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Abstract
In many real-life scenarios, a group of agents needs to agree on a common action, e.g., 
on a location for a public facility, while there is some consistency between their prefer-
ences, e.g., all preferences are derived from a common metric space. The facility location 
problem models such scenarios and it is a well-studied problem in social choice. We study 
mechanisms for facility location on unweighted undirected graphs that are resistant to 
manipulations (strategy-proof, abstention-proof, and false-name-proof) by both individuals 
and coalitions on one hand and anonymous and efficient (Pareto-optimal) on the other. We 
define a new family of graphs, ZV-line graphs, and show a general facility location mecha-
nism for these graphs that satisfies all these desired properties. This mechanism can also be 
computed in polynomial time and it can equivalently be defined as the first Pareto-optimal 
location according to some predefined order. Our main result, the ZV-line graphs family 
and the mechanism we present for it, unifies all works in the literature of false-name-proof 
facility location on discrete graphs including the preliminary (unpublished) works we are 
aware of. In particular, we show mechanisms for all graphs of at most five vertices, dis-
crete trees, bicliques, and clique tree graphs. Finally, we discuss some generalizations and 
limitations of our result for facility location problems on other structures: Weighted graphs, 
large discrete cycles, infinite graphs; and for facility location problems concerning infinite 
societies.
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1  Introduction

Reaching an agreement could be hard. The seminal works of Gibbard [30] and Satterth-
waite [59] show that one cannot devise a general procedure for aggregating the preferences 
of strategic agents to a single outcome, besides trivial procedures that a-priori ignore all 
agents except one (that is, the outcome is based on the preference of a predefined agent) 
or a-priori rule out all outcomes except two (that is, regardless of the preferences of the 
agents, the outcome is one of two predefined outcomes). The problem is that agents might 
act strategically, aiming to get an outcome that they prefer, so there might be scenarios in 
which for any profile of actions (a possible agreement) at least one of the agents prefers 
changing her action. Note that while we refer to a procedure and later to a mechanism, this 
impossibility is not technical but conceptual. We identify a procedure with the conceptual 
mapping induced by the procedure from the opinions of the agents to an agreement, while 
the procedure itself could be complex and abstract, e.g., to have several rounds or include 
a deliberation process between the agents (cheap-talk). For simplicity of terms, we refer 
to the direct mechanism that implements this mapping. That is, we think of an exogenous 
entity, the designer, who receives as input the opinions of the agents and returns as out-
put the aggregated decision. This assumption does not hurt the generality, as according to 
the revelation principle [46], any general procedure is equivalent (w.r.t. the properties we 
study) to such a direct mechanism.

In many natural scenarios, it is exogenously given that the preferences satisfy some 
additional rationality property. Hence, the mechanism need not be defined for any pro-
file of preferences, giving rise to mechanisms that are not prone to the above drawbacks. 
Two prominent examples are Vickrey–Clarke–Groves (VCG) mechanisms and generalized-
median mechanisms. VCG mechanisms [12, 32, 55, 72] are the mechanisms that are resist-
ant to manipulations like the ones described above for scenarios in which the preferences 
of agents are quasi-linear with respect to money [41, Def. 3.b.7],1 and monetary transfers 
are allowed (that is, the outcome space is closed under monetary exchanges between the 
agents or between the agents and the designer). The second example, Generalized-median 
mechanisms, does not include monetary transfers and has more of an ordinal flavor. Gener-
alized-median mechanisms [42] are the mechanisms that are resistant to manipulations like 
above when it is known that the preferences are single-peaked w.r.t. the real line [5]. That 
is, the outcomes are locations on the real line and each agent has a unique optimal location, 
�⋆ , on the line. The preference of an agent over the locations to the right of �⋆ is derived 
by the proximity to �⋆ , and the preference over the locations to the left of �⋆ is derived 
similarly. For example, in the Euclidean single-peaked case, the preferences for all agents 
are minimizing the distance to their respective optimal locations.

1.1 � The facility location problem

A natural generalization of the second scenario is the facility location problem. In this 
problem, we are given a metric space over the outcomes (that is, a distance function 
between outcomes) and it is assumed that the preference of each of the agents is defined 

1  In a recent work, Nehama [47, 48] extended this result also to a family of non quasi-linear, almost quasi-
linear in disguise utilities, which are roughly preferences which are equivalent to a utility that is quasi-
linear in a function of the payment in some subset of the outcomes domain.
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by the distance to her optimal outcome: An agent with an optimal outcome �⋆ prefers an 
outcome a over an outcome b if and only if a is closer to �⋆ than b. For ease of presenta-
tion, throughout this paper, we assume that there are finitely many agents and finitely many 
locations, and in Sect. 7.1 discuss the extension to the infinite case. In the finite case, a 
natural way to represent the metric space is using a weighted undirected graph. That is, 
having a vertex (location) for each outcome and weighted edges between vertices s.t. the 
distance between any two locations equals the distance between the two respective vertices 
(or generally to the length of the shortest path between them). Roughly speaking, given 
such a graph one seeks to find a mechanism that on one hand does not a-priori ignore 
some of the agents or rule out some of the locations, and on the other hand, is resistant 
to manipulations of the agents. Facility location problems and, moreover, facility location 
problems in which the underlying distance metric is a non-trivial combinatorial structure 
model many real-life scenarios of group decision making in which it is natural to assume 
some homogeneity between the preferences of different agents (e.g., an additional rational-
ity assumption). These examples include not only locating a common facility, like a school, 
a bus stop, or a library, but also more general agreement scenarios with a common metric, 
e.g., a partition of a common budget to several tasks, committee selection, or group deci-
sion making with multi-dimensional criteria. Following the story of the facility location 
problem, we sometimes refer to the outcome of the mechanism as the facility. In this work, 
we look for mechanisms that satisfy the following desired properties:

Anonymity: The mechanism should not a-priori ignore agents and, moreover, we desire 
it to treat the agents equally in the following strong sense. The mechanism should be a 
function of the agents’ votes (which we also refer to as ballots) but not their identities. For-
mally, the outcome of the mechanism should be invariant to any permutation of the ballots. 
In practice, most voting systems satisfy this property by first accumulating the different 
(physical) ballots, thus losing the agents’ identities, and next applying the mechanism on 
the identity-less ballots.

We would also like the mechanism to treat the locations in an a-priori fair manner. 
Because of the inherent asymmetry induced by the graph, it is unreasonable to require that 
all locations are treated equally (i.e., neutrality of the mechanism). Instead, we require the 
following much weaker property of non-imposition.

Non-imposition/citizen sovereignty  [1, 44]: The mechanism should not a-priori rule 
out a location, and each location should be the outcome of some profile. Formally, the 
mapping to a facility location should be an onto function.

Furthermore, the mechanism should respect the preferences of the agents and aim to 
optimize the aggregated welfare of the agents.

Pareto-optimality: The mechanism should not return a location � if there exists another 
location �′ s.t. switching from � to �′ benefits one of the agents (move the facility closer to 
her) while not hurting any of the other agents. In particular, if there exists a unique location 
that is unanimously most-preferred by all agents, then it must be the outcome. Note that 
any reasonable notion of aggregated welfare optimization entails Pareto-optimality.

Strategy-proofness: An agent should not be able to change the outcome to a location 
she strictly prefers by reporting a location different from her true location.

Abstention-proofness:2An agent should not be able to change the outcome to a location 
she strictly prefers by not casting a ballot.

2  In the voting literature (e.g., [26, 43, 75]) this property is also referred to as voluntary participation and 
the no-show paradox. This property is also equivalent to individual-rationality which takes the different 
point of view of mechanism design.
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False-name-proofness: An agent should not be able to change the outcome to a location 
she strictly prefers by casting more than one ballot.3 False-name manipulations received 
less attention in the classic social choice literature since in most voting scenarios there 
exists a central authority that can enforce a ‘one person, one vote’ principle (but cannot 
enforce participation or truthful voting). In contrast, many of the voting and aggregation 
scenarios nowadays are run in a distributed manner on some network and include virtual 
identities or avatars, which can be easily generated, so a manipulation of an agent pretend-
ing to represent many voters is eminent.

Resistance to group manipulations: We also consider a generalization of the above 
three properties dealing with manipulations of a coalition of agents. We define the pref-
erence of a coalition as the unanimous preference of its members. That is, a coalition C 
weakly prefers an outcome a over an outcome b if all the agents in C weakly prefer a over 
b. Equivalently, C strictly prefers a over b if 

(�)	� all the agents in C weakly prefer a over b (C weakly prefers a over b), and
(��)	� at least one agent in C strictly prefers a over b (C does not weakly prefer b over a).
We require that a coalition should not be able to change the outcome to a location it 

strictly prefers by its members casting untruthful ballots, abstaining, or casting more than 
one ballot. We note that for onto mechanisms this property entails Pareto-optimality. Nev-
ertheless, we prefer to think of Pareto-optimality as an efficiency requirement and not as a 
manipulation-resistance requirement.

1.2 � Our contribution

In this paper, we define a family of unweighted undirected graphs, which we name ZV-line 
graphs, and show a general mechanism for facility location over these graphs that satisfies 
the desired properties. Roughly speaking, in a ZV-line graph there are two categories of 
locations, Z-locations and V-locations (and we also refer to them as Z-vertices and V-verti-
ces), and the facility is commonly (except if all agents unanimously agree differently) posi-
tioned on a Z-location.4 For instance, the Z-locations could represent commercial locations 
for locating a public mall, or the set of status-quo outcomes. The mechanism is Pareto-
optimal and in particular, it satisfies citizen sovereignty and does not a-priori rule out any 
location; It is anonymous, so in particular, no agent is ignored; But on the other hand, it is 
resistant to all the above manipulations. Our mechanism for the ZV-line graphs family uni-
fies the few mechanisms that are known and it induces mechanisms for many other graphs.5 
To the best of our knowledge, this is the first work to show a general false-name-proof 
mechanism for a general family of graphs.

4  The categorization is a combinatorial property of the graph (metric space). An agent can be located on 
any of the two categories.
5  Besides the work of Todo et  al.  [67], who characterized the false-name-proof mechanisms for facility 
location on the continuous line and on continuous trees, we are not aware of any other publications charac-
terizing false-name-proof mechanisms for facility location on graphs which precedes our AAMAS publica-
tion  [49] that . Moreover, as far as we know, a false-name-proof mechanism is known to the community 
only for very few simple graphs, and the current knowledge is still highly preliminary.

3  In the literature (e.g., [15]) one could also find a more restrictive definition of false-name-proofness in 
which the mechanism needs to be resistant only to an agent casting false-name ballots in addition to her 
truthful ballot.
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Below, we show several common elementary graphs that are ZV-line graphs to dem-
onstrate the richness and naturality of this family. The full formal definition of ZV-line 
graphs is given in Sects. 3 and 4, and we describe more examples for ZV-line graphs in 
Sects. 3.1 and 4.1. Consider the following family of graphs (which is a sub-family of the 
ZV-line graphs family and captures the gist of our mechanism). Let G = ⟨V, E⟩ be a bipar-
tite unweighted undirected graph with a vertex set V and an edge set E . That is, there exists 
a partition of the vertices6 V = V ∪̇ Z s.t. there are no edges between V-locations and no 
edges between Z-locations. We require that 

(a)	� There exists a predefined order over the Z-locations, which we refer to as a left-to-
right order.

(b)	� Any of the V-locations is connected to a contiguous sequence of Z-locations.

Similar to the single-peaked consistency case [5], one can think of this constraint as a 
homogeneity constraint over the preferences of agents, i.e., as representing a restriction 
over the possible preference profiles, focusing on scenarios where voters’ preferences are 
derived from some common structure. Our mechanism for these graphs: 

▶	� The mechanism returns the leftmost Pareto-optimal Z-location if one exists.7
▶	� If no location in Z is Pareto-optimal, then necessarily all agents voted for the same 

location, and the mechanism returns this location.

For example, bicliques (full bipartite graphs) can be represented as a ZV-line graph in 
which each V-location is connected to all the Z-locations (For example, Fig. 1). We use 
below  for Z-locations and ⧫ for V-locations).

Our mechanism for biclique graphs: 

▶	� If all agents voted unanimously for the same location, the mechanism returns this 
location.

▶	� If all agents voted for V-locations, the mechanism returns the leftmost Z-location.
▶	� Otherwise, the mechanism returns the leftmost Z-location that was voted for.

Notice that in this case, the order over the Z-locations is arbitrary (as well as the choice 
of one of the sides to be the Z-locations) in the sense that it is not derived from the graph 
but is a parameter of the mechanism. For instance, the order might represent the social 
norm of the society.

Fig. 1   The (5, 7)-biclique  (Color figure online)

6  We use the disjoint union notation A ∪̇B in cases we would like to emphasize that the sets A and B are 
disjoint.
7  An outcome o ∈ V is Pareto-optimal if there exists no location o� ∈ V s.t. switching the outcome to be o′ 
benefits one of the agents while not hurting any of the other agents.
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A second example is the discrete line graph, which can be represented as a ZV-line 
graph in which every two consecutive Z-locations are connected by a unique V-location 
(For example, Fig. 2).

Using this representation we can show strategy-proof, false-name-proof, anonymous, 
Pareto-optimal facility location mechanisms for the discrete line that are distinct from 
the characterization of these mechanisms for the continuous line of  Todo  et  al.  [67]. 
Todo et al. [67, Thm. 2] showed that the strategy-proof, false-name-proof, anonymous, 
Pareto-optimal facility mechanisms for the continuous line are the mechanisms that 
return the closest Pareto-optimal location to some predefined location, which are a sub-
family of the generalized median mechanisms. The mechanism for the discrete line that 
corresponds to the above representation as a ZV-line graph is: 

▶	� If all agents voted unanimously for the same location, the mechanism returns this 
location.

▶	� If the leftmost ballot (according to the order of the line) is a V-location, the mecha-
nism returns the Z-location to its right.

▶	� If the leftmost ballot is a Z-location, the mechanism returns this location.

In particular, this mechanism commonly returns one of the Z-locations, which consti-
tute only fifty percent of the vertices.

Two elementary graphs that are generalizations of (the ZV-line graph representation 
of) the discrete line graph can be seen in Fig. 3 in which every two consecutive Z-loca-
tions are connected by two V-locations, and the 2 × n grid (For example, see Fig.  4) 
which can be represented as a ZV-line graph in which every three consecutive Z-loca-
tions are connected by a unique V-location (see Fig. 5).

Fig. 2   The line graph of 16 locations  (Color figure online)

Fig. 3   A generalization of the discrete line graph  (Color figure online)

Fig. 4   The 2 × 7 grid
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A common property to all the above examples is their regularity. All the V-locations 
have the same degree and all the Z-locations have the same degree. An example we 
encountered of a non-regular graph for which a mechanism exists is  which can be 

represented as a non-regular bipartite ZV-line graph as can be seen in Fig. 6.
In the definition of the ZV-line graphs family (Definition 5) we extend the above fam-

ily (and extend the mechanism accordingly) in two steps:

•	� First, we extend it to define simple ZV-line graphs (Definition  3) by allowing 
edges between Z-locations under a connectivity constraint, similar to the con-
nectivity constraint we had on edges between V-locations and Z-locations. A Z
-location can be connected (in addition to V-locations as above), to a consecutive 
sequence of Z-locations to its immediate right and a consecutive sequence of Z
-locations to its immediate left (and any of the sequences might be empty).

•	� Second, replacing any location in a Z-line graph by a tree, a clique, or any other 
ZV-line graph.

For example, the ZV-line graph in Fig. 7 is the outcome of taking a graph of the type of 
Fig. 3 and (See also Fig. 12 and the description next to it) 

Fig. 5   The 2 × 7 grid  (Color figure online)

Fig. 6   Representing  as a ZV-line graph  (Color figure online)
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Fig. 7   A (non-simple) ZV-line graph  (Color figure online)
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(a)	� adding an edge between the second and third Z-locations,
(b)	� replacing some of the locations by cliques, trees, and bicliques, which are ZV-line 

graphs.

In particular, as we discuss in Sects.  3.1 and  4.1, the ZV-line graphs family includes 
natural families like trees, cliques, bicliques, and block graphs [33], as well as all connected 
graphs of at most five locations (except the cycle of five locations) and all graphs for which 
(as far as we found) a false-name-proof mechanism was known to the community.

Last, we discuss two families of graphs: discrete cycles and recursive ZV-line graphs, 
that is, ZV-line graphs that are defined via a recursive construction, e.g., trees, cliques, and 
block graphs. We show that for recursive ZV-line graphs, a recursive simple mechanism 
is easily derived from our result. We show that there are no group-manipulation-resistant, 
Pareto-optimal, anonymous mechanisms for cycles of size greater than 5, and that cycles of 
size lower than 5 are ZV-line graphs. The cycle of size five is not a ZV-line graph, and we 
show the family of group-manipulation-resistant, Pareto-optimal, anonymous mechanisms 
for this graph, which is similar to the mechanism we present for ZV-line graphs.

1.3 � Related work

Facility location problems model many common natural settings in which each agent is 
characterized by her ideal location and based on these locations a facility is positioned, 
(with some objective function in mind, e.g., locating bus stops to minimize the distance 
to the costumers or locating railroad stations to minimize the unpredictability of delivery 
schedules). The study of facility location problems arose from combinatorial optimization 
and aimed at finding the optimal placement of a facility or facilities to minimize transpor-
tation costs for servicing customers. Besides locating actual facilities, the problem has also 
found a wide range of applications in other fields such as healthcare and clustering. It is 
also used for modeling more abstract scenarios, not of a geographical nature, like elections 
(both for single winners and for committees). Because of its practical importance, varia-
tions of facility location problems have attracted significant attention for a long time from 
different fields, such as operations research, theoretical computer science, economics, and 
computational social choice.

The study of facility location problems when considering that the agents are strate-
gic and might report untruthfully was first studied by Moulin [42]. In his work, Moulin 
[42] characterized the strategy-proof facility location mechanisms for the continuous line 
when the preferences of the agents can be represented using a single-peaked function of 
the facility location. Border and Jordan [6] characterized the strategy-proof facility loca-
tion mechanisms for the continuous line when the agents’ preferences are derived by the 
Euclidean distance, and Schummer and Vohra [60] considered the cases of the continu-
ous cycle and trees. Problems of facility location on discrete graphs were also studied by 
Dokow et al. [18], who characterized the strategy-proof mechanisms for discrete lines and 
discrete cycles.

Other variants of the facility location problem were also considered in the literature. 
Church and Garfinkel [11], Ibara and Nagamochi [34], Cheng et al. [10] studied facets of 
the obnoxious facility location problem (also called the locating a bad problem or single-
dipped preferences). In this settings, the preference of an agent is to position the facility 
as far as possible from her ideal location, e.g., when positing a central polluting or noisy 
common facility; Feigenbaum and Sethuraman [22]; Zou and Li [82] analyzed scenarios 
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in which the facility might be beneficial for some of the agents but obnoxious to others; 
Procaccia and Tennenholtz [53] studied scenarios in which an agent controls multiple 
locations; Feldman et al. [25] studied the impact of constraining the input language of the 
agents; and Wada et al. [73] studied a dynamic version of the problem, when agents join 
and leave over time and there is a cost of moving the facility, and a dynamic population 
version when the number of agents is not a-priori known to the designer.

The problem of positioning several facilities was also studied extensively. E.g., when 
the preference of an agent is defined by the distance facility closest to her [8, 20, 28, 29, 
39, 53], farthest from her [8], the average distance to a facility [61], or some (individual) 
convex combination of the distances [27].

For a more extensive survey on facility location problems in general, we refer the reader 
to the book of Farahani and Hekmatfar [21]. For a more recent survey, especially of the 
computational aspects of the strategic questions, we refer the interested reader to the work 
of Chan et al. [7].

False-name-proofness was first introduced by Yokoo  et  al.  [79, (based on a series of 
previous conference papers)] in the framework of combinatorial auctions. In this work, the 
authors showed that the VCG mechanism does not satisfy false-name-proofness in the gen-
eral case, and they proposed a property of the preferences under which this mechanism 
becomes false-name-proof. A similar concept was also studied in the framework of peer-to-
peer systems by Douceur [19] under the name Sybil attacks.

Following this work, a series of false-name-proof for various specific scenarios had 
been developed: Yokoo et al. [78], Yokoo [76] and Zhao et al. [81] presented mechanisms 
for combinatorial auctions which are false-name-proof under additional constraints on the 
valuations; Tsuruta et  al.  [70] studies redistributed mechanisms for single-item auctions; 
Yokoo et al. [77], Iwasaki et al. [35], and Terada and Yokoo [64] presented mechanisms for 
multi-unit auctions; Sakurai and Yokoo [56], Sakurai and Yokoo [57] and Yokoo et al. [80] 
presented mechanisms for double auction scenarios; and Suyama and Yokoo [63] studied 
combinatorial multi-attribute procurement auctions. For general combinatorial auctions, 
Yokoo et al. [78] and later Yokoo et al. [78], Lehmann et al. [38] conditions on the valu-
ation guaranteeing that false-name bidding is not profitable in the VCG mechanism, and 
Todo et al. [66] showed that sub-additivity of the allocation rules characterizes the false-
name-proof mechanisms.

Similar false-name-manipulation concepts were defined and analyzed for other sce-
narios as well. Conitzer [15] analyzed false-name-proof mechanisms in voting scenarios; 
Moulin [45] studied a related problem of routing-proofness in networks; Penna et al. [52] 
studied cost-sharing games; Todo et al. [68] studied mechanisms for online auction mech-
anisms, in which bidders arrive and depart over time; Todo and Conitzer  [65] studied 
matching mechanisms; and Tsuruta et al. [71] studied false-name-proof cake-cutting pro-
cedures. A similar concept was also applied for cooperative games by Aziz et al. [4] and 
Lasisi and Allan [37]. In these works, they analyzed, given a weighted voting scenario, by 
how much an agent can change her power (as measured by the Shapley–Shubik index or 
the Banzhaf index), by splitting her weight among several false-name identities.

Last, in addition to the design of false-name-proof mechanisms, more direct ways to 
fight false-name-manipulations were also considered in the literature. For instance, adding 
a cost to sending too many false-name ballots [74, 75] (e.g., using CAPTCHA), attempt-
ing to create tests that are easy for a person to pass once but difficult to pass more than 
once [14], or adding a weak-verification procedure of some the identities (e.g., limiting the 
number of submissions per IP address or verifying identity uniqueness for a small number 
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of agent groups [13]).8 For a short survey of this literature, we refer the interested reader to 
the work of Conitzer and Yokoo [16].

False-name-proof mechanisms for facility location scenarios were first studied by 
Todo et al. [67]. In this work, the authors characterized the false-name-proof mechanisms 
for facility location on the continuous line and on continuous trees. This work is the closest 
to ours in the false-name-proof mechanism design for facility location literature (In fact, 
this is the only work we are aware of that precedes the AAMAS version of our work [49]). 
The proof techniques we use here are different from the techniques used by Todo et al. [67]. 
In their work, they essentially note that any manipulation-resistant mechanism is in par-
ticular strategy-proof and using this insight to reduce the characterization problem to previ-
ous characterizations of strategy-proof mechanisms. In our work, we do not use previous 
characterizations but prove the properties directly.

The problem of positioning an obnoxious facility on a graph was studied by 
Ono et al. [51] and Todo et al. [69]. In their work, Ono et al. [51] also defined the property 
of rename-proofness (which is a weakening of false-name-proofness but still a generaliza-
tion of strategy-proofness), and studied this property for both deterministic and random 
mechanisms. False-name-proof mechanisms for positioning several facilities (under hetero-
geneous preferences) were also studied by Sonoda et al. [62] and Ono et al. [51].

An interesting recent addition to this literature was presented by Okada et al.  [50]. In 
this work, the authors apply automated mechanism design [58] techniques to show exist-
ence and non-existence of false-name-proof mechanisms for facility location for several 
graphs by translating the question to the question of formula satisfiability and using a 
Boolean satisfiability (SAT) solver.

1.3.1 � Approximate mechanism design

The characterization of manipulation-resistant mechanisms for facility location is highly related 
to problems in Approximate mechanism design without money [53]. In these problems, agents 
are characterized using cardinal utilities, and the designer seeks to find an outcome maximizing 
a desired target function (e.g., the sum of utilities, the product of utilities, or the minimal utility). 
These works bound the trade-off between the target function and manipulation-resistance. They 
bound the loss to the target function due to manipulation-resistance constraints.

For instance, bounds on the sum of costs (the Harsanyi social welfare) were derived 
for false-name-proof facility location mechanisms on the continuous line and con-
tinuous trees by  Todo  et  al.  [67], strategy-proof facility location on the continuous 
cycle by  Alon  et  al.  [3], and for strategy-proof facility location on the discrete cycle 
by  Dokow  et  al.  [18]. Alon  et  al.  [2, 3], Fotakis and Tzamos  [28], and Schummer and 
Vohra  [60] proved bounds on the maximum cost of an agent due to requiring strategy-
proofness, Feldman and Wilf [24] bounded the approximation of the optimal L2 norm (sum 
of the squared distances of the agents) due to requiring strategy-proofness, and Feigen-
baum et al.  [23] bounded the approximation of the optimal Lp norm. The approximation 
bounds for the problem of positioning several facilities (where the cost of an agent is her 
distance to the closest facility) was studied by (to name a few) Fotakis and Tzamos [29], 
Fotakis and Tzamos [28], Lu et al. [40], and Procaccia and Tennenholtz [53].

8  Of course, we could require users to submit information that would completely identify them in the real 
world, but in many scenarios loosing the anonymity will drive most participants away.
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For a more extensive survey on approximation bounds for facility location problems, 
we refer the interested reader to the surveys by Cheng and Zhou [9] and by Chan et al. [7].

In this work, we do not analyze the approximation implications of the characterization, 
and in particular, we do not assume a specific cardinal representation of the preference of 
agents. Yet, we claim that for most natural representations and target functions, the approx-
imation ratio is expected to be bad. For example, recall the mechanism for biclique graphs 
(Fig. 1). In this mechanism, the facility might be positioned on an ‘extremely’ left Z-loca-
tion. Moreover, the facility might be very far from the vast majority of the agents, resulting 
in a very bad approximation ratio for most reasonable target functions. This phenomenon 
is not specific to biclique graphs. For most ZV-line graphs, due to the false-name-proof 
requirement, the facility might be positioned on a location extremely far from almost all 
agents, resulting in a very bad approximation ratio (roughly, the number of agents times the 
diameter of the graph) for most reasonable target functions. As we show in Sect. 5.1, this 
phenomenon is not unique to facility location problems. One faces similar lower bounds on 
the approximability in voting scenarios, auctions, and other mechanism design problems.

Note that modeling the agents using cardinal utilities and looking for a false-name-proof 
mechanism maximizing, e.g., the sum of utilities (instead of Pareto-optimality), will not cir-
cumvent this problem. Roughly speaking, the false-name-proofness means that the designer 
must act as-if each of the agents represents the vast majority of society since an agent should 
not benefit even from casting a colossal number of identical ballots. Hence, a choice to ben-
efit some agents at the expense of others (i.e., returning a non-Pareto-optimal location) will 
result in an unbounded loss. Thus, we claim that when one aims to construct false-name-
proof mechanisms, Pareto-optimality is essentially equivalent to most social welfare target 
functions, so this expected bad approximation is also expected under most cardinal notions 
of efficiency.

2 � Model

Consider a graph G = ⟨V, E⟩ with a set of vertices V and a set of undirected unweighted 

edges E ⊆

(
V

2

)
 . We refer to the vertices v ∈ V also as locations and use the two terms 

interchangeably. The distance between two locations v, u ∈ V , denoted d(v, u) , is the length 
of the shortest path connecting v and u, and the distance between a location v ∈ V and a set 
of locations S ⊆ V , d(v, S) , is defined as the minimal distance between v and a location in S. 
For simplicity, we assume the graph is connected, so the distances are finite, and in 
Sect. 7.1 discuss the extension to disconnected graphs. We define B(v, d) , the ball of radius 
d ⩾ 0 around a location v ∈ V , to be the set of locations of distance at most d from v,

We say that two locations are neighbors if there is an edge connecting them and denote by 
N(v) the set of neighbors of a location v.

An instance of the facility location problem over G comprises n agents who are located 
on vertices of V . Formally, we represent it by a location profile x ∈ V

n where xi is the loca-
tion of Agent  i and n is the number of agents in the profile. We also use the notation V⋆ 
for the set of all profiles of a finite number of agents, i.e., V⋆ =

⋃
t⩾0 V

t . We use the nota-
tions xC for the location profile of the agents in a given coalition of agents C and x−C for 
the location profile of the agents outside of the coalition C. In this work, we assume the 

B(v, d) = {u ∈ V | d(v, u) ⩽ d}.
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preference of an agent is defined by her distance to the facility: An agent located on x ∈ V 
strictly prefers the facility being positioned on v ∈ V over it being positioned on u ∈ V if 
d
(
x, v

)
< d

(
x, u

)
 . In particular, the most preferred facility location for an agent is her own 

location. Given an instance x , we would like to position a facility on a vertex of the graph 
while taking into account the preferences of the agents over the locations. We also think of 
F  as a voting procedure: Each agent casts a ballot with her location, and based on the bal-
lots, F  returns the location for the facility.

A general facility location mechanism (or shortly a mechanism) defines a location 
for the facility for all location profiles of all sizes (i.e., for any number of ballots). We 
introduce the notation V⋆ =

⋃
t⩾0 V

t for the set of all profiles of a finite number of agents. 
Hence, we represent the mechanism by a function F ∶ V

⋆
→ V . We say that a mechanism 

is anonymous if the outcome F(x) does not depend on the identities of the agents, i.e., 
it can be defined as a function of the ballot tally, the number of ballots for each of the 
locations.

2.1 � Manipulation‑resistance

A strategic agent might act untruthfully if she thinks it might cause the mechanism to 
return a location she prefers (that is, a location closer to her). In this work, we consider the 
following manipulation types:

Misreport: An agent might report to the mechanism a location different from her true 
location.
False-name-vote: An agent might pretend to be several agents and submit several (not 
necessarily identical) ballots.9
Abstention: An agent might choose not to participate in the mechanism at all.

A mechanism in which no agent benefits from these manipulations, regardless of the bal-
lots of the other agents, is said to be strategy-proof, false-name-proof, and abstention-
proof, respectively. We also consider a generalization of these manipulations to manipula-
tions of a coalition, and say a mechanism is group-manipulation-resistant if no coalition 
can change the outcome, by misreporting, false-name-voting, or abstaining, to a different 
location that they unanimously agree is no worse than the original outcome (that is, when 
they vote truthfully) and at least one agent in the coalition strictly prefers the new outcome 
over the original outcome. Note that this is a rather strong manipulation-resistance require-
ment. A coalition cannot find a deviation that is beneficial for one of its members without 
hurting one of its other members, not even one in which different agents use different types 
of individual deviations.
Definition 1  (Group-manipulation-resistance10) An anonymous mechanism F  is group-
manipulation-resistant if there exists no coalition of agents C ⊆ {1,… , n} , a profile of 
locations x ∈ V

n , and a set of ballots11 A ∈ V
⋆ s.t. 

10  For simplicity of notations, we give the formal definition for anonymous mechanisms.
11  Since F  is an anonymous mechanisms, we define the deviation A as a set of ballots ignoring identities.

9  A special case of false-name-voting which is considered in the literature is double-voting: Casting the 
same (truthful) ballot several times to increase its impact.
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(�)	� All the agents in C weakly prefer F
(
A, x−C

)
 , that is, the outcome when the agents 

outside of C do not change their vote and the agents of C replace their ballots by A , 
over F(x).

(��)	� At least one agent in C strictly prefers F
(
A, x−C

)
 over F(x).

We note that for C being a singleton, this definition coincides with resistance to misre-
porting for |A| = 1 , with resistance to false-name-voting for |A|>1 , and with resistance to 
abstention for A = �.

2.1.1 � The revelation principle

One could consider more general mechanisms in which the agents vote using more abstract 
ballots, and define similar manipulation-resistance notions for the general framework. 
Applying a simple direct revelation principle [46] shows that any such general manipula-
tion-resistant mechanism is equivalent to a manipulation-resistant mechanism in our frame-
work: The two mechanisms implement the same mapping of the private preferences of the 
agents to a location for the facility, and since the above properties are defined w.r.t. the 
mapping they are invariant to this transformation. That is, given some general mechanism 
M that maps abstract actions to a location for the facility and a behavior protocol D that 
maps types of the agents (i.e., locations) to actions of M, if D satisfies the generalized 
desiderata, then the direct mechanism M◦D satisfies our desiderata.

2.2 � Efficiency

So far, we have defined the desired manipulation-resistance properties of a mechanism. On 
the other hand, we would also like the mechanism to respect the preferences of the agents. 
We would like to avoid a scenario in which, after the mechanism has been used, the agents 
can agree that a different location is preferable. Given a location profile x ∈ V

⋆ , the set of 
Pareto-optimal locations, PO(x) , is the set of all locations that the agents cannot agree to 
rule out. Formally, given a location profile x ∈ V

⋆ and two locations v, u ∈ V , we say that u 
Pareto-dominates v w.r.t. x if 

(�)	� all agents weakly prefer u over v and
(��)	� at least one agent strictly prefers u over v.

We say that v is Pareto-optimal w.r.t. x ( v ∈ PO(x) ) if it is not Pareto-dominated by any 
other location in V . We say a mechanism is Pareto-optimal if F(x) ∈ PO(x) for any profile 
of ballots (locations) x.

In particular, Pareto-optimality entails unanimity, whenever all the agents unan-
imously vote for the same location, the mechanism outputs this location, and entails 
citizen sovereignty, the mechanism is onto and does not a-priori rule out any location. 
When all the agents unanimously vote for the same location � , any other location is 
Pareto-dominated by � , so � is the unique Pareto-optimal location, and the mechanism 
outputs � . Citizen sovereignty is entailed since any location � is the output for the pro-
file in which all ballots are equal to �.

The Pareto-optimality correspondence has several interesting combinatorial proper-
ties which are out of the scope of this work. It is easy to see that if Agent i’s top-choice 
is location � , then � cannot be Pareto-dominated by any other location. Hence,
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Claim 1  x ⊆ PO(x) , for any location profile x ∈ V
⋆.

A more general property is the following.

Claim 2  Given a location profile x ∈ V
⋆ and two locations u and v in x , for any distance 

d ∈ [0, d(u, v)] there exists a location � ∈ V s.t.

i.e., � is a Pareto-optimal location that lies on a shortest path between u and v.

Proof of Claim 2  Let �′ be a location on some shortest path between u to v s.t. d
(
��, u

)
= d 

and d
(
��, v

)
= d(u, v) − d . If �� ∉ PO(x) , then (since Pareto-dominance is an order) there 

exists a Pareto-optimal location � ∈ PO(x) that Pareto-dominates �′ , and in particular

On the other hand,

Hence,

�
◻

2.3 � Relaxing false‑name‑proofness

The false-name-proofness property might seem too strong desideratum since we do not 
bound the number of false-name-ballots a manipulator might cast. Addressing this concern, 
we show that assuming either abstention-proofness or strategy-proofness, this property is 
equivalent to resistance to only one additional false-name-ballot of the manipulator.

Definition 2  (Weak false-name-proofness) We say a mechanism F  is a weakly-false-
name-proof mechanism, if for any Agent i there no profile x in which Agent i can get an 
outcome she strictly prefers over F(x) by casting one additional ballot.

Proposition 1  Let F  be an anonymous weakly-false-name-proof mechanism.

•	 If F  satisfies abstention-proofness, then F  satisfies false-name-proofness.
•	 If F  satisfies strategy-proofness, then F  satisfies false-name-proofness.

Proof  Let x ∈ V
⋆ be a profile and A =

{
a1,… , ak

}
⊆ V a multi-set of ballots and we will 

show that Agent i weakly prefers the outcome F
(
xi, x−i

)
 over the outcome F

(
A, x−i

)
 , i.e., 

A is not a false-name manipulation for Agent i in x . We define the following sequence of 
(k + 2) profiles:

� ∈ PO(x) and

{
d(�, u) = d

d(�, v) = d(u, v) − d,

d(�, u) ⩽ d
(
��, u

)
and d(�, v) ⩽ d

(
��, v

)
.

d(�, u) + d(�, v) ⩾ d(u, v) = d
(
��, u

)
+ d

(
��, v

)
.

{
d(�, u) = d

(
��, u

)
= d

d(�, v) = d
(
��, v

)
= d(u, v) − d.
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We assumed that the mechanism is resistant to Agent i casting one additional ballot. Hence, 
Agent i weakly prefers the outcome F

(
x(t−1)

)
 over the outcome F

(
x(t)

)
 for t = 0,… , k − 1 . 

In particular, Agent i weakly prefers F
(
xi, x−i

)
 over F

(
x(k−1)

)
 and over F

(
x(k)

)
 . Now,

•	� If F  satisfies abstention-proofness, then Agent  i weakly prefers the outcome 
F
(
x(k)

)
 over the outcome F

(
x(k+1)

)
 and hence also F

(
xi, x−i

)
 over the outcome 

F
(
A, x−i

)
.

•	� If F  satisfies strategy-proofness, then Agent  i weakly prefers the outcome 
F
(
x(k−1)

)
 over the outcome F

(
x(k+1)

)
 and hence also F

(
xi, x−i

)
 over the outcome 

F
(
A, x−i

)
.	�  ◻

2.4 � Order‑based mechanisms

A natural class of Pareto-optimal anonymous mechanisms are the Order-based mecha-
nisms. These mechanisms are defined using an order � over the locations. Given a loca-
tion profile x ∈ V

⋆ the mechanism returns the first location according to � in PO(x) . 
It is easy to see that these mechanisms are Pareto-optimal, anonymous, and invariant 
to agents casting the same ballot several times, i.e., these mechanisms depend of the 
support of x . In many scenarios, it is easier to analyze which properties of the order � 
will result in manipulation resistance of the mechanism than analyzing the full class of 
mechanisms.

In Appendix  A, we show that the anonymous, Pareto-optimal, group-manipulation-
resistant, order-based mechanisms are a strict subset of the anonymous, Pareto-optimal, 
group-manipulation-resistant mechanisms, and that there might be anonymous Pareto-
optimal mechanisms which are not order-based mechanisms and even group-manipu-
lation-resistant mechanisms that are not invariant to ballot-duplication. This, in contrast 
to the general voting scenario when the preferences are unconstrained. For this scenario, 
Conitzer [15, Corollary 1] showed that for any false-name-proof voting rule, given that a 
vote is cast at least once, it does not matter how many times it is cast.

Claim 3  There exists an anonymous, Pareto-optimal, group-manipulation-resistant mecha-
nism F  for the (2, 3)-biclique s.t. F  is not an order-based mechanism.

Claim 4  There exists an anonymous, Pareto-optimal, group-manipulation-resistant mecha-
nism F  for the cycle of size four s.t. F  is not invariant to ballot duplication. In particular, 
F(x) cannot be defined as a function of the support of x.

− x(0) = ⟨xi, x−i⟩
− For t = 1,… , k ∶ x(t) = ⟨xi, a1,… , at, x−i⟩
− x(k+1) = ⟨a1,… , ak, x−i⟩ = ⟨A, x−i⟩
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3 � Simple ZV‑line graphs

In this work, we define a family of graphs, ZV-line graphs, and present a simple and gen-
eral mechanism for this family. This family is defined by introducing a simple combinato-
rial structure: A partition of the locations into two categories and a connectivity constraint. 
One could think of the partition as representing a social agreement or a social norm accord-
ing to which the mechanism is defined, e.g., a subset of status-quo locations or an a-priori 
priority hierarchy over the locations. The connectivity constraint (as the graph in general) 
represents homogeneity over the preferences of different agents, that is, a restriction over 
the possible preference profiles, focusing on scenarios where the preferences share some 
common structure. This allows us to construct a group-manipulation-resistant mechanism.

We first define the basic case, the simple ZV-line graphs family, and afterwards extend it 
recursively to define general ZV-line graphs.12

Definition 3  (Simple ZV-line graphs) An unweighted undirected connected graph 
G = ⟨V, E⟩ is a simple ZV-line graph w.r.t. a partition of the vertices into two disjoint sets 
V = V

⋃̇
Z and a full linear order over Z , if

•	� There are no edges between different locations in V  ( V-locations), i.e., for any V
-location v ∈ V  , N(v) ⊆ Z.

	 Moreover, for any V-location v ∈ V  , N(v) is a contiguous sequence of Z-locations.
•	 For any Z-location z ∈ Z , B(z, 1) ∩ Z is a contiguous sequence of Z-locations.

We say that a graph G = ⟨V, E⟩ is a simple ZV-line graph, if it is a simple ZV-line graph 
w.r.t. some partition of the vertices into two disjoint sets V = V

⋃̇
Z and a full linear order 

over Z.
For simplicity of description, we refer later to the order over the Z-locations as a left-to-

right order. We also use the terms V-locations, Z-locations, V-vertices, and Z-vertices for 
the respective sets of locations.

For example, the graphs of Figs. 1, 2, 3, 5 and 6 in the introduction are all simple ZV
-line graphs:

•	� There are no edges between Z-locations, so B(z, 1) ∩ Z = {z} for all z ∈ Z , and they 
are ordered on a horizontal line.

•	 The V-locations are the vertices denoted by ⧫.
•	 Each V-location is connected to a contiguous sequence of Z-locations.

Two examples of simple ZV-line graphs with no V-locations are the clique graph with 
any order over the locations and the line graph with the natural order (note this is a dif-
ferent representation as a simple ZV-line graph from the one in Fig. 2). Note also that 
bicliques are ZV-line graphs w.r.t. any order over the Z-locations. That is, a graph could 
be a simple ZV-line graph w.r.t. several representations.

12  In the conference version of this work [49], we presented a different but equivalent definition of ZV-line 
graphs.



Autonomous Agents and Multi-Agent Systems (2022) 36:12	

1 3

Page 17 of 58  12

Given a simple ZV-line graph G = ⟨V, E⟩ that is a simple ZV-line graph w.r.t. a given 
partition of the vertices V = V

⋃̇
Z and an order over Z , we define the following facility 

location mechanism F⋆
sZV

∶ V
⋆
→ V.

Definition 4  (F⋆
sZV

 - A mechanism for simple ZV-line graphs) For a simple ZV-line graph 
G = ⟨V, E⟩ , given a ballot profile (location reports of the agents) x ∈ V

⋆ , 

▶	� If all agents voted unanimously to a unique location � ∈ V (i.e., all ballots are iden-
tical), return �.

▶	� Otherwise, return the leftmost Pareto-optimal Z-location.

First, we claim that F⋆
sZV

 satisfies the following properties:
F

⋆

sZV
 is well-defined: (I.e., there is always a Pareto-optimal Z-location in the second 

case): If one of the ballots is a Z-location, then this location is Pareto-optimal. In case 
that all ballots are V-locations and there exist two non-identical ballots u and v, then by 
Claim 2 there exists a Pareto-optimal location � in distance 1 of u. Since all neighbors 
of a V-location are Z-locations, we get that � ∈ Z.

F
⋆

sZV
 can be computed in polynomial time: We can find all Pareto-dominated loca-

tions (i.e., V⧵PO(x) ) in polynomial time in the following way:

Foreach location � ∈ V

Foreach location �� ∈ V

If ∀b ∈ x d
(
b,��

)
⩽ d(b,�) and ∃b ∈ x d

(
b,��

)
< d(b,�),

then � is a Pareto-dominated location.

 Hence, finding PO(x) and finding the leftmost location in PO(x) ∩ Z can be done in polyno-
mial time. Since finding whether all ballots are identical can be done in polynomial time, we 
get that F⋆

sZV
 can be computed in polynomial time.

F
⋆

sZV
  is an order-based mechanism: F⋆

sZV
 can be equivalently defined as returning the 

first Pareto-optimal location in V according to the following (predefined) order: First, check 
whether any of the Z-locations is a Pareto-optimal location, from left to right; Then, iterate 
over the V-locations in some arbitrary order. This is an equivalent definition since there is no 
Pareto-optimal Z-location only in case that all ballots are identical.

Note that F⋆
sZV

 is defined w.r.t. a given partition and order, so when there are several 
different partitions for V , e.g., when G is a biclique, different mechanisms could arise. It 
is also important to note that we do not assume that the agents know the partition and the 
order, but they know the mechanism F⋆

sZV
 . In other words, we see this structure as a combi-

natorial property of a graph that derives the preferences of agents and could represent some 
homogeneity of the preferences or a social norm of giving priority to the Z-locations.

Proposition 2  (F⋆
sZV

 satisfies the desired properties) Let G = ⟨V, E⟩ be a simple ZV-line 
graph. Then F⋆

sZV
 is an anonymous, Pareto-optimal, group-manipulation-resistant mecha-

nism for G . That is, F⋆
sZV

 satisfies:
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For any location profile x ∈ V
⋆ , a coalition of agents C, and a set of ballots A ∈ V

⋆ , A 
is not a beneficial deviation for C.13

Proof of Proposition 2  The anonymity of F⋆
sZV

 is trivial from its definition as a function of 
the ballots while ignoring the identity of the agents. It is also easy to see that the outcome 
of F⋆

sZV
 will always be a Pareto-optimal location. Both in the first case, in which it equals 

the set of all ballots, and in the second case, in which it is a Pareto-optimal Z-location.

To prove the main part of the proposition, we assume towards a contradiction that 
there exists a profile of locations (ballots) x ∈ V

⋆ , a coalition of agents C, and a set of 
ballots A ∈ V

⋆ , s.t. the coalition C can cast A and change the outcome to be F⋆
sZV

(
A, x−C

)
 

that it strictly prefers. That is, all the agents in C weakly prefer F⋆
sZV

(
A, x−C

)
 over 

F
⋆
sZV

(x) = F
⋆
sZV

(
xC, x−C

)
 and at least one agent in C, Agent  i for i ∈ C , strictly prefers 

F
⋆
sZV

(
A, x−C

)
 over F⋆

sZV
(x) . F⋆

sZV
(x) ∈ PO(x) and in particular the coalition of all agents 

does not strictly prefer F⋆
sZV

(
A, x−C

)
 over F⋆

sZV
(x) . Hence, there exists an Agent  j, for 

j ∉ C , who strictly prefers F⋆
sZV

(x) over F⋆
sZV

(
A, x−C

)
.

If F⋆
sZV

(x) is a V-location : Then necessarily, all the ballots in x are identical and equal 
to F⋆

sZV
(x) . In contradiction to Agent i strictly preferring F⋆

sZV

(
A, x−C

)
 over F⋆

sZV
(x).

Similarly, if F⋆
sZV

(
A, x−C

)
is a V-location : Then necessarily, all the ballots in ⟨A, x−C⟩ 

are identical and equal to F⋆
sZV

(
A, x−C

)
 . In contradiction to Agent  j strictly preferring 

F
⋆
sZV

(x) over F⋆
sZV

(
A, x−C

)
.

If bothF⋆
sZV

(x) andF⋆
sZV

(
A, x−C

)
areZ-locations:

First, we prove the following two auxiliary lemmata.
Lemma (i) For any v ∈ V and d ⩾ 1 , B(v, d) ∩ Z is a non-empty contiguous sequence of 

Z-locations.

Proof  We prove the lemma via induction over d.
For d = 1 : B(v, 1) ∩ Z is a contiguous sequence of Z-locations by the definition of sim-

ple ZV-line graphs.
For d ⩾ 2 : B(v, d) ∩ Z =

⋃
u∈B(v,1) (B(u, d − 1) ∩ Z) . Next, by noticing that for any 

u ∈ B(v, 1)⧵{v}

•	� By the induction hypothesis B(u, d − 1) ∩ Z is a non-empty contiguous sequence of 
Z-locations;

•	� (B(u, 1) ∩ Z)
⋂

(B(v, 1) ∩ Z) ≠ � , since either u or v is a Z-vertex in the intersec-
tion; and

•	 (B(u, d − 1) ∩ Z)
⋂

(B(v, d − 1) ∩ Z) ⊇ (B(u, 1) ∩ Z)
⋂

(B(v, 1) ∩ Z),

we set that all the operands in 
⋃

u∈B(v,1) (B(u, d − 1) ∩ Z) intersect the non-empty contig-
uous sequence of Z-locations B(v, d − 1) ∩ Z , and hence also B(v, d) ∩ Z is a non-empty 
contiguous sequence of Z-locations. 	�  ◻

13  Since F⋆
sZV

 is onto, this property entails Pareto-optimality. Yet, we prefer to state explicitly Pareto-opti-
mality as a desired efficiency property.
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Lemma (ii) Let x be a location profile s.t. F⋆
sZV

(x) ∈ Z and let v ∈ Z be a location s.t. 
Agent i strictly prefers v over F⋆

sZV
(x) . Then F⋆

sZV
(x) is to the left of v.

Proof  If d
(
xi, v

)
= 0 , i.e., xi = v , then it is a Z-location so v = xi ∈ PO(x) ∩ Z . By the defi-

nition of F⋆
sZV

 , F⋆
sZV

(x) is to the left of v. Henceforth, we assume that d
(
xi, v

)
⩾ 1.

If xi is a Z-location, then xi ∈ PO(x) ∩ Z and by the definition of F⋆
sZV

 , F⋆
sZV

(x) is to the 
left of xi . Since F⋆

sZV
(x) ∉ B

(
xi, d

(
xi, v

))
∩ Z and since by Lemma (i), B

(
xi, d

(
xi, v

))
∩ Z 

is a non-empty contiguous sequence of Z-locations which includes xi , we get that F⋆
sZV

(x) 
is to the left of B

(
xi, d

(
xi, v

))
∩ Z and in particular to the left of v.

If xi is a V-location, then since F⋆
sZV

(x) ≠ xi there exists an Agent  j s.t. xj ≠ xi and by 
Claim 2 there exists a location � ∈ PO(x) s.t. d

(
�, xi

)
= 1 , i.e., � ∈ N

(
xi
)
 . By the defini-

tion of simple ZV-line graphs, � is a Z-location and hence F⋆
sZV

(x) is to the left of � (or is 
equal to it). Since by Lemma (i),

both sets are contiguous sequences of Z-locations, and F⋆
sZV

(x) ∉ B
(
xi, d

(
xi, v

))
∩ Z , we 

get that F⋆
sZV

(x) is to the left of v. 	�  ◻

By applying Lemma (ii) for the profile x and Agent i, we get that F⋆
sZV

(x) is to the left 
of F⋆

sZV

(
A, x−C

)
 . Similarly, by applying this lemma for the profile 

(
A, x−C

)
 and Agent j, we 

get that F⋆
sZV

(
A, x−C

)
 is to the left of F⋆

sZV
(x) . Hence, we get a contradiction. 	�  ◻

Note that bipartiteness of the graph is not a sufficient condition for group-manipulation-
resistance of F⋆

sZV
 . For example, C6 , the cycle of size 6, is a bipartite graph but there exists 

no anonymous Pareto-optimal mechanism for C6 which is resistant even to manipulations 
by a single agent (In Sect. 6, we generalize this and show that there exists no such mecha-
nism for Cn for any n ⩾ 6).

Proposition 3  There is no anonymous Pareto-optimal mechanism for C6 , the cycle of six 
locations, that is resistant even to manipulations of a single agent.

Proof  Assume towards a contradiction that F  is a Pareto-optimal, anonymous, group-
manipulation-resistant mechanism for C6 . We denote the locations of C6 by {0, 1, 2, 3, 4, 5} , 
and w.l.o.g. assume that for the profile of six agents who vote for all six locations the out-
come is 0 (see Fig. 8).

For the profile ⟨2, 4, 5⟩ : From resistance to false-name manipulations of the first and 
last agents, the outcome must be either 0 or 4 (Since any of them can change the result to 

� ∈ B
(
xi, 1

)
∩ Z ⊆ B

(
xi, d

(
xi, v

))
∩ Z,

Fig. 8   The cycle of size 6, C
6

0

1

2

3

4

5
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be 0 by adding false-ballots). From the Pareto-optimality of F  , the outcome cannot be 0 
which is Pareto-dominated by 4. Hence, the outcome for the profile ⟨2, 4, 5⟩ is 4.

Similarly, for the symmetric profile ⟨1, 2, 4⟩ the outcome must be 2. From false-name-
resistance the outcome for the profile ⟨2, 4⟩ must also be 2 (Otherwise, the first agent will 
cast an additional false-ballot 1 to get the outcome to be 2).

But, the second agent in the profile ⟨2, 4⟩ (who is located on 4) can change the outcome 
to be 4 that she strictly prefers by casting one additional false-name ballot 5. So we get a 
contradiction. 	�  ◻

We also note that Proposition  2 does not hold for weighted graphs. Consider the 
weighted graph in Fig. 9 and a profile in which Alice is located on zr and Bob is located on 
v. Then the outcome of F⋆

sZV
 is zr , but Bob can move the facility to a preferred location z� 

both (i) by misreporting z� ; hence, F⋆ is not strategy-proof; and (ii) by false-name-voting z� 
besides his truthful ballot, hence, F⋆

sZV
 is not false-name-proof.14

Last, we note that there exist simple mechanisms that satisfy subsets of the properties of 
Proposition 2:

•	� The fixed mechanism, which always positions the facility on a predefined location 
ignoring the votes of the agents, is trivially group-manipulation-resistant and anony-
mous for any graph, but it is not onto and hence not Pareto-optimal.

•	� A dictatorship of the first agent, i.e., a mechanism that always positions the facility 
on the location reported by the first agent, is not anonymous, but it is group-manipu-
lation-resistant for any graph.15

•	� The median mechanism, which minimizes the sum of distances between the facil-
ity and the ballots, is an anonymous Pareto-optimal mechanism for any graph. For 
some graphs, e.g., the discrete line, it also satisfies strategy-proofness and absten-
tion-proofness both against one manipulator and against a coalition, but an agent can 
benefit by casting multiple identical ballots.

•	� Also the mean mechanism, which minimizes the sum of squares of the distances 
between the facility and the ballots, is an anonymous Pareto-optimal mechanism for 
any graph, but it might not be strategy-proof or false-name-proof even against one 
agent, e.g., for the discrete line graph (it is abstention-proof, though).

Fig. 9   Proposition 2 does not hold for weighted graphs

v
1

z� zr

10

V = {v}
Z = {z�, zr}

15  While we did not formally define false-name-proofness for non-anonymous mechanisms, assuming a 
false-name-ballot cannot be counted as the vote of the first agent, no agent can benefit from casting addi-
tional ballots.

14  The mechanism that returns the leftmost ballot according to the order z� − v − zr satisfies the desid-
erata. Notice that this mechanism can be defined as simple ZV-line graph w.r.t. a different partition: 
Z =

{
z� , v, zr

}
 and V = �.
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3.1 � Examples of Simple ZV‑line graphs

In this subsection, we study several graph families that we show are simple ZV-line graphs, 
by that also illustrating the richness of the family of simple ZV-line graphs. We also pre-
sent some of the mechanisms for these graphs that are derived from our main result. As we 
saw previously, cliques, lines, and bicliques are simple ZV-line graphs.

Claim 5  For any n ⩾ 1 , the clique over n locations,

(that is, the graph over n locations with an edge between any two locations), is a simple ZV
-line graph w.r.t. the Z-locations being all n locations with any order over them.

Claim 6  For any n ⩾ 1 , the discrete line of n locations,

 is a simple ZV-line graph w.r.t. the following partitions of V

•	 w.r.t. the Z-locations being all n locations with the natural order over them;
•	� w.r.t. the Z-locations being the 

⌈
n

2

⌉
 odd-indexed locations with the natural order over 

them; or in general
•	 w.r.t. the Z-locations being the complement of an independent set of vertices.

(Note that these vertex partitions result in different mechanisms).
Claim 7  For any n,m ⩾ 1 , the biclique over n and m locations,

(that is, the graph with n locations on one side, m locations on the other side and an edge 
between any two locations of opposite sides), is a simple ZV-line graph w.r.t. Z-locations 
being the first n locations with any order over them and the other m locations being the V
-locations.

Next, we note that all connected graph with at most five locations but one are simple ZV
-line graphs.

Claim 8  Let G = ⟨V, E⟩ be a connected graph with at most five locations, |V| ⩽ 5 . If G ≠ C5 
(the cycle of size 5), then G is a simple ZV-line graph. ( C5 is not a simple ZV-line graphs 
but still there exists a group-manipulation-resistant, anonymous, Pareto-optimal mecha-
nism for C5).

We prove this claim in Appendix B by showing for each of the graphs a partition to 
V-locations and Z-locations with an order over the latter. In Sect. 6 we show that C5 is 
not a simple ZV-line graphs but still there exists a group-manipulation-resistant, anony-
mous, Pareto-optimal mechanism for C5 which is also an order-based mechanism.

Last, the following three propositions show that small perturbations of cliques, the 
outcome of adding locations or removing edges, are also simple ZV-line graphs.

Kn = ⟨V = {1,… n}, E = {(i, j) � i ≠ j}⟩

Pn = ⟨V = {1,… n}, E = {(i, i + 1) � i = 1,… , n − 1}⟩,

Km,n = ⟨V = {1,… n} ∪̇ {n + 1,… n + m}, E = {(i, j) � i ⩽ n < j}⟩
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Proposition 4  Let G = ⟨V, E⟩ be a graph with a vertex set V and an edge set E , and let 
V = �V ∪̇V (1) ∪̇V (2) ∪̇⋯ ∪̇V (k) (for k ⩾ 1 and Ṽ ≠ ∅ ) be a partition of the vertex set V s.t. 
(See Fig. 10)

•	� The restriction of G to V⧵Ṽ  is a clique. That is, for any two locations 
v, u ∉ Ṽ (v, u) ∈ E ; and

•	 For any location v ∈ Ṽ  , N(v) = V (i) for some partition element V (i) ( i ∈ {1,… , k})

Then G is a simple ZV-line graph.

Proof  We claim that G is a simple ZV-line graph w.r.t. taking the Z-locations to be 
Z = V⧵Ṽ  and an order over Z s.t. V (i) is a contiguous sequence of locations for i = 1,… , k . 
Note that such an order exists since the sets V (i) are disjoint. 

•	 There are no edges between different V-locations.
•	 For any Z-location z ∈ Z , B(z, 1) ∩ Z = V⧵Ṽ = Z.
•	� For i = 1,… , k , N

(
vi
)
 is a contiguous sequence of Z-locations by our choice of the 

order.

Hence, G is a simple ZV-line graph. 	�  ◻

Proposition 5  Let Kn⧵e be the outcome of removing one edge from a clique of size n. 
That is, Kn⧵e ∶= ⟨V, E⟩ s.t. |V| = n and there exist two locations u, v ∈ V s.t. 

E =

(
V

2

)
⧵{(u, v)} . Then G is a simple ZV-line graph.

Proof  W.l.o.g., assume that E =

(
V

2

)
⧵
{(

v1, v2
)}

 . Then by choosing Ṽ =
{
v1
}
 , V (1) = 

{
v2,… , vn

}
 , and applying Proposition 4 we get that Kn⧵e is a simple ZV-line graph (w.r.t. 

Z =
{
v2,… , vn

}
 and any order over Z).	�  ◻

Generalizing Proposition 5, we get the following proposition.

Proposition 6  For 1 < m < n , let Kn⧵Km be the outcome of removing a clique of size m 
from the clique of size n (See Fig. 11),

Then G is a simple ZV-line graph.

Kn⧵Km ∶= ⟨V = {1,… n}, E = {(i, j) � i ≠ j}⧵{(i, j) � i, j ⩽ m and i ≠ j}⟩.

Fig. 10   Example 15 for Proposition 4 (Color figure online)
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Proof  We define Ṽ =
{
v1,… , vm

}
 , V (1) =

{
vm+1,… , vn

}
 . We note that for any loca-

tion v ∈ Ṽ , N(v) = V (1) and that the graph restricted to V (1) is a clique of size (n − m) . 
Hence, by applying Proposition  4 we get that Kn⧵Km is a simple ZV-line graph (w.r.t. 
Z = {m + 1,… , n} and any order over Z ). 	�  ◻

4 � ZV‑line graphs

Next, we extend our result for a larger family of graphs. In this section, we show two 
recursive constructions, of graphs and of mechanisms, extending the desired mechanism 
for simple ZV-line graphs we showed, to a wider family which we name ZV-line graphs.

Given a graph G = ⟨V, E⟩ we say that a sequence of non-empty sets of locations 
V0,V1,⋯ ,Vk ⊆ V ( k ⩾ 0 ) is a non-trivial cover of V if

We extend the definition of simple ZV-line graphs to define general ZV-line graphs using 
the following inductive construction. We also define one of the locations of the ZV-line 
graph to be the root of the graph, and denote it by R(G).

Definition 5  (ZV-line graphs)

•	 Any simple ZV-line graph G = ⟨V, E⟩ is a ZV-line graph, and we define its root R(G) 
to be its leftmost Z-location.

•	 Given an unweighted undirected connected graph G = ⟨V, E⟩ and a non-trivial 
cover of its vertices, V⊥,V1,⋯ ,Vk ⊆ V ( k ⩾ 1 ): G is a ZV-line graph w.r.t. the cover 
V⊥,V1,⋯ ,Vk if 

1.	 The projection of G on V⊥ , G⊥ =

⟨
V = V⊥, E = E ∩

(
V⊥

2

)⟩
 , is a ZV-line graph.

	   For i = 1,… , k :   

2.	� The projection of G on Vi , Gi =

⟨
V = Vi, E = E ∩

(
Vi

2

)⟩
 , is a ZV-line graph.

3.	 The root of Gi , R
(
Gi

)
 , is the unique location in Vi ∩ V⊥.

V = V0 ∪ V1 ∪⋯ ∪ Vk

and Vi ⊈ Vj for all i ≠ j.

K7 \K4K7 \ K4 = K7 \K4K7 \ K4 =

Fig. 11   K
7
⧵K

4
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4.	� There are no edges between locations in 
(
Vi⧵

{
R
(
Gi

)})
 and locations outside 

of Vi . (Equivalently, all paths between locations of Vi and locations outside of 
Vi include the root R

(
Gi

)
).

5.	
(
Vi⧵

{
R
(
Gi

)})
∩
(
Vj⧵

{
R
(
Gj

)})
= � for i ≠ j in {1,… , k}.

If G is a ZV-line graph w.r.t. the cover V⊥,V1,⋯ ,Vk , we define its root to be R(G) = R
(
G⊥

)
.

We say that a graph G = ⟨V, E⟩ is a ZV-line graph, if it is either a simple ZV-line graph 
or a ZV-line graph w.r.t. some non-trivial cover of V.

For ease of description, we refer to the inductive operation of connecting a graph 
Gi to G⊥ as above as planting. We extend the root function R(⋅) to locations and sets 
of locations of non-simple ZV-line graphs. Given a ZV-line graph G w.r.t. a cover 
V⊥,V1,⋯ ,Vk , we define the root of a location v ∈ V , R(v) , to be v if v ∈ V⊥ and R

(
Gi

)
 

if vi ∈ Vi⧵V⊥ for some i ∈ {1,… , k} . Given a set (or a profile) of locations we define the 
root of the set to be R(S) = {R(v) | v ∈ S} , i.e., the roots of the locations in S.

For example, Fig. 7 in the introduction can be constructed in three stages in the fol-
lowing way (see Fig. 12). 

▶	� Figure 12a is a simple ZV-line graph as we saw in Fig. 3.
▶	� Figure 12b is the outcome of ‘planting’ a 6-Clique  (G1 ), a (4, 4)-biclique  (G2 ), a 

9-Clique (G3 ), a line (G4 ), a 2-clique (G5 ), a (1, 3)-biclique (G6 ), and a 2-Clique (G7 ) 
on locations of Fig. 12a and hence it is a ZV-line graph.

▶	� Figure  12c is the outcome of ‘planting’ a (1, 3)-biclique  (G8 ) on a location of 
Fig. 12b and hence it is a ZV-line graph.

The combinatorial intuition, which later will help us prove our results, is captured by 
the following lemma.

Lemma 1  For any location � ∈ V , the preferences of an agent located on � and an agent 
located on R(�) over the locations of G⊥ are identical. That is,

Moreover, if � ∈ Vi for some i ∈ {1,… , k} , then the preferences of an agent located on � 
and an agent located on R(�) over the locations outside of Vi⧵V⊥ are identical. That is,

Corollary 1  For any location � ∈ V , if � ∈ Vi for some i ∈ {1,… , k} , then an agent 
located on � strictly prefers R(�) = R

(
Gi

)
 over any other location outside of Vi.

Given a non-simple ZV-line graph G = ⟨V, E⟩ w.r.t. a cover V⊥,V1,⋯ ,Vk (k ⩾ 1) and 
mechanisms Fi ∶ x ∈ V⋆

i
→ Vi for i = ⊥, 1,… , k , we define the following mechanism 

F
⋆
rec

∶ V
⋆
→ V.

Definition 6  (F⋆
rec

 -A mechanism for non-simple ZV-line graphs) For a non-simple ZV
-line graph G = ⟨V, E⟩ , given a ballot profile (location reports of the agents) x ∈ V

⋆ , 

∀u, v ∈ V⊥ ∶ d(�, u) ⩽ d(�, v) ⟺ d(R(�), u) ⩽ d(R(�), v).

∀u, v ∉ Vi⧵V⊥ ∶ d(�, u) ⩽ d(�, v) ⟺ d(R(�), u) ⩽ d(R(�), v).
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▶	� If there exists a subgraph Gi for some i ∈ {1,… , k} s.t. all ballots belong to Vi , 
return Fi(x).16

▶	� Otherwise, let R(x) be the profile generated by replacing each ballot � by R(�) , 
and return F⊥(R(x)) . (Since R(�) ∈ V⊥ for any location � ∈ V , F⊥(R(x)) is 
well-defined.)

The mechanism F⋆
rec

 has a similar interpretation to the interpretation of F⋆
sZV

 , with 
V⊥ taking the role of the Z-locations: The facility is commonly positioned on a location 
of G⊥ (unless all agents unanimously agree on a different subgraph). For instance, G⊥ 
could represent commercial locations for locating a public mall, the set of status-quo 
outcomes, or other norms of the society.

Fig. 12   A construction of the graph of Fig. 7 (Color figure online)

16  If there are more than one such subgraph, choose one of them arbitrarily. Note that if there are several 
such subgraphs, then it must be that all the ballots are identical and equal to R

(
Gi

)
 . Since later we restrict 

ourselves to Pareto-optimal Fi (so Fi(x) = R
(
Gi

)
 ), this arbitrary choice does not influence the outcome of 

F
⋆
rec

.



	 Autonomous Agents and Multi-Agent Systems (2022) 36:12

1 3

12  Page 26 of 58

Now, we can define our mechanism for ZV-line graphs, by applying Definition  6 
recursively on G and its subgraphs (taking simple ZV-line graphs and F⋆

sZV
 as the base of 

the recursion).

Definition 7  (F⋆-The mechanism for ZV-line graphs) For a ZV-line graph G = ⟨V, E⟩ , 
given a ballot profile (location reports of the agents) x ∈ V

⋆ , 

▶	� If G is a simple ZV-line graph, return F⋆
sZV

(x).
▶	� Otherwise, G is a ZV-line graph w.r.t. some cover V⊥,V1,⋯ ,Vk ( k ⩾ 1 ). 

	� ▶	�  �Let F⋆
rec

 be the mechanism as defined in Definition 6 w.r.t. the cover 
V⊥,V1,⋯ ,Vk ( k ⩾ 1).

▶	� Return F⋆
rec
(x).

First, we claim that F⋆ satisfies the following desired properties:

F
⋆  is an order-based mechanism: If G is a simple ZV-line graph, then F⋆ = F

⋆
sZV

 
which we already saw is an order-based mechanism.
If G is a non-simple ZV-line graph, then F⋆ = F

⋆
rec

 and we claim that F⋆
rec

 is an order-
based mechanism whenever the mechanisms F⊥,F1,… ,Fk are order-based mecha-
nisms (of the respective graphs). This property holds since

•	 If PO(x) ∩ V⊥ ≠ � , then by Lemma 1, PO(x) ∩ V⊥ = PO(R(x)) ∩ V⊥.
•	� There is no Pareto-optimal location in G⊥ , only if all the ballots belong to a 

sub-graph Gi for some i ∈ {1,… , k}.
•	� For any i ∈ {1,… , k} , PO(x) ∩

(
Vi⧵V⊥

)
≠ � only if all the ballots belong to Gi.

•	� For any i ∈ {⊥, 1,… , k} , R
(
Gi

)
 must be the first location in the order of Fi , 

since by the definition of the mechanism when all locations of Gi are voted 
for, the outcome is R

(
Gi

)
.

Hence, an equivalent order-based definition of F⋆
rec

 is returning the first Pareto-opti-
mal location in the following order: First, go over the locations in G⊥ and then iterate 
over the locations of the other subgraphs, while for each subgraph Gi iterate over its 
locations according to the order of Fi.
F

⋆  can  be  computed  in  polynomial  time: If G is a simple ZV-line graph, then 
F

⋆ = F
⋆
sZV

 which we already saw can be computed in polynomial time.
Otherwise, it is enough to notice that by Definition 6, if F⊥,F1,… ,Fk can be com-
puted in polynomial time, then F⋆

rec
 can be computed in polynomial time. So, the 

time complexity of F⋆ can be bounded via a recursive argument.

Our main result shows that F⋆ satisfies the desired efficiency and manipulation-resistance 
properties.

Theorem 1  (Main result) Let G = ⟨V, E⟩ be a ZV-line graph and let F⋆ ∶ V
⋆
→ V be the 

corresponding mechanism as defined in Definition 7. Then F⋆ is an anonymous, Pareto-
optimal, group-manipulation-resistant mechanism.

We prove the theorem by structural induction over the set of ZV-line graphs. We already 
proved the base case of simple ZV-line graphs (Proposition 2). The main ingredient in the 
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proof is showing that these desired properties are elevated by the recursive construction of 
F

⋆
rec

 (Definition 6).

Proposition 7  Let G = ⟨V, E⟩ be an unweighted undirected connected graph with a  
non-trivial cover V⊥,V1,⋯ ,Vk (k ⩾ 1) , and denote by Gi the subgraph ⟨
V = Vi, E = E ∩

(
Vi

2

)⟩
 , s.t.

•	 For i = 1,… , k , there exists a unique location in Vi ∩ V⊥ , which we denote by R
(
Gi

)
.

•	� For i = 1,… , k , there are no edges between locations in 
(
Vi⧵

{
R
(
Gi

)})
 and loca-

tions outside of Vi . (Equivalently, all paths between locations of Vi and locations 
outside of Vi include the root R

(
Gi

)
).

•	 The sets 
{
Vi⧵

{
R
(
Gi

)}}
i=1,…,k

 are pairwise disjoint.

For i = ⊥, 1,… , k , let Fi ∶ x ∈ V⋆
i
→ Vi be a mechanism for Gi s.t.

•	 Fi is an anonymous, Pareto-optimal, group-manipulation-resistant mechanism.
•	� For an infinite number of � ∈ ℕ , there exists a profile x ∈ V⋆

i
 in which there are at 

least � ballots for any location in Vi s.t. Fi(x) = R
(
Gi

)
.

Then, for F⋆
rec

∶ V
⋆
→ V as defined in Definition 6,

•	 F
⋆
rec is an anonymous, Pareto-optimal, group-manipulation-resistant mechanism.

•	� For any number � ∈ ℕ , there exists a profile x ∈ V
⋆ in which there are at least � 

ballots for any location in V s.t. F⋆
rec
(x) = R

(
G
)
= R

(
G⊥

)
.

Note that we do not require the subgraphs V⊥,V1,⋯ ,Vk to necessarily be ZV-line 
graphs. This allows us to apply the recursive construction also for graphs for which an 
anonymous, Pareto-optimal, group-manipulation-resistant mechanism is known but are not 
ZV-line graphs (e.g., C5 ). We prove Proposition 7 in Appendix C. In fact, we prove a more 
robust result (Proposition 12) showing that also weaker notions of manipulation-resistance 
can be lifted from the mechanisms for the subgraphs Gi to the mechanism F⋆ , e.g., resist-
ance against manipulations of only some coalitions and resistance against only some types 
of manipulations.

Proof of Theorem 1  We prove the following using structural induction over the recursive 
definition of ZV-line graphs (Definition 5).

•	 F
⋆ is an anonymous Pareto-optimal mechanism.

•	� F⋆ is a group-manipulation-resistant mechanism. That is, for any location profile 
x ∈ V

⋆ , a coalition of agents C, and a set of ballots A ∈ V
⋆ , A is not a beneficial 

deviation for C.
•	� For any number � ∈ ℕ , there exists a profile x ∈ V

⋆ in which there are at least � ballots 
for any location in V s.t. F⋆(x) = R

(
G
)
.

Base  (Simple ZV-line graphs): When G is a simple ZV-line graph, we showed in Proposi-
tion 2 that F⋆

sZV
 is an anonymous, Pareto-optimal, group-manipulation-resistant mechanism. 

Given � ∈ ℕ , consider the location profile x in which each location in V appears in exactly � 
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ballots. Then, PO(x) = V and by Definition 4, F⋆
sZV

(x) is the leftmost Z-location of G , which 
is R(G).
Step (Non-simple ZV-line graphs): When G is a non-simple ZV-line graph, Proposition 7 
gives us that whenever the respective mechanisms Fi for the subgraphs Gi for i = ⊥, 1,… , k 
are anonymous, Pareto-optimal, group-manipulation-resistant mechanisms and for an infi-
nite number of � ∈ ℕ , there exists a profile x ∈ V⋆

i
 in which there are at least � ballots for 

any location in Vi s.t. Fi(x) = R
(
Gi

)
 , the F⋆ also satisfies the above desired properties. 	

� ◻

4.1 � Recursive families of ZV‑line graphs

Many graph families are defined using a recursive definition: That is, stating a base case that 
comprises an initial (and commonly small) family of simple graphs and an inductive step 
defining graphs in the family as a simple amalgamation of other (more basic) graphs in the 
family (for example, the second case of the definition of ZV-line graphs, Definition 5). Given a 
recursive family of ZV-line graphs, the mechanism F⋆ of Theorem 1 is a recursive, and hence 
commonly simple, mechanism that satisfies our desiderata.

Example (i): Rooted trees  A simple example of a recursive family of ZV-line graphs is 
rooted trees which can be defined recursively as follows (See also Fig. 13): 

Base:	 A tree of height 0 is a single location (and it is also the root of the tree).
Step:	� A tree of height h > 0 consists of a location (the root) which is connected to the 

roots of a non-empty set of trees s.t. the maximal height of them equals (h − 1).

We can see that indeed these graphs are ZV-line graphs, since a tree of height 0 (sin-
gle location) and trees of height 1 (bicliques) are simple ZV-line graphs and the recursive 
step of the definition satisfies the recursive connectivity constraint of Definition 5. Hence, 
we get, as a corollary of Theorem 1, that the mechanism that returns the lowest common 
ancestor of the ballots is an anonymous, Pareto-optimal, group-manipulation-resistant 
mechanism. Noting that given a tree graph, it is a rooted graph w.r.t. the root being any of 
the locations, we get that any mechanism F  that returns the lowest common ancestor of the 
ballots w.r.t. some arbitrary root r, or equivalently

F(x) = argmin
v∈PO(x)

d(v, r),

· · ·h = 0 h = 1 h = 2 h = 3

Fig. 13   Trees of height 0, 1, 2 and 3. The new location (the root) added in each step is denoted by . The 
roots of the sub-graphs of each step are denoted by   (Color figure online)
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is an anonymous, Pareto-optimal, group-manipulation-resistant mechanism. These are also 
the mechanisms that Todo et  al.  [67] characterized as the false-name-proof, anonymous, 
Pareto-optimal mechanisms for the continuous tree.

Example (ii): A generalization of rooted trees  We show an anonymous, Pareto-opti-
mal, group-manipulation-resistant mechanism for the following family of rooted graphs 

(that is, ⟨V, E, r⟩ s.t. E ⊆

(
V

2

)
 and r ∈ V ). (See also Fig. 14)

Definition 8  (C ) 

Base:	 ⟨{v}, �, v⟩ ∈ C.
Step:	� For any k,� ⩾ 1 : If 

�⟨Vi, Ei, ri⟩
�k

i=1
 are graphs in C (and the Vi are pairwise dis-

joint), then also the graph 

 is in C . That is, adding a new layer of � pre-roots, a biclique between the pre-roots and 
the roots of the sub-graphs, and defining the new root to be one of the pre-roots.

We use the notation h(G) for the minimal number of steps needed to generate G and call 
it the complexity of G.

We note that the graphs of complexity h(G) = 1 are the bicliques and that by taking 
� = 1 in the recursive step of the definition we get the family of rooted trees. Hence, both 
are sub-families of this family of graphs. We can see that indeed these graphs are ZV-line 
graphs by noticing that the recursive step of the definition satisfies the recursive connectiv-
ity constraint of Definition 5.

Our mechanism for these graphs: 

▶	� Find the subgraph G′ of lowest complexity s.t. all ballots belong to G′.
▶	� If there exists a ballot for a pre-root of G′ , the mechanism returns the leftmost pre-

root of G′ that was voted for.
▶	� Otherwise, the mechanism returns the leftmost pre-root of G′.

��
�rj
��

j=1
∪̇

⎛⎜⎜⎝

k�̇
i=1

Vi

⎞⎟⎟⎠
,

⎛⎜⎜⎝

k�̇
i=1

Ei

⎞⎟⎟⎠
∪̇
��
�rj, ri

��
i = 1… k

j = 1…�

, �r1

�

h = 0 h = 1 h = 2

Fig. 14   Graphs of complexity 0, 1 and 2. The new pre-roots added in each step are denoted by . The 
roots of the sub-graphs of each step are denoted by   (Color figure online) 
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Notice that the order over the pre-roots is arbitrary, so different mechanisms could arise 
from different choices of orders and mechanisms for G⊥ (For instance, the order might rep-
resent the social norm of the society).17

Example (iii): Block graphs  Our last example is connected block graphs [33].18

Definition 9  (Connected block graphs) A connected graph G = ⟨V, E⟩ is a block graph if 
the following equivalent conditions hold:

•	 Every biconnected subgraph of G is a clique.19

•	 The intersection of any two connected subgraphs of G is either empty or connected.
•	 For every four vertices u, v,w, x ∈ V , the largest two of the three distance sums

are equal.

In general, any connected graph G decomposes into a tree of biconnected components 
called the block-cut tree of the graph. The block-cut tree of a graph G is a tree T(G) that is 
defined in the following way. In T(G) there is a vertex (component-vertex) for each maxi-
mal biconnected component of G and a vertex (intersection-vertex) for each vertex in G 
that belongs to more than one maximal biconnected component. There is an edge in T(G) 
between each component-vertex and the intersection-vertices belonging to this component.

Hence, since for connected block graphs all maximal biconnected components are 
cliques, a connected block graph G can be represented by its block-cut tree T(G) s.t. each 
component-vertex is labeled by the size of the represented clique and each intersection-ver-
tex is labeled by the indices of the represented vertex in the respective cliques. Moreover, 
any such labeled tree defines a (unique) block graph.20

Given a block graph G , its block-cut tree T(G) induces a recursive structure decompos-
ing G to smaller block graphs. Our mechanism is defined w.r.t. a choice of an arbitrary 

d(u, v) + d(w, x), d(u,w) + d(v, x), and d(u, x) + d(v,w)

Fig. 15   The (2,2)-biclique

18  We thank Ayumi Igarashi for suggesting us this family as an example.
19  A graph is biconnected if it is a connected graph that is not broken into disconnected pieces by delet-
ing any single vertex (and its incident edges). An equivalent definition is that a graph is biconnected if, for 
every pair of its vertices, it is possible to find two vertex-independent paths connecting these two vertices.
20  This is the reason connected block graphs are also called clique trees.

17  In the version of this work that appeared on AAMAS  [49, Claim  3.16] we erroneously claimed that 
the mechanism F(x) = argminv∈PO(x) d(v, r) , that returns the Pareto-optimal location closest to the root and 
breaks ties according to some predefined order is a group-manipulation-resistant mechanism. A counter-
example for this claim is the (2, 2)-biclique (see Fig.  15). Assume F  returns the Pareto-optimal location 
closest to v

3
 and consider the profile ⟨v

1
, v

2
, v

4
⟩ . Then the Pareto-optimal locations are 

{
v
1
, v

2
, v

4

}
 and the 

Pareto-optimal locations closest to v
3
 are v

1
 and v

2
 . Assume that the mechanism returns v

1
 (and the case of 

v
2
 is symmetric). Then the agent located on v

2
 can manipulate by changing her vote to v

3
 and changing the 

outcome to be v
3
 which is closer to her.
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root of T(G) and arbitrary orders for every clique over its locations. We can see that indeed 
these graphs are ZV-line graphs, by noting that cliques are simple ZV-line graphs and 
that the recursive step of the definition satisfies the recursive connectivity constraint of 
Definition 5.

Our mechanism for a connected block graph G is: 

▶	� Find the component G′ that is represented by the lowest common ancestor of 
the ballots.

▶	� If one of the locations of G′ was voted for, the mechanism returns the first loca-
tion of G′ (according to the order) that was voted for.

▶	� Otherwise, the mechanism returns the first location of G′.

An equivalent definition of this family of mechanisms is returning the closest Pareto-opti-
mal location to some arbitrary location v, breaking ties according to an arbitrary fixed order.

5 � Discussion

In this work, we presented a new family of graphs, ZV-line graphs, and a generic, anon-
ymous, Pareto-optimal, group-manipulation-resistant mechanism for the facility location 
problem on these graphs (Theorem 1). The mechanism F⋆ we presented is not the only 
mechanism satisfying the desired properties. For instance, a mechanism that outputs at the 
second stage of Definition 4 the rightmost Pareto-optimal Z-location instead of the left-
most would also satisfy the desiderata. Generally, taking any order over the Z-locations of 
a simple ZV-line graph s.t. the constraints of Definition 3 hold and defining F⋆

sZV
 accord-

ingly will satisfy them. As we saw on Claim 4, there exists an anonymous, Pareto-optimal, 
group-manipulation-resistant mechanism for the cycle of size four, which is a simple ZV
-line graph which is not of the template of Definition 4. On the other hand, we saw in Cor-
ollary 2 that for any anonymous, Pareto-optimal, group-manipulation-resistant mechanism 
H for the cycle of size four, it holds that all agents are ex-post indifferent between H and a 
mechanism F  that is derived by Definition 4. Likewise, also the non-order-based mecha-
nism for the (2, 3)-biclique in Claim 3 is equivalent in this ex-post indifference sense to a 
mechanism that is derived by Definition 4. We suspect this is also true in general and con-
jecture that for any ZV-line graph G , the only anonymous, Pareto-optimal, group-manipu-
lation-resistant mechanisms for G are either derived by Definition 4 or equivalent (in this 
ex-post indifference sense) to a mechanism which is.

Furthermore, unifying the non-existence results we had found, we think that the par-
tition into Z-locations and V-locations is a fundamental property of a false-name-proof 
mechanism. The only non-ZV-line graphs for which we found an anonymous, Pareto-
optimal, group-manipulation-resistant mechanism are the cycle of size 5 (See Sect. 6) and 
graphs derived from it by Proposition 7, e.g., the graph of Fig. 16.

We conjecture that the cycle of size 5 is a representative extreme exception and that 
except for very few small graphs, there are anonymous, Pareto-optimal, group-manipula-
tion-resistant graphs only for ZV-line graphs.
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Conjecture 1  Let G = ⟨V, E⟩ be a graph and let F ∶ V
⋆
→ V be an anonymous, Pareto-

optimal, group-manipulation-resistant mechanism for G . Then, except for few small graphs, 
if F  is an order-based mechanism, then one of the following two cases holds

(a) G is a simple ZV-line graph w.r.t. some partition of V to V-locations and Z-locations 
and F  is the outcome of applying Definition 4.
(b) There exists a non-trivial cover V⊥,V1,⋯ ,Vk ⊆ V of V s.t.

•	 G is a ZV-line graph w.r.t. the cover V⊥,V1,⋯ ,Vk;
•	� For i = ⊥, 1,… , k : Whenever x ∈

(
Vi

)⋆ , i.e., all locations are in Vi , also 
F(x) ∈ Vi;

•	� The mechanisms Fi ∶
(
Vi

)⋆
→ V⋆

i
 that are defined by Fi(x) = F(x) are 

anonymous, Pareto-optimal, group-manipulation-resistant mechanisms, for 
i = ⊥, 1,… , k ; and

•	 F  is the outcome of applying Definition 6 for the mechanisms Fi.

On the other hand, if F  is not an order-based mechanism, then there exists an order-based 
mechanism H s.t. all agents are ex-post indifferent between F  and H (Hence, H is an anon-
ymous, Pareto-optimal, group-manipulation-resistant mechanism for G too, and the first 
case holds for H).

Consequentially, showing that a given graph does not have such a structure could be an 
easy and efficient way to prove the non-existence of an anonymous, Pareto-optimal, group-
manipulation-resistant mechanism. The conjecture also implies that all manipulation-resistant 
anonymous Pareto-optimal mechanisms (up to the above equivalence) are computationally 
easy to run.

5.1 � Approximate mechanism design without money

Assuming Conjecture 1, one gets that whenever there is a large disagreement in the popula-
tion (i.e., the agents are dispersed over many Vi-subgraphs), an extreme status-quo alter-
native must be chosen by the mechanism. This raises the natural question of how much 
efficiency must be sacrificed by requiring manipulation-resistance. That is, assuming the 
agents are quantitatively represented by a cost function (e.g., the distance to the facility or a 
monotone function of the distance) and analyzing the implications of manipulation-resist-
ance on the approximability of the minimization problem of natural social cost functions, 
e.g., the average cost (Harsanyi social welfare), the geometric mean of the costs (similar to 
the Nash social welfare), or the maximum cost (Rawls’ criterion).

Assuming Conjecture  1 results in a high price of false-name-proofness for most non-
trivial graphs (of the order of the number of agents times the diameter of the graph). For 
comparison, both the mechanism that always outputs a constant location and the random 

Fig. 16   C
5
 with a 4-clique planted on its left vertex and a tree planted on its right vertex
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mechanism that outputs one of the ballots at random have a price of false-name-proofness of 
the same order. Both mechanisms, although they are not deterministic false-name-proofness 
Pareto-optimal mechanisms and as such are out of the scope of this work, are very simplistic 
and clearly could not be seen as optimizing social welfare. As we show below, this phenom-
enon of losing a large portion of performance due to requiring false-name-proofness is not 
unique to facility location problems, and also in other domains, one could get highly simplis-
tic mechanisms with the same performance as any false-name-proof mechanism. In a sense, 
this is similar to the impossibility results for unconstrained voting rules of Gibbard [30] and 
Satterthwaite [59] for deterministic rules, and of Gibbard [31] for random voting rules.

We think this should not be surprising. The false-name-proofness property requires that 
an agent should not benefit even from casting a colossal number of identical ballots,21 and 
hence the designer must act as if any of the ballots represents the vast majority of society. 
So when the ballots are dispersed enough, from the viewpoint of the designer, all locations 
guarantee roughly the same social value (for most natural notions of social value).

False‑name‑proof combinatorial auctions:  Yokoo et al.  [79] showed in their work 
that there is no false-name-proof mechanism for combinatorial auctions which allocates the 
resources efficiently, and later results  ([54]) showed that false-name-proofness is impos-
sible even under a weaker maximality constraint. Following this work, Iwasaki et al. [36] 
showed that there is no symmetric false-name-proof mechanism (which also satisfies some 
apparently minor assumptions) that is guaranteed to get more than 2

m+1
 of the optimal 

social welfare, for m being the number of resources and there are strictly more agents than 
resources, even when all bidders are single-minded ([36, Thm. 2]). On the other hand, this 
efficiency approximation is achieved by a trivial mechanism that auctions the grand bundle 
in a second-price auction ([36, Thm. 3]), in particular, ignoring most of its input and the 
combinatorial aspect of the scenario.

False‑name‑proof voting scenarios:  In general voting settings, Conitzer [15] showed 
that all neutral anonymous false-name-proof voting rules must have a non-negligible ran-
dom component (and in particular could not be deterministic) and in many scenarios must 
be far from maximizing any reasonable quantitative efficiency criterion. For instance,

•	� Unless there is unanimity among the voters on some pair of alternatives, any false-
name-proof voting rule must choose the winner uniformly at random. This holds 
even when there are only two alternatives.

•	� If there are at least three alternatives, then under any false-name-proof voting rule, 
for any profile, the probability of any given alternative to win is at most 2∕m . Moreo-
ver, even when all agents top-rank the same alternative and even when all agents 
hold the same preference, there is no false-name-proof voting rule which outputs 
this top-ranked alternative with probability higher than 2∕m.

False‑name‑proof facility‑location on  the  continuous line:  Todo  et  al.  [67] 
showed that any false-name-proof facility-location mechanism for the continuous line 
could not guarantee to get the sum of agents’ costs below C∕n of the optimal, for n being 
the number of agents and C being some (mechanism-dependent) constant. In this work, 
they also showed that there is no false-name-proof facility-location mechanism for the 

21  Which is equivalent to resistance to casting one extra ballot, as we saw in Proposition 1.
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continuous line that guarantees to get the maximum cost of an agent below 1∕2 of the opti-
mal. On the other hand, they showed that both approximability bounds are achieved by the 
false-name-proof mechanism that outputs the leftmost ballot.

6 � The discrete cycle over n locations

In this section, we characterize the discrete cycle graphs over n locations, Cn , for which 
a group-manipulation-resistant, anonymous, Pareto-optimal mechanism exists. In particu-
lar, we show that for a large enough cycle ( n ⩾ 6 ), there is no anonymous Pareto-optimal 
mechanism that is resistant even to manipulations of a single agent. On the other hand, we 
show that for smaller cycles, one can construct group-manipulation-resistant, anonymous, 
Pareto-optimal mechanisms.

C2, C3, C4:  These three graphs are ZV-line graphs: C2 and C3 are cliques and hence can be 
defined as ZV-line graphs with only Z-locations (and any order over them), C4 is a (2, 2)
-biclique and hence can be defined as a ZV-line graph w.r.t. taking two non-adjacent loca-
tions to be the Z-locations (and any order over them) and two singleton Vi-subgraphs con-
sisting of the other two locations. Moreover, we show that there are no other mechanisms 
for C2 and C3 and that all other mechanisms for C4 are in some sense equivalent to the 
above mechanism. (The proofs of the following propositions can be found in Appendix D).

Proposition 8 
•	� The only false-name-proof, anonymous, Pareto-optimal mechanisms for C2 are the 

two order-based mechanisms.
•	� The only false-name-proof, anonymous, Pareto-optimal mechanisms for C3 are the 

six order-based mechanisms.

Proposition 9  F  is a false-name-proof, anonymous, Pareto-optimal mechanism for C4 
iff there exists a cyclic labeling of the graph by {a, b, c, d} (see Fig. 17) s.t. for any profile 
x ∈ V

⋆

•	 If all ballots are identical and equal to a location � , then F(x) = �.
•	 If a ∈ x , then F(x) = a.
•	 If a ∉ x and c ∈ x , then F(x) = c.
•	 If x includes ballots for both location b and location d and only these two locations, 
then F(x) ∈ {a, c}.

Corollary 2  For any two false-name-proof, anonymous, Pareto-optimal mechanisms for 
C4 using the same labeling, F  and H as above, all agents are ex-post indifferent between 
the two mechanisms. That is, for any profile x ∈ V

⋆ , all agents are indifferent between the 
two locations F(x) and H(x).

Proof  The only scenario in which F  and H differ is when x includes ballots for both loca-
tion b and location d and only these two locations. Any agent who is located in one of these 
two location is indifferent between location a and location c. 	�  ◻
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C5:  It is not hard to verify that a mechanism that returns the first Pareto-optimal location 
according to one of the following orders – , ,  – is a group-
manipulation-resistant mechanism. These three mechanisms are also order-based mecha-
nisms. In Appendix D, we prove that in fact these are the only group-manipulation-resist-
ant, anonymous, Pareto-optimal mechanisms for C5.

Proposition 10  The only false-name-proof, anonymous, Pareto-optimal mechanisms for 
C5 are the following 30 order-based mechanisms (see Fig. 18):

•	 a → b → e → c → d,
•	 a → b → e → d → c,
•	 a → b → d → e → c,
•	 and their rotations and reflections.

Corollary 3 C5 is not a simple ZV-line graph.

Proof  By Definition 4, if C5 was a simple ZV-line graph, then there would be an order-
based group-manipulation-resistant mechanism for it with the Z-location in the prefix of 
the order. But, choosing any of the five location prefixes of the orders in Proposition 10 to 
be the Z-locations violates the constraints of Definition 3.	�  ◻

6.1 � C
n
 for n ⩾ 6

Proposition 11  For n ⩾ 6 there is no anonymous Pareto-optimal mechanism for Cn that 
is resistant even only to manipulations of a single agent.

Fig. 17   The labeling of Proposition 9

a

b

c

d

Fig. 18   The labeling of Proposition 10

a

b

cd

e



	 Autonomous Agents and Multi-Agent Systems (2022) 36:12

1 3

12  Page 36 of 58

The proof generalizes the proof for C6 which we showed on Proposition 3. We show below 
the proof for large cycles of even size. The proof for the odd-sized cycles (in which a more 
delicate rounding in needed in the statements) can be found in Appendix D.

Proof  (for cycles of even size n ⩾ 6 ) Assume towards a contradiction that F  is a Pareto-
optimal, anonymous, manipulation-resistant mechanism for Cn . We denote the locations of 
Cn by {0, 1, 2,… , n − 1} , and w.l.o.g. assume that for the profile of n agents who vote for 
all n locations the outcome is 0 (see Fig. 19).

For the profile 
⟨
2, 1+

n

2
, 2+

n

2

⟩
 : From resistance to false-name manipulations of the 

first and last agents, the outcome must be either 0 or 4 (Since any of them can change the 
result to be 0 by adding false-ballots). From the Pareto-optimality of F  , the outcome can-
not be 0 which is Pareto-dominated by 4. Hence, the outcome for the profile ⟨
2, 1+

⌊
n

2

⌋
, 2+

⌊
n

2

⌋⟩
 is 4.

Similarly, for the profile 
⟨
1, 2, 1+

n

2

⟩
 the outcome must be 2. From false-name-resist-

ance of F⋆ , the outcome for the profile 
⟨
2, 1+

n

2

⟩
 must also be 2 (Otherwise, the first 

agent can cast an additional false-ballot 1 to get the outcome to be 2).
But, the second agent in the profile 

⟨
2, 1+

n

2

⟩
 (who is located on 1 + n

2
 ) can change the 

outcome to be 4 which is closer to her by casting one additional false-ballot 2 + n

2
 . So we 

get a contradiction. 	�  ◻

7 � Summary and future work

In this work, we presented a new family of graphs, ZV-line graphs, and a generic, anon-
ymous, Pareto-optimal, group-manipulation-resistant mechanism for the facility loca-
tion problem on these graphs (Theorem 1). To the best of our knowledge, the (very few) 

Fig. 19   Illustration for the proof of Proposition 11 for cycles of even size larger than 6

0
1

2

n/21 + n/2

2 + n/2



Autonomous Agents and Multi-Agent Systems (2022) 36:12	

1 3

Page 37 of 58  12

false-name-proof mechanisms that were previously known were tailored for specific 
graphs, and this work is the first to show a generic false-name-proof mechanism for a 
large family, utilizing a broad graph property and unifying all existence results that we 
are aware of. The construction of the mechanism is recursive (Definition 6): We derive a 
mechanism for a given ZV-line graph from mechanisms for its subgraphs (which might 
not be ZV-line graphs). Hence, it is straightforward to derive from our construction gen-
eral mechanisms for recursive graph families (as exemplified in Sect. 4.1).

7.1 � Relaxing the assumptions of the model

Three assumptions we had are connectivity of the graph, a finite number of agents, and a 
finite number of locations. One could define mechanisms for disconnected graphs, infinite 
graphs, or an infinite number of agents (both countable and uncountable) as well. The defi-
nitions of the desiderata extend naturally to deal with these scenarios (while constraining 
the profiles, manipulations, coalitions to be measurable functions or sets).

For disconnected graphs, if each connected component is a ZV-line graph, the follow-
ing mechanism generalizes F⋆ and it satisfies the desiderata: 

▶	� At the first stage, choose the first connected component according to some prede-
fined order s.t. at least one agent voted for a location in this component.

▶	� At the second stage, run F⋆ taking into account only ballots in the chosen 
component.

Note that, just like the mechanism for the connected case, also this mechanism can be 
equivalently defined as an order-based mechanism with the concatenation of the respective 
orders of the different components.

This scenario exemplifies again the high efficiency-cost of false-name-proofness. Since 
the graph is disconnected, it is unavoidable that some of the agents will have no access to 
the facility. Nevertheless, on efficiency grounds we would like to hurt the minimal number 
of agents. Requiring false-name-proofness, or equivalently assuming an agent can cast any 
number of ballots, means essentially that the designer must be oblivious to such arguments 
and act as-if any of the ballots might represent the vast majority of society.22

Recall that we saw in Claim 8 that there exist anonymous, Pareto-optimal, group-manipu-
lation-resistant mechanisms for all connected graphs of up-to five locations. Hence, we get by 
the above insight anonymous, Pareto-optimal, group-manipulation-resistant mechanisms for 
all graphs of up-to five locations (both connected and disconnected). This is no longer true 
for larger graphs since we showed no such mechanism exists for the cycle of six locations.

For the scenario of an infinite number of agents, we get that F⋆ still satisfies the desid-
erata (using the same proof).

For dealing with infinite graphs, we need to extend Definition 3 of simple ZV-line graphs 
and add a requirement that the linear order over the Z-locations is a well-order, that is, requir-
ing that the leftmost location is defined for any (measurable) subset of Z-locations. Adding 
this assumption, our results extend (using the same proof) to show that F⋆ satisfies the desid-
erata for infinite graphs as well (with either finite or infinite number of agents). Note that 
without the well-order assumption, F⋆ might not be well-defined even when the number of 

22  Recall that by Proposition 1 bounding the number of false-ballots an agent might cast does not decrease 
the efficiency-loss.
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agents is finite. For instance, consider the infinite simple ZV-line graph in Fig. 20. Then, for 
the profile 

{
v1, v2

}
 the leftmost Pareto-optimal Z-location is not defined.

7.2 � Approximate mechanism design without money

Last, an important continuation of this work is analyzing the implications for approximate 
mechanism design without money [53]. That is, assuming the agents are quantitatively rep-
resented by a cost function (e.g., the distance to the facility or a monotone function of the 
distance) and analyzing the implications of manipulation-resistance on the approximabil-
ity of the minimization problem of natural social cost functions. As we saw in Sect. 5.1, 
we expect to get a low performance guarantee for most natural social cost functions (of 
the same order of magnitude as the constant mechanism and the mechanism that outputs 
a random ballot). Weakening the false-name-proofness does not circumvent this bad effi-
ciency phenomenon (by Proposition  1), and as we saw, this phenomenon is common to 
many other scenarios in which false-name-proofness is a desired property.

Nowadays, many aggregation mechanisms are highly susceptible to double-voting and 
false-name voting in general (e.g., mechanisms over massive anonymous networks like the 
internet and also other scenarios in which vote frauds are known to be easy). We think that 
such results should open a discussion on the costs of these protocols (since the benefits are 
clear) or direct us to look for solutions outside of the scope of mechanism design like those 
we surveyed in Sect. 5.1.

Appendix A: Omitted proofs: Section 2 (Order‑based mechanisms)

Claim 3  There exists an anonymous, Pareto-optimal, group-manipulation-resistant mecha-
nism F  for the (2, 3)-biclique s.t. F  is not an order-based mechanism.

Proof  Consider the following mechanism for the (2, 3)-biclique (see Fig. 21).

V = {v1, v2} ; Z = Z ; E = V × Z

v1�v2

v2�v2

Fig. 20   Example: an infinite ZV-line graphs s.t. the leftmost Pareto-optimal Z-locations is not defined 
(Color figure online)
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It is not hard to see that F  is indeed an anonymous mechanism. 

F  is a Pareto-optimal mechanism: 
In the first three cases, the outcome is equal to one of the ballots and hence, it is a 
Pareto-optimal outcome. In the fourth case, all the ballots belong to {u, v,w} and include 
at least two different locations of {u, v,w} . The location b is of distance one from all of 
the ballots. Any of the locations in {u, v,w} is of distance two from at least one of the 
ballots, and the location a is of distance one from all of the ballots. Hence, no location 
Pareto-dominates b and b is a Pareto-optimal outcome.
F  is group-manipulation-resistant:

•	 In the first case, all agents received their best location, so no one would like to 
change the outcome.

•	 If the outcome is the location a, then necessarily one of the agents voted for a and 
would not like to change the outcome. On the other hand, without the support of this 
agent, no coalition is able to change the outcome.

•	 Similarly, if a ∉ x and b ∈ x , then the outcome is b, the agent who voted for b would 
not like to change the outcome, and without the support of this agent, no coalition 
can change the outcome.

•	 Last, if a, b ∉ x and there are at least two different ballots, then the only strict 
improvement for an agent is changing the outcome to be her own location 
� ∈ {u, v,w} . But for doing that she must get the support of all agents who did not 
vote for � and in particular of the agent who voted for some �� ∈ {u, v,w}⧵{�} who 
is strictly hurt by this change.

F  is not an order-based mechanism:

Consider the three-ballot profile x = ⟨u, v,w⟩ and the five-ballot profile 
y = ⟨a, b, u, v,w⟩ . Then, PO(x) = PO(y) = {a, b, u, v,w} but F(x) ≠ F(y) . Hence, F  
cannot be defined as a function of the set of Pareto-optimal locations and in particu-
lar it is not an order-based mechanism. 	�  ◻

Claim 4  There exists an anonymous, Pareto-optimal, group-manipulation-resistant mecha-
nism F  for the cycle of size four s.t. F  is not invariant to ballot duplication.

F(x) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

� All the ballots in x are identical

and equal to a location�
a a ∈ x

b a ∉ x, b ∈ x

b a, b ∉ x and x includes at

least two different ballots.

Fig. 21   The labeling of the (2,3)-biclique of the proof of Claim 3

a b

u v w
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Proof  Consider the following mechanism for the cycle of size four (see Fig. 22).

It is not hard to see that F  is indeed an anonymous mechanism.

F  is a Pareto-optimal mechanism:

In the first three cases, the outcome is equal to one of the ballots and hence it is a Pareto-
optimal outcome. In the fourth and fifth cases, all the ballots belong to {c, d} and the pro-
file includes both locations. Hence, both locations a and b are Pareto-optimal outcomes.

F  is group-manipulation-resistant:

•	� In the first case, all agents received their best location, so no one would like to 
change the outcome.

•	� In the second case, the outcome is location a and one of the agents voted for a 
and would not like to change the outcome. On the other hand, without the sup-
port of this agent, no coalition is able to change the outcome.

•	� In the third case, the outcome is location b and one of the agents voted for b and 
would not like to change the outcome. On the other hand, without the support of 
this agent, a coalition can change the outcome only to be location a, which none 
of the agents strictly prefers over location b (since no agent voted for a).

•	� In the fourth and fifth cases, all agents voted for either c or d so they are indiffer-
ent between the outcomes a and b. On the other hand, a coalition can change the 
outcome to be location c only if all of its members voted for location d, i.e., they 
strictly prefer not to change the outcome (and similarly for location d).

F  is not invariant to duplicating ballots:

For example, consider the two-ballot profile x = ⟨c, d⟩ and the three-ballot profile 
y = ⟨c, d, d⟩ . Then, F(x) = a but F(y) = b . 	�  ◻

F(x) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

� All the ballots in x are identical

and equal to a location �
a a ∈ x

b a ∉ x, b ∈ x

a x consists of 𝛼 ballots for c, 𝛽 ballots for d,

and no ballots for a or b, s.t. 𝛼 ⩾ 𝛽 > 0.

b x consists of 𝛼 ballots for c, 𝛽 ballots for d,

and no ballots for a or b, s.t. 0 < 𝛼 < 𝛽.

Fig. 22   The labeling of the C
4
 of the proof of Claim 4

a b

c

d
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Appendix B: Omitted proof: Claim 8 (Graphs of at most five locations)

In here, we show that all connected graphs with at most five locations except C5 , the cycle of 
five locations, are simple ZV-line graphs. As we saw in Sect. 6, there is an anonymous, Pareto-
optimal, group-manipulation-resistant mechanism for C5 . Therefore, we get that for all con-
nected graphs with at most five locations there is an anonymous, Pareto-optimal, group-manip-
ulation-resistant mechanism. In Sect. 7.1, we show that this fact gives us such mechanisms for 
disconnected graphs with at most five locations as well. Note this is no longer true for larger 
graphs since we showed no such mechanism exists for the cycle of six locations (Proposition 3).

The table below is a list of all connected graphs with at most five locations23 with their 
simple ZV-line graph representation, i.e., a partition to V-locations and Z-locations and an 
order over the latter (We use the figures  for V-locations and  for Z-locations with indi-
ces denoting the order over the Z-locations). For some of the graphs, there are also other 
mechanisms arising from other partitions, but we chose to show only one or two partitions 
to prove the graph is a simple ZV-line graph. For any of these graphs (except C5 ) we are 
unaware of anonymous, Pareto-optimal, group-manipulation-resistant mechanisms that are 
not based on a representation of the graph as a simple ZV-line graph.

Connected graphs with two locations (Color figure online)

P2 (line):

1

2

Connected graphs with three locations (2 graphs) (Color figure online)

P3 (line):

31

2

C3 (3-cycle)

K3 (3-Clique):

12

3

23  We base the graph names on Infor​matio​n Syste​m on Graph​ Class​es and their​ Inclu​sions​ (ISGCI) [17].

https://www.graphclasses.org/smallgraphs.html
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Connected graphs with four locations (6 graphs) (Color figure online)

1) K4 (4-Clique)/W3:

1 2

3

4

2) Diamond/K4 \ e:

2

1 3

and

1

2

3) Paw/3-pan:

1 2

3

4) K2,2 ((2, 2)-biclique)

C4 (4-cycle):

1

2

5) P4 (line):

1

2 3

4

6) Claw

K1,3 ((1, 3)-biclique):

z
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Connected graphs with five locations (21 graphs) (Color figure online)

1) K5 (5-Clique) :

1

2 3

4

5

2) K5 \ e:

2

1

4

3

3) P3 ∪ 2K1 :

1

4 3

2

4) Butterfly/Hourglass:

2

1

5

4

3

and

2

1

4

3

5) Fork/Chair:

2

1

3

4

6) Co-fork/Co-

chair/Kite:

1

2

3

7) Dart:

1 2

3

8) P5 (line):

2

1 5

4

3

9) House/P5 :

2

1

3
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10) W4:

1

3

2

11) Claw ∪K1 :

4

3 2

1

12) P2 ∪ P3:

2 31

Appendix C: Omitted proofs: Section 4 (ZV‑line graphs)

Lemma 1  For any location � ∈ V , the preferences of an agent located on � and an agent 
located on R(�) over the locations of G⊥ are identical. That is,

Moreover, if � ∈ Vi for some i ∈ {1,… , k} , then the preferences of an agent located on � 
and an agent located on R(�) over the locations outside of Vi⧵V⊥ are identical. That is,

∀u, v ∈ V⊥ ∶ d(�, u) ⩽ d(�, v) ⟺ d(R(�), u) ⩽ d(R(�), v).
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Proof  This lemma is trivial in case that � = R(�) . Henceforth, we assume that � ≠ R(�) , 
i.e., � ∈ Vi⧵V⊥ for some i ∈ {1,… , k} . W.l.o.g., � ∈ V1⧵V⊥ = V1⧵

{
R
(
V1

)}
.

By Definition 5, it is not hard to see that any path from � to a location outside of Vi , 
�� ∉ Vi , must include R

(
Gi

)
= R(�) , and hence,

(Note that the above equality holds also for �� = R(�) ). Therefore, for any two locations 
u, v ∉ Vi⧵V⊥,

	�
◻

Proposition 7  Let G = ⟨V, E⟩ be an unweighted undirected connected graph with a non-
trivial cover V⊥,V1,⋯ ,Vk (k ⩾ 1) , and denote by Gi the subgraph ⟨
V = Vi, E = E ∩

(
Vi

2

)⟩
 , s.t.

•	� For i = 1,… , k , there exists a unique location in Vi ∩ V⊥ , which we denote 
by R

(
Gi

)
.

•	� For i = 1,… , k , there are no edges between locations in 
(
Vi⧵

{
R
(
Gi

)})
 and loca-

tions outside of Vi . (Equivalently, all paths between locations of Vi and locations 
outside of Vi include the root R

(
Gi

)
).

•	 The sets 
{
Vi⧵

{
R
(
Gi

)}}
i=1,…,k

 are pairwise disjoint.

For i = ⊥, 1,… , k , let Fi ∶ x ∈ V⋆
i
→ Vi be a mechanism for Gi s.t.

•	 Fi is an anonymous, Pareto-optimal, group-manipulation-resistant mechanism.
•	� For an infinite number of � ∈ ℕ , there exists a profile x ∈ V⋆

i
 in which there are 

at least � ballots for any location in Vi s.t. Fi(x) = R
(
Gi

)
.

Then, for F⋆
rec

∶ V
⋆
→ V as defined in Definition 6,

•	 F
⋆
rec is an anonymous, Pareto-optimal, group-manipulation-resistant mechanism.

•	� For any number � ∈ ℕ , there exists a profile x ∈ V
⋆ in which there are at least � 

ballots for any location in V s.t. F⋆
rec
(x) = R

(
G
)
= R

(
G⊥

)
.

We prove a more robust version of Proposition  7 showing that also when the mecha-
nisms Fi satisfy a subset of the desired properties, then also F⋆

rec
 satisfies this subset.

Proposition 12  Let G = ⟨V, E⟩ be an unweighted undirected connected graph with a non-
trivial cover V⊥,V1,⋯ ,Vk (k ⩾ 1) , and denote by Gi the subgraph ⟨
V = Vi, E = E ∩

(
Vi

2

)⟩
 , s.t.

∀u, v ∉ Vi⧵V⊥ ∶ d(�, u) ⩽ d(�, v) ⟺ d(R(�), u) ⩽ d(R(�), v).

d
(
�,��

)
= d(�,R(�)) + d

(
R(�),��

)

d(�, v) − d(�, u) = [d(�,R(�)) + d(R(�), v)] − [d(�,R(�)) + d(R(�), u)]
= d(R(�), v) − d(R(�), u).
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•	� For i = 1,… , k , there exists a unique location in Vi ∩ V⊥ , which we denote by 
R
(
Gi

)
.

•	� For i = 1,… , k , there are no edges between locations in 
(
Vi⧵

{
R
(
Gi

)})
 and loca-

tions outside of Vi . (Equivalently, all paths between locations of Vi and locations 
outside of Vi include the root R

(
Gi

)
).

•	 The sets 
{
Vi⧵

{
R
(
Gi

)}}
i=1,…,k

 are pairwise disjoint.

For i = ⊥, 1,… , k , let Fi ∶ x ∈ V⋆
i
→ Vi be a mechanism for Gi s.t.

•	 Fi is an anonymous Pareto-optimal mechanism.
•	 Fi is resistant against false-name-voting of any single agent.
•	� For an infinite number of � ∈ ℕ , there exists a profile x ∈ V⋆

i
 in which there are 

at least � ballots for any location in Vi s.t. Fi(x) = R
(
Gi

)
.

Then, for F⋆
rec

∶ V
⋆
→ V as defined in Definition 6,

•	 F
⋆
rec is an anonymous Pareto-optimal mechanism.

•	� For any number � ∈ ℕ , there exists a profile x ∈ V
⋆ in which there are at least � 

ballots for any location in V s.t. F⋆
rec
(x) = R

(
G
)
= R

(
G⊥

)
.

•	� For any profile of locations x ∈ V
⋆ , a coalition of agents C, and a set of ballots 

A ∈ V
⋆ s.t. A is a beneficial deviation for C,

–	 If there exists t ∈ {1,… , k} s.t either all the ballots in x or all the ballots of 
⟨A, x−C⟩ are locations of Gt , then A is a beneficial manipulation of Ft for the coa-
lition C in the profile x.

–	 Otherwise, R(A) is a beneficial manipulation of F⊥ for the coalition C in the pro-
file R(x).

Proof of  Proposition 12  Since the mechanisms Fi for i = ⊥, 1,… , k are all anonymous 
mechanisms, then also F⋆

rec
 is an anonymous mechanism. It is also not hard to see that 

F
⋆
rec
(x) ∈ PO(x) for any location profile x ∈ V

⋆:

•	� If there exists a subgraph Gt for some t ∈ {1,… , k} s.t. all ballots in x belong to 
Vt , then, by Corollary 1, R

(
Gt

)
 Pareto-dominates any location outside of Vt , so 

PO(x) ⊆ Vt . Furthermore, any location � ∈ Vt⧵PO(x) is Pareto-dominated by a 
location �� ∈ PO(x) ⊆ Vt . Hence, the Pareto-optimal set when considering only 
the locations in Vt is equal to the Pareto-optimal set when considering all loca-
tions in V . Since Ft is a Pareto-optimal mechanism, we get that 

•	� Otherwise, F⋆
rec
(x) = F⊥(R(x)) ∈ V⊥ . Assume for contradiction that there exists 

a location � Pareto-dominating F⋆
rec
(x).

–	� If � ∈ V⊥ , then by Lemma  1, � Pareto-dominates F⋆
rec
(x) = F⊥(R(x)) for the 

profile R(x) , in contradiction to the Pareto-optimality of F⊥.
–	� Otherwise, � ∈ Vt⧵V⊥ for some t ∈ {1,… , k} and we claim that R(�) that 

Pareto-dominates F⋆
rec
(x) = F⊥(R(x)) for the profile R(x) , in contradiction to 

the Pareto-optimality of F⊥.

F
⋆
rec
(x) = Ft(x) ∈ PO(x).
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•	� If Agent i is located in Vt , then R(�) = R
(
xi
)
= R

(
Vt

)
 and hence an agent 

located on R
(
xi
)
 weakly prefers R(�) over F⋆

rec
(x).

•	� If Agent  i is located outside of Vt (and note that necessarily there exists at 
least one), then Agent  i strictly prefers R

(
Vt

)
= R(�) over � and since � 

Pareto-dominates F⋆
rec
(x) for the profile x , Agent i also strictly prefers R(�) 

over F⋆
rec
(x) . By Lemma 1, an agent located on R

(
xi
)
 strictly prefers R(�) 

over F⋆
rec
(x).

Let � ∈ ℕ . We will construct a location profile x ∈ V
⋆ in which there are at least � ballots 

for any location in V and F⋆
rec
(x) = R(G).

Let x̂1 ∈ V
⋆ be a profile in which there are at least � ballots for any location in V . We 

note that in R
(
x̂1
)
 , there are ballots only for locations in V⊥ , and define � to be the maxi-

mal number of ballots in R
(
x̂1
)
 for a location in V⊥ . We are given that there exists a profile 

x̂2 ∈
(
V⊥

)⋆ in which there are at least � ballots for any location in V⊥ and 
F⊥

(
x̂2
)
= R

(
G⊥

)
 . We define the profile x ∈ V

⋆ by adding ballots to x̂1 as follows: For any 
� ∈ V⊥ , we add the difference between the number of ballots for � in x̂2 and the number of 
ballots for � in R

(
x̂1
)
.

Then, for any location � ∈ V , there are at least � ballots in x , and R(x) = x̂2 . Since 
Vi ⊈ V⊥ for all i ∈ {1,… , k} , and since R(�) = � for any location � ∈ V⊥ we get

Last, we prove the main part of the proposition dealing the manipulation-resistance prop-
erties of F⋆

rec
 . Let x ∈ V

⋆ be a location profile, C a coalition of agents, and A ∈ V
⋆ a set 

of ballots s.t. A the coalition C can cast A and change the outcome to be F⋆
rec

(
A, x−C

)
 

that it strictly prefers. That is, all the agents in C weakly prefer F⋆
rec

(
A, x−C

)
 over 

F
⋆
rec
(x) = F

⋆
rec

(
xC, x−C

)
 and at least one agent in C, Agent  i for i ∈ C , strictly prefers 

F
⋆
rec

(
A, x−C

)
 over F⋆

rec
(x) . F⋆

rec
(x) ∈ PO(x) and in particular the coalition of all agents does 

not strictly prefer F⋆
rec

(
A, x−C

)
 over F⋆

rec
(x) . Hence, there exists an Agent j, for j ∉ C , who 

strictly prefers F⋆
rec
(x) over F⋆

rec

(
A, x−C

)
.

Case (I): There exists t ∈ {1,… , k} s.t. all the ballots in x are locations of Gt.
Then by the definition of F⋆

rec
 , F⋆

rec
(x) = Fi(x) . Agent i can change the outcome of Ft to 

be R
(
Gt

)
 by casting enough false-name ballots. Since Ft is resistant to false-name manipu-

lations of Agent i, we get that Agent i weakly prefers F⋆
rec
(x) over R

(
Gt

)
.

By Corollary 1, Agent  i strictly prefers R
(
Gt

)
 over any location outside of Gt . Hence, 

Agent i strictly prefers F⋆
rec

(
A, x−C

)
 over F⋆

rec
(x) , R

(
Gt

)
 , and any location outside of Gt . In 

particular,

Hence, by the definition of F⋆
rec

 , necessarily A ⊆ Vt and F⋆
rec

(
A, x−C

)
= Ft

(
A, x−C

)
 . So A 

is a beneficial manipulation of Ft for C in x.
Case (II): There exists t ∈ {1,… , k} s.t. all the ballots in ⟨A, x−C⟩ are locations of Gt.
Then by the definition of F⋆

rec
 , F⋆

rec

(
A, x−C

)
= Fi

(
A, x−C

)
 . Agent  j can change the 

outcome of Ft to be R
(
Gt

)
 by casting enough false-name ballots. Since Ft is resistant to 

F
⋆
rec
(x) = F⊥(R(x)) = F⊥

(
x̂2
)
= R

(
G⊥

)
= R(G).

F
⋆
rec

(
A, x−C

)
∈ Vt⧵

{
F

⋆
rec
(x),R

(
Gt

)}
⊆ Vt⧵V⊥.
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false-name manipulations of Agent j, we get that Agent j weakly prefers F⋆
rec

(
A, x−C

)
 over 

R
(
Gt

)
.

By Corollary 1, Agent  j strictly prefers R
(
Gt

)
 over any location outside of Gt . Hence, 

Agent j strictly prefers F⋆
rec
(x) over F⋆

rec

(
A, x−C

)
 , R

(
Gt

)
 , and any location outside of Gt . In 

particular,

Hence, by the definition of F⋆
rec

 , necessarily all the ballots in x are locations of Gt and 
F

⋆
rec
(x) = Ft(x) . So A is a beneficial manipulation of Ft for C in x.

Case (III): Neither of the previous two cases holds.
Then,

and by Lemma 1 we get that R(A) is a beneficial manipulation of F⊥ for C in R(x) . 	�  ◻

Appendix D: Omitted proofs: Section 6 (The discrete cycle over n 
locations)

Proposition 8 
•	� The only false-name-proof, anonymous, Pareto-optimal mechanisms for C2 are the 

two order-based mechanisms.
•	� The only false-name-proof, anonymous, Pareto-optimal mechanisms for C3 are the 

six order-based mechanisms.

The proofs for the two graphs are almost identical. Still, we think it would be easier to fol-
low if we prove them separately.

Proof (C2)  First, we note that for any location profile x the set of Pareto-optimal locations 
PO(x) is equal to the set of locations that were voted for. Let F  be a false-name-proof, 
anonymous, Pareto-optimal mechanism for C2 . Clearly, when all ballots are identical and 
equal to a location � , by Pareto-optimality the outcome must be � . Assume there exist two 
location profiles x and y that include both locations s.t. F(x) ≠ F(y) . Consider the union 
profile z = x ∪ y and w.l.o.g. assume that F(z) ≠ F(x) . Then, the agent who voted for F(z) 
in x can add false-name ballots and change the outcome to be F(z) which she strictly pre-
fers over F(x) . Hence, F  can be defined via a selection function from the set of Pareto-
optimal locations.

Consider the location profile x in which all locations were voted for exactly once, and 
denote the other location besides F(x) by b. Then, whenever there are ballots for both loca-
tions the outcome must be F(x) , and by false-name-proofness, whenever one of the agents 
casts a ballot for the location F(x) the outcome must be F(x).

Hence, F  is the order-based mechanism defined by F(x) → b . 	� ◻

Proof (C3)  First, we note that for any location profile x the set of Pareto-optimal locations 
PO(x) is equal to the set of locations that were voted for. Let F  be a false-name-proof, 

F
⋆
rec
(x) ∈ Vt⧵

{
F

⋆
rec
(x),R

(
Gt

)}
⊆ Vt⧵V⊥.

{
F

⋆
rec
(x) = F⊥(R(x)) ∈ V⊥

F
⋆
rec

(
A, x−C

)
= F⊥

(
R(A),R

(
x−C

))
∈ V⊥,
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anonymous, Pareto-optimal mechanism for C3 . Clearly, when all ballots are identical and 
equal to a location � , by Pareto-optimality the outcome must be �.

Assume there exist two location profiles x and y that include the same set of locations 
s.t. F(x) ≠ F(y) . Consider the union profile z = x ∪ y and w.l.o.g. assume that F(z) ≠ F(x) . 
Then, the agent who voted for F(z) in x can add false-name ballots and change the outcome 
to be F(z) which she strictly prefers over F(x) . Hence, F  can be defined via a selection 
function from the set of Pareto-optimal locations.

Consider the location profile x in which all locations were voted for exactly once Then, 
whenever there are ballots for all locations the outcome must be F(x) , and by false-name-
proofness, whenever one of the agents casts a ballot for the location F(x) the outcome 
must be F(x) . Denote the other two locations of the graph besides F(x) by b and c s.t. 
F(⟨b, c⟩) = b.

Then, F  is the order-based mechanism defined by F(x) → b → c . 	�  ◻

Proposition 9  F  is a false-name-proof, anonymous, Pareto-optimal mechanism for C4 
iff there exists a cyclic labeling of the graph by {a, b, c, d} (see Fig. 17) s.t. for any profile 
x ∈ V

⋆

•	 If all ballots in x are equal to the same location � , then F(x) = �.
•	 If a ∈ x , then F(x) = a.
•	 If a ∉ x and c ∈ x , then F(x) = c.
•	� If x includes ballots for both location b and location d and only these two loca-

tions, then F(x) ∈ {a, c}.

Proof  It is not hard to see that indeed all these mechanisms are false-name-proof, anon-
ymous, Pareto-optimal mechanisms and actually group-manipulation-resistant mecha-
nisms. We will show that these are the only false-name-proof, anonymous, Pareto-optimal 
mechanisms.

Let F  be a false-name-proof, anonymous, Pareto-optimal mechanism for C4 . We denote 
the locations of C4 by {a, b, c, d} s.t. for an infinite number of profiles x ∈ V

⋆ in which 
there is the same number of ballots for all four locations F(x) = a.

From Pareto-optimality of F  we get that whenever all ballots are identical and equal to 
a location � , F(x) = � . Since F  is a false-name-proof mechanism and since any agent can 
change the outcome to be location a by casting enough false-name ballots, we get that

•	� Whenever one of the agents casts a ballot for location a, location a must be the 
outcome, otherwise this agent would have a false-name manipulation.

•	� Whenever one of the agents casts a ballot for location b, the outcome cannot be 
location d, otherwise this agent would have a false-name manipulation to change 
the outcome to location a.

	 �  Similarly, whenever one of the agents casts a ballot for location d, the outcome 
cannot be location b.

	   In particular, when x includes ballots for both location b and location d, then 
F(x) ∈ {a, c}.
•	� Last, we note that for any profile x which includes ballots for location b, loca-

tion  c, and location  d (but not location  a): Location  a is Pareto-dominated by 
location c and hence the outcome must be location c.
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	 �  Moreover, for any sub-profile of such a profile that includes a ballot for location c: 
Location  c must be the outcome, otherwise the agent who voted for location  c 
would have a false-name manipulation to change the outcome to location c.

	�  ◻

Proposition 10  The only false-name-proof, anonymous, Pareto-optimal mechanisms for 
C5 are the following 30 order-based mechanisms (see Fig. 18):

•	 a → b → e → c → d,
•	 a → b → e → d → c,
•	 a → b → d → e → c,
•	 and their rotations and reflections.

Proof  It is not hard to see that indeed all these mechanisms are false-name-proof, anon-
ymous, Pareto-optimal mechanisms and actually group-manipulation-resistant mecha-
nisms. We will show that these are the only false-name-proof, anonymous, Pareto-optimal 
mechanisms.

Let F  be a false-name-proof, anonymous, Pareto-optimal mechanism for C5 . Necessar-
ily, there exists a location � s.t. for an infinite number of profiles x ∈ V

⋆ in which there is 
the same number of ballots for all five locations F(x) = � . We denote this location by a 
and the other four location by {b, c, d, e} in a circular order (either clock-wise or counter 
clock-wise).

From Pareto-optimality of F  we get that whenever all ballots are identical and equal to 
a location � , F(x) = � . Since F  is a false-name-proof mechanism and since any agent can 
change the outcome to be location a by casting enough false-name ballots, we get that

•	� Whenever one of the agents casts a ballot for location a, location a must be the out-
come, otherwise this agent would have a false-name manipulation.

•	� When there are ballots for both location  b and location  e, the outcome must be 
location a, otherwise at least one of these agents would have a false-name manipu-
lation to change the outcome to be a.

Next, consider the 3-ballot profile ⟨b, c, d⟩ . Location a is Pareto-dominated by location c, 
so by false-name-proofness to manipulations of the first agent, the outcome must be either 
location b or location c. Similarly, F(⟨c, d, e⟩) ∈ {d, e}.

Case (I): 
�

F(⟨b, c, d⟩) = b

F(⟨c, d, e⟩) = e

By false-name-proofness, whenever there are ballots for location b, location c, and loca-
tion d (and maybe other locations as well), the outcome cannot be location c, otherwise 
the second agent in the profile ⟨b, c, d⟩ would have a false-name manipulation, and it can-
not be location d, otherwise the third agent in the profile ⟨b, c, d⟩ would have a false-name 
manipulation. Similarly, the outcome when there are ballots for location c, location d, and 
location e (and maybe other locations as well) cannot be location d or location e. Next, we 
note that by false-name-proofness,
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•	 Whenever there are ballots only for location  b and location  c, the outcome must be 
location b, since the agent who voted for it can change the outcome to be location b by 
casting enough false-name ballots.

and similarly

•	� Whenever there are ballots only for locations b and  d, the outcome must be loca-
tion b.

•	� Whenever there are ballots only for locations c and e, the outcome must be loca-
tion e.

•	� Whenever there are ballots only for locations d and e, the outcome must be loca-
tion e.

Last, we claim that for all profiles in which there are ballots only for location d and loca-
tion e, the outcome must be the same. Assume towards a contradiction that there exist two 
location profiles x and y that include only these two locations s.t. F(x) ≠ F(y) . By Pareto-
optimality the outcome of both must be either location c or location d. Consider the union 
profile z = x ∪ y and w.l.o.g. assume that F(x) ≠ F(z) . Then, the agent who voted for F(z) 
in x can add false-name ballots and change the outcome to be F(z) which she strictly pre-
fers over F(x).

Hence, we get the first two order-based mechanisms in the proposition, which differ 
only in the outcome for profiles in which there are ballots only for location d and location e.

Case (II): 
�

F(⟨b, c, d⟩) = c

F(⟨c, d, e⟩) = d

Consider the 2-ballot profile ⟨c, d⟩ . Both agents can get the outcome to be of distance 
0 from their locations by casting one false-name ballot. Hence, for any possible out-
come F(⟨c, d⟩) at lease one of them would have a false-name manipulation, so we get a 
contradiction.

Case (III): 
�

F(⟨b, c, d⟩) = b

F(⟨c, d, e⟩) = d
 (and symmetrically Case (IV): 

�
F(⟨b, c, d⟩) = c

F(⟨c, d, e⟩) = e
)

By false-name-proofness, whenever there are ballots for location b, location c, and loca-
tion d (and maybe other locations as well), the outcome cannot be location c, otherwise 
the second agent in the profile ⟨b, c, d⟩ would have a false-name manipulation, and it can-
not be location d, otherwise the third agent in the profile ⟨b, c, d⟩ would have a false-name 
manipulation. Similarly, the outcome when there are ballots for location c, location d, and 
location e (and maybe other locations as well) cannot be location c or location e. Next, we 
note that by false-name-proofness,

•	� Whenever there are ballots only for locations c and e, the outcome must be loca-
tion d, otherwise one of the agents would have a false-name manipulation and cast 
enough false-name ballots for locations c, d, and e and change the outcome to be 
location d, which she prefers.

•	� Whenever there are ballots only for locations b and c, the outcome must be loca-
tion b, since the agent who voted for it can change the outcome to be location b by 
casting enough false-name ballots.

and similarly
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•	� Whenever there are ballots only for locations b and d, the outcome must be loca-
tion b.

•	� Whenever there are ballots only for locations c and d, the outcome must be loca-
tion d.

•	 Whenever there are ballots only for locations d and e, the outcome must be location d.

Hence, we get the third order-based mechanism in the proposition.	�  ◻

Proposition 11  For n ⩾ 6 there is no anonymous Pareto-optimal mechanism for Cn that 
is resistant even only to manipulations of a single agent.

Proof  The proof generalizes the proof for C6 which we showed on Proposition 3. For sim-
plicity of notations we divide the proof into three cases (The proofs differ in the correct 
rounding of the locations indices needed for the integral inequalities of the proof): 

▶	� Cycles of even size n ⩾ 6 (which was proved in Sect. 6.1),
▶	� Large cycles ( Cn for n ⩾ 6 except n = 7 , n = 11 , and n ∈ {6, 8, 10, 12, 14, 16, 20}),
▶	� and last C7 and C11.

Cn for ⩾ 6 except n = 7, n = 11, and n ∈ {6, 8, 10, 12, 14, 16, 20}:
Assume towards a contradiction that F  is a Pareto-optimal, anonymous, manipulation-

resistant mechanism for Cn . We denote the locations of Cn by {0, 1, 2, 3,… , n − 1} , and 
w.l.o.g. assume that for the profile of n agents who vote for all n locations the outcome is 0 
(see Fig. 23).
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Fig. 23   Illustration for the proof of Proposition 11: second case (Color figure online)
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For the profile 
⟨⌈

n−2

3

⌉
, n−

⌈
n−2

3

⌉⟩
 : From the Pareto-optimality of F  , since n ≠ 8 and

the outcome must be in 
[⌈

n−2

3

⌉
, n −

⌈
n−2

3

⌉]
 . W.l.o.g. assume it is in 

[⌈
n−2

3

⌉
,
⌊
n

2

⌋]
.

Next, we consider the profile 
⟨⌈

n−2

3

⌉
, n−

⌈
n

4

⌉
+ 1

⟩
 : From the Pareto-optimality of F  , 

since24

the outcome must be in 
[⌈

n−2

3

⌉
, n −

⌈
n

4

⌉
+ 1

]
 . Since the second agent in this profile can 

change the result to be 0 by adding false-ballots, by false-name-proofness the outcome 
must be in 

[
n − 2

⌈
n

4

⌉
+ 2, n −

⌈
n

4

⌉
+ 1

]
 . Hence, the second agent in the profile 

⟨⌈
n−2

3

⌉
, n−

⌈
n−2

3

⌉⟩
 (who is located on n −

⌈
n−2

3

⌉
 ) can change the outcome to be 

F

(⌈
n−2

3

⌉
, n −

⌈
n

4

⌉
+ 1

)
 which is closer to her by changing her vote to n −

⌈
n

4

⌉
+ 1 . So we 

get a contradiction. 	�  ◻

C7:
Assume towards a contradiction that F  is a Pareto-optimal, anonymous, manipulation-

resistant mechanism for C7 . We denote the locations of C7 by {0, 1, 2, 3, 4, 5, 6} , and w.l.o.g. 
assume that for the profile of seven agents who vote for all seven locations the outcome is 
0 (see Fig. 24).

For the profile ⟨2, 5⟩ : From resistance to false-name manipulations of the first and last 
agents, the outcome must be 0, 3, or 4 (Since any of them can change the result to be 0 by 
adding false-ballots). From the Pareto-optimality of F  , the outcome cannot be 0 which is 
Pareto-dominated by 4. Hence, the outcome for the profile ⟨2, 5⟩ is either 3 or 4. W.l.o.g. 
assume it is 3. By strategy-proofness, also the outcome for the profile ⟨3, 5⟩ must be 3 
(Otherwise, the first agent in this profile has a beneficial manipulation of voting 2).
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Fig. 24   The labeling of probing Proposition 11 for the cycle of size 7
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24  This inequality does not hold for n ∈ {6, 7, 8, 10, 11, 12, 14, 16, 20} . Hence, these values are omitted 
from this case.
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Now, let us consider the profile ⟨3, 6⟩ : From the Pareto-optimality of F  , the outcome 
cannot be 0 which is Pareto-dominated by 5. Since the second agent in this profile can 
change the result to be 0 by adding false-ballots, by false-name-proofness the outcome 
must be either 5 or 6. Hence, the second agent in the profile ⟨3, 5⟩ (who is located on 5) 
can change the outcome to be F(3, 6) which is closer to her by changing her vote to 6. So 
we get a contradiction. 	�  ◻

C11:
Assume towards a contradiction that F  is a Pareto-optimal, anonymous, manipulation-

resistant mechanism for C11 . We denote the locations of C11 by {0, 1, 2, 3,… , 10} , and 
w.l.o.g. assume that for the profile of eleven agents who vote for all eleven locations the 
outcome is 0 (see Fig. 25).

For the profile ⟨4, 7⟩ : From the Pareto-optimality of F  , the outcome must lie in 
{4, 5, 6, 7} (The locations 0, 1, 2, and 3 are Pareto-dominated by 5. the locations 8, 9, and 
10 are Pareto-dominated by 6). W.l.o.g. we assume it is either 4 or 5.

For the profile ⟨4, 9⟩ : From resistance to false-name manipulations of the first and last 
agents, the outcome must be 0, 7, or 8 (Since any of them can change the result to be 0 by 
adding false-ballots). From the Pareto-optimality of F  , the outcome cannot be 0 which is 
Pareto-dominated by 7. Hence, the outcome for the profile ⟨4, 9⟩ is either 7 or 8.

Hence, the second agent in the profile ⟨4, 7⟩ (who is located on 7) can change the out-
come to be F(4, 9) which is closer to her by changing her vote to 9. So we get a contradic-
tion. 	�  ◻
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