
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2021) 35:44
https://doi.org/10.1007/s10458-021-09527-5

1 3

Goal‑driven active learning

Nicolas Bougie1,2 · Ryutaro Ichise1,2

Accepted: 28 July 2021 / Published online: 16 August 2021
© The Author(s) 2021

Abstract
Deep reinforcement learning methods have achieved significant successes in complex
decision-making problems. In fact, they traditionally rely on well-designed extrinsic
rewards, which limits their applicability to many real-world tasks where rewards are natu-
rally sparse. While cloning behaviors provided by an expert is a promising approach to
the exploration problem, learning from a fixed set of demonstrations may be impracticable
due to lack of state coverage or distribution mismatch—when the learner’s goal deviates
from the demonstrated behaviors. Besides, we are interested in learning how to reach a
wide range of goals from the same set of demonstrations. In this work we propose a novel
goal-conditioned method that leverages very small sets of goal-driven demonstrations to
massively accelerate the learning process. Crucially, we introduce the concept of active
goal-driven demonstrations to query the demonstrator only in hard-to-learn and uncertain
regions of the state space. We further present a strategy for prioritizing sampling of goals
where the disagreement between the expert and the policy is maximized. We evaluate our
method on a variety of benchmark environments from the Mujoco domain. Experimental
results show that our method outperforms prior imitation learning approaches in most of
the tasks in terms of exploration efficiency and average scores.

Keywords Deep reinforcement learning · Imitation learning · Goal-conditioned learning ·
Active learning

1 Introduction

Recent successes in deep reinforcement learning (DRL) have been achieved in domains
with a well-specified reward function such as in game-playing [53] or robot control [49].
Unfortunately, many real-world tasks involve rewards that are poorly-defined, sparse, or
delayed. Moreover, these algorithms typically require a large number of interactions to

 * Nicolas Bougie
 nicolas-bougie@nii.ac.jp

 Ryutaro Ichise
 ichise@nii.ac.jp

1 The Graduate University for Advanced Studies (Sokendai), Tokyo, Japan
2 National Institute of Informatics, Tokyo, Japan

http://orcid.org/0000-0001-9856-0038
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-021-09527-5&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 2 of 29

reach decent performance, which can be intractable in real-world settings. Overcoming
these pitfalls could help to expand the possible applications of DRL.

A line of work for overcoming the above-mentioned issues is goal-conditioned learn-
ing, a form of self-supervision that constructs a goal-conditioned policy to learn how to
reach multiple goals [44, 68]. This idea was extended in Hindsight Experience Replay
(HER) [4] to artificially generate new transitions by relabeling goals seen along the state
trajectory. Nevertheless, it may still require a large amount of data to capture complex
policies. Since it is often unrealistic to expect an end-to-end reinforcement learning
system to rapidly succeed with no prior assumptions about the domain (i.e. learning a
task from scratch), several methods have attempted to introduce external supervision
into reinforcement learning systems. For instance, an approach [39] leverages human
preferences as feedback signal. Nonetheless, it was shown that preferences are an inef-
ficient way of soliciting information from humans [39]. In the context of reinforcement
learning, the most common form of external supervision is imitation learning. Imita-
tion learning seeks to learn tasks from demonstrated state-action trajectories [1, 67]. For
instance, Deep Q-learning from Demonstrations (DQfD) [34] improves initial perfor-
mance by pre-training the policy with demonstrations. However, learning from human
demonstrations suffers from three problems: (1) it is hard to obtain a broad state cover-
age of task-relevant regions from trajectories demonstrated without a specific goal, (2) it
usually has an abundance of irrelevant or redundant information, (3) it assumes that the
learner’s goal matches the teacher’s demonstrated behaviors. Additionally, most imita-
tion learning algorithms learn policies that achieve a single task.

In this work, we contribute an active goal-conditioned approach that drastically
reduces expert workload by incrementally requesting partial demonstrations towards
specific goals, goal-driven demonstrations. Contrary to pure demonstrations, goal-
driven demonstrations do not aim to demonstrate the overall task or all possible situ-
ations. Instead, goal-driven demonstrations fulfill particular goals that are actively
selected based on the agent’s knowledge about its environment. Especially, the proposed
framework allows an agent to jointly identify states where feedback is most needed
and communicate for specific domain knowledge throughout the training process. Our
method relies on an imitator network trained to clone a novel form of human feedback:
goal-driven demonstrations. Given its prediction, we augment the policy loss with a
simple auxiliary objective. Rather than using a fixed set of demonstrations, goal-driven
demonstrations are actively queried based on the imitator’s confidence and the ability
of the agent to reach the goal being pursued. We build and compare two techniques to
estimate the agent’s confidence: (1) Bayesian-confidence, (2) quantile-confidence; and
study a relabeling strategy that extracts additional information from the demonstrated
trajectories. We found goal-driven demonstrations to be easier to demonstrate for a
human than full demonstrations, while significantly increasing the value information of
the queries by matching the agent’s needs. We further propose a method for prioritizing
the sampling of important goals—in places where the disagreement between the expert
and the policy is large.

We evaluate our approach on several tasks from the Mujoco benchmark suite [61, 77]
including Fetch and ShadowHand. Experimental results show that GoAL outperforms pre-
vious approaches in most of the tasks with a significantly lower number of demonstra-
tions. We also show that our method can generalize to unseen states while being robust to
incomplete or noisy demonstrations. Remarkably, GoAL produced agents that exceeded
the expert performance in multiple tasks.

The main contributions of this paper are summarized as follows:

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 3 of 29 44

• We propose a new framework, Goal-driven Active Learning (GoAL), which is the first
work to use active goal-driven demonstrations to the best of our knowledge.

• We contribute a method to query the demonstrator only in states where the agent strug-
gles and is not confident, maximizing the expected value of information of the queries
and drastically reducing human effort.

• We propose two novel confidence-based query strategies to evaluate the confidence
along a state-action trajectory.

• We contribute a goal-sampling technique that maximizes the agent’s learning progress.
• We provide a comprehensive comparison between the proposed methodology and a

number of baselines, evaluated on complex robotic tasks.

The remainder of the paper is organized as follows. Section 2 reviews related literature.
Section 3 provides the necessary background to the research topics presented in the paper.
Section 4 details the description of the proposed algorithm, and Sect. 5 reviews the experi-
ments to verify the algorithm. Finally, Sect. 6 provides a summary and suggests future
research, and Sect. 7 concludes this work.

2 Related work

Learning when rewards are sparse is a notoriously challenging problem in the field of rein-
forcement learning. One solution to tackle sparse rewards is to introduce an intrinsic incen-
tive into reinforcement learning, curiosity. On the other hand, methods for providing exter-
nal supervision largely divide into two categories: imitation learning and learning from
interactive human feedback. Our work is built upon goal-conditioned learning. We briefly
introduce these techniques in this section.

2.1 Curiosity‑driven exploration

Inspired by curious behavior in animals, the use of intrinsic motivation has been devel-
oped to encourage agents to learn about their environments even when extrinsic feedback is
rarely provided. Some techniques [59, 71] rely on predicting environment dynamics using
an inverse or forward dynamic model. Another class of approaches uses prediction errors in
the feature space as measure of the importance of states [47]. For example, RND [11] pre-
dicts the output of a randomly initialized neural network on the current state, and encour-
ages revisits of states with large prediction errors. Episodic curiosity through reachability
[66] addresses the “noisy TV” issue of prior work by considering the distance between two
states as curiosity measure. Exploration bonus can also be based on maximizing informa-
tion gain about the agent’s knowledge of the environment [36]. In GoCu [9] curiosity is
formulated as the capability of the agent to learn a set of skills. Another line of work is to
keep visit counts for states to favor exploration of rarely visited states [7, 50, 72]. In order
to enable count-based exploration in continuous state spaces, a solution [57] is to train an
observation density model to supply counts. Another strategy [75] is to map states to hash
codes and count state visitations with a hash table. In this setting, the counts are used as
exploration bonus to guide exploration. A prior work [51] introduces a count-based opti-
mistic algorithm by estimating the uncertainty associated with each state. In a slightly dif-
ferent spirit, DIAYN [21] proposes to learn useful skills without a reward function—they
learn skills by optimizing an information theoretic objective using a maximum entropy

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 4 of 29

policy. While curiosity was shown to be useful when rewards are sparse, training an end-
to-end reinforcement learning system with no prior assumptions about the domain often
requires millions or billions of interactions to reach reasonable performance, which can be
impractical in real-world settings. On the other hand, our work leverages small amounts of
human feedback to massively accelerate the learning process. Besides, we are often inter-
ested in learning to reach a wide range of goals without re-training the agent or designing
a different reward every time. This capability is essential in many real-world domains such
as robot control.

2.2 Imitation learning (IL) and RL

One of the earliest attempts at end-to-end behavioral cloning was ALVINN [62], for lateral
motion control of an autonomous vehicle. In recent years, multiple work have attempted
to combine deep reinforcement learning with human demonstrations. For instance,
DQfD [34] pre-trains a Q-learning agent on the expert demonstration data. This idea was
extended to handle continuous action spaces such as in robotic tasks [78], as well as to
actor-critic architectures [84]. POfD [45] proposes to follow demonstrations in early learn-
ing stages for exploration and let the agent explore new states on its own. In contrast, we
are interested in actively sharing insights between the teacher and the agent. Therefore,
we propose a novel imitation loss function that leverages goal-driven demonstrations and
a goal-conditioned framework to actively request feedback to the teacher when the agent
struggles, reducing both the training time and the number of demonstrations [18]. A recent
follow-up [54] introduces an expert loss in DDPG [49] and proposes to filter suboptimal
demonstrations based on the Q-values (Q-filter). It is assumed that there is a fixed set of
demonstration data. In this work, we use the Q-filter method [54] in a goal-conditioned set-
ting, and we further adapt it to filter transitions where the agent action is significantly better
than the demonstrator action. Another solution is to represent a policy as a set of Gaussian
mixture models [16]. However, they consider a fixed target goal setting, and the method
is not directly applicable to continuous action spaces. In a different spirit, AlphaGo [70]
trains a policy network to classify positions according to expert moves. A way of dealing
with sparse rewards consists in introducing a curious replay mechanism and demonstra-
tions [86]. DAGGER [48] requests supervision at each step and takes an action sampled
from a mixture distribution of the demonstrator and the agent. The idea was extended in
Deeply AggreVaTeD [73] to work in environments with continuous action spaces. Another
method [19] constructs a goal-conditioned policy to visit similar states as the expert. That
is, they employ the idea of discriminability as a central theme in building agents that can
leverage demonstrations. Rather than solely using goals to condition the policy, we use
goals to enable active cooperation between the teacher and the agent. Namely, we propose
a novel form of human guidance, goal-driven demonstrations. Goal-driven demonstrations
do not intend to cover all possible scenarios or demonstrate the overall task, but guide the
agent to fulfill particular goals when the agent struggles, being more intuitive for the dem-
onstrator than pure demonstrations. In addition, the imitation loss is used in a different way
in our method; and we develop a different strategy for relabeling goal-driven demonstra-
tions, which ensures that only optimal transitions are recorded. Another form of imitation
learning is inverse reinforcement learning (IRL) [56] where a reward function is inferred
from the demonstrated trajectories. IRL has been applied to several domains including
navigation [5], and autonomous flight [1]. In recent years, an emerging strategy at the inter-
section of imitation learning and IRL has combined generative adversarial networks and

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 5 of 29 44

reinforcement learning (GAIL) [35]. However, IRL algorithms assume that the observed
behavior is optimal, and most agents focus on learning a single task from a set of demon-
strations. Another issue concerns IL and IRL approaches that leverage expert rewards (e.g.
demonstrations). In many cases, it is impractical to generate large amounts of high-quality
demonstrations, especially for long-term tasks. In order to practically train RL systems
with human feedback, we need to decrease the amount of human effort. Many work in the
imitation learning literature assume that an expert cannot be queried because it is impracti-
cal and costly. On the other hand, we argue that querying an expert can be a strength since
it allows us to reduce the number of necessary demonstrations by adapting demonstration
data to match the agent’s needs, ultimately reducing human effort. A constant supervision
is very impractical, so our method lets the agent identify querying opportunities so that
the expert is not required to constantly monitor the agent. In order to identify the need for
specific domain knowledge throughout the agent’s training, we contribute a framework to
identify areas where feedback is most needed based on the agent’s confidence and its abil-
ity to reach the goal pursued. On the other hand, in the absence of active cooperation, it is
often challenging for an expert to know in advance what will be the agent’s needs.

2.3 Learning from interactive human feedback

Most methods that focus on learning from interactive human feedback [17, 39, 52, 80, 81]
query the human to drive learning [18]. For example, TAMER [79] trains the policy from
feedback in high-dimensional state space. The learner may receive feedback in the form
of sequences of actions planned by a teacher [10]. Uncertainty-based query was used in
[14] but is limited to DQN [53], limiting the possible applications of this method. In con-
trast, our method can be combined with most of off-policy RL algorithms; and introduces
the idea of goal-driven demonstrations. Some authors [69] consider multiple demonstra-
tors performing different tasks and the agent must actively select which one to request for
advice. Another solution [65] is to block unsafe actions by training a module from expert
feedback. However, it requires the expert to identify all unsafe situations by watching an
agent play. To deal with the problem of query selection, it is possible to select sufficiently
different unqueried data [37]. In a similar spirit, algorithms in the field of action advising
aim to transfer action advice under a budget from a teacher to the agent [22]. For instance,
in L2T [23] a teacher model leverages the feedback from the student model in order to opti-
mize its own teaching strategies, achieving teacher-student co-evolution. Despite L2T per-
formance on image classification and sentiment analysis, it remains unclear how to apply
this approach to more complex environments. Another algorithm [85] consists in letting
the student announce his recommended action and the teacher can decide whether to pro-
vide some advice. In the same spirit, a work has considered multiple teaching algorithms
[76] and applied them to game-playing. While these methods effectively accelerate agent
training, they assume that the teacher constantly monitors the agent. This assumption may
not hold with human teachers, as humans have temporally limited attention, and the cost of
monitoring may be prohibitive. To overcome these pitfalls, it is possible to identify advis-
ing opportunities so that the teacher is not required to constantly monitor the student [3].
These approaches assume that a piece of advice consists in suggesting the action that the
student should do. Our work differs by leveraging goal-driven demonstrations, allowing us
to transfer more complex domain knowledge and removing the need for constant monitor-
ing. In addition, we propose a strategy to only request feedback to the supervisor in states
where the agent is unsure and struggles.

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 6 of 29

2.4 Curriculum learning

The idea of active queries to an expert is also closely related to the field of curricu-
lum learning [8]. Unlike machine learning, human learning is often accompanied by a
curriculum. That is, the order of presented examples is rarely random when a human
teacher teaches another human. One popular approach is to decide which task to solve
next based on the agent’s learning progress [58]. This strategy can be extended to con-
sider learning progress in terms of rate of increase in prediction accuracy and rate
of increase in network complexity [33]. A recent follow-up [6] proposed a novel cur-
riculum generation method using different progression functions, including a function
based on the performance of the agent. The authors also use the progression function
to determine how long the agent should train on each intermediate task. In order to
prevent forgetting of earlier tasks, a probability of returning to earlier tasks can be
defined [83]. Another approach relies on providing to the agent increasingly difficult
goals [26]. A few studies have considered setter-solver paradigm; e.g. [64] considered
goal feasibility and goal coverage to construct curricula. In the proposed method, we
assign high sampling priority to goals where the expert and the agent strongly disa-
gree. Another form of curriculum learning is PLO that constructs auxiliary policies
that learn from shaped reward functions, allowing the main policy to gradually get
more independent and execute more actions sampled from its own policy [38]. In order
to learn from sparse rewards, one solution is to use curriculum learning that breaks a
complex task into sub-tasks of gradually increasing complexity and learning them con-
currently [2]. The presented work forms an implicit curriculum by gradually querying
more complex goal-driven demonstrations as the agent’s knowledge about the environ-
ment increases. It can be combined with an arbitrary off-policy RL algorithm and may
be seen as a form of implicit curriculum. Our method is based on hindsight experience
replay [4] that may also be seen as a form of implicit curriculum. The central idea is
to replay each episode by replacing the desired goals of training trajectories with the
achieved goals of the failed experience.

2.5 Few‑shot imitation learning

Few-shot imitation learning was proposed as a way to leverage a few demonstrations
of a certain task, and have these demonstrations instantly generalize to new situations
of the same task. For instance, a work aims to maximize the expected performance of
the learned policy when facing a new task, without receiving additional demonstra-
tions [20]. In order to reduce the number of demonstrations needed for an individual
task, a strategy is to share data across tasks and learn a parameterized policy that can
be adapted to different tasks through gradient updates [25]. Another related work is
MAML [24], where the agent learns a set of weights that can be quickly adapted to
new tasks from one visual demonstration. Another approach employs ideas from met-
ric learning in order to learn a task embedding that can be used to learn new tasks
from a few demonstrations [40]. In this work, we focus on settings where the agent
learns a single task with multiple goals. Moreover, our approach is centered around the
idea that learning efficiency can be greatly improved by allowing active cooperation
between the agent and a teacher.

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 7 of 29 44

2.6 Goal‑conditioned RL

Goal-conditioned reinforcement learning [44] constructs a goal-conditioned policy to push the
agent to acquire new skills and explore novel states. Universal value function approximators
[68] sample a fixed goal at the beginning of each episode and reward the agent when the cur-
rent goal can be achieved. Nonetheless, selecting relevant goals remains an open problem. A
solution [26] and its recent follow-up [55], proposed to generate increasingly difficult goals
to drive the agent towards the final goal. The method [60] learns an embedding for the goal
space using unsupervised learning and then choose the goals from that space. The recent work
[63], Skew-fit, proposes an exploration objective that maximizes state diversity. The key idea
is to learn a maximum-entropy goal distribution to match the weighted empirical distribu-
tion, where the rare states receive larger weights. Another line of work [28] focuses on goals
that provide maximal learning progress. However, defining when, to whom, and how to ask
instructions to the demonstrator remains an open problem [18]. Our method, which builds
on top of HER, provides an order of magnitude of speedup by taking advantage of very few
goal-driven demonstrations. We further introduce a novel goal sampling strategy based on the
disagreement with the demonstrator.

3 Background

In this section, we briefly review the reinforcement learning techniques that our method is
built on, including goal-conditioned learning and hindsight experience replay.

We consider a finite-horizon Markov decision process (MDP) as a tuple (S,A,P, r, �) , where
S is a set of states, A is a set of possible actions, P ∶ S × A × S → ℝ is a transition function,
r ∶ S × A → ℝ is a reward function, and � ∈ [0, 1] is a discount factor. We aim to find a policy
� ∶ S → A that maximizes the expected discounted reward, Rt = �[

∑T

t=0
� tr(st, at, st+1)].

In this work, we use a goal-conditioned formulation where the reward function and the pol-
icy are additionally conditioned on a goal, g ∈ G . At every timestep the agent gets as input not
only the current state but also the current goal, thus the policy selects the next action given a
state and a goal � ∶ S × G → A . The reward function becomes rt = rg(st, at) where rg is often
a binary function which represents whether the agent could reach the goal (i.e. �[st+1 == g] .
HER [4] showed that gathered trajectories can be artificially relabeled with new goals. The
central idea is to replay each episode with additional goals than the one the agent was trying
to reach. Namely, they replay each transition with the original goal pursued in the episode as
well as randomly selected goals along the trajectory. Since the transition probability is not
affected by the goal being pursued g, the tuple can be relabeled in hindsight. Thus, a transition
(st, at, st+1, g, r = 0) can be treated as (st, at, st+1, g

�

= st+1, r = 1) . By doing so, it drives the
agent to learn how to achieve multiple goals without simulating interactions—generating and
recomputing rewards of a single transition can be converted into many valid training examples.

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 8 of 29

4 Method

The challenges of injecting expert feedback into DRL are twofold. First, expert demonstra-
tions are limited, which entails that the agent needs to efficiently leverage a small amount
of demonstration data. Although a number of algorithms could in principle be used to learn
from demonstrations, standard methods can suffer from poor performance. This can hap-
pen when the state coverage of the expert trajectories is too narrow, or due to a discrepancy
between the agent’s goal and the demonstrated data. Second, demonstrating the entire task
trajectory multiple times is an inefficient way of soliciting information from humans, lack-
ing of generalization capability to new target goals.

The framework of Goal-driven Active Learning (GoAL) provides us a mechanism to
mitigate these problems by incrementally querying goal-driven demonstrations (Fig. 1).
Our approach (Algorithm 1) introduces human feedback into goal-conditioned learning
via Hindsight Experience Replay. Specifically, the agent receives feedback in the form
of short goal-driven demonstrations—the tutor is requested to reach a specific goal. We
decide how to query goal-driven demonstrations based on the agent’s needs and the

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 9 of 29 44

expected value of information of the query, drastically reducing the number of required
demonstrations.

Our method works as follows (see Algorithm 1). We first collect a trajectory based
on the goal being pursued (lines 4–10). Then, the agent decides whether it should
query a goal-driven demonstration to the demonstrator (line 11–12). After each query
(line 13), we perform expert relabeling to artificially generate more expert data (line
14). Expert relabeling is a type of data augmentation on the provided goal-driven
demonstrations. As an intuition, if the agent receives a demonstrated trajectory
(s0, a0, g), (s1, a1, g),… , (sk, sk, g) with g the goal being pursued, we can relabel transi-
tions with additional goals seen along the state trajectory. For instance, we can add new
transitions (s0, a0, s1), (s0, a0, s2) to the expert trajectory buffer. The imitator policy is
then trained to imitate the demonstration data (line 15). Then, we augment the policy
loss with an extra objective that aims to mimic the demonstrated behaviors (line 20–23).
The transitions used to train the policy are generated following a similar strategy as in
HER (line 16–19), except that we modified the goal sampling to take advantage of the
demonstrations (line 17). This process continues until the task is mastered. In the fol-
lowing section we describe the key components of our method.

4.1 Goal‑driven imitation

We assume a small dataset of tuples (si, ai, gi) extracted from expert trajectories, � . A
trajectory segment (also called goal-driven demonstration) is a sequence of observations
and actions, � = {(s0, a0, g), (s1, a1, g),… , (sk, ak, g)} , where g indicates the goal pursued
by the demonstrator. Our method involves an imitator policy f ∶ S × G → A that mimics
expert behaviors, parameterized by a set of trainable parameters � . The imitator policy
is trained with a regression loss L̄ : it predicts the action the demonstrator would have
taken given a pair of state and goal (si, gi) , a∗i ∼ f (a∗

i
|si, gi;�) . In the absence of domain

knowledge, a general-purpose choice is to train f� with a regression loss, the mean-
squared-error, L̄ =

1

�𝛺�
∑�𝛺�

i=1
��a∗

i
− ai��22.

A contribution of our paper consists in augmenting the policy loss with an extra term
to accommodate the goal-driven expert data. Given a minibatch of T transitions, the
imitation loss is given by:

Fig. 1 Goal-driven Active
Learning (GoAL). The imitator I
predicts the action the demon-
strator would have taken given
a pair of state and goal (st, gt)
provided by the environment E.
When the agent A fails to reach
the goal being pursued gt , a new
demonstration � with gt as the
target goal may be queried

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 10 of 29

where � is the current policy parameterized by � . In order to allow the agent to signifi-
cantly outperform the demonstrator—deviate significantly from the expert demonstrations,
we use a Q-filter function [54] in a goal-conditioned setting, which we extend to increase
the gap between “optimal” and “sub-optimal” transitions. In order to ensure that a transi-
tion provided by the demonstrator is significantly better than the agent’s policy, we propose
to filter irrelevant transitions via: �Q(st ,f (at|st ,gt),gt)−(Q(st ,𝜋(at|st ,gt),gt)−𝜂|Q(st ,𝜋(at|st ,gt),gt)|)>0 , where �
is a positive constant. This filtering enables our agent to improve significantly beyond the
expert demonstrations (see Sect. 5.4.2), which is especially relevant in the situation where
the demonstrators are non-experts or themselves learning the task [18].

The overall loss used to update the policy network is a combination of two losses:

where L indicates the loss function of any arbitrary DRL algorithms, and �1 and �2 are
hyperparameters to weight the importance of both loss components. Adding this auxiliary
objective provides the agent both the intention of the demonstrator and the ability to dis-
cover alternative strategies. Next, we show how to artificially increase the amount of dem-
onstrations by relabeling expert data.

4.1.1 Expert relabeling

To further enable sample-efficient learning in the real world, we present a relabeling strategy
to artificially generate more expert data. In other words, expert relabeling is a type of data
augmentation on the provided goal-driven demonstrations. As mentioned earlier, we collect
expert demonstrations in the form of trajectories, � = {(s0, a0, g), (s1, a1, g),… , (sk, sk, g)} ,
where g is the goal being pursued. The idea behind this method is that in a state si , the
associated action ai can be used to reach g, as well as new goals {si+1,… , sk}—the transi-
tion probability is not affected by the goal being pursued g. Therefore, we have the freedom
to artificially generate more expert data without additional queries, which are referred to as
imaginary samples since they are imagined by the agent.

(1)Le =
1

T

T∑

t=1

||�(at|st, gt;�) − f (at|st, gt;�)||22

(2)LD = �1L + �2Le

Fig. 2 Relabeling strategy. Given a human trajectory, we artificially generate more expert data by using as
the active goal the states within a reachability threshold N. The threshold N is necessary to discard poten-
tially sub-optimal examples (temporally far states)

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 11 of 29 44

In practice, we found that selecting all the future states like done in goalGail [19] not
an ideal solution, since distant goals can be reached using different actions. Besides, in
the context of active learning, adding imaginary sub-optimal samples may create conflicts
when the agent later on receives new feedback from the expert. Instead, we restrict the
creation of new imaginary samples to only short slices of the original trajectory. To do
so, we propose to use the number of times-steps to approximate the distance between two
states. The intuition behind is that temporally far states are more likely to be reached via
a different sequence of state-actions than close ones. Thus, the number of times-steps pro-
vides a simple strategy to discard sub-optimal samples. We relabel future states when this
distance is lower than a threshold N (Fig. 2): {si+1,… , smin(i+N,k)} . In our experiments, we
found that the GoAL performance is reasonably robust to the choice of this threshold and
that N can be simply selected based on the maximum number of time-steps per episode
(see Sect. 5.4.1 for more details). By artificially generating new demonstrations, we can
convert a single transition (s, g, a) into potentially many valid training examples, which is
particularly useful to decrease the number of queries to the demonstrator.

4.2 Query selection

An important component in this method is query selection, in which the agent needs to
decide which goals to query for demonstration. Our approach to decide when to query is
based on (1) the ability of the agent to reach the goal pursued in the episode, (2) the confi-
dence in the action prediction of the imitator policy. By requesting demonstrations in hard-
to-learn and low confidence situations, the depicted algorithm eliminates repetitive dem-
onstrations of already learned goals of the task and provides human feedback to the agent
when it struggles.

After experiencing each episode � , we evaluate the confidence of the imitator along the
state-action trajectory, if the goal was failed. For simplicity, a slight abuse of notation is
made by using C to denote the query score. A score above a threshold tqry results in a goal-
driven query—the demonstrator is requested to demonstrate how to achieve the failed goal.
We formally define the overall function to estimate C as:

where sk is the final state of the trajectory, g is the goal being pursued, and c is an estima-
tion function of the confidence for the pair (st, g) . Every time a new demonstration is col-
lected, the training transitions are recorded in � and we make 50 epochs of training. Rather
than using an ensemble-based uncertainty estimate as in prior work—bootstrap samples
evaluated by multiple models are used to estimate variance, we propose two novel methods
(quantile-confidence and bayesian-confidence) to estimate prediction confidence, c(st, g) .
In contrast with ensemble-based methods that add a significant overload, the proposed
strategies drastically reduce the computational cost. The parametrization is discussed fur-
ther in the next section.

4.2.1 Quantile‑confidence

One common solution for estimating confidence in the prediction relies on ensemble-based
uncertainty estimates, as done by Christiano et al. [17]. However, such an approach tends
to be computationally expensive [39] and inaccurate when operating in the low data regime
(with very few data). Instead, we develop a simple architecture for estimating confidence in

(3)C(�) = �[sk ≠ g]�(st ,g)∼�
c(st, g)

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 12 of 29

the prediction, which has little/no computational cost, works with most existing imitation-
based models, and is more robust against outliers [41, 74]. We propose to embrace deep
quantile regression to estimate model confidence. Rather than only predicting the mean,
the last layer of f� is used to predict each quantile separately. Assuming a set of goal-driven
demonstration data � , we run a regression algorithm to train f� with the following loss:

where

where q is the required quantile (0 < q < 1), and ai is the action the demonstrator took. We
typically use (0.3,0.5,0.8) as quantiles. We can express quantile-confidence, c(st, g) , by
measuring the prediction interval between the largest q′′ and smallest q′ quantile,
c(st, g) =

|||f (at|st, g;�)q�� − f (at|st, g;�)q�
||| . Please note that we use the median quantile (q =

0.5) in Eq. 1.

4.2.2 Bayesian‑confidence

Imitator policy confidence can also be modeled using bayesian models. However, in the
context of RL, their computational cost can be prohibitive. This problem can be mitigated
by using an estimation of Bayesian inference. It was shown that the use of dropout can be
interpreted as a Bayesian approximation of Gaussian process [31]. Therefore, we introduce
a dropout layer before every weight layer of our imitator policy network. To estimate pre-
dictive confidence, we collect the results of stochastic forward passes through the imitator
policy network:

where f dj (at|st, g;�) represents the model with dropout mask dj , D is a set of dropout
masks, and p is the predictive posterior mean, p = �dj∼D

f dj (at|st, g;�) . Since the forward
passes can be done concurrently, the method results in a running time identical to that of
standard dropout. We can expect the variance of unknown and far-away tuples to be larger
than known tuples. Please note that one advantage of using dropout is that it allows the
imitator policy to “smooth out” much of the noise in the data, making the imitator policy
more robust to noise in the demonstration data. Besides, this technique is particularly effec-
tive in the low-data regime to improve generalization of demonstrated behaviors. We com-
pare in Sect. 5.2 the impact of each strategy on our method.

4.3 Prioritized goal sampling

In the future HER sampling strategy, the new goals are randomly selected along the future
state-action trajectory. However, an RL agent can learn more effectively from some goals
than from others. Typically, some goals may be useful to the agent, but might become less
when the agent competence increases. Prioritized goal sampling (PGS) assigns high sam-
pling priority to key goals—in places where the expert and the agent strongly disagree. As

(4)L̄(q) =
1

|𝛺|

|𝛺|∑

i=1

𝜌(f (ai|si, gi;𝜗) − ai, q)

(5)𝜌(𝜀, q) =

{
q𝜀, if 𝜀 ≥ 0

(q − 1)𝜀, if 𝜀 < 0

(6)c(st, g) = �dj∼D
[f dj (at|st, g;�) − p]2

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 13 of 29 44

a criterion to quantify this disagreement, we measure the divergence in the action recom-
mendation between the imitator-network and the policy, which indicates how “surprising”
or “hard-to-learn” the goal is. Given a state st seen along an episode of T states and g the
current goal, we define the probability of sampling st as a new goal:

where ||�(at|st, g;�) − f (at|st, g;�)||22 is the deviation between the policy and expert. As a
result, PGS capitalizes on large disagreement to encourage sampling of goals that poten-
tially lead to large learning progress.

5 Experiments

In this section, we first describe implementation details and the tasks to be completed by
the agent. Then, we conduct experiments in multiple tasks from the Mujoco suite [61, 77].
Finally, we answer the following questions:

• What is the impact of the relabeling threshold on the imitator policy training?
• How does the Q-filter method impact the agent’s ability to outperform human demon-

strations?
• How important is the weight of the imitation loss?
• Is GoAL robust to noisy demonstrations?
• Can GoAL generalize to unseen goals?
• Does our method increase the state coverage of demonstrations?
• Is prioritized goal sampling an efficient way to select goals?
• What is the impact of the query budget on the performance?
• How important is the proposed confidence-based query selection?

5.1 Implementation details and tasks

Experiments are conducted on eight robotic tasks implemented in MujoCo. In the first set
of experiments, we consider four manipulation tasks (Fetch tasks) where the agent controls
a 7-DoF Sawyer arm: (1) Fetch Reach, (2) Fetch Push, (3) Fetch Pick & Place, and (4)
Fetch Slide. The end-effector (EE) is constrained to a 2-dimensional rectangle. In the sec-
ond set of experiments (ShadowHand tasks), we evaluate our framework on significantly
more challenging tasks with very sparse rewards and larger action spaces. The agent is
trained to manipulate physical objects via a human-like robot hand: (1) Hand Manipulate
Block, (2) Hand Manipulate Egg, (3) Hand Manipulate Pen, and (4) Hand Reach. The
observations are given in the form of continuous values and the action-space is also con-
tinuous. The performance metric we use is the percentage of goals that the agent is able to
reach. An episode is considered successful if the distance between the agent and the goal at
the end of the episode is less than a threshold defined by the task.

As our policy learning method, we rely on DDPG with HER. We refer to our algorithm
as Goal-driven Active Learning (GoAL). The critic and imitator policy networks consist
in 4 fully-connected layers with 256 hidden units. ReLU is used as the activation func-
tion expect for the last layer that used tanh, and the output value is scaled to the range of

(7)pg(st) =
���(at�st, g;�) − f (at�st, g;�)��22

∑T

j=t
���(aj�sj, g;�) − f (aj�sj, g;�)��22

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 14 of 29

each action dimension. Their parameters are optimized given as input pairs of state-goal.
Training is carried out with a fixed learning rate of 10−3 using the Adam optimizer [46],
with a batch size of 256. Please note that when using quantile-confidence, the last layer of
f� has one output for each quantile. When fitting multiple quantile regressions, it is possi-
ble that individual quantile regression estimates overlap, also known as quantile crossover

Fig. 3 Learning curves averaged over 10 runs (± SD) for different models: GoAL(bayesian),
GoAL(quantile), DDPG, HER, DDPG+Demo, and goalGail. The models are trained on Fetch task

Fig. 4 Average number of queries (± SD) made per environment

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 15 of 29 44

[12]—a prediction interval for a lower probability exceeds that of a higher probability. This
is unwanted because it does not respect the principle of cumulative distribution functions
where their associated inverse functions must be monotonically increasing. In other words,
there is no guarantee that the quantile estimates will be rank ordered. This especially hap-
pens when fitting the quantiles independently [12, 32]—a multi-headed neural network cal-
culates losses for each desired quantile separately. In order to fit the quantiles better and
reduce quantile crossover, we fit the quantiles together at the same time—a single-headed
neural network calculates the quantiles together. Note that although this doesn’t theoreti-
cally guarantee non-crossing regression quantiles, in practice it generally leads the quan-
tiles to be rank ordered.

In order to select the hyperparameters used for Fetch and ShadowHand tasks, we ran a
grid search with the ranges shown in Sect. 5.4. We also ran grid searches over the learning
rate ∈ [0.0001, 0.0005, 0.001, 0.005] , the number of hidden units ∈ [128, 256] , the query
threshold tqry ∈ [0.20, 0.21,… , 0.60] , the number of dropouts ∈ [100, 500, 1000] , and
p ∈ [0.05, 0.1, 0.2] . We also searched the annealing factor ∈ [0.96, 0.98, 0.99, 0.999] . As
the environments are procedurally generated we performed tuning on the validation set,
disjoint with the training set. When tuning, we consider the mean final reward of 10 train-
ing runs with the same set of hyperparameters as the objective, without any seed tuning.
For Fetch tasks, we use a query budget of 20 and we set tqry = 0.32 (Bayesian-confidence)
and tqry = 0.43 (quantile-confidence). For ShadowHand tasks, we use a query budget of 50,
tqry = 0.58 (Bayesian-confidence), and tqry = 0.27 (quantile-confidence). To generate our
demonstrations, we trained DDPG with Hindsight Experience Replay (HER) [4] for 50M
environment steps. This allows us to reproduce experiments easily. We used an implemen-
tation with the default hyperparameters given in the original work. In all our experiments,
Bayesian-confidence is estimated based on 500 dropout masks with p = 0.1 . The weights
of loss components were �1 = 1 and �2 = 0.003 unless stated otherwise and we anneal the
imitation loss weight �2 by 0.98 per 500 rollouts collected. As relabeling constant N, we
set the constant equal to half of the maximum number of time-steps per episode. Since we
account for the possibility that the learned policy outperforms expert demonstrations, we
employ the depicted Q-filter strategy with � = 0.015.

5.2 Fetch robotic tasks

We first perform experiments on four different Fetch tasks from the robotic domain built
on top of Mujoco: Fetch Reach, Fetch Push, Fetch Pick and Place, and Fetch Slide. We
first evaluate DDPG with Hindsight Experience Replay (HER) [4] with and without active-
goal driven learning (GoAL). Moreover, we compare our method against several baselines
including DDPG [49], DQfD [34], goalGail [19], and DDPG+Demo [54]. Please note
that we replace DQN by DDPG as learning algorithm in DQfD. We use 128 demonstra-
tions to guide the baseline methods. To generate these demonstrations, we randomly sam-
ple goals and request the expert to reach them. We show learning curves in Fig. 3. Our
method can learn comparable or superior policies using a small number of demonstrations.
For instance, on Pick and Place, in average only 9 queries were made by GoAL (see Fig-
ure 4). As expected, it ends up reaching similar final performance, however, our method
has a faster convergence rate. As can be observed, (offline) imitation-based approaches
learn fast at the beginning, but their final performance is capped. One reason is that after
extracting all task-relevant knowledge from the demonstrations, their convergence speed
becomes similar to that of the original HER. On the other hand, incrementally querying

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 16 of 29

new demonstrations enables us to overcome this problem, while keeping the number of
demonstrations very low. Quantile-confidence can be useful to obtain a more comprehen-
sive analysis of the agent’s confidence, and is more robust to extreme outliers in the goal-
driven demonstrations (e.g. providing the wrong action). Therefore, we believe that this
approach should be used when the feedback are provided by a non-expert. On the other
hand, Bayesian-confidence is particularly effective to “smooth out” much of the noise in
the demonstrations or randomness in the environment, and enables a better generalization
of goal-driven demonstrations in the low-data regime. Overall, this experiment highlights
that GoAL drastically reduces the training time in sparse and complex environments.

5.3 ShadowHand robotic tasks

In addition to the first robotic tasks, we evaluate our methodology in a more challenging
set of environments (ShadowHand): Hand Manipulate Block, Hand Manipulate Egg, Hand
Manipulate Pen, and Hand Reach. We provide an expert trajectory dataset of 400 demon-
strations to the baseline methods. Figure 5 plots the learning curve of all the models. We
can observe that our strategy helps to greatly improve convergence speed. Unlike our algo-
rithm, prior methods passively access the demonstration data, so we actively provide help
to our agent when it struggles. On these tasks, we found that goalGAIL does not receive
enough supervision to achieve optimal policies. Results highlight that the gap between
our approach and the others is increasing with the degree of sparsity. These results further

Fig. 5 Learning curves (mean ± SD) on ShadowHand tasks averaged over 10 runs for different models:
GoAL(bayesian), GoAL(quantile), DDPG, HER, DDPG+Demo, and goalGail

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 17 of 29 44

show that since our method is capable of adapting the set of demonstration trajectories to
match the learner’s goal, GoAL can escape the known “distribution mismatch” issue inher-
ent in standard (offline) imitation learning. Remarkably, the final performance of GoAL is
not capped and can even exceed expert-level performance. To the best of our knowledge,
this is the first approach operating in the low demonstration regime (less than 50 demon-
strations) that achieves a near-optimal score on the four ShadowHand tasks.

5.4 Ablation experiments

We also present an ablation study to investigate: (1) the importance of the relabeling
threshold, (2) the impact of the Q-filter, (3) the impact of the weight of the imitation loss,
(4) the robustness to imperfect demonstrations, (5) the generalization to unseen goals, (6)
the state coverage of queries, (7) the impact of prioritized goal sampling, (8) the size of
query budget, and (9) the importance of confidence-based query selection.

5.4.1 Relabeling threshold in imitator policy training

Relabeling the goal-driven demonstrations requires a threshold N to separate “opti-
mal” from “sub-optimal” transitions. Thus, the trained policy implicitly depends on
this threshold. Precisely, adding potentially sub-optimal transitions may hurt the per-
formance of the agent. We conduct a study where the threshold N is varied from 0.25
to 1.0. A threshold of 0.25 means that N is equal to one-fourth of the maximum of
time-steps per episode. Although all the goals can be used for relabeling, we find this
solution less than ideal (see Table 1) in some cases and may even hurt the performance.
This can happen for mainly two reasons: (1) conflicts arising from sub-optimal samples
recorded in the demonstration buffer, and (2) since the agent’s confidence for imaginary
sub-optimal samples is high, the agent struggles to identify regions where feedback is
the most needed. On the other hand, the results show that a reasonable choice of N is
between 0.5 or 0.75.

Table 1 Learning locomotion in Mujoco using different positive thresholds N when training the imitator
policy. Results are averaged over 10 random seeds (± SD)

Bold values indicate the best performing method
No seed tuning is performed

Method Percentage of goals achieved

Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

GoAL (bayesian)/N = 0.25 0.91 ± 0.03 0.95 ± 0.05 0.90 ± 0.03 0.87 ± 0.04
GoAL (quantile)/N = 0.25 0.90 ± 0.04 0.92 ± 0.02 0.92 ± 0.04 0.90 ± 0.02
GoAL (bayesian)/N = 0.50 0.97 ± 0.02 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.06
GoAL (quantile)/N = 0.50 0.96 ± 0.02 0.94 ± 0.03 0.95 ± 0.03 0.90 ± 0.05
GoAL (bayesian)/N = 0.75 0.96 ± 0.03 0.97 ± 0.05 0.93 ± 0.05 0.88 ± 0.04
GoAL (quantile)/N = 0.75 0.95 ± 0.04 0.94 ± 0.03 0.93 ± 0.04 0.86 ± 0.04
GoAL (bayesian)/N = 1.0 0.93 ± 0.04 0.94 ± 0.05 0.88 ± 0.05 0.79 ± 0.08
GoAL (quantile)/N = 1.0 0.92 ± 0.05 0.92 ± 0.06 0.91 ± 0.07 0.88 ± 0.04

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 18 of 29

5.4.2 Importance of the Q‑filter

One of the promises of our approach is its potential ability to exceeded the expert per-
formance. In this experiment, we verify if this promise holds. To this end, we conduct a
study where the threshold � of the Q-filter is varied from 0.001 to 0.1 as well as the method
training without Q-filter. Table 2 reports results of our methods, GoAL, on the four Fetch
tasks with different � . We can observe that using Q-filter allows the agent to outperform
the teacher by discarding sub-optimal demonstrations. On the other hand, the performance
of the agent trained without Q-filter are capped and cannot exceed the expert performance.
Please note that when � is too large (e.g. � = 0.1), the agent does not take into account the
demonstrations that are slightly better than its policy, slightly reducing its performance.
Table 2 further shows that the parameter � does not require to be fine-tuned for each task
(i.e. 0.03 ≥ � ≥ 0015) since the agents maintain acceptable performance. It is observed
that for most tasks, setting � = 0.03 or � = 0.0015 produced an effective trade-off between
exploiting the expert’s knowledge and leveraging the agent’s knowledge about the task.

5.4.3 Weight of imitation loss

Combining the policy loss and imitation loss involves a hyperparameter �2 , which weights
the importance of the imitation loss. This brings up an interesting question—what is the
impact of this hyperparameter on the performance of the agent? Ideally, the policy perfor-
mance should not be too sensitive to this hyperparameter. We perform a study for various
values of �2 in 0.001, 0.003, 0.006. Table 3 shows that the GoAL performance is robust to
the choice of this hyperparameter.

Table 2 Learning locomotion in Mujoco using different Q-filter thresholds �

Bold values indicate the best performing method
Results are averaged over 10 random seeds (± SD). No seed tuning is performed

Method Percentage of goals achieved

Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

GoAL (bayesian)/� = 0.1 0.92 ± 0.02 0.91 ± 0.03 0.93 ± 0.03 0.87 ± 0.04
GoAL (quantile)/� = 0.1 0.95 ± 0.03 0.90 ± 0.04 0.92 ± 0.05 0.64 ± 0.05
GoAL (bayesian)/� = 0.03 0.96 ± 0.03 0.94 ± 0.02 0.97 ± 0.04 0.86 ± 0.05
GoAL (quantile)/� = 0.03 0.97 ± 0.04 0.92 ± 0.03 0.95 ± 0.05 0.85 ± 0.03
GoAL(bayesian)/� = 0.015 0.97 ± 0.02 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.06
GoAL (quantile)/� = 0.015 0.96 ± 0.02 0.94 ± 0.03 0.95 ± 0.03 0.90 ± 0.05
GoAL (bayesian)/� = 0.001 0.89 ± 0.03 0.88 ± 0.05 0.90 ± 0.03 0.77 ± 0.05
GoAL (quantile)/� = 0.001 0.87 ± 0.02 0.89 ± 0.04 0.85 ± 0.06 0.73 ± 0.04
GoAL (bayesian)/No Q-filter 0.75 ± 0.05 0.71 ± 0.06 0.77 ± 0.12 0.68 ± 0.08
GoAL (quantile)/No Q-filter 0.69 ± 0.08 0.72 ± 0.09 0.70 ± 0.07 0.64 ± 0.09

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 19 of 29 44

5.4.4 Robustness to imperfect demonstrations

In the above experiments, we assume perfect demonstrations. However, the expert might
select not the best action or even lack knowledge about a goal. We study how our agents
perform when imperfect demonstrations are generated by the demonstrators. In order to
generate imperfect demonstrations, we add normal noise N(0, �2) to the teacher actions
with a probability � ∈ {0.05, 0.1, 0.2} and � = 0.03 . We report in Table 4 the performance
of our framework and several baselines. We observe that GoAL can still achieve acceptable
performance. For instance, the success rate of the proposed method remains larger than
0.80 on the three tasks (� = 0.05). Even though GoAL(bayesian) performs slightly worse
in the imperfect setting, it still improves performance as compared to the prior methods. A
reason is that dropout allows the imitator to “smooth out” much of the noise in the data,
making GoAL(bayesian) robust to noisy demonstrations. Moreover, annealing the imita-
tion loss weight and filtering the sub-optimal demonstrations allow us to escape from poor
local optima, improving significantly beyond the (imperfect) expert demonstrations. The
results demonstrate that our method is reasonably robust to noise in the demonstrations,
and hence non-expert can provide a feedback signal to the agent.

5.4.5 Generalization to unseen goals

In the previous section, we showed that our method learns to achieve a wide range of
goals. However, it remains unclear whether the agent has achieved this by “generaliz-
ing demonstrated trajectories”. To investigate this question, we train our agent on a set
of goals and evaluate its performance on a different set of goals (without additional que-
ries). From Table 5, we see that the agent can generalize to unseen goals, with a slight loss
in the performance. As the agent has already learned about parts of the environment, it
can leverage known similar goals to face an unseen situation. We can further observe that
GoAL(bayesian) tends to generalize to unseen situations better than GoAL(quantile). We
hypothesize that using dropout in the imitator policy network prevents the network to over-
fit the provided goal-driven demonstrations. Moreover, the results highlight that Bayesian-
confidence is slightly more accurate to estimate the agent’s confidence than quantile-con-
fidence, improving the value information of the queries. Experimental results suggest that

Table 3 Learning locomotion in Mujoco using different imitation loss weights

Bold values indicate the best performing method
Results are averaged over 10 random seeds (± SD). No seed tuning is performed

Method Percentage of goals achieved

Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

GoAL (bayesian) / �2 = 0.001 0.95 ± 0.03 0.93 ± 0.05 0.94 ± 0.07 0.88 ± 0.08
GoAL (quantile) / �2 = 0.001 0.96 ± 0.04 0.92 ± 0.04 0.91 ± 0.05 0.89 ± 0.05
GoAL (bayesian) / �2 = 0.003 0.97 ± 0.02 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.06
GoAL (quantile) / �2 = 0.003 0.96 ± 0.02 0.94 ± 0.03 0.95 ± 0.03 0.90 ± 0.05
GoAL (bayesian) / �2 = 0.006 0.97 ± 0.02 0.95 ± 0.06 0.92 ± 0.05 0.90 ± 0.04
GoAL (quantile) / �2 = 0.006 0.94 ± 0.04 0.93 ± 0.03 0.93 ± 0.04 0.86 ± 0.06

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 20 of 29

Ta
bl

e
4

 P
er

ce
nt

ag
e

of
 g

oa
ls

 a
ch

ie
ve

d
fro

m
 im

pe
rfe

ct
 d

em
on

str
at

io
ns

, w
he

re
 �

 is
 th

e
pr

ob
ab

ili
ty

 o
f p

ro
vi

di
ng

 a
 su

b-
op

tim
al

 a
ct

io
n

B
ol

d
va

lu
es

 in
di

ca
te

 th
e

be
st

pe
rfo

rm
in

g
m

et
ho

d
Th

e
re

su
lts

 a
re

 av
er

ag
ed

 a
cr

os
s 1

0
ra

nd
om

 se
ed

s (
±

 S
D

).
W

e
se

t t
he

 n
um

be
r o

f q
ue

rie
s t

o
20

�
=

0.
05

�
=

0.
1

�
=

0.
2

M
et

ho
d

Fe
tc

h
Pu

sh
Fe

tc
h

Pi
ck

 &
 P

la
ce

Fe
tc

h
Sl

id
e

Fe
tc

h
Pu

sh
Fe

tc
h

Pi
ck

 &
 P

la
ce

Fe
tc

h
Sl

id
e

Fe
tc

h
Pu

sh
Fe

tc
h

Pi
ck

 &
 P

la
ce

Fe
tc

h
Sl

id
e

go
al

G
ai

l
0.

91
 ±

 0
.0

4
0.

84
 ±

 0
.0

6
0.

72
 ±

 0
.0

8
0.

88
 ±

 0
.0

5
0.

78
 ±

 0
.1

1
0.

70
 ±

 0
.0

9
0.

74
 ±

 0
.0

8
0.

62
 ±

 0
.1

4
0.

62
 ±

 0
.1

3
D

D
PG

 +
 D

em
o

0.
89

 ±
 0

.0
5

0.
81

 ±
 0

.0
7

0.
48

 ±
 0

.0
8

0.
72

 ±
 0

.0
8

0.
62

 ±
 0

.1
4

0.
30

 ±
 0

.1
2

0.
51

 ±
 0

.1
5

0.
47

 ±
 0

.1
8

0.
21

 ±
 0

.2
0

G
oA

 L
(b

ay
es

ia
n)

0.
94

 ±
 0

.0
6

0.
83

 ±
 0

.0
6

0.
90

 ±
 0

.1
0

0.
91

 ±
 0

.0
8

0.
80

 ±
 0

.1
0

0.
87

 ±
 0

.1
2

0.
85

 ±
 0

.0
6

0.
77

 ±
 0

.0
8

0.
84

 ±
 0

.1
4

G
oA

L
(q

ua
nt

ile
)

0.
92

 ±
 0

.0
5

0.
94

 ±
 0

.1
3

0.
91

 ±
 0

.0
7

0.
88

 ±
 0

.0
8

0.
72

 ±
 0

.1
4

0.
69

 ±
 0

.0
7

0.
77

 ±
 0

.1
3

0.
66

 ±
 0

.1
2

0.
62

 ±
 0

.1
0

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 21 of 29 44

the set of collected trajectories provides a wide enough state coverage, leading to an effi-
cient generalization.

5.4.6 State coverage of queries

In this experiment, we show that our method is efficient at querying demonstrations and
can keep the level of redundancy at a minimum. To do so, we show state visitation heat-
maps of trajectories queried by our method over 100 runs on a simple 2D navigation envi-
ronment. The agent starts in the center of the box, and can take actions to directly move its
position. In this task, the agent needs to navigate itself to a target position (x,y) that is ran-
domly generated by the environment. Figure 6 illustrates that trajectories requested using
our method cover most of the states. One reason is that similar goals are not requested
for demonstrations since the confidence is large enough. Thus, the agent explores further
and makes queries in places where it struggles. On the other hand, as the agent (without

(a) With confidence (b) Without confidence

Fig. 6 State visitation heatmaps of the demonstrations queried by the GoAL agent with Bayesian-confi-
dence (left) and without confidence prediction (right). The agent starts in the middle of the board (white
square) and has to navigate to a target position chosen by the environment. The left figure shows that the
proposed method to select queries significantly increases state coverage compared to the agent trained with-
out confidence-bases query selection (right)

Table 5 Evaluation of the agent trained on several Mujoco tasks (“with fine-tuning”)

To investigate whether the agent is able to generalize the demonstrated trajectories, we then evaluate the
agent’s performance on a different set of goals without querying new demonstrations (“without fine-tun-
ing”). We report the results averaged over 10 seeds (± SD)

Method Percentage of goals achieved

Fetch Reach (0.5M) Fetch Push (3M) Fetch Pick &
Place (3M)

Fetch Slide (3M)

With fine-tuning (bayesian) 0.97 ± 0.02 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.06
With fine-tuning (quantile) 0.96 ± 0.02 0.94 ± 0.03 0.95 ± 0.03 0.90 ± 0.05
Without fine-tuning (bayesian) 0.95 ± 0.03 0.84 ± 0.08 0.93 ± 0.11 0.85 ± 0.10
Without fine-tuning (quantile) 0.93 ± 0.04 0.79 ± 0.06 0.85 ± 0.08 0.72 ± 0.09

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 22 of 29

Bayesian-confidence) fails to reach the goals being pursued, it quickly exhausts its query
budget by making redundant queries. As a result, we can expect imitation learning to be
efficient only near the center of the box. This issue becomes even more noticeable as the
size or the complexity of the environment is increased. In general we discovered that the
depicted algorithm improves state coverage and eliminates the need for unnecessary dem-
onstrations of already acquired behaviors.

5.4.7 Using prioritized goal sampling

One legitimate question is to study the impact of the prioritized goal sampling on the per-
formance of the algorithm. We conduct a study with and without prioritized goal sampling
(PGS). As shown in Table 6, PGS produces faster convergence speed in three environ-
ments, including Fetch Reach, Fetch Pick & Place, and Fetch Slide. For example, on Fetch
Reach, PGS reduces the number of interactions to converge by ≈ 28 % for GoAL(bayesian)
and ≈ 12 % for GoAL(quantile). Furthermore, the results show that PGS does not signifi-
cantly deteriorate performance, and in some cases our agent can reach higher final perfor-
mance than running pure goal sampling. Please note that PGS slightly deteriorates per-
formance on both Fetch Push and Fetch Slide but also generally reduces the number of
necessary training steps. Overall, it confirms that the most important goals for replays are
the ones where the disagreement in the prediction is maximized.

Table 6 Learning locomotion in Mujoco, with and without prioritized goal sampling (PGS)

Bold values indicate the best performing method
Results are averager over 10 random seeds. No seed tuning is performed

Percentage of goals achieved (convergence speed ×103 training steps)

Method Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

GoAL (bayesian) 0.97 (122) 0.96 (982) 0.96 (812) 0.87 (1850)
GoAL (quantile) 0.96 (241) 0.94 (1023) 0.95 (1073) 0.90 (2609)
GoAL (bayesian) without PGS 0.96 (157) 0.97 (1256) 0.95 (1229) 0.85(2044)
GoAL (quantile) without PGS 0.96 (270) 0.95 (883) 0.94 (1627) 0.91 (2953)

Fig. 7 Learning curves averaged over 10 runs (± SD) on the Fetch Pick & Place task, with different query
budgets

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 23 of 29 44

5.4.8 Query budget

We also report evaluations showing the effect of increased query budget. Figure 7 demon-
strates that agents trained with a larger query budget obtain higher mean returns after simi-
lar numbers of updates. However, despite a small query budget, our method can still learn
near optimal policies. We can draw the observation that as the query budget increases, the
learning effect on the agent gradually improves. However, for the results with 20 and 50
queries, we can see that even if the number of queries significantly differs, the difference
in learning effect can be negligible. This can happen when queried demonstrations cover
a broad state space and therefore the agent does not need to make additional queries. As
a result, our method leverages a small amount of demonstrations that cover task-relevant
regions of the state space and outperforms the baselines by a large margin (see Sect. 5.2).

5.4.9 Importance of confidence‑based query selection

Finally, to quantify the importance of confidence-based query selection, we compare
the performance of our architecture with and without confidence-based query selection.
Table 7 plots the mean episode-returns obtained for different tasks. We observe that includ-
ing confidence-based query selection always leads to notably better episode-returns, indi-
cating that it is useful to select queries based on the agent’s confidence. We observed that
using confidence-based query selection helps the agent to select task-relevant queries that
will have a large impact on its learning progress. On the other hand, the agents trained
without confidence check quickly exhaust their query budget by querying goals easy to
reach or goals similar to already encountered situations, leading to an abundance of irrel-
evant or unnecessary demonstrations.

6 Discussion

We have constructed a mechanism to utilize goal-driven demonstrations along with
goal-conditioned reinforcement learning. In order to greatly reduce the number of
required demonstrations, we propose to query the demonstrator in states where the agent
struggles and the confidence in the action prediction is low. This concern is relevant
when cooperating with human teachers, in particular since human effort is limited by
factors such as attention span or cost of interactions [18]. Thus, it is desirable to limit
the number of queries to only those that are most needed. In the proposed method, even

Table 7 Learning locomotion in Mujoco with and without confidence-based query selection

Bold values indicate the best performing method
Results are averaged over 10 random seeds (± SD). No seed tuning is performed

Method Percentage of goals achieved

Fetch Reach Fetch Push Fetch Pick & Place Fetch Slide

GoAL (bayesian) 0.97 ± 0.02 0.96 ± 0.04 0.96 ± 0.04 0.87 ± 0.06
GoAL (quantile) 0.96 ± 0.02 0.94 ± 0.03 0.95 ± 0.03 0.90 ± 0.05
GoAL (no confidence) 0.82 ± 0.07 0.61 ± 0.03 0.65 ± 0.03 0.53 ± 0.06

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 24 of 29

very small amounts of queries (less than 50 queries) let us outperform prior imitation-
based approaches on Fetch and ShadowHand tasks. These games involve sparse and
delayed rewards. These results suggest that GoAL can greatly benefit in exploration effi-
ciency and could help to expand the possible applications of RL.

That being said, we acknowledge that our approach has certain limitations. HER
relies on a reward function R(s, a, g) to relabel additional goals used for replay. Deriving
a good reward function is not straightforward in environments where goals are images.
One solution inspired by RIG [55] is to measure the distance between two images in a
latent space. We leave it to future work to explore this direction further.

Another limitation is the need for demonstrations which can be challenging in some
environments. If demonstrations are not available, one solution is to reuse successful
rollouts as demonstration data [27]. It may also be possible to reuse imperfect agent
policies trained on similar tasks to generate the demonstrations.

So far, ablation analysis in Sect. 5.4 confirmed the above-mentioned intuitions but
lacked theoretical understanding. In future work, we aim to improve the theoretical
understanding of our approach, more specifically, how Q-filter relates to the capability
of the algorithm for outperforming expert demonstrators, convergence speed, and how
the number of queries contributes to GoAL performance. In standard passive imitation
learning, several work such as [82] or [13], have been dedicated to provide theoretical
and safety guarantees. In active imitation learning, similar attempts [42, 43] were made.
Despite the significant empirical progresses, many theoretical aspects remain largely
unknown. The major difficulty comes from the underlying temporal dependency of the
demonstration data and the difficulty to provide guarantees due to human factors. Nev-
ertheless, developing strong theoretical guarantees will be useful to deploy our system
in the real world.

In the current version of GoAL, the imitation relies on a mean squared error. A poten-
tially more efficient imitation approach would be to use techniques related to Batch RL [15,
29]. In detail, it was shown that cloning a narrow set of expert trajectories using standard
off-policy RL can result in extrapolation error [30]. Namely, the agent quickly learns to
select non-expert actions under the guise of optimistic extrapolation. However, the agent
does not consider the accuracy of the estimate. As a result, unfamiliar state-action transi-
tions outside the batch may be viewed over-optimistically. A solution to address the extrap-
olation issue is to add a batch constraint to the off-policy algorithm [30], which we leave
for future work.

One promising direction is to replace the human expert with another agent’s advice.
After the learner determines when to query a prospective teacher, it may be possible to
query another agent that has already acquired knowledge about the situation. This inter-
agent teaching strategy has been used to solve tasks such as video game playing [76], but it
remains an open problem in complex tasks [18]. Another possible solution could be to train
the agent on a mixture of demonstration data collected from an agent and a human. We
believe that exploring multi-agent collaboration is an important direction in order to further
reduce human effort.

Another exciting future direction is to train GoAL on physical robots. It has been shown
that HER trained on simulated data can be deployed on a physical fetch robot [4]. How-
ever, directly training DRL on physical robots remains an open problem. We can expect
our method to benefit in sample efficiency and to significantly reduce the number of
interactions.

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 25 of 29 44

7 Conclusion

In this paper we presented Goal-driven Active Learning (GoAL), a method introducing
interactive goal-driven demonstrations to both learn more effectively and efficiently. Goal-
driven demonstrations do not intend to demonstrate the overall task, but help the agent
to fulfill particular intermediate goals when it struggles. This novel form of human guid-
ance is less expensive and more intuitive than pure demonstrations, while ensuring that
the provided knowledge match the agent’s needs, hence escaping the known “distribution
mismatch” issues of prior work. Unlike traditional methods of imitation learning where
the agent passively accesses to the demonstration data, our method actively decides when
to request demonstrations based on the confidence of the agent. We introduced and stud-
ied the effect of two strategies to measure the model’s confidence. Finally, we proposed to
promote goal sampling in places where the agent strongly disagrees with the demonstrator,
and we experimentally showed that it improves the performance of GoAL. Our method
shows substantial improvements over prior work in the Mujoco benchmark suite. Remark-
ably, the depicted algorithmic framework can match the basic demonstration-level perfor-
mance and even exceed expert-level performance. Furthermore, GoAL learns to reach a
wide range of configurations from the same set of demonstrated trajectories. These results
suggest that GoAL can greatly benefit in exploration efficiency and could help to expand
the possible applications of RL. In the long run it would be desirable to incorporate adap-
tive confidence threshold to further improve query selection. Another intriguing direction
for future work is to drive learning in new tasks in a few-shot style.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning (pp. 1–8).
 2. Agarwal, P., de Beaucorps, P., & de Charette, R. (2021). Sparse curriculum reinforcement learning for

end-to-end driving. 2103.09189.
 3. Amir, O., Kamar, E., Kolobov, A., & Grosz, B. J. (2016). Interactive teaching strategies for agent

training. In Proceedings of the twenty-fifth international joint conference on artificial intelligence (pp.
804–811).

 4. Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J.,
Abbeel, O.P., & Zaremba, W. (2017). Hindsight experience replay. In Advances in neural information
processing systems (pp. 5048–5058).

 5. Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from dem-
onstration. Robotics and autonomous systems, 57(5), 469–483.

 6. Bassich, A., Foglino, F., Leonetti, M., & Kudenko, D. (2020). Curriculum learning with a progression
function. arXiv preprint arXiv: 20080 0511.

 7. Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., & Munos, R. (2016). Unifying
count-based exploration and intrinsic motivation. In Proceedings of advances in neural information
processing systems (pp. 1471–1479).

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/200800511

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 26 of 29

 8. Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Proceedings of
the 26th annual international conference on machine learning (pp. 41–48).

 9. Bougie, N., & Ichise, R. (2019). Skill-based curiosity for intrinsically motivated reinforcement learn-
ing. Machine Learning, 493–512.

 10. Bougie, N., Cheng, L. K., & Ichise, R. (2018). Combining deep reinforcement learning with prior
knowledge and reasoning. ACM SIGAPP Applied Computing Review, 18(2), 33–45.

 11. Burda, Y., Edwards, H., Storkey, A., & Klimov, O. (2019). Exploration by random network distillation.
In Proceedings of the international conference on learning representations.

 12. Cannon, A. J. (2018). Non-crossing nonlinear regression quantiles by monotone composite quantile
regression neural network, with application to rainfall extremes. Stochastic Environmental Research
and Risk Assessment, 32(11), 3207–3225. https:// doi. org/ 10. 1007/ s00477- 018- 1573-6

 13. Chen, M., Wang, Y., Liu, T., Yang, Z., Li, X., Wang, Z., & Zhao, T. (2020). On computation and
generalization of generative adversarial imitation learning. In International conference on learning
representations

 14. Chen, S. A., Tangkaratt, V., Lin, H. T., & Sugiyama, M. (2019). Active deep q-learning with demon-
stration. Machine Learning, 1–27.

 15. Chen, X., Zhou, Z., Wang, Z., Wang, C., Wu, Y., & Ross, K. (2020b). Bail: Best-action imitation
learning for batch deep reinforcement learning. Advances in Neural Information Processing Systems
33

 16. Chernova, S., & Veloso, M. (2007). Confidence-based policy learning from demonstration using
gaussian mixture models. In Proceedings of the international joint conference on autonomous agents
and multiagent systems (pp. 1–8).

 17. Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., & Amodei, D. (2017). Deep reinforce-
ment learning from human preferences. In Advances in Neural information processing systems (pp.
4299–4307).

 18. Da Silva, F. L., Warnell, G., Costa, A. H. R., & Stone, P. (2020). Agents teaching agents: Asurvey on
inter-agent transfer learning. Autonomous Agents and Multi-Agent Systems, 34(1), 1–17.

 19. Ding, Y., Florensa, C., Abbeel, P., & Phielipp, M. (2019). Goal-conditioned imitation learning. In
Advances in neural information processing systems (pp. 15298–15309).

 20. Duan, Y., Andrychowicz, M., Stadie, B., Jonathan Ho, O., Schneider, J., Sutskever, I., Abbeel, P., &
Zaremba, W. (2017). One-shot imitation learning. In Advances in neural information processing sys-
tems (Vol. 30).

 21. Eysenbach, B., Gupta, A., Ibarz, J., & Levine, S. (2019). Diversity is all you need: Learning skills
without a reward function. In International conference on learning representations.

 22. Fachantidis, A., Taylor, M. E., & Vlahavas, I. (2019). Learning to teach reinforcement learning agents.
Machine Learning and Knowledge Extraction, 1(1), 21–42.

 23. Fan, Y., Tian, F., Qin, T., Li, X. Y., & Liu, T. Y. (2018). Learning to teach. In International conference
on learning representations.

 24. Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning (pp. 1126–1135).

 25. Finn, C., Yu, T., Zhang, T., Abbeel, P., & Levine, S. (2017). One-shot visual imitation learning via
meta-learning. In Proceedings of the 1st annual conference on robot learning, Proceedings of machine
learning research (Vol. 78, pp. 357–368).

 26. Florensa, C., Held, D., Geng, X., & Abbeel, P. (2017). Automatic goal generation for reinforcement
learning agents. arXiv preprint: arXiv: 17050 6366.

 27. Florensa, C., Held, D., Wulfmeier, M., Zhang, M., & Abbeel, P. (2017) Reverse curriculum generation
for reinforcement learning. arXiv preprint arXiv: 17070 5300.

 28. Forestier, S., Mollard, Y., & Oudeyer, P.Y. (2017). Intrinsically motivated goal exploration processes
with automatic curriculum learning. arXiv preprint: arXiv: 17080 2190.

 29. Fujimoto, S., Conti, E., Ghavamzadeh, M., & Pineau, J. (2019). Benchmarking batch deep reinforce-
ment learning algorithms. arXiv preprint arXiv: 19100 1708

 30. Fujimoto, S., Meger, D., & Precup, D. (2019). Off-policy deep reinforcement learning without explora-
tion. In International conference on machine learning, PMLR (pp. 2052–2062).

 31. Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In Proceedings of the international conference on machine learning (pp.
1050–1059).

 32. Gasthaus, J., Benidis, K., Wang, Y., Rangapuram, S. S., Salinas, D., Flunkert, V., & Januschowski, T.
(2019). Probabilistic forecasting with spline quantile function rnns. In The 22nd international confer-
ence on artificial intelligence and statistics (pp. 1901–1910).

https://doi.org/10.1007/s00477-018-1573-6
http://arxiv.org/abs/170506366
http://arxiv.org/abs/170705300
http://arxiv.org/abs/170802190
http://arxiv.org/abs/191001708

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 27 of 29 44

 33. Graves, A., Bellemare, M. G., Menick, J., Munos, R., & Kavukcuoglu, K. (2017). Automated cur-
riculum learning for neural networks. In Proceedings of the 34th international conference on machine
learning (pp. 1311–1320).

 34. Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan, J., Sendona-
ris, A., Osband, I., Dulac-Arnold, G., Agapiou, J., Leibo, J. Z., & Gruslys, A. (2018). Deep q-learning
from demonstrations. In Proceedings of the annual meeting of the association for the advancement of
artificial intelligence.

 35. Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. In Advances in neural informa-
tion processing systems (pp. 4565–4573).

 36. Houthooft, R., Chen, X., Chen, X., Duan, Y., Schulman, J., De Turck, F., & Abbeel, P. (2016). Vime:
Variational information maximizing exploration. In Proceedings of advances in neural information
processing systems (pp 1109–1117).

 37. Hsu, D. (2019). A new framework for query efficient active imitation learning. arXiv preprint arXiv:
19121 3037.

 38. Huang, S., & Ontañón, S. (2020). Action guidance: Getting the best of sparse rewards and shaped
rewards for real-time strategy games. 2010.03956.

 39. Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., & Amodei, D. (2018). Reward learning from
human preferences and demonstrations in atari. In Advances in neural information processing systems
(pp 8011–8023).

 40. James, S., Bloesch, M., & Davison, A. J. (2018). Task-embedded control networks for few-shot imita-
tion learning. In Conference on robot learning (pp 783–795).

 41. John, O. O. (2015). Robustness of quantile regression to outliers. American Journal of Applied Math-
ematics and Statistics, 3(2), 86–88.

 42. Judah, K., Fern, A., & Dietterich, T.G. (2012). Active imitation learning via reduction to iid active
learning. arXiv preprint arXiv: 12104 876.

 43. Judah, K., Fern, A. P., Dietterich, T. G., & Tadepalli, P. (2014). Active imitation learning: Formal and
practical reductions to i.i.d. learning. Journal of Machine Learning Research, 15(120), 4105–4143.

 44. Kaelbling, L. P. (1993). Learning to achieve goals. In Proceedings of the international joint confer-
ences on artificial intelligence (pp 1094–1098).

 45. Kang, B., Jie, Z., & Feng, J. (2018). Policy optimization with demonstrations. In International con-
ference on machine learning (pp. 2469–2478).

 46. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:
14126 980.

 47. Klyubin, A. S., Polani, D., & Nehaniv, C. L. (2005). Empowerment: A universal agent-centric
measure of control. Proceedings of the IEEE Congress on Evolutionary Computation, 1, 128–135.

 48. Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor poli-
cies. The Journal of Machine Learning Research, 17(1), 1334–1373.

 49. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, .
(2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv: 15090 2971.

 50. Machado, M. C., Bellemare, M. G., & Bowling, M. (2018). Count-based exploration with the suc-
cessor representation. arXiv preprint arXiv: 18071 1622

 51. Martin, J., Sasikumar, S. N., Everitt, T., & Hutter, M. (2017). Count-based exploration in feature
space for reinforcement learning. In Proceedings of the international joint conference on artificial
intelligence.

 52. Mathewson, K.W., Pilarski, P.M. (2017). Actor-critic reinforcement learning with simultaneous
human control and feedback. arXiv preprint arXiv: 17030 1274.

 53. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., & Georg. (2015). Human-level control through deep reinforcement
learning. Nature, 518(7540), 529.

 54. Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2018). Overcoming explora-
tion in reinforcement learning with demonstrations. In Proceedings of the IEEE international con-
ference on robotics and automation (pp. 6292–6299). IEEE.

 55. Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., & Levine, S. (2018b). Visual reinforcement
learning with imagined goals. In Proceedings of the international conference on machine learning
(pp. 9191–9200).

 56. Ng, A. Y., & Russell, S. J. (2000). Algorithms for inverse reinforcement learning. In Proceedings of
the international conference on machine learning (pp 663–670).

 57. Ostrovski, G., Bellemare, M. G., van den Oord, A., & Munos, R. (2017). Count-based exploration
with neural density models. In Proceedings of the international conference on machine learning
(pp. 2721–2730)

http://arxiv.org/abs/191213037
http://arxiv.org/abs/191213037
http://arxiv.org/abs/12104876
http://arxiv.org/abs/14126980
http://arxiv.org/abs/14126980
http://arxiv.org/abs/150902971
http://arxiv.org/abs/180711622
http://arxiv.org/abs/170301274

 Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

44 Page 28 of 29

 58. Oudeyer, P. Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic motivation systems for autonomous
mental development. IEEE transactions on evolutionary computation, 11(2), 265–286.

 59. Pathak, D., Agrawal, P., Efros, A. A., & Darrell, T. (2017). Curiosity-driven exploration by self-
supervised prediction. In Proceedings of the international conference on international conference
on machine learning (pp. 2778–2787).

 60. Pere, A., Forestier, S., Sigaud, O., & Oudeyer, P. Y. (2018). Unsupervised learning of goal spaces
for intrinsically motivated goal exploration. In Proceedings of the international conference on
learning representations.

 61. Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schneider, J., Tobin,
J., Chociej, M., Welinder, P., Kumar, V., & Zaremba, W. (2018). Multi-goal reinforcement learning:
Challenging robotics environments and request for research. arXiv preprint arXiv: 18020 9464.

 62. Pomerleau, D. A. (1988). Alvinn: an autonomous land vehicle in a neural network. In Proceedings
of the 1st international conference on neural information processing systems (pp 305–313).

 63. Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., & Levine, S. (2019). Skew-fit: State-covering
self-supervised reinforcement learning. arXiv preprint:190303698.

 64. Racaniere, S., Lampinen, A., Santoro, A., Reichert, D., Firoiu, V., & Lillicrap, T. (2020). Auto-
mated curriculum generation through setter-solver interactions. In International conference on
learning representations

 65. Saunders, W., Sastry, G., Stuhlmueller, A., & Evans, O. (2018). Trial without error: Towards safe
reinforcement learning via human intervention. In Proceedings of the international conference on
autonomous agents and multiAgent systems (pp. 2067–2069).

 66. Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Pollefeys, M., Lillicrap, T., & Gelly, S. (2019).
Episodic curiosity through reachability. In Proceedings of the international conference on learning
representations.

 67. Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in cognitive sciences,
3(6), 233–242.

 68. Schaul, T., Horgan, D., Gregor, K., & Silver, D. (2015). Universal value function approximators. In
Proceedings of the international conference on machine learning (pp 1312–1320).

 69. Shon, A. P., Verma, D., & Rao, R. P. (2007). Active imitation learning. In Proceedings of the AAAI
conference on artificial intelligence (pp. 756–762).

 70. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587), 484.

 71. Stadie, B. C., Levine, .S, & Abbeel, P. (2015). Incentivizing exploration in reinforcement learning with
deep predictive models. arXiv preprint arXiv: 15070 0814.

 72. Strehl, A. L., & Littman, M. L. (2008). An analysis of model-based interval estimation for markov
decision processes. Journal of Computer and System Sciences, 74(8), 1309–1331.

 73. Sun, W., Venkatraman, A., Gordon, G.J., Boots, B., Bagnell, J.A. (2017). Deeply aggrevated: Differen-
tiable imitation learning for sequential prediction. In Proceedings of the 34th international conference
on machine learning (Vol. 70, pp. 3309–3318).

 74. Tagasovska, N., & Lopez-Paz, D. (2019). Single-model uncertainties for deep learning. Advances in
Neural Information Processing Systems, 32, 6417–6428.

 75. Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J., De Turck, F., &
Abbeel, P. (2017). # exploration: Astudy of count-based exploration for deep reinforcement learning.
In Proceedings of the 31st international conference on neural information processing systems (pp.
2750–2759).

 76. Taylor, M. E., Carboni, N., Fachantidis, A., Vlahavas, I., & Torrey, L. (2014). Reinforcement learning
agents providing advice in complex video games. Connection Science, 26(1), 45–63.

 77. Todorov, E., Erez, T., & Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In IEEE/
RSJ international conference on intelligent robots and systems (pp. 5026–5033).

 78. Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., Heess, N., Rothörl, T., Lampe, T.,
& Riedmiller, M. (2017). Leveraging demonstrations for deep reinforcement learning on robotics prob-
lems with sparse rewards. arXiv preprint arXiv: 17070 8817.

 79. Warnell, G., Waytowich, N., Lawhern, V., & Stone, P. (2018). Deep tamer: Interactive agent shap-
ing in high-dimensional state spaces. In Thirty-second AAAI conference on artificial intelligence (pp
1545–1554).

 80. Wilson, A., Fern, A., Tadepalli, P. (2012). A bayesian approach for policy learning from trajectory
preference queries. In Advances in neural information processing systems (pp. 1133–1141).

http://arxiv.org/abs/180209464
http://arxiv.org/abs/150700814
http://arxiv.org/abs/170708817

Autonomous Agents and Multi-Agent Systems (2021) 35:44

1 3

Page 29 of 29 44

 81. Wirth, C., Akrour, R., Neumann, G., & Fürnkranz, J. (2017). A survey of preference-based reinforce-
ment learning methods. The Journal of Machine Learning Research, 18(1), 4945–4990.

 82. Yin, H., Seiler, P., Jin, M., & Arcak, M. (2020). Imitation learning with stability and safety guarantees.
arXiv preprint arXiv: 20120 9293.

 83. Zaremba, W., & Sutskever, I. (2015). Learning to execute. 1410.4615.
 84. Zhang, X., & Ma, H. (2018). Pretraining deep actor-critic reinforcement learning algorithms with

expert demonstrations. arXiv preprint arXiv: 18011 0459.
 85. Zimmer, M., Viappiani, P., & Weng, P. (2014). Teacher-student framework: Areinforcement learning

approach. In AAMAS workshop autonomous robots and multirobot systems.
 86. Zuo, G., Zhao, Q., Lu, J., & Li, J. (2020). Efficient hindsight reinforcement learning using demonstra-

tions for robotic tasks with sparse rewards. International Journal of Advanced Robotic Systems, 17.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/201209293
http://arxiv.org/abs/180110459

	Goal-driven active learning
	Abstract
	1 Introduction
	2 Related work
	2.1 Curiosity-driven exploration
	2.2 Imitation learning (IL) and RL
	2.3 Learning from interactive human feedback
	2.4 Curriculum learning
	2.5 Few-shot imitation learning
	2.6 Goal-conditioned RL

	3 Background
	4 Method
	4.1 Goal-driven imitation
	4.1.1 Expert relabeling

	4.2 Query selection
	4.2.1 Quantile-confidence
	4.2.2 Bayesian-confidence

	4.3 Prioritized goal sampling

	5 Experiments
	5.1 Implementation details and tasks
	5.2 Fetch robotic tasks
	5.3 ShadowHand robotic tasks
	5.4 Ablation experiments
	5.4.1 Relabeling threshold in imitator policy training
	5.4.2 Importance of the Q-filter
	5.4.3 Weight of imitation loss
	5.4.4 Robustness to imperfect demonstrations
	5.4.5 Generalization to unseen goals
	5.4.6 State coverage of queries
	5.4.7 Using prioritized goal sampling
	5.4.8 Query budget
	5.4.9 Importance of confidence-based query selection

	6 Discussion
	7 Conclusion
	References

