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Abstract The paper considers fair allocation of resources that are already
allocated in an unfair way. This setting requires a careful balance between the
fairness considerations and the rights of the present owners.

The paper presents re-division algorithms that attain various trade-off
points between fairness and ownership rights, in various settings differing in
the geometric constraints on the allotments: (a) no geometric constraints; (b)
connectivity—the cake is a one-dimensional interval and each piece must be a
contiguous interval; (c) rectangularity—the cake is a two-dimensional rectangle
or rectilinear polygon and the pieces should be rectangles; (d) convexity—the
cake is a two-dimensional convex polygon and the pieces should be convex.

These re-division algorithms have implications on another problem: the
price-of-fairness—the loss of social welfare caused by fairness requirements.
Each algorithm implies an upper bound on the price-of-fairness with the re-
spective geometric constraints.

Keywords Cake-cutting · Land reform · Dynamic fair division · Computa-
tional Geometry · Two-dimensional resource allocation

? A preliminary version of this paper was presented in the 27th International Joint
Conference on Artificial Intelligence, IJCAI (Segal-Halevi, 2018). The following are new
in the present paper. (a) Theorem 5, which generalizes Theorem 3 from a rectangle to any
rectilinear polygon. (b) Section 6, which applies the algorithms for cake redivision to obtain
upper bounds on the price of fairness in cake-cutting with geometric constraints. (c) The
proof of Lemma 1 now uses a recently-introduced algorithm by Cseh and Fleiner (2020) to
obtain an algorithm with run-time polynomial in the binary representation of the input.
(d) Theorem 2 now uses an improved algorithm, which attains 1/2 proportionality instead
of 1/3-proportionality. Similarly, the constant in Theorem 3 is 1/3 instead of 1/4, and the
constant in Theorem 4 is 1/4 instead of 1/5.
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1 Introduction

Most theoretical works on fair resource allocation consider a one-shot division:
the resource is divided once and for all, like a cake that is divided and eaten
soon after it comes out of the oven. But in practice, it is often required to re-
divide an already-divided resource (see subsection 7.1). One example is a cloud-
computing environment, where new agents come and require resources held
by other agents. A second example is fair allocation of radio spectrum among
several broadcasting agencies: it may be required to re-divide the frequencies
to accommodate new broadcasters. A third example is land-reform: large land-
estates are held by a small number of landlords, and the government may want
to re-divide them to landless citizens.

In the classic one-shot division setting, there are n agents with equal rights,
and the goal is to give each agent a fair share of the cake. A common definition
of a “fair share” is a piece worth at least 1/n of the total cake value, according
to the agent’s personal valuation function. This fairness requirement is usually
termed proportionality. When proportionality cannot be attained, it is often
(see subsection 7.2) relaxed to r-proportionality, where r ∈ (0, 1) is a constant
independent of n, which means that each agent receives at least a fraction r/n
of the total.

In contrast, in the re-division setting, there is an existing allocation of the
cake among the n agents. This allocation is not necessarily fair; in partic-
ular, there may be some agents who do not have any cake. When the cake
is re-divided, it may be required to give extra rights to current holders. In
particular, it may be required to give each agent the opportunity to keep a
substantial fraction of their current value. This may be due either to efficiency
reasons (in the cloud computing scenario) or economic reasons (in the radio
spectrum scenario) or political reasons (in the land-reform scenario). This re-
quirement will be called ownership. Given a constant w ∈ (0, 1), w-ownership
means that each agent receives at least w times their old value. What levels
of proportionality and ownership can be attained simultaneously?

1.1 Results: Redivision

The first two results (in Section 3) provide a tight answer to this question.

Proposition 1 For every constants r, w ∈ [0, 1] where r + w > 1, it may be
impossible to simultaneously guarantee r-proportionality and w-ownership.

Theorem 1 For every constants r, w ∈ [0, 1] where r + w ≤ 1, and for ev-
ery existing allocation of the cake, there exists a division that simultaneously
satisfies r-proportionality and w-ownership. Moreover, when r, w are rational
numbers, such a division can be found using O(n2 len(r)) queries, where len(r)
denotes binary representation length.
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As an example, taking r = w = 1/2, it is possible to re-divide the cake, giving
each agent at least half their previous value, while simultaneously giving each
agent at least 1/(2n) of the total cake value.

The parameters r, w represent the level of balance between two principles:
large r means more emphasis on fairness while large w means more emphasis
on ownership rights. The above theorems imply that the re-dividers (e.g. the
government) may choose any level of fairness and ownership-rights that fit their
ideological, political or economic goals, as long as the sum of these fractions
is at most 1.

The balance parameters can also be given probabilistic interpretation. Sup-
pose the government wants to do a land reform and needs the agreement of
the current landowners. Naturally, the current landowners do not want to give
away their lands. However, they may fear that, without land-reform, the land-
less citizens might revolt and they might lose all their lands. If the landowners
believe that the probability of a successful revolt is 1 − w, then they may
agree to a land-reform that guarantees w-ownership. Theorem 1 implies that,
in this case, it is possible to carry out a land-reform that guarantees (1− w)-
proportionality.

While Theorem 1 is encouraging, it ignores an important aspect of prac-
tical division problems: geometry. The division it guarantees may be highly
fractioned, giving each agent a large number of disconnected pieces. In many
practical division problems, e.g. when the resource to divide is time, the agents
may need to receive a single connected piece rather than a large number of
disconnected ones. Can partial-proportionality and partial-ownership be at-
tained simultaneously with a connectivity constraint? The following proposi-
tion (proved in Section 4) answers this question negatively.

Proposition 2 When the cake is a 1-dimensional interval and each piece
must be an interval, for every positive constants r, w ∈ (0, 1), it may be im-
possible to simultaneously satisfy r-proportionality and w-ownership.

Moreover, for every r > 0 and every integer d ∈ [n], there might be d agents
who, in any r-proportional division, receive at most a fraction 1/bnd c of their
old value.

The latter part of the proposition involves a fairness property much weaker
than proportionality, that can be termed positivity—guaranteeing each agent
a piece with a positive value. With the connectivity constraint, even this weak
fairness requirement is incompatible with w-ownership for every constant w >
0: a positive division might require to give one agent at most 1/n of their
previous value, give two agents at most 2/n of their previous value, give n/3
agents at most 1/3 of their previous value, etc.

Proposition 2 motivates the following weaker ownership requirement: for
every d, at least n − d agents receive at least a fraction 1/bnd c of their old
value. For example (taking d = n/3 and assuming all quotients are integers),
at least 2n/3 agents should receive at least 1/3 of their old value. This crite-
rion is inspired by the “90th percentile” criterion common in Service-Level-
Agreements and Quality-of-Service analysis, e.g. (Zhang et al., 2014; Delim-
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itrou and Kozyrakis, 2014). It can also be justified by political reasoning: in
a democratic country, it may be sufficient to win the support of a sufficiently
large majority.

The following results almost match this relaxed ownership criterion. For-
mally, let us define the democratic ownership property as follows: for every
integer d ∈ {1, . . . , n − 1}, at least n − d agents receive more than a fraction
1/dnd e of their previous value. Democratic-ownership corresponds to the best
guarantee one could hope for given Proposition 2; the only difference is that
in the upper bound the fraction is rounded down (1/bnd c) while in democratic-
ownership the fraction is rounded up.

Theorem 2 When the cake is a 1-dimensional interval and each piece must
be an interval, for every existing allocation of the cake, it is possible to find
in time O(n2 log n) a division simultaneously satisfying democratic-ownership
and 1/2-proportionality.

It is an open question whether democratic-ownership is compatible with r-
proportionality for some constant r > 1/2.

Theorem 2, like most works in cake-cutting, assumes that the cake is 1-
dimensional. In realistic division scenarios, the cake is often 2-dimensional and
the pieces should have a pre-specified geometric shape, such as a rectangle or a
convex polygon. Rectangularity and convexity requirements are sensible when
dividing land, exhibition space in museums, advertisement space in newspa-
pers and even virtual space in web-pages. Moreover, in the frequency-range
allocation problem, it is possible to allocate frequency ranges for a limited
time-period; the frequency-time space is two-dimensional and it makes sense
to require that the “pieces” are rectangles in this space (Iyer and Huhns, 2009).

2-dimensional cake-cutting introduces new challenges over the traditional
1-dimensional setting. As an example, in one dimension, it can be assumed
that the initial allocation is a partition of the entire cake; this is without loss
of generality, since any “blank” (unallocated part) can be attached to a neigh-
boring allocated interval without harming its shape or value. However, in two
dimensions, the initial allocation might contain blanks that cannot be attached
to any allocated piece due to the rectangularity or convexity constraints. For
example, suppose the cake is the large rectangle in Figure 1. There are 4
agents and each agent i has positive value-density only inside the rectangle
Zi. The most reasonable division (e.g. the only Pareto-efficient division) is to
give each Zi entirely to agent i. But, this allocation leaves a blank in the center
of the cake, and this blank cannot be attached to any allocated piece due to
the rectangularity constraint. This counter-intuitive scenario cannot happen
in a one-dimensional cake. Handling such cases requires new geometry-based
tools. With such tools, the redivision problem can be solved in two common
2-dimensional settings (Section 5):

Theorem 3 When the cake is a rectangle and each piece must be a parallel
rectangle, for every existing allocation of the cake, it is possible to find in time
O(n2 log n) a division simultaneously satisfying democratic-ownership and 1/3-
proportionality.
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Fig. 1 With geometric constraints, an efficient allocation might leave some cake unallo-
cated. All figures were made with GeoGebra 5 (Hohenwarter et al., 2013).

Fig. 2 A rectilinear polygon with T = 4 reflex vertices (circled).

Theorem 4 When the cake is a 2-dimensional convex polygon and each piece
must be convex, for every existing allocation of the cake, there exists a division
simultaneously satisfying democratic-ownership and 1/4-proportionality.

Remark 1 In the interval, rectangle and convex settings, the geometric con-
straints are mostly harmless without the ownership requirement: when the
cake is an interval/rectangle/convex, classic algorithms for proportional cake-
cutting, such as Even and Paz (1984), can be easily made to return inter-
val/rectangle/convex pieces by ensuring that the cuts are parallel. Similarly,
the ownership requirement is easy to satisfy without the geometric constraints,
as shown by Theorem 1. It is the combination of these two requirements that
leads to interesting challenges.

Most land-estates are not exact rectangles, but they can be approximated
by a rectilinear polygon—a polygon in which all angles are 90◦ or 270◦. The
next result generalizes Theorem 3 to a rectilinear polygonal cake. The com-
plexity of a rectilinear polygon is characterized by the number of its reflex
vertices—vertices with a 270◦ angle. Denote this number by T . A rectangle—
the simplest rectilinear polygon—has T = 0. The cake in Figure 2 has T = 4.

Theorem 5 When the cake is a rectilinear polygon with T reflex vertices, and
each piece must be a rectangle, for every existing allocation of the cake, it is
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possible to find in time O(n2 log n+ poly(T )) a division satisfying democratic-
ownership, in which each agent receives at least 1/(3n + T ) of the total cake
value.

The dependence on T is necessary: even without ownership requirements, there
are instances in which it is impossible to guarantee a fraction of more than
1/(n+ T ) to all n agents (Segal-Halevi, 2021).

1.2 Results: Price of Fairness

Redivision algorithms can be used not only to compromise between old and
new agents, but also to compromise between fairness and efficiency. Often,
the most economically-efficient allocation is not fair, while a fair allocation
is not economically-efficient. The trade-off between fairness and efficiency is
quantified by the price-of-fairness (Bertsimas et al., 2011, 2012; Caragiannis et
al., 2012; Aumann and Dombb, 2015). It is defined as the worst-case ratio of the
maximum attainable social-welfare to the maximum attainable social-welfare
of a fair allocation. The social welfare is usually defined as the arithmetic mean
of the agents’ values (also called utilitarian welfare) or their geometric mean
(also called Nash welfare; see Moulin (2004)).

A redivision algorithm can be used to calculate an upper bound on the
price of fairness in the following way. Take a welfare-maximizing allocation
as the initial allocation; use a redivision algorithm to produce a partially-
proportional allocation in which the utility of each agent is close to their
initial utility; conclude that the new welfare is close to the initial (maximal)
welfare.

Without geometric constraints, the following is an upper bound on the
price-of-fairness w.r.t. utilitarian welfare.1

Theorem 6 For every r ∈ [0, 1], the utilitarian price of r-proportionality is
at most 1/(1− r).

When r = 1 the above bound is infinite, and indeed, the price of 1-proportionality
in this setting is Θ(

√
n), which is not bounded by any constant (Caragiannis

et al., 2012). Theorem 6 shows that a small compromise on the level of propor-
tionality allows a constant (independent of n) bound on the utilitarian-price.
The parameter r sets the level of trade-off between fairness and efficiency.

With geometric constraints, the following upper bounds are proved:

Theorem 7 When the cake is an interval and each piece must be an interval,
for every r ≤ 1/2:

– The utilitarian-price of r-proportionality is O(
√
n);

– The Nash-price of r-proportionality is at most 5.6.

1 The price-of-fairness of r-proportionality w.r.t. the Nash welfare is 1 for all r ≤ 1, since
any Nash-optimal cake allocation is proportional (Sziklai and Segal-Halevi, 2019).
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Theorem 8 When the cake is a rectangle and each piece must be a rectangle,
for every r ≤ 1/3:

– The utilitarian-price of r-proportionality is O(
√
n);

– The Nash-price of r-proportionality is at most 8.4.

Theorem 9 When the cake is convex polygon and each piece must be convex,
for every r ≤ 1/4:

– The utilitarian-price of r-proportionality is O(
√
n);

– The Nash-price of r-proportionality is at most 11.2.

Note that the first claim in Theorem 7 is subsumed by Aumann and Dombb
(2015), who prove that the utilitarian-price of 1-proportionality in this setting
is Θ(

√
n). It is brought here only for completeness. The second claim in that

theorem, as well as the following theorems regarding two-dimensional con-
straints, are not implied by previous results.

Appendix A partially complements the above results by showing some lower
bounds on the price of fairness with interval cake and interval pieces:

– With two agents, for all r ∈ [0, 1], the utilitarian price of r-proportionality
is 1 + r/2 and the Nash price of r-proportionality is max(1,

√
2r).

– With n agents, there is a lower bound on the Nash price of proportionality,
which approaches 2 as n→∞.

Computing the exact utilitarian price and Nash price of r-proportionality for
any n ≥ 2 and r ≤ 1 in this setting remains an open question.

Remark 2 A third measure of welfare is the egalitarian welfare, defined as the
minimum of the agents’ values (normalized such that the total cake value is
the same for all agents). The egalitarian price of r-proportionality is 1 for all
r ≤ 1 whenever an r-proportional allocation exists. This is because, when-
ever an r-proportional allocation exists, its egalitarian welfare is at least r/n
of the total cake value. Therefore, in any egalitarian-optimal allocation, the
egalitarian welfare is at least r/n of the total cake value. By definition, any
such allocation is r-proportional. So the maximum attainable egalitarian wel-
fare in an r-proportional allocation equals the maximum attainable egalitarian
welfare overall.

2 Model

2.1 Cake Division

The cake C is a polytope in the d-dimensional Euclidean plane Rd. This paper
focuses on the common cases in which d = 1 and C is an interval, or d = 2
and C is a polygon. A piece is a Borel subset of C; usually an interval or a
polygon.

C has to be divided among n ≥ 1 agents. We denote by [n] the set of
integers {1, . . . , n}. Each agent i ∈ [n] has a value-density function vi, which
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is an integrable, non-negative and bounded function on C. The value of a piece
Xi to agent i is marked by Vi(Xi) and it is the integral of its value-density:
Vi(Xi) =

∫
x∈Xi

vi(x)dx. The definition implies that the Vi are finite measures
and are absolutely-continuous with respect to the Lebesgue measure, i.e., any
piece with zero area has zero value to all agents.

Division algorithms access the value measures via queries (Robertson and
Webb, 1998; Woeginger and Sgall, 2007): an eval query asks an agent to report
the value of a specified piece of cake; a mark query asks an agent to mark
a piece of cake with a specified value.2 The present paper ignores strategic
considerations and assumes that agents answer truthfully. Indeed, in general
it may be impossible to build a cake-cutting algorithm that is both fair and
strategy-proof (Brânzei and Miltersen, 2015).

The geometric constraints, if any, are represented by a pre-specified family
S of usable pieces. In this paper, S will either be the set of all pieces (which
means that there are no geometric constraints), or the set of all intervals, or
the set of all rectangles, or the set of all convex pieces. It is assumed that each
agent can use only a single piece from the family S.

An allocation is a vector of n pieces, X = (X1, . . . , Xn), one piece per agent,
such that the Xi are pairwise-disjoint and X1t· · ·tXn ⊆ C.3 Note that some
cake may remain unallocated, i.e, free disposal is assumed. As illustrated in
the introduction, free disposal may be necessary when there are geometric
constraints. An S-allocation is an allocation in which all pieces are usable, i.e,
Xi ∈ S for each agent i.

For every constant r ∈ [0, 1], an allocation X is called r-proportional if
every agent receives at least r/n of the total cake value:

For all i ∈ [n] : Vi(Xi) ≥ (r/n) · Vi(C)

A 1-proportional division is also known as proportional.

2.2 Cake Redivision

There is an existing S-allocation of the cake, Z1 t · · · tZn ⊆ C. It is assumed
that the old pieces Zj are pairwise-disjoint and that Zj ∈ S for all j, but
nothing else is assumed on the division. In particular, the initial division is
not necessarily proportional, and some of C may be unallocated.

It is required to construct a new S-allocation X1 t · · · t Xn ⊆ C. The
re-allocation satisfies the w-ownership property, for some constant w ∈ (0, 1),
if every agent receives at least a fraction w of their old value:

For all j ∈ [n] : Vj(Xj) ≥ w · Vj(Zj)

2 It is often called a cut query, but the term mark query better differentiates query answers
from actual cuts through the cake.

3 The symbol t denotes disjoint union—it emphasizes that the pieces X1, . . . , Xn are
pairwise-disjoint.
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Since w-ownership is not always compatible with r-proportionality for any
constant r > 0, the following weaker property is defined. A re-allocation X
satisfies the democratic-ownership property if, for every d ∈ {1, . . . , n − 1},
there are at least n− d agents j ∈ [n] for whom

Vj(Xj) >
1

dn/de
· Vj(Zj).

2.3 Social Welfare and Price-of-Fairness

In addition to fairness, it is often required that a division has a high social
welfare. The social welfare of an allocation is a certain aggregate function of
the normalized values of the agents (the normalized value is the piece value
divided by the total cake value). Common social welfare functions are sum
(utilitarian) and product (Nash), see Moulin (2004). When calculating the
welfare, it is convenient to normalize the values such that the proportional
share of an agent corresponds to a value of 1 (so receiving the entire cake
corresponds to a value of n). This way, when all agents receive exactly their
proportional share, the welfare is 1.

– Utilitarian welfare—the arithmetic mean of the agents’ normalized values

Wutil(X) =
1

n

n∑
i=1

Vi(Xi)

Vi(C)/n

– Nash welfare—the geometric mean of the agents’ normalized values:

WNash(X) =

(
n∏
i=1

Vi(Xi)

Vi(C)/n

)1/n

The goal of maximizing the social welfare is not always compatible with the
goal of guaranteeing a fair share to every agent. For example, Caragiannis et
al. (2012) describe a simple example in which the maximum utilitarian welfare
of a proportional allocation is in 1 while the maximum utilitarian welfare of an
arbitrary (unfair) allocation is in Ω(

√
n). This means that society has to pay a

price, in terms of social-welfare, for insisting on fairness. This is called the price
of fairness. Formally, given a social welfare function W and a fairness criterion
F , the price-of-fairness relative to W and F (also called: “the W -price-of-F”)
is the ratio:

supXW (X)

supY∈F W (Y)
(*)

where the supremum at the numerator is over all allocations X and the supre-
mum at the denominator is over all allocations Y that also satisfy the fairness
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criterion F . The cited example shows that the utilitarian-price-of-proportion-
ality is in Ω(

√
n).

When there are geometric constraints, they affect both the numerator and
the denominator of (*), i.e, the suprema are taken only on S-allocations. There-
fore, it is not a-priori clear whether the price-of-fairness with constraints is
higher or lower than without constraints.

3 Arbitrary Cake and Arbitrary Pieces

In this section there are no geometric constraints on the cake or its pieces.
Consider the negative result first.

Proposition 1 For every constants r, w ∈ [0, 1] where r + w > 1, it may be
impossible to simultaneously guarantee r-proportionality and w-ownership.

Proof Here is a scenario in which no r-proportional division satisfies w-ownership.
In the initial allocation, a single agent owns the entire cake. All n agents
have the same value-density and they value the entire cake at 1. In any r-
proportional division, the n− 1 landless citizens must receive a total value of
(n− 1)r/n = r− r/n. Therefore the old landlord receives at most 1− r+ r/n.
By assumption, 1 − r < w. Hence, if n is sufficiently large, the old landlord
receives less than w of his/her previous value, contradicting w-ownership. ut

The proof of the matching positive result requires a lemma.

Lemma 1 Given cake-allocations Z and Y and a constant r ∈ [0, 1], there
exists an allocation X such that, for every agent i ∈ [n]: Vi(Xi) ≥ rVi(Yi) +
(1 − r)Vi(Zi). Moreover, when r is a constant rational number, X can be
found using O(n2 · len(r)) queries, where len(r) is the length of the binary
representation of r.

Proof Let us begin with an existential proof. Consider the set of all possible
cake-partitions. For each cake-partition, consider the n×1 vector of utilities of
the agents. The Dubins–Spanier theorem (Dubins and Spanier, 1961) implies
that the set of all such vectors is convex. So there is an allocation X satisfying
the requirement as an equality: ∀i ∈ [n] : Vi(Xi) = rVi(Yi) + (1− r)Vi(Zi).

The Dubins–Spanier theorem is not constructive. But when r is a rational
number, r = p/q with p < q some positive integers, an allocation X satisfying
the lemma requirements can be constructed in polynomial time using an algo-
rithm for a different problem: fair division with different entitlements. In this
problem, each agent i ∈ [n] is entitled to a share di/D of the entire cake, where
di is a positive integer and D =

∑
i di. Recently, Cseh and Fleiner (2020) pre-

sented an algorithm that finds, using 2(n− 1)dlog2(D)e queries, an allocation
in which the value of each agent i is at least di/D of the total cake value. This
algorithm should be applied to all pairs of agents. For every pair i, j ∈ [n] with
i 6= j, partition Yi ∩ Zj between i and j with di := p and dj := q − p. The
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Algorithm 1 Cake allocation with partial proportionality and ownership.
Input:

– A cake C and an existing allocation Z1 t · · · t Zn ⊆ C;
– A rational number r = p/q.

Output: A new allocation X1 t · · · tXn ⊆ C satisfying the following:

– Partial proportionality: for all i ∈ [n], Vi(Xi) ≥ r · Vi(C)/n.
– Partial ownership: for all i ∈ [n], Vi(Xi) ≥ (1− r) · Vi(Zi).

1: Find a proportional allocation Y1 t · · · t Yn = C.
2: for i := 1, . . . , n and j := 1, . . . , n (when i 6= j) do
3: Using an algorithm for fair cake cutting with different entitlements (Cseh and Fleiner,

2020), divide Yi ∩ Zj between i and j such that i is entitled to p/q and j is entitled
to (q − p)/q.

4: end for
5: Allocate to each agent i ∈ [n] the union of the following pieces:

– The piece Yi ∩ Zi;
– i’s share from Yi ∩ Zj for all j 6= i;
– i’s share from Yj ∩ Zi for all j 6= i.

pairs i, j can be processed in any order, even in parallel. Finally, agent i also
gets the entire piece Yi ∩ Zi.

For the sake of the proof, divide this latter piece arbitrarily into two subsets:
one is worth p

qVi(Yi ∩ Zi) and the other q−p
q Vi(Yi ∩ Zi) for agent i. Now,

each agent i is allocated a piece Xi which can be written as a union of 2n
disjoint subsets: some n subsets of Yi ∩Z1, . . . , Yi ∩Zn, and some n subsets of
Y1∩Zi, . . . , Yn∩Zi. The former subsets are worth for i at least p

qVi(Yi∩Z1) +

· · ·+ p
qVi(Yi ∩ Zn) = p

qVi(Yi ∩ C) = p
qVi(Yi) = rVi(Yi), and the latter subsets

are worth for i at least q−p
q Vi(Y1∩Zi)+· · ·+ q−p

q Vi(Yn∩Zi) = q−p
q Vi(Zi∩C) =

q−p
q Vi(Zi) = (1− r)Vi(Zi).

The algorithm requires O(log q) steps for every pair and O(n2 log q) steps
overall. Since len (r) = log2 p+ log2 q ≥ log2 q, the run-time is in O(n2 len (r))
as claimed. ut

Theorem 1 For every constants r, w ∈ [0, 1] where r + w ≤ 1, and for every
existing division of the cake, there exists a division that simultaneously satisfies
r-proportionality and w-ownership. Moreover, when r, w are rational numbers,
such a division can be found using O(n2 len(r)) queries, where len(·) denotes
binary representation length.

Proof Given a pair r, w where r + w ≤ 1, apply Lemma 1, with the initial
allocation as Z, and any proportional allocation as Y (a proportional allocation
can be found efficiently by classic algorithms such as Steinhaus (1948), Even
and Paz (1984)). By Lemma 1, the new division satisfies r-proportionality and
(1 − r)-ownership, and 1 − r ≥ w. The process is summarized as Algorithm
1. ut
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Remark 3 (a) The redivision algorithm gives each agent a piece that is not
only worth at least (1 − r)Vi(Zi), but also a subset of Zi (in addition to a
subset of Yi). This may be desirable in some cases. E.g. in land division, old
landlords may want not only a high value but also a subset of their old plot.

(b) Cseh and Fleiner (2020) present an algorithm for cake-cutting even
when the entitlements are irrational. The number of queries is finite (but un-
bounded). This algorithm can be used in Algorithm 1 to attain r-proportionality
even when r is irrational, though it is unclear why any government would be
interested in such a strange fairness condition.

4 Interval Cake and Interval Pieces

In this section the cake is an interval and each piece must be an interval.
Consider the negative result first.

Proposition 2 When the cake is a 1-dimensional interval and each piece
must be an interval, for every positive constants r, w ∈ (0, 1), it may be im-
possible to simultaneously satisfy r-proportionality and w-ownership.

Moreover, for every r ∈ (0, 1] and every integer d ∈ [n], there might be d
agents who, in any r-proportional division, receive at most a fraction 1/bnd c
of their old value.

Proof Consider an existing allocation Z, a positive constant r ∈ (0, 1], and an
integer d ≤ n. Here is a scenario in which, in every r-proportional allocation,
there are d agents j who receive a value of at most Vj(Zj)/bnd c. Partition
the set of n agents into d groups:

1. (n mod d) groups containing dnd e agents; these groups exist only when d
does not divide n.

2. (d− n mod d) groups containing bnd c agents.

Note that the total number of agents in these groups is indeed (n mod d) ·
dnd e+ (d− n mod d) · bnd c = n.

In each group of type 1, a single agent j has a nonempty share Zj in the
initial allocation. Agent j values Zj at dnd e, and the rest of the cake at 0. The
value-density inside Zj is piecewise-uniform: it has dnd e regions with a value
of 1 and dnd e − 1 “gaps”—regions with a value of 0. Each of the other dnd e − 1
agents in the same group assigns a positive value only to a unique gap in Zj ;
Figure 3 illustrates the value-densities that are positive in one such Zj .

In each group of type 2, the valuations are defined similarly to the groups
of type 1, except that j’s total value is bnd c and there are bnd c−1 other agents.

In any r-proportional division, each gap in Zj must be at least partially
allocated to an agent in group j. Hence, the interval allocated to agent j must
contain at most a single positive region in Zj—it cannot overlap any gap.
Therefore the value of agent j is at most 1. For agents in groups of type 2,
this value is at most Vj(Zj)/bnd c; for agents in groups of type 1, it is at most
Vj(Zj)/dnd e, which is even smaller. ut
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Fig. 3 Solid boxes represent the value-density of agent j within Zj ; each dotted box
represents a value-density of some other agent in the same group as agent j. In this example,
dn
d
e = 5.

Algorithm 2 Auctioning a cake.
Input: A cake Z0 and a set N ⊆ [n] of agents.
Output: A subset of agents W ⊆ N , possibly empty, such that

(a) For each agent i′ ∈W, Vi′ (Z0) ≥ |W |;
(b) For each agent i′′ ∈ N \W, Vi′′ (Z0) < |W |+ 1.

1: Choose an ordering σ on N such that Vσ[1](Z0) ≥ Vσ[2](Z0) ≥ · · ·Vσ[|N|](Z0).
2: Initialize W := ∅.
3: for j := 1, . . . , |N | do
4: if Vσ[j](Z0) ≥ j then
5: Add agent σ[j] to W .
6: else
7: return W .
8: end if
9: end for

The corresponding positive result (Theorem 2) uses an algorithm for a
different problem: fair multicake cutting. In this problem, there is a multicake
C, which is a union of m pairwise-disjoint subcakes, C = Z1 t · · · t Zm. The
goal is to give each agent a piece contained in a single subcake. It is easy to see
that a proportional allocation might not exist even for a single agent. However,
there always exists an allocation (X1, . . . , Xn) such that

Vi(Xi) ≥
1

m+ n− 1
· Vi(C), (1)

and this is the largest fraction that can be guaranteed (Segal-Halevi, 2021).4

Below, a different algorithm is presented, that attains the same value guarantee
(1), and simultaneously guarantees democratic ownership.

The algorithm uses as a subroutine Algorithm 2, which is called an “auc-
tion”. It accepts as input a subcake Z0 and a set N of agents. Each agent i

4 Consider m subcakes and n agents with the same valuation, who value the entire mul-
ticake at m + n − 1. Suppose the value of each subcake j (for all agents) is some integer
uj ≥ 1. If some subcake is not allocated to any agent, then the multicake can be reduced
to a smaller one with m′ := m− 1 subcakes, which all agents value at most m′ + n− 1. So
suppose each subcake is allocated to at least one agent. Define the surplus of each subcake as
uj minus the number of agents who are allocated a piece in that subcake. The total surplus
is (m+ n− 1)− n = m− 1, so at least one subcake j0 must have a surplus of at most 0. At
least one of the uj0 agents allocated a piece in subcake j0 has a value of at most 1.
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“bids” by evaluating Z0. The auction then chooses a subset W ⊆ N of “win-
ners”. The criterion for selecting the set of winners is specified by the following
lemma.

Lemma 2 Given a subcake Z0 and a set N of agents, Algorithm 2 returns a
subset W ⊆ N of winners such that (a) each winner values Z0 at least |W |,
and (b) each loser values Z0 at less than |W |+ 1.

Proof The set of winners contains the first |W | agents in the ordering σ. Now:

– Let i′ := σ[|W |] = the last agent added to W . Step 4 implies that Vi′(Z0) ≥
|W |. The same is true for all preceding agents in the ordering σ. Hence,
condition (a) is satisfied for all winners.

– Let i′′ := σ[|W |+ 1] = the first agent not added to W . Step 4 implies that
Vi′′(Z0) < |W |+1. The same is true for all following agents in the ordering
σ. Hence, (b) is satisfied for all losers. ut

Note that Lemma 2 allows the set of winners W to be empty, if all agents in
N value Z0 at less than 1.

Before proving Theorem 2, let us consider a simpler warm-up algorithm
that attains only the partial-proportionality guarantee (1). It uses Algorithm
3. Its input is a multicake and a set of n agents. By repeatedly applying the
auction algorithm, it assigns the agents to the subcakes such that all agents
assigned to a subcake value it sufficiently high, as formalized below.

Lemma 3 Given a multicake C = Z1 t · · · t Zm, a positive integer n ≤ m,
and some n agents who value C at least m + n − 1, Algorithm 3 returns a
partitioning of the set of agents [n] = W1 t · · · tWm such that for all j ∈ [m]
and for each agent i′ ∈Wj, Vi′(Zj) ≥ |Wj |.

Proof Lemma 2(a) ensures that all agents assigned to Wj in step 3 value Zj at
least |Wj |. It remains to prove that, by the end of the algorithm, every agent
i ∈ [n] is assigned to some Wj . Suppose by contradiction that some i ∈ [n] is
not in any Wj . Lemma 2(b) ensures that Vi(Zj) < |Wj | + 1 for all j ∈ [m].
Summing over all j ∈ [m] gives Vi(C) = Vi(Z1)∪ · · · ∪Vi(Zm) <

∑m
j=1(|Wj |+

1) ≤ (n− 1) +m, which contradicts the assumption Vi(C) ≥ (n− 1) +m. ut

Once the agents are partitioned using Algorithm 3, for each j ∈ [m], Zj
can be divided among the agents in Wj using any proportional cake-cutting
algorithm. Since all these agents value Zj at least |Wj |, each agent gets a piece
valued at least 1, which is at least 1

m+n−1 · Vi(C) as in condition (1).
To prove Theorem 2, it is required to guarantee, in addition to (1), also the

democratic ownership condition. To this end, Algorithm 3 is replaced with a
modified assignment algorithm, presented as Algorithm 4. The main difference
is that Algorithm 4 allows each agent j to participate in the auction on the
subcake with the same index Zj , even if j was already assigned to a previous
subcake Zj′ for some j′ < j. If j is one of the winners for Zj (that is, j ∈Wj),
then j is removed from the previous assignment Wj′ . This creates a “vacancy”
in Wj′ ; this vacancy is filled by running a single step of the auction on Zj′ . Let
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Algorithm 3 Assigning agents to a multicake (warm-up algorithm).

Input: A multicake C = Z1 t · · · t Zm and a set [n] of agents, where m ≥ n.

– Valuations are normalized such that Vi(C) = m+ n− 1 for all i ∈ [n].

Output: A partitioning of the agents [n] = W1 t · · · tWm such that:

– For all j ∈ [m] and for each agent i ∈Wj , Vi(Zj) ≥ |Wj |.
1: Initialize N := [n] = the set of all agents.
2: for j := 1, . . . ,m do
3: Using Algorithm 2, auction the subcake Zj among the agents in N .

Let Wj be the set of winners.
4: Remove Wj from N .
5: end for

i′ be the first unassigned agent who did not win the first auction on Zj′ (“first”
by the σ ordering in that auction). Recall that, by condition (b) of the auction
algorithm, Vi′(Zj′) < |Wj′ | + 1 held before j was removed from Wj′ . If the
condition does not hold after j is removed (that is: if Vi′(Zj′) ≥ |Wj′ |+1 after
the removal), then i′ is added toWj′ . This step guarantees that both conditions
(a) and (b) still hold for Wj′ , that is: Vi′(Zj′) ≥ |Wj′ | for all i′ ∈ Wj′ , and
Vi′′(Zj′) < |Wj′ |+ 1 for all i′′ who are not assigned yet.

This new winner i′, who is added to Wj′ , might be the agent j′ itself, who
is already assigned to another set Wj′′ . In this case, moving the agent j′ from
Wj′′ to Wj′ creates a vacancy in Wj′′ , which has to be filled in the same way.
This chain reaction must eventually end, since whenever a vacancy is created,
the number of agents j who are assigned to the subset with the same index
Zj increases by one, and this number never decreases as no agent j is ever
removed from Wj .

The correctness of Algorithm 4 is proved formally below.

Lemma 4 Given a multicake C = Z1 t · · · t Zm, a positive integer n ≤ m,
and some n agents who value C at least m + n − 1, Algorithm 4 returns a
partitioning of the set of agents [n] = W1 t · · · tWm such that (a) For all
j ∈ [m] and for each agent i′ ∈Wj, Vi′(Zj) ≥ |Wj |; (b) For all j ∈ [n], either
j ∈Wj or Vj(Zj) < |Wj |+ 1.

Proof (a) Lemma 2(a) ensures that, in step 4 in iteration j, all agents assigned
to Wj value Zj at least |Wj |. The same holds for agents added to Wj in step
10 in a later iteration. The size of Wj never increases above its initial level:
it can only increase by one in step 10 after it has decreased by one in step 7.
Therefore, the condition still holds when the algorithm ends.

(b) Agent j always participates in the auction in step 4 of iteration j. There
are two possible cases.

– If j is assigned to Wj , then he remains in Wj until the end of the algorithm,
since j is never removed from Wj .

– Otherwise, Lemma 2(b) ensures that Vj(Zj) < |Wj |+1. It remains to show
that the condition still holds in later iterations.
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Algorithm 4 Assigning agents to a multicake, with ownership.
Input: A multicake C = Z1 t · · · t Zm and a set [n] of agents, where m ≥ n.

– Valuations are normalized such that Vi(C) = m+ n− 1 for all i ∈ [n].

Output: A partitioning of the agents [n] = W1 t · · · tWm such that

– (a) For all j ∈ [m] and for each agent i′ ∈Wj , Vi′ (Zj) ≥ |Wj |.
– (b) For each agent j ∈ [n], either j ∈Wj or Vj(Zj) < |Wj |+ 1.

1: Initialize N := [n] = the set of all agents.
2: for j := 1, . . . ,m do
3: If j ≤ n then let Nj := N ∪ {j}; else let Nj := N .
4: Using Algorithm 2, auction the subcake Zj among the agents in Nj .

Let Wj be the set of winners.
5: Remove Wj from N .
6: if j ∈Wj and also j ∈Wj′ for some j′ < j then
7: Remove j from Wj′ .
8: Let i′ be the first loser in the auction on Zj′ , who is still in N ∪ {j′}.
9: if Vi′ (Zj′ ) ≥ |Wj′ |+ 1 then

10: Add i′ to Wj′ ;
11: Remove i′ from N .
12: If i′ = j′ and also i′ ∈Wj′′ for some j′′ < j, then repeat steps 7–12 with j′.
13: end if
14: end if
15: end for

For clarity, focus on a specific agent j′, and suppose that in iteration j′,
agent j′ did not win the auction, so Vj′(Zj′) < |Wj′ |+1. In later iterations,
the size of Wj′ may decrease by one in step 7. In this case, lines 8–10
guarantee that, either j′ is added to Wj′ , or another agent is added to Wj′ ;
in the latter case, Wj′ returns to its original size, so Vj′(Zj′) < |Wj′ | + 1
still holds.

It remains to prove that, by the end of the algorithm, every agent i ∈ [n]
is assigned to some Wj . Suppose by contradiction that some i ∈ [n] is not in
any Wj . This means that i did not win the auction in step 4 in any iteration
j, so Condition (b) of the auction algorithm ensures that Vi(Zj) < |Wj | + 1
for all j ∈ [m].

For any j′, the size of Wj′ may decrease by one in step 7 in later iterations.
In this case, lines 8–10 guarantee that, if i is not added to Wj′ , then either
Vi(Zj′) < |Wj′ |+ 1 still holds, or another agent is added to Wj′ ; in the latter
case, Wj′ returns to its original size, so Vi(Zj′) < |Wj′ |+ 1 still holds.

Summing over all j ∈ [m] gives Vi(C) <
∑m
j=1(|Wj | + 1) ≤ (n − 1) + m,

contradicting the assumption Vi(C) ≥ (n− 1) +m. ut

The above lemmas and algorithms are used to prove the following theorem.

Theorem 2 When the cake is a 1-dimensional interval and each piece must be
an interval, it is possible to find in time O(n2 log n) a division simultaneously
satisfying democratic-ownership and 1/2-proportionality.
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Algorithm 5 Allocation of an interval cake, with partial proportionality and
democratic ownership.
Input:

– An interval C and an existing allocation into n intervals, Z1 t · · · t Zn ⊆ C.

Output: A new allocation X1 t · · · tXn ⊆ C into n intervals, satisfying the following:

– 1/2-proportionality: for all i ∈ [n], Vi(Xi) ≥ Vi(C)/(2n).
– Democratic ownership: for all d < n, for at least n−d agents i, Vi(Xi) > Vi(Zi)/dnd e.

1: Normalize the valuations such that Vi(C) = 2n− 1 for all i ∈ [n].
2: Given the original partial allocation Z1t· · ·tZn ⊆ C, expand it to a complete partition
Z′1 t · · · t Z′n = C, by attaching each “blank” (unallocated interval in C) arbitrarily to
one of the two adjacent allocated intervals, to its left or to its right.

3: Considering the intervals Z′1, . . . , Z
′
n as subcakes in a multicake, use Algorithm 4 (with

m = n) to partition the agents into n subsets W1, . . . ,Wn.
4: Divide each interval Z′j among the agents in Wj using any algorithm for connected

proportional cake-cutting, e.g. Even and Paz (1984).

Proof The proof is constructive and uses Algorithm 5. It is proved below that
the output of this algorithm satisfies the requirements of the theorem.

Proof that the output of Algorithm 5 satisfies 1/2-proportionality. Each sub-
cake Z ′j is divided proportionally among the agents in Wj . By Lemma 4(a), all
these agents value Z ′j at least |Wj |. Hence, their piece has a value of at least

1. By the normalization step (with m = n), 1 ≥ 1
2n−1Vi(C) > Vi(C)/(2n).

Proof that the output of Algorithm 5 satisfies democratic-ownership. Applying
the pigeonhole principle to the partition yielded by Algorithm 4 implies that,
for every integer d ∈ {1, . . . , n − 1}, at most d of the subsets Wj , for j ∈ [n],
are populated by at least dnd e agents. Hence, at least n − d such subsets are
populated by at most dnd e− 1 agents, that is, they satisfy |Wj | ≤ dnd e− 1. For
each j ∈ [n], consider two cases:
Case #1 : j ∈ Wj . Then agent j receives a piece of the subcake Z ′j . By the

proportionality of the subcake division (Algorithm 5, step 4):

Vj(Xj) ≥
Vj(Z

′
j)

|Wj |
≥

Vj(Z
′
j)

dnd e − 1
>
Vj(Z

′
j)

dnd e
.

Case #2 : j 6∈Wj . Then, by Lemma 4(b), Vj(Z
′
j) < |Wj |+1 ≤ dnd e. Therefore,

Vj(Z
′
j)/dnd e < 1. As explained in the proof of 1/2 proportionality, the value

of each agent is at least 1:

Vj(Xj) ≥ 1 >
Vj(Z

′
j)

dnd e
.

In both cases, agent j receives a value greater than Vj(Z
′
j)/dnd e. The latter

ratio is at least Vj(Zj)/dnd e since Z ′j ⊇ Zj .



18 Erel Segal-Halevi

Run-time complexity of Algorithm 5. The auction in Algorithm 2 requires
O(n log n) queries. Algorithm 4 performs m auctions. Each auction might lead
to a sequence of at most n vacancies which require one query each to be filled.
Algorithm Even–Paz requires O(n log n) queries, and it is done m times—once
for each subcake. All in all, the run-time is in O(mn log n) = O(n2 log n), since
m = n. ut

4.1 Future Work

Crossing the boundary lines. Algorithm 5 treats each existing piece Zj as an
isolated subcake, and insists that each new piece be entirely contained in an
existing piece, i.e, it does not cross the existing division lines. This may be
desirable in the context of land division, since it respects the Uti possidetis ju-
ris (Lalonde, 2002)— an international law principle saying that newly-formed
sovereign states should retain the internal borders that their preceding de-
pendent area had before their independence. However, it also implies that the
resulting division can only be 1/2-proportional and never fully proportional,
as the fraction 1

n+m−1 in (1) is tight.
Theoretically, it may be possible to improve the proportionality guarantee

by devising a different redivision procedure that crosses the existing division
lines. This raises the following open question: what is the highest level of
proportionality that is compatible with democratic-ownership?

Several pieces per agent. Theorem 1 allows an unlimited number of pieces per
agent,5 while Theorem 2 allows only a single piece per agent. What happens
between these extremes? In particular, if each agent can get k intervals, for
some fixed k ≥ 1, then there is an algorithm for dividing a multicake with m

subcakes among n agents such that each agent gets at least min
(

1
n ,

k
m+n−1

)
of the total cake value (Segal-Halevi, 2021). However, the algorithm does not
guarantee democratic ownership. If a similar proportionality guarantee could
be attained together with democratic ownership, it could be used in Section
4 with m = k · n subcakes (since for each agent there could be up to k sub-
cakes in the original division), to get a bound of k

kn+n−1 , which implies k
k+1 -

proportionality for any k ≥ 1.

5 Polygonal Cake and Polygonal Pieces

In this section the cake is a polygon in R2. There is a set S of usable pieces
(e.g. rectangles), the initial allocation Z1, . . . , Zn is an S-allocation, and the
output should be an S-allocation too.

5 In fact, 4n− 3 pieces per agent are sufficient. It is known that, for every pair of agents,
an allocation with different entitlements can be attained with two cuts, e.g. (Segal-Halevi,
2019). So each agent receives at most 2 pieces. In Algorithm 1, each agent participates in
2 · (n− 1) such allocation instances, and gets one additional piece.
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The main obstacle in applying Algorithm 5 to such a cake is step 2—
extending the initial partial allocation to a complete partition of the entire
cake. It is not possible to simply attach each unallocated part of C to an
allocated S-piece, since the result might not be an S-piece. The initial partial
allocation Z1 t · · · tZn ⊆ C still must be expanded to a complete partition of
C, since Algorithm 5 uses Algorithm 4, which requires a complete partition.
But the number of pieces in the complete partition might be larger than n,
since there might be unattached “blanks” (holes).

The goal, then, is to find a partition of C into S-pieces, Z ′1t· · ·tZ ′n+b = C,
with b ≥ 0, such that every input S-piece is contained in a unique output S-
piece: ∀j ∈ [n] : Zj ⊆ Z ′j . The additional b S-pieces are called blanks. In Step 3,
the multicake will contain m = n+ b subcakes. Hence, the fraction guaranteed
to each agent will be 1/(n + m − 1) = 1/(2n + b − 1). A smaller value of b
translates to a better proportionality guarantee.

An example of the input and output of the allocation-completion step,
when S is the set of rectangles, is shown in Figure 4. In the partial alloca-
tion there are n = 4 rectangles; in the complete partition there are m = 5
rectangles.

⇒

Fig. 4 Allocation-completion with n = 4 original pieces and b = 1 blank, denoted Z′5.

This raises the question of what is the minimum number of blanks required
for a complete partition? This geometric question has been studied in a dif-
ferent paper (Akopyan and Segal-Halevi, 2018). The answers are summarized
in Table 1.6 Moreover, it is proved there that the worst-case optimal number
of blanks is attained in any arrangement in which all pieces are maximal, that
is, cannot be expanded without overlapping another piece. Formally:

Definition 1 Given a set S of usable pieces, a cake C and some m pairwise-
disjoint S-pieces Z1, . . . , Zn ⊆ C:

(a) An S-piece Z ′ ⊆ C is called maximal w.r.t. C,Z1, . . . , Zn, if every
superset S-piece Z ′′ ) Z ′ that is contained in C overlaps one of Z1, . . . , Zn.

6 The expressions in Table 1 are tight in the worst case: there are partial allocations that
require exactly this number of blanks.



20 Erel Segal-Halevi

Table 1 Worst-case number of blanks in a maximal arrangement of pairwise-disjoint S-
pieces contained in a cake C. From Akopyan and Segal-Halevi (2018).

Cake C Usable pieces S Number of blanks b
Polygon Polygons 0

Simple polygon (without holes) Simple polygons 0
Axes-parallel rectangle Axes-parallel rectangles n− d2

√
n− 1e

Convex figure Convex figures 2n− 5
Rectilinear polygon, T reflex vertices Axes-parallel rectangles T + n− d2

√
n− 1e

(b) An S-piece Z ′ ⊆ C is called a maximal expansion of Zj if Z ′ ⊇ Zj , and
Z ′ is maximal w.r.t. C,Z1, . . . , Zj−1, Zj+1, . . . , Zn.

(c) A set of pairwise-disjoint S-pieces Z ′1, . . . , Z
′
n ⊆ C is called a complete

expansion of Z1, . . . , Zn if for each j ∈ [m], Z ′j is a maximal expansion of Zj
w.r.t. C,Z ′1, . . . , Z

′
j−1, Z ′j+1, . . . , Z

′
n.

Complete expansions are used to prove Theorems 3, 4 and 5 below.

Theorem 3 When the cake is a rectangle and each piece must be a parallel
rectangle, it is possible to find in time O(n2 log n) a division simultaneously
satisfying democratic-ownership and 1/3-proportionality.

Proof Find a complete expansion of the initial allocation Z1 t · · · tZn ⊆ C in
the following way:

for j := 1, . . . , n do
Expand each of the four sides of Zj until it touches the boundary

of C or of another piece Zi for some i 6= j.
Denote the expanded piece by Z ′j ; note that it is a maximal expansion

of Zj w.r.t. C,Z1, . . . , Zj−1,Zj+1, . . . , Zn.
Replace Zj with Z ′j .

end for

Akopyan and Segal-Halevi (2018) prove that the remaining “holes” (un-
filled parts of C) are all rectangular, and their number b satisfies b ≤ n −
d2
√
n− 1e < n. So there is a complete S-partition Z ′1 t · · · t Z ′n+b = C.
Considering the S-pieces Z ′1, . . . , Z

′
n+b as subcakes, use Algorithm 4 with

m = n + b to partition the agents into subsets W1 t · · · tWn+b. Then, use
the Even–Paz algorithm to partition each Z ′j among the agents in Wj . While
the Even–Paz algorithm was originally presented for 1-dimensional intervals,
it is easily applicable to axes-parallel rectangles, for example by ensuring that
all cuts are parallel to the y axis. The resulting allocation satisfies demo-
cratic ownership. In addition, for each agent i ∈ [n]: Vi(Xi) ≥ 1

n+m−1Vi(C) ≥
1

2n+b−1Vi(C) > Vi(C)/(3n), so the allocation is 1/3-proportional.
The run-time of finding a maximal expansion of a rectangle is in O(n),

since it requires to compare each side of the rectangle to the sides of the other
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n − 1 rectangles. Therefore, the run-time of finding a complete expansion is
O(n2). The run-time of executing Algorithm 4 and the Even–Paz algorithms
is O(n2 log n) as in Theorem 2, so the total run-time is O(n2 log n) too. ut

Theorem 4 When the cake is a 2-dimensional convex polygon and each piece
must be convex, there exists a division simultaneously satisfying democratic-
ownership and 1/4-proportionality.

Proof The proof is similar to that of the previous theorem, and relies on the
existence of a complete expansion of the initial allocation. However, I do not
have a constructive algorithm for finding a maximal expansion of a convex
figure. Recently, Dmitry (2021) presented an algorithm for finding a maximal
expansion of a convex polygon contained in an arbitrary polygon. However,
since it is not formally published, Theorem 4 is stated only as an existence
result.

To prove existence of a maximal expansion of Zj ,
7 let Yj be the set of

potential expansions of Zj , i.e:

Yj := {Xj |Xj ⊇ Zj and Xj ⊆ (C \ ∪i 6=jZi) and Xj is convex.}

Yj is partially ordered by inclusion. The Kuratowski–Zorn lemma can be used
to prove that it has a maximal element. To use this lemma, one has to prove
that every chain in Yj has an upper bound in Yj . Indeed, let Y ′j ⊆ Yj be a

chain. Let Ŷ ′j be the union of all sets in Y ′j . Then Ŷ ′j is an upper bound on Y ′j ,

and Ŷ ′j ∈ Yj because:

– Ŷ ′j ⊇ Zj—since all sets in Yj contain Zj .

– Ŷ ′j ⊆ (C \ ∪i6=jZi)—since all sets in Yj are contained in (C \ ∪i 6=jZi).
– Ŷ ′j is convex—since for every two points in Ŷ ′j , there exists a set in the

chain Y ′j that contains both of them. This set is convex so it contains the

segment between them, so Ŷ ′j contains this segment too.

Thus, by the Kuratowski–Zorn lemma, Yj has a maximal element. Denote
this element by Z ′j . By definition, it is a maximal expansion of Zj w.r.t
C,Z1, . . . , Zj−1, Zj+1, . . . , Zn. As in the proof of Theorem 3, one can proceed
iteratively for j := 1, . . . , n, replacing each Zj with its maximal expansion
Z ′j . This yields a complete expansion of Z1, . . . , Zn. Akopyan and Segal-Halevi
(2018) prove that the remaining holes are all convex, and their number b sat-
isfies b ≤ 2n− 5 < 2n. So there is a complete S-partition Z ′1 t · · · tZ ′n+b = C.

Considering the S-pieces Z ′1, . . . , Z
′
n+b as subcakes, use Algorithm 4 with

m = n + b to partition the agents into subsets W1 t · · · tWn+b. Then, use
the Even–Paz algorithm to partition each Z ′j among the agents in Wj . Requir-
ing that all cuts made by this algorithm are parallel to the y-axis guarantees

7 The following proof is an adaptation of the proof of Lemma 3.3 in Mohammadi and
Soleimani-damaneh (2017). I am grateful to Ashkan for his help with this argument.
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that the pieces are convex. The resulting allocation satisfies democratic own-
ership, and for each agent i ∈ [n], Vi(Xi) ≥ 1

n+m−1Vi(C) ≥ 1
2n+b−1Vi(C) >

Vi(C)/(4n), so the allocation is 1/4-proportional. ut

Theorem 5 When the cake is an axes-parallel rectilinear polygon with T reflex
vertices, and each piece must be an axes-parallel rectangle, it is possible to find
in time O(n2 log n + poly(T )) a division satisfying democratic-ownership, in
which each agent receives at least 1/(3n+ T ) of the total cake value.

Proof The proof starts similarly to Theorem 3, by finding a complete expan-
sion of the initial allocation Z1 t · · · t Zn ⊆ C. Akopyan and Segal-Halevi
(2018) prove that the remaining “holes” are all simply-connected rectilinear
polygons, and that they can be partitioned into at most b rectangles, where
b ≤ n−d2

√
n−1+T e < n+T . The partitioning can be done in time poly(T );

see (Keil, 2000; Eppstein, 2010).
Proceeding as in the previous theorems, Algorithm 4 finds an allocation

satisfying democratic-ownership in which, for each agent i ∈ [n], Vi(Xi) ≥
1

n+m−1Vi(C) ≥ 1
2n+b−1Vi(C) > Vi(C)/(3n + T ). The run-time of this part is

in O(n2 log n) as explained in Theorem 3. ut

5.1 Future Work

The results in this section raise several future work questions, which may be
of interest to researchers in computational geometry.

Rectangle and convex pieces. While the bounds in Table 1 are worst-case op-
timal, in specific instances there may be a maximal expansion with fewer
blanks. What is an efficient algorithm for finding a maximal expansion of a
given allocation, which has the smallest number of blanks possible in the given
instance?

General polygons. When the cake and the pieces are general polygons, or hole-
free (simply-connected) polygons, but not necessarily convex, there exists a
maximal expansion with no blanks at all (Table 1). Using such an expansion,
one could expect to find an allocation satisfying democratic ownership and
1/2-proportionality. However, this requires to apply the Even–Paz algorithm
to a non-convex polygon such that the pieces remain connected (or simply-
connected); cutting along the y axis (as in the rectangle and convex cases)
might yield disconnected pieces. One way to partition a polygon into connected
pieces is to map each point p of the polygon to the point nearest to p on the
polygon perimeter, as in Figure 5. Then, the perimeter can be partitioned
like a 1-dimensional interval. Har-Peled (2021) and Yagami (2021) present
sketches of how this can be done, but again, they were not formally published
so I do not claim any result for the cases in which S is the family of connected
polygons, or of simply-connected polygons.
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Fig. 5 The points in the blue trapezoid are mapped to the points on the blue interval
at the bottom side of the polygon; each point in the trapezoid is mapped to the point just
below it, which is the point nearest to it on the polygon perimeter.

More than two dimensions. When the cake and pieces are three-dimensional
(e.g. axes-parallel boxes), what is an upper bound on the number of blanks in
a maximal expansion of a partial allocation?

6 Price-of-Fairness Bounds

This section uses the redivision theorems of previous sections to prove upper
bounds on the price of partial-proportionality.

Theorem 6 For every r ∈ [0, 1], the utilitarian price of r-proportionality is
at most 1/(1− r).

Proof Let Z be a utilitarian-optimal allocation of a cake. Apply Theorem 1
with Z as the original allocation. The resulting division is r-proportional and
satisfies (1− r)-ownership, so its utilitarian welfare is at least 1− r times the
utilitarian welfare in Z. ut

The proofs of Theorems 7, 8 and 9 are similar; only the constants are
different. The proof of Theorem 8 is presented below; to get the proofs of the
other theorems, replace the constant “3” with “2” or “4” respectively.

Theorem 8 When the cake is a rectangle and each piece must be a rectangle,
for every r ≤ 1/3:

1. The utilitarian-price of r-proportionality is O(
√
n);

2. The Nash-price of r-proportionality is at most (3e) · exp (1/(4πe)) ≈ 8.4.

Proof Part 1 is proved by Lemma 5 below; part 2 is proved by Lemma 6 below.

Lemma 5 Let Z be a utilitarian-optimal rectangular allocation of a cake C
among n agents, with Z1 t · · · t Zn ⊆ C. Assume, without loss of generality,
that the valuations are normalized such that Vi(C) = n for all i ∈ [n], so the
utilitarian welfare of Z is:

U :=
1

n

n∑
i=1

Vi(Zi)
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Then, there exists a (1/3)-proportional rectangular allocation of C to these
same n agents with utilitarian welfare W , such that U/W ∈ O(n1/2).

Proof Apply Theorem 3 to the allocation Z. The theorem ensures that the new
division is (1/3)-proportional and satisfies democratic-ownership. The latter
ensures that for every integer d ∈ {1, . . . , n − 1}, there is a set Sd containing
at least n − d agents, such that the value of every j ∈ Sd is larger than
Vj(Zj)/dnd e ≥ Vj(Zj)/((n+ 1)/d) = d · Vj(Zj)/(n+ 1).

Renumber the agents in the following way. Choose an agent from Sn−1
(which contains at least one agent) and number him/her n−1. Choose an agent
from Sn−2 (which contains at least one other agent) and number him/her n−2.
Continue this way to number the agents by d = n − 1, . . . , 1; renumber the
remaining agent 0. Now, the utilitarian welfare of the new division is lower-
bounded by:

W >
1

n

n−1∑
d=0

max

(
d · Vd(Zd)

(n+ 1)
,

1

3

)

≥ 1

n
· 1

3
·
n−1∑
d=0

max(d · Vd(Zd)/n, 1)

and the utilitarian welfare ratio is at most:

U

W
< 3n ·

∑n−1
d=0 Vd(Zd)/n∑n−1

d=0 max(d · Vd(Zd)/n, 1)

Denote the right-hand side by 3n · Num
Den . Let ad = Vd(Zd)/n, so that

Num =

n−1∑
d=0

ad Den =

n−1∑
d=0

max(d · ad, 1).

Since n is fixed, an upper bound on U/W requires to find a sequence a0, . . . , an−1
that maximizes Num

Den subject to ∀d : 0 ≤ ad ≤ 1.

Observation 1 In a maximizing sequence, a0 = 1 and there is no d > 0 such
that ad < 1/d.

Proof If a0 < 1, then setting a0 to 1 strictly increases Num and does not
change Den. Similarly, if ad < 1/d for some d > 0, then setting it to 1/d
strictly increases Num and does not change Den. ut

Observation 2 A maximizing sequence must be weakly-decreasing (for all d <
d′, ad ≥ ad′).

Proof If there exists d < d′ such that ad < ad′ , then swapping ad with ad′

strictly decreases Den and does not change Num. ut
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Observation 3 There exists at least one maximizing sequence in which there
is no d > 0 such that 1/d < ad < 1.

Proof 8 Call an element ad “bad” if 1/d < ad < 1. Consider a maximizing
sequence with the smallest number of bad elements. If the number of bad
elements is 0, then the proof is complete. Otherwise, pick one bad element ad.
Let ε := min(1 − ad, ad − 1/d). Since ad is bad, ε > 0, and both ad + ε and
ad− ε are in [1/d, 1]. Replacing ad with ad+ ε or ad− ε yields a new ratio, and
it is at most the maximum ratio. In particular:

– Replacing ad with ad + ε makes the ratio Num+ε
Den+dε ; this new ratio is at most

Num
Den , so ε ·Den ≤ dε ·Num =⇒ Den ≤ d ·Num.

– Replacing ad with ad− ε makes the ratio Num−ε
Den−dε ; that new ratio is at most

Num
Den , so −ε ·Den ≤ −dε ·Num =⇒ Den ≥ d ·Num.

Moreover, at least one of these two inequalities is strict: if ε = 1 − ad, then
ad + ε = 1, so replacing ad with ad + ε yields a sequence with strictly fewer
bad elements. Similarly, if ε = ad − 1/d, then replacing ad with ad − ε yields
a sequence with strictly fewer bad elements. Since, by assumption, the max-
imizing sequence had a smallest number of bad elements, the new sequence
must not be maximizing. So either Den ≤ d · Num and Den > d · Num, or
Den < d · Num and Den ≥ d · Num. In both cases there is a contradiction.
Therefore, there must exist a maximizing sequence with no bad elements. ut

Observations 1,2,3 imply that a maximizing sequence has a very specific
format. It is characterized by an integer l ∈ {0, . . . , n − 1} such that, for all
d ≤ l, ad = 1 and for all d ≥ l + 1, ad = 1/d. So:

Num

Den
=

∑n−1
d=0 ad∑n−1

d=0 max(d · ad, 1)

=
(l + 1) + (Hn−1 −Hl)
1
2 l(l + 1) + (n− l − 1)

<
2(l +Hn + 1)

l2 − l + 2(n− 1)

where Hn =
∑n
d=1(1/d) is the n-th harmonic number.

The number l is an integer, but the expression is upper-bounded by the
maximum attained when l is allowed to be real. By standard calculus (taking
the derivative of the expression w.r.t. l, comparing the derivative to 0, and
checking the second derivative), the real value of l which maximizes the above
expression is

l =
√
H2
n + 3Hn + 2n− (Hn + 1)

which is in Θ(
√
n). Substituting into the above inequality gives:

8 The proof idea is due to Varun Dubey in http://math.stackexchange.com/q/1609071/29780

http://math.stackexchange.com/q/1609071/29780
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Num

Den
≤ Θ(n1/2)

Θ(n)
∈ Θ(n−1/2)

=⇒ U

W
< 3n · Num

Den
∈ O(n1/2)

as claimed. ut

Lemma 6 Let Z be a Nash-optimal rectangular allocation of a cake C among
n agents, with Z1 t · · · t Zn ⊆ C. Assume the valuations are normalized such
that Vi(C) = n for all i ∈ [n]. Let U be the Nash welfare of Z (the geometric
mean of the values), defined by

Un =

n∏
i=1

Vi(Zi).

Then, there exists a (1/3)-proportional rectangular allocation of C to these
same n agents with Nash welfare W , and U/W ≤ 8.4.

Proof Apply Theorem 3 to the allocation Z. Renumber the agents as in Lemma
5. The Nash welfare of the new allocation, raised to the n-th power, can be
bounded as:

Wn >

n−1∏
d=0

max

(
d · Vd(Zd)

(n+ 1)
,

1

3

)

≥
(

1

3

)n
·
n−1∏
d=0

max(d · Vd(Zd)/n, 1)

and the ratio of the new welfare to the previous welfare can be bounded as:

Un

Wn
< 3n ·

∏n−1
d=0 Vd(Zd)∏n−1

d=0 max(dVd(Zd)/n, 1)

=
(3n)n∏n−1

d=0 max(d, n/Vd(Zd))

The numerator does not depend on the valuations, so the ratio is maximized
when the denominator is minimized. This happens when each factor in the
product is minimized. The 0-th factor is at least 1, since Vd(Zd) ≤ n. The d-th
factor, for d ≥ 1, is at least d. Therefore,

Un

Wn
<

(3n)n∏n−1
d=1 d

=
(3n)n

(n− 1)!

=
n(3n)n

n!
≈ n(3n)n√

2πn(n/e)n
=

√
n

2π
· (3e)n
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where e is the base of the natural logarithm. Taking the n-th root gives

U

W
< (3e) ·

√
n/2π

1/n
= (3e) · exp

lnn− ln 2π

2n
.

Consider the expression ln x−ln 2π
2x . By taking its derivative, one finds that its

global maximum over the positive real numbers is attained at x = 2πe, and
this maximum equals 1/(4πe). Substituting in the above expression gives

U

W
< (3e) · exp (1/(4πe)) ≈ 8.4

as claimed. ut

6.1 Future Work

Theorems 6–9 invoke the question of whether the upper bounds proved in
them are tight.

Utilitarian price of fairness. There is a lower bound of Ω(
√
n) on the utilitar-

ian price of proportionality for a cake with no geometric constraints (Caragian-
nis et al., 2012), as well as for an interval cake and interval pieces (Aumann
and Dombb, 2015). However, these lower bounds do not imply similar lower
bounds for partial proportionality. In fact, without geometric constraints, our
Theorem 6 shows that the price of partial-proportionality is O(1). Therefore,
it is interesting to know which of the following two options is correct for a cake
with geometric constraints (e.g. interval cake and interval pieces):

1. There is a lower bound of Ω(
√
n) matching Theorems 7–9, or —

2. The actual price of partial-proportionality is o(
√
n), maybe even O(1).

The latter option is particularly attractive, since it may lead to a feasible and
practical compromise between fairness and social welfare.

Nash price of fairness. It is known that without geometric constraints, every
Nash-optimal allocation is envy-free; see e.g. Sziklai and Segal-Halevi (2019).
Hence, such allocation is proportional, so the Nash price of r-proportionality is
1 for any r ∈ [0, 1]. However, this is not true when the pieces must be connected
(or rectangular, or convex). Appendix A shows several lower bounds on the
Nash price of r-proportionality with connectivity constraints. However, there
is a substantial gap between these lower bounds and the upper bounds proved
above.
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7 Related Work

7.1 Dynamic Fair Division

The cake redivision problem differs from several division problems studied
recently.

1. Dynamic resource allocation (Kash et al., 2014; Friedman et al., 2015,
2017; Huo et al., 2020) is a common problem in cloud-computing environments.
The server has several resources, such as memory and disk-space. Agents (pro-
cesses) come and depart. The server has to allocate the resources fairly among
agents. When new agents come, the server may have to take some resources
from existing agents. The goal is to do the re-allocation with minimal dis-
ruption to existing agents. In these problems, the resources are homogeneous,
which means that the only thing that matters is what quantity of each resource
is given to each agent. In contrast, the present paper considers a heterogeneous
cake, so the algorithms must decide which parts of the cake should be given
to which agent.

2. Population monotonicity (Thomson, 1983; Moulin, 1990, 2004; Thom-
son, 2011; Sziklai and Segal-Halevi, 2018, 2019) is an axiom that describes a
desired property of allocation rules. When new agents arrive and the same di-
vision rule is re-activated, the value of all old agents should be weakly smaller
than in the initial allocation. This axiom represents the virtue of solidarity:
if sacrifices have to be made to support an additional agent, then everybody
should contribute.

Population monotonicity is related to a special case of the redivision model,
in which the new agents have no share at all in the initial allocation. How-
ever, the redivision model differs in two important aspects. First, even in the
special case of new agents with no initial share, there is no upper bound on
the value allocated to the incumbent agents. On the contrary, the ownership
requirements puts a lower bound on their value in the new allocation. Second,
the redivision model is more general, and relates to settings in which all agents
already have a (possibly unfair) share in the initial allocation.

3. Private endowment in economics resource allocation problems means
that each agent is endowed with an initial bundle of resources. Then, agents
exchange resources using a market mechanism. The classic problem in eco-
nomics involves homogeneous resources, but it has also been studied in the
cake-cutting framework (Berliant and Dunz, 2004; Aziz and Ye, 2014). A ba-
sic requirement in these works is individual rationality, which means that the
final value allocated to each agent must be weakly larger than the value of
the initial endowment (note the contrast with the population monotonicity
axiom). This requirement is not made in the redivision problem as it is incom-
patible with fairness: since some agents may initially own no land, individual
rationality would mean that they might not receive anything in the exchange.

4. Online division is a setting in which either the agents or the divided
resources are not all available at the time of the division, but rather arrive at
different times. Walsh (2011) studies the online division of a divisible resource.
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The motivation is a birthday party in an office, in which some agents come
or leave early while others come or leave late. It is required to give some cake
to agents who come early while keeping a fair share to those who come late.
Aleksandrov et al. (2015) and Benade et al. (2018) study the online division
of indivisible items. The motivation is the food-bank problem, where a charity
organization receives food donations and must decide on-line to whom each
donation should be allocated. In these papers, in contrast to the present paper,
it is impossible to re-divide allocated resources, since they are consumed by
their receivers.

5. Land reform is the re-division of land among citizens. It has been at-
tempted in numerous countries around the globe and in many periods through-
out history. Some books on land reform are Powelson (1988); Bernstein (2002);
Rosset et al. (2006); Lipton (2009). The earliest recorded land-reform was done
in ancient Egypt in the times of King Bakenranef, 8th century BC. The most
recent land-reform act has been legislated in Scotland in 2016 AD. Balancing
fairness and ownership rights is a major concern in such reforms (Sellar, 2006;
Hoffman, 2013; Wightman, 2015; MacInnes and Shields, 2015).

7.2 Partial Proportionality

While proportionality is the most common criterion of fair cake-cutting, it is
often relaxed to partial-proportionality in order to achieve additional goals:

1. Speed: finding a proportional division takes Θ(n log n) queries, but find-
ing an r-proportional division takes only Θ(n) queries, for some sufficiently
small r ≤ 0.1 (Edmonds and Pruhs, 2006; Edmonds et al., 2008).

2. Improving social welfare: proportional allocations may be socially ineffi-
cient; efficiency can be improved by decreasing the value-guarantee per agent
(Zivan, 2011; Arzi, 2012).

3. Minimum-size constraint: In some 1-dimensional settings, each agent
may get several intervals but the length of each interval should be above a
threshold. It is impossible to guarantee an r-proportional allocation for any
r > 0, but additive approximations exist (Caragiannis et al., 2011).

4. Geometric constraints: For example, when the cake is square and the
pieces must be square, it is impossible to guarantee an r-proportional allo-
cation for any r > 1/2, but there is an algorithm that guarantees a 1/4-
proportional allocation (Segal-Halevi et al., 2017, 2020). When the cake is a
connected graph, and the pieces must be connected, there is an algorithm that
guarantees each agent at least 1/(2n−1) of the total value, and it is impossible
to guarantee more than that (Bei and Suksompong, 2021).

7.3 Democratic fairness

While most works on fair division aim to guarantee unanimous fairness, this is
not always compatible with other requirements. Hence, some works explore the
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possibility of guaranteeing fairness to a subset of the agents, which should—
ideally—be as large as possible. Some examples are:

1. Envy-free allocation of multiple cakes (where each agent should receive
a piece in each cake) to (n+ 1)/2 agents (Nyman et al., 2020).

2. Maximin-share fair allocation of indivisible objects to n − 1 or 2n/3
agents (Searns, 2020; Hosseini and Searns, 2020).

3. Stable matching rules that guarantee resource-monotonicity to n/2
agents (Ortega, 2018).

4. Pricing rules that are envy-free to a pre-selected subset of the buyers
(Bilò et al., 2018).

7.4 Geometric Cake Models

The most prominent cake-model is a one-dimensional interval, in which case
the pieces are often required to be contiguous sub-intervals. Some exceptions
are:

1. The cake is a 1-dimensional circle (“pie”) and the pieces are contiguous
arcs (Thomson, 2007; Brams et al., 2008; Barbanel et al., 2009; Elkind et al.,
2021).

2. The cake is the union of edges of a connected graph, and the pieces are
contiguous sub-graphs (Bei and Suksompong, 2021).

3. The cake is a 2-dimensional territory that lies among several countries.
Each country should receive a piece adjacent to its border (Hill, 1983; Beck,
1987).

4. The cake is 2-dimensional and the pieces are rectangles determined by
the agents (Iyer and Huhns, 2009).

5. The cake is 2-dimensional and the pieces must be squares or fat polygons
(Segal-Halevi et al., 2017, 2020).

6. The cake is 2-dimensional; the geometric constraints are connectivity or
convexity (Devulapalli, 2014).

7. The cake is multi-dimensional and the pieces are simplices or polytopes
(Berliant et al., 1992; Ichiishi and Idzik, 1999; Dall’Aglio and Maccheroni,
2009).

Very recently, geometric fair division problems have been studied based on
real two-dimensional land-value data (Aleskerov and Shvydun, 2019; Shtech-
man et al., 2021).

Many natural 2-dimensional settings have not been studied yet. For exam-
ple, the setting studied in Section 5, where the cake is a rectilinear polygon
and the pieces should be rectangles, has not been studied. As shown by Figure
1, there is a qualitative (not only quantitative) difference between 2-D and 1-D
division. 2-D division introduces interesting paradoxes, that might be missed
by the habit of assuming a one-dimensional cake.

It is important to distinguish geometric cake-cutting from the geometric
knapsack problem (Arkin et al., 1993; Adamaszek and Wiese, 2015). In the
latter there is a single value-function that should be optimized. In cake-cutting,
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there are n agents with different value-functions, and the goal is to guarantee
each agent a value higher than some threshold.

7.5 Price of Fairness

The price-of-fairness in cake-cutting has been studied in two settings:

– The cake is a one-dimensional interval and the pieces must be intervals
Aumann and Dombb (2015). The utilitarian-price-of-proportionality in this
case is Θ(

√
n).

– The cake is arbitrary and the pieces may be arbitrary Caragiannis et al.
(2012). The utilitarian-price-of-proportionality in this case is Θ(

√
n) too.

Both papers study the price of other fairness criteria such as envy-freeness and
equitability, but do not study the price in Nash-welfare, and do not handle
two-dimensional geometric constraints such as rectangularity or convexity.

The price of fairness was also studied in the context of allocating homo-
geneous resources (Bertsimas et al., 2011, 2012), fair subset sum (Nicosia et
al., 2017), kidney exchange (Dickerson et al., 2014), connected chore cutting
(Heydrich and van Stee, 2015), indivisible object allocation (Caragiannis et al.,
2012; Kurz, 2016; Bei et al., 2019b; Suksompong, 2019; Barman et al., 2020),
budget division (Michorzewski et al., 2020; Tang et al., 2020) and machine
scheduling (Agnetis et al., 2019; Zhang et al., 2020).

A related notion—the price of connectivity—was studied both for cake-
cutting (Arunachaleswaran and Gopalakrishnan, 2018) and for indivisible ob-
jects (Bei et al., 2019a).

The Nash-price of fairness is related to results about approximating the
maximum Nash welfare with indivisible goods. The approximation factors
range from 2.89 (Cole and Gkatzelis, 2015) to e (Anari et al., 2017) to 2
(Cole et al., 2017; McGlaughlin and Garg, 2020; Caragiannis et al., 2019) to
1.45 (Barman et al., 2018).

Several authors study the algorithmic problem of finding a welfare-maxi-
mizing cake-allocation in various settings:

1. The cake is an interval and the pieces must be connected (Aumann et
al., 2013);

2. The cake is an interval and the pieces must be connected, and addi-
tionally, the division must be proportional (Bei et al., 2012);

3. The cake and pieces are arbitrary, and the division must be envy-free
(Cohler et al., 2011).

4. The cake and pieces are arbitrary, and the division must be equitable
(Brams et al., 2012).
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8 More Future Work

Besides the open questions mentioned in subsections 4.1, 5.1 and 6.1, it may
be interesting to study the redivision problem with other requirements besides
proportionality.

Envy-freeness. Envy-freeness means that each agent values their piece at least
as much as each of the other pieces. Similarly, r-envy-freeness means that
each agent values their piece as at least r times the value of each of the other
pieces. For what pairs r, w is r-envy-freeness compatible with w-ownership?
With democratic-ownership?

One issue with envy-freeness is that the redivision problem is inherently
asymmetric: agents whose initial piece is valuable are entitled to a higher final
value than agents whose initial piece is empty. A potentially useful notion here
is justified envy, which has been recently studied in the literature on two-sided
matching (Abdulkadiroğlu et al., 2020). In two-sided matching (for example,
between doctors and hospitals), “justified envy” means that doctor d1, who is
matched to hospital h1, envies doctor d2, who is matched to hospital h2, and
at the same time, h2 prefers d1 to d2. Analogously, one can defined “justified
envy” in our setting as some agent i envying another agent j in the final
allocation, while i’s initial piece was more valuable than j’s.

Pareto-efficiency. From an existential point of view, Pareto-efficiency does
not add much difficulty. Both r-proportionality and w-ownership are pre-
served by Pareto-improvements. Therefore, if there exists a division satisfying
r-proportionality and w-ownership (or democratic-ownership), then there also
exists a Pareto-optimal division satisfying these properties. However, it may
not be easy to find such a division algorithmically.
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A Lower bounds on price of r-proportionality

This appendix presents several lower bounds on the price of r-proportionality with geomet-
ric constraints. As a warm-up, the following simple lower bound is proved (the bound for
utilitarian price of proportionality was already proved by Aumann and Dombb (2015)):

Theorem 9 With n = 2 agents, when the cake is an interval and the pieces must be
intervals, the utilitarian price of proportionality is 3/2 and the Nash-price of proportionality
is
√

2.

Proof For the lower bound,9 consider an interval cake with four homogeneous regions, where
the values of each of two agents for each of the four regions is given by the table below (where
ε > 0 is an infinitesimally small positive constant):

George’s value: 1− ε ε ε 1− ε
Alice’s value: ε 1− ε 1− ε ε

Due to symmetry, the only connected proportional allocation divides the cake exactly
in the middle and gives each agent exactly 1, so both the utilitarian welfare and the Nash
welfare are 1. However, giving the leftmost region to George and the rightmost three regions
to Alice gives Alice a value of almost 2 and George a value of almost 1, so the utilitarian
welfare is almost 3/2 and Nash welfare is almost

√
2. When ε → 0, the utilitarian price of

proportionality approaches 3/2 and the Nash price of proportionality approaches
√

2.
For the matching upper bound, note that, in any proportional allocation, the utilitarian

welfare and the Nash welfare are at least 1 (it is attained when all agents get exactly their
proportional share). On the other hand, in any non-proportional allocation, the utilitarian
welfare is less than n − 1 + 1

n
, and the Nash welfare is less than (nn−1)1/n (since one

agent gets a value of less than 1, and the other agents get a value of at most n). Therefore,
the utilitarian price of proportionality is at most n − 1 + 1

n
= 3/2 and the Nash price of

proportionality is at most n1−1/n =
√

2. ut

Below, this lower bound is extended in two ways: two agents with r-proportionality and
2-dimensional cakes, and n agents with 1-proportionality.

Theorem 10 With n = 2 agents, interval cake and interval pieces, or rectangular cake
and rectangular pieces, for any r ∈ [0, 1], the utilitarian price of r-proportionality is 1+ r/2
and the Nash price of r-proportionality is max(1,

√
2r).

Proof For the lower bound, consider an interval cake with six homogeneous interval regions,
or a rectangular cake of dimensions 6 × 6 with six homogeneous rectangular regions of
dimensions 1×6 each, where the values of each of two agents for each region are given below
(where ε > 0 is an infinitesimally small positive constant):

George’s value: r − ε ε 1− r 1− r ε r − ε
Alice’s value: ε r − ε 1− r 1− r r − ε ε

Observation 4 In any r-proportional allocation, both the utilitarian and the Nash welfare
are at most 1.

Proof Suppose first that the cake is an interval. In any r-proportional allocation, each agent
must get a value of at least r. Hence, one agent must get the two leftmost regions and the
other agent must get the two rightmost regions. The two central regions can be divided
arbitrarily; regardless of how they are divided, the utilitarian welfare is 1. To compute the
maximum Nash welfare, suppose George receives the two leftmost regions and a fraction x of
the two central regions; so his value is r+2x(1−r), while Alice’s value is r+2(1−x)(1−r). By
taking the derivative, one can find out that the product is maximized when x = 1/2, where

9 It extends an example in Section 5 of Sziklai and Segal-Halevi (2018).
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the value of each agent is exactly 1. Hence, the maximum Nash welfare in an r-proportional
allocation is 1 too.

If the cake is rectangular, then there are two ways to divide it into two rectangles:
vertically or horizontally. If it is divided by a vertical cut, then the situation is exactly as
in the case of an interval. If it is divided by a horizontal cut, then — regardless of the cut
location — the sum of the agents’ values is 2, so the utilitarian welfare is 1 and the maximum
Nash welfare is attained when both values are 1. In both cases, the maximum utilitarian
and Nash welfare in an r-proportional allocation is 1.

Observation 5 There is an allocation in which, when ε → 0, the utilitarian welfare ap-
proaches 1 + r/2 and the Nash welfare approaches

√
2r.

Proof Cut the cake at the right of the leftmost region (if the cake is rectangular, use a
vertical cut). Give George the leftmost region and Alice the other regions. George’s value is
r − ε while Alice’s value is 2− ε, so when ε→ 0, the utilitarian welfare approaches 1 + r/2
and the Nash welfare approaches

√
2r.

The above two observations imply a lower bound of 1 + r/2 on the utilitarian price of r-
proportionality and a lower bound of max(1,

√
2r) on the Nash price of r-proportionality.10

For the matching upper bound, note that in any proportional allocation (which is, in
particular, r-proportional), both the utilitarian and the Nash welfare are at least 1, while
in any non-r-proportional allocation, the utilitarian welfare is less than 1 + r/2 the Nash
welfare is less than

√
2r (since one agent gets less than r and the other agent gets at most

2). ut

Theorem 11 When the cake is an interval and the pieces must be intervals, the Nash price
of proportionality when there are n agents is at least 21−1/n.

Proof Consider a piecewise-homogeneous cake consisting of 2n regions. The agents are par-
titioned into two groups: odd-indexed agents and even-indexed agents. The agents in each
group have the same valuation. The odd-indexed agents value the regions at 1 − ε, ε, ε, 1 −
ε, . . ., while the even-indexed agents value the regions at ε, 1− ε, 1− ε, ε, . . ., An example is
shown in the table below for n = 5, where 1− is a shorthand for 1− ε:

Agents 1, 3, 5: 1− ε ε 1− 1− ε ε 1− 1− ε
Agents 2, 4: ε 1− 1− ε ε 1− 1− ε ε 1−

The total cake value for all agents is n, so in a proportional allocation, each agent should
get a value of at least 1. The following two observations imply the theorem.

Observation 6 In a proportional allocation, the value of every agent is exactly 1; hence
the Nash welfare is 1.

Proof In a proportional allocation, the agent who receives the leftmost piece must receive
at least two adjacent regions in order to have a value of at least 1.

The two leftmost agents must receive together at least four adjacent regions. This is
because the value measure arrives at 2 only at the end of the fourth region, and the leftmost
agent consumes at least two regions which are worth at least 1, so to ensure the second-
leftmost agent a value of at least 1, their combined consumption must consist of at least the
four leftmost regions.

Proceeding this way, it is possible to prove by induction that, for every integer ` ≥ 1,
the ` leftmost agents consume together at least 2` regions. By a symmetric argument, the
same is true for the ` rightmost agents. But this implies that, in a proportional allocation,
each agent must consume exactly 2 regions. The value of every two consecutive regions when
starting from the left (or from the right) is exactly 1.

10 The max in the latter expression comes from the fact that, when
√

2r < 1, the maximum
Nash welfare is not attained by the allocation of Observation 5, but rather by a proportional
allocation.
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Observation 7 There is an allocation in which the Nash welfare approaches 21−1/n as
ε→ 0.

Proof Give the leftmost region to agent 1. Then, give each of agents 2, . . . , n − 1 two con-
secutive regions. Give agent 2 the last three consecutive regions.

The value of agent 1 is 1− ε; the value of each of 2, . . . , n− 1 is 2− 2ε; and the value of
n is 2− ε. When ε→ 0, the Nash welfare approaches (2n−1)1/n = 21−1/n.

The above two observations imply that the Nash price of proportionality approaches
21−1/n when ε→ 0.11 ut

So far, I could not extend Theorem 11 to rectangular cakes: the main difficulty is that
there are many possible ways to cut a rectangle into n rectangles, so it is hard to reason
about what the possible r-proportional allocations can be. Similarly, I could not extend
the theorem to r-proportionality: giving even a single agent a value of r apparently allows
a lot of freedom in allocating to the other agents, so again, it is hard to reason about
what an r-proportional allocations can be. Thus, the exact utilitarian and Nash price of
r-proportionality for all n ≥ 3 and r ∈ (0, 1) remains open.
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