (at|st, g;�) . Since the forward 
passes can be done concurrently, the method results in a running time identical to that of 
standard dropout. We can expect the variance of unknown and far-away tuples to be larger 
than known tuples. Please note that one advantage of using dropout is that it allows the 
imitator policy to “smooth out” much of the noise in the data, making the imitator policy 
more robust to noise in the demonstration data. Besides, this technique is particularly effec-
tive in the low-data regime to improve generalization of demonstrated behaviors. We com-
pare in Sect. 5.2 the impact of each strategy on our method.

4.3 � Prioritized goal sampling

In the future HER sampling strategy, the new goals are randomly selected along the future 
state-action trajectory. However, an RL agent can learn more effectively from some goals 
than from others. Typically, some goals may be useful to the agent, but might become less 
when the agent competence increases. Prioritized goal sampling (PGS) assigns high sam-
pling priority to key goals—in places where the expert and the agent strongly disagree. As 

(4)L̄(q) =
1

|𝛺|

|𝛺|∑

i=1

𝜌(f (ai|si, gi;𝜗) − ai, q)

(5)𝜌(𝜀, q) =

{
q𝜀, if 𝜀 ≥ 0

(q − 1)𝜀, if 𝜀 < 0

(6)c(st, g) = �dj∼D
[f dj (at|st, g;�) − p]2
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a criterion to quantify this disagreement, we measure the divergence in the action recom-
mendation between the imitator-network and the policy, which indicates how “surprising” 
or “hard-to-learn” the goal is. Given a state st seen along an episode of T states and g the 
current goal, we define the probability of sampling st as a new goal:

where ||�(at|st, g;�) − f (at|st, g;�)||22 is the deviation between the policy and expert. As a 
result, PGS capitalizes on large disagreement to encourage sampling of goals that poten-
tially lead to large learning progress.

5 � Experiments

In this section, we first describe implementation details and the tasks to be completed by 
the agent. Then, we conduct experiments in multiple tasks from the Mujoco suite [61, 77]. 
Finally, we answer the following questions:

•	 What is the impact of the relabeling threshold on the imitator policy training?
•	 How does the Q-filter method impact the agent’s ability to outperform human demon-

strations?
•	 How important is the weight of the imitation loss?
•	 Is GoAL robust to noisy demonstrations?
•	 Can GoAL generalize to unseen goals?
•	 Does our method increase the state coverage of demonstrations?
•	 Is prioritized goal sampling an efficient way to select goals?
•	 What is the impact of the query budget on the performance?
•	 How important is the proposed confidence-based query selection?

5.1 � Implementation details and tasks

Experiments are conducted on eight robotic tasks implemented in MujoCo. In the first set 
of experiments, we consider four manipulation tasks (Fetch tasks) where the agent controls 
a 7-DoF Sawyer arm: (1) Fetch Reach, (2) Fetch Push, (3) Fetch Pick & Place, and (4) 
Fetch Slide. The end-effector (EE) is constrained to a 2-dimensional rectangle. In the sec-
ond set of experiments (ShadowHand tasks), we evaluate our framework on significantly 
more challenging tasks with very sparse rewards and larger action spaces. The agent is 
trained to manipulate physical objects via a human-like robot hand: (1) Hand Manipulate 
Block, (2) Hand Manipulate Egg, (3) Hand Manipulate Pen, and (4) Hand Reach. The 
observations are given in the form of continuous values and the action-space is also con-
tinuous. The performance metric we use is the percentage of goals that the agent is able to 
reach. An episode is considered successful if the distance between the agent and the goal at 
the end of the episode is less than a threshold defined by the task.

As our policy learning method, we rely on DDPG with HER. We refer to our algorithm 
as Goal-driven Active Learning (GoAL). The critic and imitator policy networks consist 
in 4 fully-connected layers with 256 hidden units. ReLU is used as the activation func-
tion expect for the last layer that used tanh, and the output value is scaled to the range of 

(7)pg(st) =
���(at�st, g;�) − f (at�st, g;�)��22

∑T

j=t
���(aj�sj, g;�) − f (aj�sj, g;�)��22
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each action dimension. Their parameters are optimized given as input pairs of state-goal. 
Training is carried out with a fixed learning rate of 10−3 using the Adam optimizer [46], 
with a batch size of 256. Please note that when using quantile-confidence, the last layer of 
f� has one output for each quantile. When fitting multiple quantile regressions, it is possi-
ble that individual quantile regression estimates overlap, also known as quantile crossover 

Fig. 3   Learning curves averaged over 10 runs (± SD) for different models: GoAL(bayesian), 
GoAL(quantile), DDPG, HER, DDPG+Demo, and goalGail. The models are trained on Fetch task

Fig. 4   Average number of queries (± SD) made per environment
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[12]—a prediction interval for a lower probability exceeds that of a higher probability. This 
is unwanted because it does not respect the principle of cumulative distribution functions 
where their associated inverse functions must be monotonically increasing. In other words, 
there is no guarantee that the quantile estimates will be rank ordered. This especially hap-
pens when fitting the quantiles independently [12, 32]—a multi-headed neural network cal-
culates losses for each desired quantile separately. In order to fit the quantiles better and 
reduce quantile crossover, we fit the quantiles together at the same time—a single-headed 
neural network calculates the quantiles together. Note that although this doesn’t theoreti-
cally guarantee non-crossing regression quantiles, in practice it generally leads the quan-
tiles to be rank ordered.

In order to select the hyperparameters used for Fetch and ShadowHand tasks, we ran a 
grid search with the ranges shown in Sect. 5.4. We also ran grid searches over the learning 
rate ∈ [0.0001, 0.0005, 0.001, 0.005] , the number of hidden units ∈ [128, 256] , the query 
threshold tqry ∈ [0.20, 0.21,… , 0.60] , the number of dropouts ∈ [100, 500, 1000] , and 
p ∈ [0.05, 0.1, 0.2] . We also searched the annealing factor ∈ [0.96, 0.98, 0.99, 0.999] . As 
the environments are procedurally generated we performed tuning on the validation set, 
disjoint with the training set. When tuning, we consider the mean final reward of 10 train-
ing runs with the same set of hyperparameters as the objective, without any seed tuning. 
For Fetch tasks, we use a query budget of 20 and we set tqry = 0.32 (Bayesian-confidence) 
and tqry = 0.43 (quantile-confidence). For ShadowHand tasks, we use a query budget of 50, 
tqry = 0.58 (Bayesian-confidence), and tqry = 0.27 (quantile-confidence). To generate our 
demonstrations, we trained DDPG with Hindsight Experience Replay (HER) [4] for 50M 
environment steps. This allows us to reproduce experiments easily. We used an implemen-
tation with the default hyperparameters given in the original work. In all our experiments, 
Bayesian-confidence is estimated based on 500 dropout masks with p = 0.1 . The weights 
of loss components were �1 = 1 and �2 = 0.003 unless stated otherwise and we anneal the 
imitation loss weight �2 by 0.98 per 500 rollouts collected. As relabeling constant N, we 
set the constant equal to half of the maximum number of time-steps per episode. Since we 
account for the possibility that the learned policy outperforms expert demonstrations, we 
employ the depicted Q-filter strategy with � = 0.015.

5.2 � Fetch robotic tasks

We first perform experiments on four different Fetch tasks from the robotic domain built 
on top of Mujoco: Fetch Reach, Fetch Push, Fetch Pick and Place, and Fetch Slide. We 
first evaluate DDPG with Hindsight Experience Replay (HER) [4] with and without active-
goal driven learning (GoAL). Moreover, we compare our method against several baselines 
including DDPG [49], DQfD [34], goalGail [19], and DDPG+Demo [54]. Please note 
that we replace DQN by DDPG as learning algorithm in DQfD. We use 128 demonstra-
tions to guide the baseline methods. To generate these demonstrations, we randomly sam-
ple goals and request the expert to reach them. We show learning curves in Fig. 3. Our 
method can learn comparable or superior policies using a small number of demonstrations. 
For instance, on Pick and Place, in average only 9 queries were made by GoAL (see Fig-
ure 4). As expected, it ends up reaching similar final performance, however, our method 
has a faster convergence rate. As can be observed, (offline) imitation-based approaches 
learn fast at the beginning, but their final performance is capped. One reason is that after 
extracting all task-relevant knowledge from the demonstrations, their convergence speed 
becomes similar to that of the original HER. On the other hand, incrementally querying 
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new demonstrations enables us to overcome this problem, while keeping the number of 
demonstrations very low. Quantile-confidence can be useful to obtain a more comprehen-
sive analysis of the agent’s confidence, and is more robust to extreme outliers in the goal-
driven demonstrations (e.g. providing the wrong action). Therefore, we believe that this 
approach should be used when the feedback are provided by a non-expert. On the other 
hand, Bayesian-confidence is particularly effective to “smooth out” much of the noise in 
the demonstrations or randomness in the environment, and enables a better generalization 
of goal-driven demonstrations in the low-data regime. Overall, this experiment highlights 
that GoAL drastically reduces the training time in sparse and complex environments.

5.3 � ShadowHand robotic tasks

In addition to the first robotic tasks, we evaluate our methodology in a more challenging 
set of environments (ShadowHand): Hand Manipulate Block, Hand Manipulate Egg, Hand 
Manipulate Pen, and Hand Reach. We provide an expert trajectory dataset of 400 demon-
strations to the baseline methods. Figure 5 plots the learning curve of all the models. We 
can observe that our strategy helps to greatly improve convergence speed. Unlike our algo-
rithm, prior methods passively access the demonstration data, so we actively provide help 
to our agent when it struggles. On these tasks, we found that goalGAIL does not receive 
enough supervision to achieve optimal policies. Results highlight that the gap between 
our approach and the others is increasing with the degree of sparsity. These results further 

Fig. 5   Learning curves (mean ± SD) on ShadowHand tasks averaged over 10 runs for different models: 
GoAL(bayesian), GoAL(quantile), DDPG, HER, DDPG+Demo, and goalGail
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show that since our method is capable of adapting the set of demonstration trajectories to 
match the learner’s goal, GoAL can escape the known “distribution mismatch” issue inher-
ent in standard (offline) imitation learning. Remarkably, the final performance of GoAL is 
not capped and can even exceed expert-level performance. To the best of our knowledge, 
this is the first approach operating in the low demonstration regime (less than 50 demon-
strations) that achieves a near-optimal score on the four ShadowHand tasks.

5.4 � Ablation experiments

We also present an ablation study to investigate: (1) the importance of the relabeling 
threshold, (2) the impact of the Q-filter, (3) the impact of the weight of the imitation loss, 
(4) the robustness to imperfect demonstrations, (5) the generalization to unseen goals, (6) 
the state coverage of queries, (7) the impact of prioritized goal sampling, (8) the size of 
query budget, and (9) the importance of confidence-based query selection.

5.4.1 � Relabeling threshold in imitator policy training

Relabeling the goal-driven demonstrations requires a threshold N to separate “opti-
mal” from “sub-optimal” transitions. Thus, the trained policy implicitly depends on 
this threshold. Precisely, adding potentially sub-optimal transitions may hurt the per-
formance of the agent. We conduct a study where the threshold N is varied from 0.25 
to 1.0. A threshold of 0.25 means that N is equal to one-fourth of the maximum of 
time-steps per episode. Although all the goals can be used for relabeling, we find this 
solution less than ideal (see Table 1) in some cases and may even hurt the performance. 
This can happen for mainly two reasons: (1) conflicts arising from sub-optimal samples 
recorded in the demonstration buffer, and (2) since the agent’s confidence for imaginary 
sub-optimal samples is high, the agent struggles to identify regions where feedback is 
the most needed. On the other hand, the results show that a reasonable choice of N is 
between 0.5 or 0.75.

Table 1   Learning locomotion in Mujoco using different positive thresholds N when training the imitator 
policy. Results are averaged over 10 random seeds (± SD)

Bold values indicate the best performing method
No seed tuning is performed

Method Percentage of goals achieved

Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

GoAL (bayesian)/N = 0.25 0.91 ± 0.03 0.95 ± 0.05 0.90 ± 0.03 0.87 ± 0.04
GoAL (quantile)/N = 0.25 0.90 ± 0.04 0.92 ± 0.02 0.92 ± 0.04 0.90 ± 0.02
GoAL (bayesian)/N = 0.50 0.97 ± 0.02 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.06
GoAL (quantile)/N = 0.50 0.96 ± 0.02 0.94 ± 0.03 0.95 ± 0.03 0.90 ± 0.05
GoAL (bayesian)/N = 0.75 0.96 ± 0.03 0.97 ± 0.05 0.93 ± 0.05 0.88 ± 0.04
GoAL (quantile)/N = 0.75 0.95 ± 0.04 0.94 ± 0.03 0.93 ± 0.04 0.86 ± 0.04
GoAL (bayesian)/N = 1.0 0.93 ± 0.04 0.94 ± 0.05 0.88 ± 0.05 0.79 ± 0.08
GoAL (quantile)/N = 1.0 0.92 ± 0.05 0.92 ± 0.06 0.91 ± 0.07 0.88 ± 0.04
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5.4.2 � Importance of the Q‑filter

One of the promises of our approach is its potential ability to exceeded the expert per-
formance. In this experiment, we verify if this promise holds. To this end, we conduct a 
study where the threshold � of the Q-filter is varied from 0.001 to 0.1 as well as the method 
training without Q-filter. Table 2 reports results of our methods, GoAL, on the four Fetch 
tasks with different � . We can observe that using Q-filter allows the agent to outperform 
the teacher by discarding sub-optimal demonstrations. On the other hand, the performance 
of the agent trained without Q-filter are capped and cannot exceed the expert performance. 
Please note that when � is too large (e.g. � = 0.1 ), the agent does not take into account the 
demonstrations that are slightly better than its policy, slightly reducing its performance. 
Table 2 further shows that the parameter � does not require to be fine-tuned for each task 
(i.e. 0.03 ≥ � ≥ 0015 ) since the agents maintain acceptable performance. It is observed 
that for most tasks, setting � = 0.03 or � = 0.0015 produced an effective trade-off between 
exploiting the expert’s knowledge and leveraging the agent’s knowledge about the task.

5.4.3 � Weight of imitation loss

Combining the policy loss and imitation loss involves a hyperparameter �2 , which weights 
the importance of the imitation loss. This brings up an interesting question—what is the 
impact of this hyperparameter on the performance of the agent? Ideally, the policy perfor-
mance should not be too sensitive to this hyperparameter. We perform a study for various 
values of �2 in 0.001, 0.003, 0.006. Table 3 shows that the GoAL performance is robust to 
the choice of this hyperparameter.

Table 2   Learning locomotion in Mujoco using different Q-filter thresholds �

Bold values indicate the best performing method
Results are averaged over 10 random seeds (± SD). No seed tuning is performed

Method Percentage of goals achieved

Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

GoAL (bayesian)/� = 0.1 0.92 ± 0.02 0.91 ± 0.03 0.93 ± 0.03 0.87 ± 0.04
GoAL (quantile)/� = 0.1 0.95 ± 0.03 0.90 ± 0.04 0.92 ± 0.05 0.64 ± 0.05
GoAL (bayesian)/� = 0.03 0.96 ± 0.03 0.94 ± 0.02 0.97 ± 0.04 0.86 ± 0.05
GoAL (quantile)/� = 0.03 0.97 ± 0.04 0.92 ± 0.03 0.95 ± 0.05 0.85 ± 0.03
GoAL(bayesian)/� = 0.015 0.97 ± 0.02 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.06
GoAL (quantile)/� = 0.015 0.96 ± 0.02 0.94 ± 0.03 0.95 ± 0.03 0.90 ± 0.05
GoAL (bayesian)/� = 0.001 0.89 ± 0.03 0.88 ± 0.05 0.90 ± 0.03 0.77 ± 0.05
GoAL (quantile)/� = 0.001 0.87 ± 0.02 0.89 ± 0.04 0.85 ± 0.06 0.73 ± 0.04
GoAL (bayesian)/No Q-filter 0.75 ± 0.05 0.71 ± 0.06 0.77 ± 0.12 0.68 ± 0.08
GoAL (quantile)/No Q-filter 0.69 ± 0.08 0.72 ± 0.09 0.70 ± 0.07 0.64 ± 0.09
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5.4.4 � Robustness to imperfect demonstrations

In the above experiments, we assume perfect demonstrations. However, the expert might 
select not the best action or even lack knowledge about a goal. We study how our agents 
perform when imperfect demonstrations are generated by the demonstrators. In order to 
generate imperfect demonstrations, we add normal noise N(0, �2) to the teacher actions 
with a probability � ∈ {0.05, 0.1, 0.2} and � = 0.03 . We report in Table 4 the performance 
of our framework and several baselines. We observe that GoAL can still achieve acceptable 
performance. For instance, the success rate of the proposed method remains larger than 
0.80 on the three tasks ( � = 0.05 ). Even though GoAL(bayesian) performs slightly worse 
in the imperfect setting, it still improves performance as compared to the prior methods. A 
reason is that dropout allows the imitator to “smooth out” much of the noise in the data, 
making GoAL(bayesian) robust to noisy demonstrations. Moreover, annealing the imita-
tion loss weight and filtering the sub-optimal demonstrations allow us to escape from poor 
local optima, improving significantly beyond the (imperfect) expert demonstrations. The 
results demonstrate that our method is reasonably robust to noise in the demonstrations, 
and hence non-expert can provide a feedback signal to the agent.

5.4.5 � Generalization to unseen goals

In the previous section, we showed that our method learns to achieve a wide range of 
goals. However, it remains unclear whether the agent has achieved this by “generaliz-
ing demonstrated trajectories”. To investigate this question, we train our agent on a set 
of goals and evaluate its performance on a different set of goals (without additional que-
ries). From Table 5, we see that the agent can generalize to unseen goals, with a slight loss 
in the performance. As the agent has already learned about parts of the environment, it 
can leverage known similar goals to face an unseen situation. We can further observe that 
GoAL(bayesian) tends to generalize to unseen situations better than GoAL(quantile). We 
hypothesize that using dropout in the imitator policy network prevents the network to over-
fit the provided goal-driven demonstrations. Moreover, the results highlight that Bayesian-
confidence is slightly more accurate to estimate the agent’s confidence than quantile-con-
fidence, improving the value information of the queries. Experimental results suggest that 

Table 3   Learning locomotion in Mujoco using different imitation loss weights

Bold values indicate the best performing method
Results are averaged over 10 random seeds (± SD). No seed tuning is performed

Method Percentage of goals achieved

Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

GoAL (bayesian) / �2 = 0.001 0.95 ± 0.03 0.93 ± 0.05 0.94 ± 0.07 0.88 ± 0.08
GoAL (quantile) / �2 = 0.001 0.96 ± 0.04 0.92 ± 0.04 0.91 ± 0.05 0.89 ± 0.05
GoAL (bayesian) / �2 = 0.003 0.97 ± 0.02 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.06
GoAL (quantile) / �2 = 0.003 0.96 ± 0.02 0.94 ± 0.03 0.95 ± 0.03 0.90 ± 0.05
GoAL (bayesian) / �2 = 0.006 0.97 ± 0.02 0.95 ± 0.06 0.92 ± 0.05 0.90 ± 0.04
GoAL (quantile) / �2 = 0.006 0.94 ± 0.04 0.93 ± 0.03 0.93 ± 0.04 0.86 ± 0.06
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the set of collected trajectories provides a wide enough state coverage, leading to an effi-
cient generalization.

5.4.6 � State coverage of queries

In this experiment, we show that our method is efficient at querying demonstrations and 
can keep the level of redundancy at a minimum. To do so, we show state visitation heat-
maps of trajectories queried by our method over 100 runs on a simple 2D navigation envi-
ronment. The agent starts in the center of the box, and can take actions to directly move its 
position. In this task, the agent needs to navigate itself to a target position (x,y) that is ran-
domly generated by the environment. Figure 6 illustrates that trajectories requested using 
our method cover most of the states. One reason is that similar goals are not requested 
for demonstrations since the confidence is large enough. Thus, the agent explores further 
and makes queries in places where it struggles. On the other hand, as the agent (without 

(a) With confidence (b) Without confidence

Fig. 6   State visitation heatmaps of the demonstrations queried by the GoAL agent with Bayesian-confi-
dence (left) and without confidence prediction (right). The agent starts in the middle of the board (white 
square) and has to navigate to a target position chosen by the environment. The left figure shows that the 
proposed method to select queries significantly increases state coverage compared to the agent trained with-
out confidence-bases query selection (right)

Table 5   Evaluation of the agent trained on several Mujoco tasks (“with fine-tuning”)

To investigate whether the agent is able to generalize the demonstrated trajectories, we then evaluate the 
agent’s performance on a different set of goals without querying new demonstrations (“without fine-tun-
ing”). We report the results averaged over 10 seeds ( ± SD)

Method Percentage of goals achieved

Fetch Reach (0.5M) Fetch Push (3M) Fetch Pick & 
Place (3M)

Fetch Slide (3M)

With fine-tuning (bayesian) 0.97 ± 0.02 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.06
With fine-tuning (quantile) 0.96 ± 0.02 0.94 ± 0.03 0.95 ± 0.03 0.90 ± 0.05
Without fine-tuning (bayesian) 0.95 ± 0.03 0.84 ± 0.08 0.93 ± 0.11 0.85 ± 0.10
Without fine-tuning (quantile) 0.93 ± 0.04 0.79 ± 0.06 0.85 ± 0.08 0.72 ± 0.09
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Bayesian-confidence) fails to reach the goals being pursued, it quickly exhausts its query 
budget by making redundant queries. As a result, we can expect imitation learning to be 
efficient only near the center of the box. This issue becomes even more noticeable as the 
size or the complexity of the environment is increased. In general we discovered that the 
depicted algorithm improves state coverage and eliminates the need for unnecessary dem-
onstrations of already acquired behaviors.

5.4.7 � Using prioritized goal sampling

One legitimate question is to study the impact of the prioritized goal sampling on the per-
formance of the algorithm. We conduct a study with and without prioritized goal sampling 
(PGS). As shown in Table  6, PGS produces faster convergence speed in three environ-
ments, including Fetch Reach, Fetch Pick & Place, and Fetch Slide. For example, on Fetch 
Reach, PGS reduces the number of interactions to converge by ≈ 28 % for GoAL(bayesian) 
and ≈ 12 % for GoAL(quantile). Furthermore, the results show that PGS does not signifi-
cantly deteriorate performance, and in some cases our agent can reach higher final perfor-
mance than running pure goal sampling. Please note that PGS slightly deteriorates per-
formance on both Fetch Push and Fetch Slide but also generally reduces the number of 
necessary training steps. Overall, it confirms that the most important goals for replays are 
the ones where the disagreement in the prediction is maximized.

Table 6   Learning locomotion in Mujoco, with and without prioritized goal sampling (PGS)

Bold values indicate the best performing method
Results are averager over 10 random seeds. No seed tuning is performed

Percentage of goals achieved (convergence speed ×103 training steps)

Method Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

GoAL (bayesian) 0.97 (122) 0.96 (982) 0.96 (812) 0.87 (1850)
GoAL (quantile) 0.96 (241) 0.94 (1023) 0.95 (1073) 0.90 (2609)
GoAL (bayesian) without PGS 0.96 (157) 0.97 (1256) 0.95 (1229) 0.85(2044)
GoAL (quantile) without PGS 0.96 (270) 0.95 (883) 0.94 (1627) 0.91 (2953)

Fig. 7   Learning curves averaged over 10 runs (± SD) on the Fetch Pick & Place task, with different query 
budgets
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5.4.8 � Query budget

We also report evaluations showing the effect of increased query budget. Figure 7 demon-
strates that agents trained with a larger query budget obtain higher mean returns after simi-
lar numbers of updates. However, despite a small query budget, our method can still learn 
near optimal policies. We can draw the observation that as the query budget increases, the 
learning effect on the agent gradually improves. However, for the results with 20 and 50 
queries, we can see that even if the number of queries significantly differs, the difference 
in learning effect can be negligible. This can happen when queried demonstrations cover 
a broad state space and therefore the agent does not need to make additional queries. As 
a result, our method leverages a small amount of demonstrations that cover task-relevant 
regions of the state space and outperforms the baselines by a large margin (see Sect. 5.2).

5.4.9 � Importance of confidence‑based query selection

Finally, to quantify the importance of confidence-based query selection, we compare 
the performance of our architecture with and without confidence-based query selection. 
Table 7 plots the mean episode-returns obtained for different tasks. We observe that includ-
ing confidence-based query selection always leads to notably better episode-returns, indi-
cating that it is useful to select queries based on the agent’s confidence. We observed that 
using confidence-based query selection helps the agent to select task-relevant queries that 
will have a large impact on its learning progress. On the other hand, the agents trained 
without confidence check quickly exhaust their query budget by querying goals easy to 
reach or goals similar to already encountered situations, leading to an abundance of irrel-
evant or unnecessary demonstrations.

6 � Discussion

We have constructed a mechanism to utilize goal-driven demonstrations along with 
goal-conditioned reinforcement learning. In order to greatly reduce the number of 
required demonstrations, we propose to query the demonstrator in states where the agent 
struggles and the confidence in the action prediction is low. This concern is relevant 
when cooperating with human teachers, in particular since human effort is limited by 
factors such as attention span or cost of interactions [18]. Thus, it is desirable to limit 
the number of queries to only those that are most needed. In the proposed method, even 

Table 7   Learning locomotion in Mujoco with and without confidence-based query selection

Bold values indicate the best performing method
Results are averaged over 10 random seeds (± SD). No seed tuning is performed

Method Percentage of goals achieved

Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

GoAL (bayesian) 0.97 ± 0.02 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.06
GoAL (quantile) 0.96 ± 0.02 0.94 ± 0.03 0.95 ± 0.03 0.90 ± 0.05
GoAL (no confidence) 0.82 ± 0.07 0.61 ± 0.03 0.65 ± 0.03 0.53 ± 0.06
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very small amounts of queries (less than 50 queries) let us outperform prior imitation-
based approaches on Fetch and ShadowHand tasks. These games involve sparse and 
delayed rewards. These results suggest that GoAL can greatly benefit in exploration effi-
ciency and could help to expand the possible applications of RL.

That being said, we acknowledge that our approach has certain limitations. HER 
relies on a reward function R(s, a, g) to relabel additional goals used for replay. Deriving 
a good reward function is not straightforward in environments where goals are images. 
One solution inspired by RIG [55] is to measure the distance between two images in a 
latent space. We leave it to future work to explore this direction further.

Another limitation is the need for demonstrations which can be challenging in some 
environments. If demonstrations are not available, one solution is to reuse successful 
rollouts as demonstration data [27]. It may also be possible to reuse imperfect agent 
policies trained on similar tasks to generate the demonstrations.

So far, ablation analysis in Sect.  5.4 confirmed the above-mentioned intuitions but 
lacked theoretical understanding. In future work, we aim to improve the theoretical 
understanding of our approach, more specifically, how Q-filter relates to the capability 
of the algorithm for outperforming expert demonstrators, convergence speed, and how 
the number of queries contributes to GoAL performance. In standard passive imitation 
learning, several work such as [82] or [13], have been dedicated to provide theoretical 
and safety guarantees. In active imitation learning, similar attempts [42, 43] were made. 
Despite the significant empirical progresses, many theoretical aspects remain largely 
unknown. The major difficulty comes from the underlying temporal dependency of the 
demonstration data and the difficulty to provide guarantees due to human factors. Nev-
ertheless, developing strong theoretical guarantees will be useful to deploy our system 
in the real world.

In the current version of GoAL, the imitation relies on a mean squared error. A poten-
tially more efficient imitation approach would be to use techniques related to Batch RL [15, 
29]. In detail, it was shown that cloning a narrow set of expert trajectories using standard 
off-policy RL can result in extrapolation error [30]. Namely, the agent quickly learns to 
select non-expert actions under the guise of optimistic extrapolation. However, the agent 
does not consider the accuracy of the estimate. As a result, unfamiliar state-action transi-
tions outside the batch may be viewed over-optimistically. A solution to address the extrap-
olation issue is to add a batch constraint to the off-policy algorithm [30], which we leave 
for future work.

One promising direction is to replace the human expert with another agent’s advice. 
After the learner determines when to query a prospective teacher, it may be possible to 
query another agent that has already acquired knowledge about the situation. This inter-
agent teaching strategy has been used to solve tasks such as video game playing [76], but it 
remains an open problem in complex tasks [18]. Another possible solution could be to train 
the agent on a mixture of demonstration data collected from an agent and a human. We 
believe that exploring multi-agent collaboration is an important direction in order to further 
reduce human effort.

Another exciting future direction is to train GoAL on physical robots. It has been shown 
that HER trained on simulated data can be deployed on a physical fetch robot [4]. How-
ever, directly training DRL on physical robots remains an open problem. We can expect 
our method to benefit in sample efficiency and to significantly reduce the number of 
interactions.



Autonomous Agents and Multi-Agent Systems (2021) 35:44	

1 3

Page 25 of 29  44

7 � Conclusion

In this paper we presented Goal-driven Active Learning (GoAL), a method introducing 
interactive goal-driven demonstrations to both learn more effectively and efficiently. Goal-
driven demonstrations do not intend to demonstrate the overall task, but help the agent 
to fulfill particular intermediate goals when it struggles. This novel form of human guid-
ance is less expensive and more intuitive than pure demonstrations, while ensuring that 
the provided knowledge match the agent’s needs, hence escaping the known “distribution 
mismatch” issues of prior work. Unlike traditional methods of imitation learning where 
the agent passively accesses to the demonstration data, our method actively decides when 
to request demonstrations based on the confidence of the agent. We introduced and stud-
ied the effect of two strategies to measure the model’s confidence. Finally, we proposed to 
promote goal sampling in places where the agent strongly disagrees with the demonstrator, 
and we experimentally showed that it improves the performance of GoAL. Our method 
shows substantial improvements over prior work in the Mujoco benchmark suite. Remark-
ably, the depicted algorithmic framework can match the basic demonstration-level perfor-
mance and even exceed expert-level performance. Furthermore, GoAL learns to reach a 
wide range of configurations from the same set of demonstrated trajectories. These results 
suggest that GoAL can greatly benefit in exploration efficiency and could help to expand 
the possible applications of RL. In the long run it would be desirable to incorporate adap-
tive confidence threshold to further improve query selection. Another intriguing direction 
for future work is to drive learning in new tasks in a few-shot style.
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