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Abstract

We study the problem of selecting a single element from a set of candidates on which a group of agents has some
spatial preferences. The exact distances between agent and candidate locations are unknown but we know how agents
rank the candidates from the closest to the farthest. Whether it is desirable or undesirable, the winning candidate
should either minimize or maximize its aggregate distance to the agents. The goal is to understand the optimal
distortion, which evaluates how good an algorithm that determines the winner based only on the agent rankings
performs against the optimal solution. We give a characterization of the distortion in the case of latent Euclidean
distances such that the candidates are aligned, but the agent locations are not constrained. This setting generalizes
the well-studied setting where both agents and candidates are located on the real line. Our bounds on the distortion
are expressed with a parameter which relates, for every agent, the distance to her best candidate to the distance to any
other alternative.

Keywords: Distortion, Single Winner Election, Obnoxious Facility

1 Introduction
The problem of electing a set of representatives is central in social choice theory. Some voters (a.k.a. agents) express
their preferences over a set of candidates and one has to aggregate the voters’ preferences to identify the winners (see
e.g., [41]). In typical voting scenarios, the voters can only express ordinal preferences over the candidates, which are
consistent and summarize their cardinal preferences. The reason for having ordinal data instead of cardinal data is that
determining the numerical values is often a cognitively difficult task. For example, the voters and the candidates may
occupy points in an unknown metric space, and every agent’s true cost for a candidate is the distance between them.
Though it is hard to obtain the exact distances to the candidates, it is undoubtedly easier for an agent to rank them
from the closest to the farthest.

In a recent stream of articles (see, for example, [4] for a recent survey), researchers study problems where some
agents have latent distances over a set of candidates but these distances are unknown. Nevertheless, each agent has
reported a ranking of the candidates, from the closest to the farthest. Though these rankings are consistent with
the latent distance function, we are not guaranteed to find the candidates whose aggregate distance to the agents is
minimum, even if we aim to choose a single candidate [5].

Similar to the approximation ratio [39], the distortion measures the worst-case performance of an algorithm due
to lack of cardinal information [37, 9]. The intriguing question of determining the best distortion for selecting a single
winner (called the metric distortion problem) has attracted a lot of attention. For this problem, the Copeland voting
rule has distortion 5 [2]. This result has been improved to 2 +

√
5 ≈ 4.236 in [36]. Subsequently, Gkatzelis et al.

[24] proposed a deterministic algorithm with distortion 3, which is optimal because no deterministic algorithm has
distortion less than 3 [3, 2].
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When randomization is possible, Anshelevich and Postl gave a lower bound of 2 and an algorithm whose expected
distortion is 3− 2/n for any number n of voters [5]. Another randomized algorithm with distortion 3− 2/m has been
proposed by Kempe, where m is the number of candidates [29, 30]. Therefore, the case m = 2 is resolved. Deter-
mining the best possible distortion for randomized algorithms is considered as a major open problem [4]. Recently,
Chakirar and Ramakrishnan [13] gave improved lower bounds on the distortion for randomized algorithms (namely,
2.02613 form = 3, 2.04957 form = 4, and up to 2.11264 whenm→∞) using a family of metrics called (0, 1, 2, 3)-
metrics. In their article, Chakirar and Ramakrishnan also resolved the case m = 3 (any election with 3 candidates has
a randomized algorithm that guarantees distortion at most 2.02613) and proposed nearly matching upper bounds for
(0, 1, 2, 3)-metrics.

More insight into the problem can be gained when more information on the instance is available. In this respect,
α-decisiveness, where α is a real in [0, 1], plays a key role [5]. This parameter captures how much more the agents
prefer their best candidate to any other alternative. In an α-decisive instance, every agent’s distance to her closest
candidate is at most the distance to her second closest candidate multiplied by α. Then, every agent is co-located with
her top choice when α = 0. For the other extreme (α = 1), α-decisiveness does not constrain the agents’ locations at
all.

The algorithm of Gkatzelis et al. has distortion 2 + α for α-decisive instances with at least 3 candidates [24].
The deterministic lower bound of 3, which relies on a two-candidate instance, can be extended to show that when the
number of candidatesm is at least 2, no deterministic algorithm has α-distortion less than 1+2α. The upper and lower
bounds do not match anymore under the α-decisiveness framework, but Gkatzelis et al. proposed a lower bound which
approaches 2 + α when the number of candidates m tends to infinity [24]. When m = 2, the deterministic algorithm
which outputs the top choice of a majority of agents has distortion 1 + 2α [5, 24]. Regarding randomized algorithms
parameterized by α, the best lower and upper bounds, for any number of candidates m, are 2 + α− 2(1− α)/m and
2 + α− 2/m, respectively [24].

Besides α-decisiveness, the metric distortion problem has been studied in the well-known case where agents and
candidates are located on a real number line. The locations are unknown but the agents rank the candidates from the
closest to the farthest. The preferences induced by this setting (a.k.a. 1-Euclidean because the distances are Euclidean
and there is only one dimension) possess nice properties (namely, single-peakedness [8] and single-crossingness [28,
35]) which can be favorably exploited by an algorithm.1 Anshelevich and Postl proposed a randomized algorithm with
an optimal distortion of 1 + α for α-decisive instances on a line [5]. They exploit the possibility to efficiently identify
a set of (at most) two candidates which are consecutive on the line and to which the optimum must belong. Regarding
deterministic algorithms, the aforementioned lower bound of 1 + 2α deriving from the lower bound of 3, applies to
the case where agents and candidates are on a line. On the contrary, the candidates are not aligned in the lower bound
approaching 2 + α presented in [24].

Elections share similarities with k-median and facility location problems [11, 40, 23]. The goal is to choose a
subset of candidate locations where desirable facilities (e.g., schools) can be built. The total distance to some given
agent set has to be minimized, assuming that each agent is connected to the nearest facility. Sometimes, the candidate
to be selected is undesirable (e.g., a garbage depot or a candidate to leave a group of people). In this case, one
wants to select a candidate of maximum total distance to the agents (see [17] for a recent survey on obnoxious facility
location). Obnoxious facility location problems have previously received attention from several viewpoints. In a
“pure” optimization framework one wants to choose the location of the facilities and the true distances are accessible
(see e.g., [38, 27] and the references therein). In the field of algorithmic mechanism design, the agents may misreport
their preferences over the set of candidates so as maximize their individual distance to the winner(s). The authors
of [16, 33, 34] pursue the goal of designing (group) strategyproof mechanisms2 with the best possible approximation
ratio. Recently, Chen et al. [15] studied the distortion of algorithms in a setting where the location of the candidates is
known but the location of every agent is private.3 They resolved the deterministic case for which the best distortion is 3.
For randomized algorithms, a general lower bound of 1.5 is given, together with upper bounds for well studied special
cases. In particular, they proposed two randomized mechanisms for building a single facility on the real line. The
first mechanism is strategyproof and its distortion is 2. The second mechanism is not strategyproof but its distortion is

1We shall see that these properties hold under the mild assumption that no agent is equidistant from two distinct candidates.
2There is no incentive for a single agent or a group of agents to misreport their true rankings.
3In the present work, the location of the agents and the candidates are private.
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ᾱ < 1
3

1
3 ≤ ᾱ ≤

√
2− 1

√
2− 1 < ᾱ

m > 2 1 3ᾱ−ᾱ2

2−3ᾱ−ᾱ2 1 + 2ᾱ

m = 2 1 + 2ᾱ

Table 1: Distortion of ᾱ-decisive instances for selecting an undesirable candidate (
√

2− 1 ≈ 0.41).

lower: 13/7.

Contribution and Organization
We consider the metric distortion problem in α-decisive instances (defined in Section 2). The distances between
agent and candidate locations are unknown but every agent has reported a strict preference over the candidate set.
The influence of α-decisiveness on the agents’ locations is clear when α = 0 or α = 1, but no previous work
precisely explains (to our best knowledge) how α-decisiveness rules the agents’ locations when α ∈ (0, 1). Our first
contribution is to fill this gap by showing that agents lie inside some spheres under Euclidean distances (Lemma 1).
This characterization is interesting on its own and we exploit it in the rest of the article.

Our second contribution is the definition of a domain which generalizes the well-studied case where both agents
and candidates are located on the real line (1-Euclidean). In this generalization called AC for “Aligned Candidates”
and defined in Section 3, the candidates are aligned but the agent locations are not constrained. As for the 1-Euclidean
case, the distances in the AC setting are Euclidean. As an application of AC, one can think of a straight road that
crosses a region. The agents can be located anywhere in the region but the candidates must be along the road. One can
also interpret the AC domain from an electoral perspective: every candidate lies on a left right political axis while the
voters’ ideological positions are more complex and require more dimensions.

We demonstrate that, as for the 1-Euclidean domain and under the same mild assumption, the agent preferences
remain single-peaked and single-crossing under the AC domain (Corollary 1). Hence, when one wants to select a
desirable candidate from which the agents want to be as close as possible, the set of potential optima can be reduced to
two contiguous candidates, as for the 1-Euclidean case [19, 5]. Since the metric distortion problem is resolved when
m = 2 by selecting the candidate supported by a majority of agents [5, 24], we get a deterministic algorithm with
distortion at most 1 + 2α for any number of aligned candidates (Corollary 2). This is the best possible ratio because
the aforementioned lower bound of 1 + 2α applies to the setting of aligned candidates.

Afterwards, we investigate the distortion of choosing a single undesirable candidate (Section 4). The aim is to
determine the candidate that maximizes the total distance to the agents. As opposed to the setting studied in [15], we
do not consider that the location of the candidates are public. We generalize the notion of α-decisiveness to the case
of selecting an undesirable candidate (Definition 1). Namely, an instance is ᾱ-decisive, for some ᾱ ∈ [0, 1], if every
agent prefers her best candidate (now, this is the farthest candidate) at least 1/ᾱ times more than her second best (the
second farthest). Though this definition reads similar to that of decisiveness for a desirable facility, ᾱ-decisiveness
constrains the instances in a very different way (see the discussion of Section 4.1). We obtain tight bounds on the
distortion of undesirable single winner election by deterministic algorithms, as a function of ᾱ, in two cases. When
there are only two candidates and the latent distance function d is a metric (d is not necessarily Euclidean), we show
in Section 4.2 that the simple algorithm which outputs the candidate ranked last by a majority of agents has distortion
1 + 2ᾱ (Theorem 1) and this is the best possible ratio (Proposition 1).

Section 4.3 deals with the AC domain with any number of candidates. As for the case of selecting a desirable
candidate, the set of possible optima of the undesirable case with aligned candidates reduces to (at most) two elements
which can be efficiently identified from the preference profile. However, these possible optima are totally different
(for instance non-consecutive), except when m = 2. All our bounds for selecting an undesirable alternative are tight
and summarized in Table 1. Regarding these bounds, note that 3ᾱ−ᾱ2

2−3ᾱ−ᾱ2 = 1 when ᾱ = 1/3, 3ᾱ−ᾱ2

2−3ᾱ−ᾱ2 = 1 + 2ᾱ

when ᾱ =
√

2− 1, and 3ᾱ−ᾱ2

2−3ᾱ−ᾱ2 < 1 + 2ᾱ for all ᾱ ∈ [1/3,
√

2− 1). Since ᾱ ∈ [0, 1], the distortion is always below
3, which is consistent with the results of [15].

In fact, all our bounds on the distortion, for both selecting a desirable or undesirable candidate, are best possible
and derive from the same simple algorithm: identify a set of two candidates containing the optimum and return the
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one that is supported by a majority of agents. We conclude in Section 5 with directions for future work.

2 The Model
There are some agents (a.k.a. voters) N = {1, . . . , n}, some candidates C = {f1, . . . , fm}, and a distance function
d : (N ∪ C)2 → [0,∞). The function d is a metric. For all x, y, z ∈ N ∪ C, d satisfies the following axioms.

• identity: d(x, y) = 0⇔ x = y,

• symmetry: d(x, y) = d(y, x),

• triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)).

We will also consider the special case of Euclidean distances. In a δ-dimensional Euclidean space, where δ is a
positive integer, every point p has δ coordinates (p1, . . . , pδ) and the distance between two points p and q is defined as√∑δ

i=1(pi − qi)2.
Neither the location of any element of N ∪ C nor the distance between any two elements of N ∪ C is known.4

Instead, every agent i ∈ N expresses a strict preference �i over C (also called ranking): f �i f ′ means that f is
closer to agent i than f ′. The preferences are consistent with d, namely

∀i ∈ N , d(i, f) < d(i, f ′) =⇒ f �i f ′. (1)

For the moment we deliberately conceal how agents rank equidistant candidates, if such a case occurs.5 However, we
will see later in Section 3.1 that this aspect can have an impact on the validity of some properties of the preference
profile , and whether such properties can be exploited by an algorithm.

As a notation, let � be shorthand for the preference profile (�i)i∈N . The input is an election 〈N , C,�〉 and we
want to select a single candidate out of C, called the winner. A standard interpretation is that every member of C is
a desirable electoral candidate on which the agents have spatial preferences [21], and agents want to be as close as
possible to the winner. The objective function, to be minimized, is the total sum of agent distances to the output f , i.e.,
minf∈C

∑
i∈N d(i, f). Another interpretation is that one wants to build a desirable facility (e.g., a school) and every

element of C is a candidate place.

Example 1. Consider an instance with 3 candidates {f1, f2, f3}, and 4 agents {a, b, c, d} having the following pref-
erences:

f1 �a f3 �a f2

f2 �b f3 �b f1

f3 �c f1 �c f2

f2 �d f3 �d f1

The latent distance are unknown but they can, for example, derive from the locations depicted on Figure 1.

Later in this article (Section 4), we consider the reversed problem of selecting an undesirable candidate from
which the agents want to be as far as possible. Elements of this related problem are postponed and, for the moment,
we concentrate on the standard minimization problem.

A social choice functionA, or simply algorithm, is a function of�. IfA is deterministic, then it outputs a member
of C. If A is randomized, then it outputs a probability distribution over C. As the distances are unknown, we cannot

4Note that the location of the candidates are public in [6, 15].
5Some previous works do not explicitly specify how to deal with ties probably because the input must contain strict preferences and ties are thus

implicitly excluded. However, in [19, 2], the authors clearly state that no agent is equidistant from two candidates. In [24], the authors mention that
candidates that are equidistant to an agent can be ranked arbitrarily by the agent.
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f1�

f2
�

f3 �

•a

•b

•c

•d

Figure 1: Illustration of Example 1 where the latent distances are Euclidean.

� �• •
P

•i

c x1

x2

f1 f2

Figure 2: We have α ∈ (0, 1), d(c, f1) = α2

1−α2 d(f1, f2), and d(f1, P ) = α
1+αd(f1, f2). Points i such that d(i, f1) =

αd(i, f2) describe a (δ − 1)-dimensional sphere of center c and radius d(c, P ) = α
1−α2 d(f1, f2).

expect A to output the optimal candidate. Nevertheless one can try to minimize its distortion. The distortion of a
deterministic algorithm A is the maximum value taken by the ratio6∑

i∈N d(i,A(�))∑
i∈N d(i, opt(�))

(2)

over all possible elections 〈N , C,�〉, where d is consistent with�,A(�) denotes the output ofA, and opt(�) denotes
the optimum [37, 9].

Bounds on the distortion can also be expressed with a parameter called α-decisiveness. Quoting Anshelevich
and Postl [5], it is a measure of how strongly an agent feels about her top preference relative to her second choice.
Formally, an instance is α-decisive with α ∈ [0, 1] if d(i, top(i)) ≤ αd(i, sec(i)) holds for all i ∈ N , where top(i) and
sec(i) are the first and second elements of �i, respectively. It follows from the definition that d(i, top(i)) ≤ αd(i, f)
holds for all i ∈ N and f ∈ C \ {top(i)}. If α = 1, then the instance is not constrained by the α-decisiveness. The
other extreme value (α = 0) puts a hard constraint on the instance because it forces every agent to be located on her top
choice. When α ∈ (0, 1), we note that points i satisfying d(i, top(i)) = αd(i, sec(i)) belong to a (δ− 1)-dimensional
sphere whose center is not top(i) and the sphere’s radius depends on α.

Lemma 1. Given α ∈ (0, 1) and two candidates f1 and f2, points i such that d(i, f1) = αd(i, f2) describe a
(δ − 1)-dimensional sphere of radius α

1−α2 d(f1, f2) and center c such that f1 belongs to the line segment cf2 and

d(c, f1) = α2

1−α2 d(f1, f2).

Proof. We will suppose w.l.o.g. that d(f1, f2) = 1 since one can rescale the instance if it is not the case.
Consider a point i located on the (δ − 1)-dimensional sphere of radius α

1−α2 and center c. There is also a point P
on the line segment f1f2 such that d(f1, P ) = α

1+α and d(P, f2) = 1− α
1+α = 1

1+α . See Figure 2 for an illustration
(δ = 2).

Without loss of generality, the coordinates of c, i, f1, P and f2 are (0, . . . , 0), (x1, . . . , xδ), ( α2

1−α2 , 0, . . . , 0),

( α
1−α2 , 0, . . . , 0), and (1 + α2

1−α2 , 0, . . . , 0), respectively. Moreover, one can reason in the 2-dimensional subspace

6Technically, we consider that the distortion is 1 when both its numerator and denominator are 0. The distortion is infinite when its numerator is
positive and its denominator is 0.
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where i, c, P , f1, and f2 lie, thus assuming xj = 0 for all j ∈ {3, . . . , δ}. Since i is on the sphere, it holds that

δ∑
j=1

x2
j = x2

1 + x2
2 =

(
α

1− α2

)2

. (3)

We have d(i, f1)2 =
(
x1 − α2

1−α2

)2

+ x2
2 = x2

1 − 2x1
α2

1−α2 +
(

α2

1−α2

)2

+ x2
2. Use (3) to get that

d(i, f1)2 =

(
α

1− α2

)2

− 2x1α
2

1− α2
+

(
α2

1− α2

)2

=
α2 + α4

(1− α2)2
− 2x1α

2

1− α2
. (4)

We have d(i, f2)2 =
(

1 + α2

1−α2 − x1

)2

+ x2
2 =

(
1

1−α2

)2

− 2x1

1−α2 + x2
1 + x2

2. Use (3) to get that d(i, f2)2 =(
1

1−α2

)2

− 2x1

1−α2 +
(

α
1−α2

)2

= 1+α2

(1−α2)2 −
2x1

1−α2 . Thus,

α2d(i, f2)2 =
α2 + α4

(1− α2)2
− 2x1α

2

1− α2
. (5)

We deduce from (4) and (5) that d(i, f1) = αd(i, f2).
Now let us show that d(i, f1) = αd(i, f2) implies (3). We consider two cases: x1 ≥ 0 and x1 < 0. When x1 ≥ 0,

d(i, f1)2 = α2d(i, f2)2 can be rewritten as follows.(
x1 −

α2

1− α2

)2

+ x2
2 = α2

((
1 +

α2

1− α2
− x1

)2

+ x2
2

)

x2
1 − 2

x1α
2

1− α2
+

(
α2

1− α2

)2

+ x2
2 = α2

((
1

1− α2

)2

− 2
x1

1− α2
+ x2

1 + x2
2

)

x2
1 +

(
α2

1− α2

)2

+ x2
2 =

α2

(1− α2)
2 + α2

(
x2

1 + x2
2

)
(1− α2)

(
x2

1 + x2
1

)
= (1− α2)

(
α

1− α2

)2

x2
1 + x2

1 =

(
α

1− α2

)2

⇔ (3)

In the above equations, we use the facts that 1 + α2

1−α2 = 1
1−α2 and 1 − α2 > 0 because α ∈ (0, 1). Using the same

arguments, d(i, f1)2 = α2d(i, f2)2 can be rewritten as follows when x1 < 0.(
x1 +

α2

1− α2

)2

+ x2
2 = α2

((
1

1− α2
+ x1

)2

+ x2
2

)

x2
1 + 2

x1α
2

1− α2
+

(
α2

1− α2

)2

+ x2
2 = α2

((
1

1− α2

)2

+ 2
x1

1− α2
+ x2

1 + x2
2

)

x2
1 +

(
α2

1− α2

)2

+ x2
2 =

α2

(1− α2)
2 + α2

(
x2

1 + x2
2

)
(1− α2)

(
x2

1 + x2
1

)
= (1− α2)

(
α

1− α2

)2

⇔ (3)

In both cases, assuming d(i, f1) = αd(i, f2) implies that i is on the sphere.
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Lemma 1 implies that in an α-decisive instance, the agents are located in a (δ− 1)-dimensional ball. This fact will
be exploited later in the article.

In the following, Iα denotes the set of all α-decisive instances. Thus, Iα ⊆ Iα′ holds for 0 ≤ α ≤ α′ ≤ 1. The
α-distortion of an algorithm A is defined as the largest value reached by ratio (2) over all instances of Iα.

3 Aligned Candidates
This section introduces a domain called “Aligned Candidates” but we need a detour before giving its formal definition.

3.1 Single-Peakedness and Single-Crossingness

In the δ-Euclidean domain, there is a mapping x : N ∪ C → Rδ , a distance d(a, b) =
√∑δ

k=1(xk(a)− xk(b))2

where δ is a positive integer, and the preference of every agent follows from her distance to the candidates (closer is
better). The 1-Euclidean domain is a well-studied special case where agents and candidates are located on the real line
[5, 14, 19]. As an application, one can think of a street along which the candidates and the agents are located.

The 1-Euclidean domain is often said to be single-crossing and single-peaked (see for example [19, 14, 2] and
references therein). These properties guarantee the existence of a Condorcet winner and many problems that are hard
in a general election are tractable when single-crossingness or single-peakedness is satisfied.

Let [k] denote {1, 2, . . . , k} for every positive integer k. Being single-crossing [28, 35] means that there exists an
ordering of the agents, say 1, 2, . . . , n, having the following property: for every pair f, f ′ ∈ C satisfying f �1 f

′,
there exists an index ` ∈ [n] such that {i ∈ N : f �i f ′} = [`].

A preference order is single-peaked [8] if it satisfies the following property for some linear order B over C: for
each three items fa, fb, fc ∈ C such that faB fbB fc or fcB fbB fa, fa �i fb implies fb �i fc. A preference profile
is single-peaked if all its preferences are single-peaked w.r.t. the same linear order (also called axis).

Quoting [14], the argument supporting that the 1-Euclidean domain is single-crossing and single-peaked is that
the left-to-right ordering of the candidates along the Euclidean representation is single-peaked, and the left-to-right
ordering of the agents along the Euclidean representation is single-crossing. However we shall see two examples
which demonstrate that the argument goes with a mild assumption (see [19, 2] for similar discussions).

Take a real line and suppose four candidates f1, f2, f3 and f4 have coordinates 0, 1, 3 and 4, respectively. There
are also four co-located agents A, B, C, and D whose common coordinate is 2. If, as done in [24], the equidistant
candidates can be ranked arbitrarily by the agents, then the corresponding preference profile can be �A: f2 f3 f1 f4,
�B : f2 f3 f4 f1, �C : f3 f2 f1 f4, �D: f3 f2 f4 f1, but it is not single-crossing.

In another example on a real line, three candidates f1, f2, and f3 are co-located and four (not necessarily co-
located) agents have preferences �A: f1 f2 f3, �B : f1 f3 f2, �C : f2 f1 f3, and �D: f2 f3 f1, which are not single-
peaked.

In both examples, the difficulty originates from the presence of equidistant candidates. However, the 1-Euclidean
domain is single-crossing and single-peaked under the following additional assumption [19, 2].

Assumption 1. No agent is equidistant from two distinct candidates.

Under this assumption, no tie-breaking rule is necessary and (1) suffices for fully deriving every agent’s preference
over C from her distance to the candidates. An immediate consequence of Assumption 1 is that candidates must occupy
distinct locations. However, several agents can be co-located, and agents can be co-located with a candidate.

3.2 Definition and Properties of the AC Domain
The “Aligned Candidates” domain (AC domain in short) is at the same time a special case of the δ-Euclidean domain
and a generalization of the 1-Euclidean domain. Under the AC domain, all the candidates are on a line (called the
candidate line thereafter). However, the agents are not constrained to be on the candidate line.

Concretely, there is a mapping x : N ∪ C → Rδ where δ ≥ 1, the distance d is Euclidean, and we impose w.l.o.g.
that xk(f) = 0 holds for all f ∈ C and k ∈ {2, . . . , δ}.
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For every agent i ∈ N , let π(i) denote a point such that x(π(i)) is the orthogonal projection of x(i) onto the
candidate line.

Lemma 2. Under the AC domain, d(i, f) < d(i, f ′) ⇐⇒ d(π(i), f) < d(π(i), f ′) and d(i, f) = d(i, f ′) ⇐⇒
d(π(i), f) = d(π(i), f ′) hold for every i, f, f ′ ∈ N × C × C.

Proof. Consider the two dimensional space where i and C lie. The Pythagorean theorem gives d(i, f)2 = d(i, π(i))2+
d(π(i), f)2 and d(i, f ′)2 = d(i, π(i))2 + d(π(i), f ′)2. We deduce that d(i, f) < d(i, f ′) ⇐⇒ d(i, f)2 <
d(i, f ′)2 ⇐⇒ d(π(i), f)2 < d(π(i), f ′)2 ⇐⇒ d(π(i), f) < d(π(i), f ′). Moreover, d(i, f) = d(i, f ′) ⇐⇒
d(i, f)2 = d(i, f ′)2 ⇐⇒ d(i, f)2 − d(i, π(i))2 = d(i, f ′)2 − d(i, π(i))2 ⇐⇒ d(π(i), f)2 = d(π(i), f ′)2 ⇐⇒
d(π(i), f) = d(π(i), f ′).

It follows from Lemma 2 that locations x(i) and x(π(i)) induce the same preference over C. Therefore the AC
domain has the same properties as the 1-Euclidean domain, but it also requires the same precaution regarding single-
peakedness and single-crossingness.

Corollary 1. The AC domain is single-crossing and single-peaked under Assumption 1.

3.3 Selecting a Desirable Candidate Under the AC Domain
This section is devoted to the following result which is stated as corollary because its proof (given below) follows from
previous results and Corollary 1.

Corollary 2. Under the AC domain and Assumption 1, there exists a polynomial time deterministic algorithm with
α-distortion at most 1 + 2α for any number of candidates.

One can determine in polynomial time whether� is single-peaked [7, 22], single-crossing [20, 10], or 1-Euclidean
[18, 31, 19]. The proofs are constructive, relying on algorithms polynomial in |N | and |C|. If� is single-crossing, then
the property holds for a unique ordering@ of the agents (unique up to the reversal of the ordering, or the rearrangement
of the agents having identical preferences) [19]. However, for single-peakedness, a consistent axis is not necessarily
unique. Nevertheless, Elkind and Faliszewski observed that a part of B can be guessed [19, Proposition 2]. Namely,
one can deduce from a single-peaked profile � the ordering between the top candidates of the first and the last agents
in@. Anshelevich and Postl exploited this property to demonstrate that in the 1-Euclidean domain, one can reduce the
set of possible optimal candidates to three consecutive alternatives [5, Lemma 7]. This result consists of considering
the median agent in @, her top candidate fX , and the candidates fY and fZ which are directly to the left and right of
fX . Afterwards, the set of possible optimal candidates is reduced to two consecutive alternatives (either fY or fZ is
removed) by comparing the number of agents who prefer fY to fX with the number of agents who prefer fZ to fX [5,
Lemma 8].

Since the AC domain has the same properties as the 1-Euclidean domain (Lemma 2), and both single-peakedness
and single-crossingness are satisfied under Assumption 1 (Corollary 1), one can identify in polynomial time a set of
two consecutive candidates {f`, fr} which must include the optimum. Now we can exploit the fact that there exists
a deterministic algorithm with distortion at most 1 + 2α when there are only two candidates [5, 24]. Indeed, the
algorithm which outputs the candidate of {f`, fr} supported by a majority of agents has α-distortion at most 1 + 2α.

This ratio of 1 + 2α is best possible since the lower bound provided in [3, 2] for deterministic algorithms, which
relies on a two-candidate instance (hence with aligned candidates), can be extended to a lower bound of 1 + 2α for
α-decisive instances. Therefore, 1 + 2α is the best possible distortion for a deterministic algorithm under the AC
domain. The same goes for the 1-Euclidean domain because of the lower bound. The fact that 1 + 2α is the best
possible α-distortion in both cases (for deterministic algorithms) relies on the possibility to reduce the set of possible
optima to two candidates when only � is known.

Because Lemma 2 uses orthogonal projections, one may believe that the result for the AC domain immediately
reduces to the 1-Euclidean case. The reason would be that replacing an agent by her orthogonal projection onto the
candidate line only increases the distortion, without changing the preferences or breaking theα-decisiveness. However,
the following example shows that this intuition is not correct.
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Figure 3: Illustration of Example 2.

Example 2. (See Figure 2 for an illustration.) There are two candidates f1 and f2 located at (0, 0) and (2, 0),
respectively. Points a and b are located at (0, 1) and (1− ε, 0), respectively, with 1� ε > 0. Suppose there is 1 agent
on a, 5 agents on b, and 5 agents on f2.

A majority of agents prefers f1 to f2. However, f1 is suboptimal and has distortion 16−5ε
5+5ε+

√
5
≈ 2.21. If the agent

on a is projected on her top choice f1, then f1 remains suboptimal and the distortion drops to 15−5ε
7+5ε ≈ 2.14.

On the contrary, there exist examples where projecting an agent on her top choice increases the distortion. Take
the same instance and suppose there are 6 agents on b, 4 agents on f2 and 1 agent on point c which is located at (2, 1).
The distortion increases if the agent on c is projected on her top choice f2.

In the next section, we explore the same problem but the goal is to select an undesirable candidate.

4 Selecting an Undesirable Candidate
This section departs from the previous one because we consider the problem of selecting an undesirable candidate
(e.g., build a garbage depot or choose a candidate to leave a group of people) [38, 27, 16, 33, 34, 15]. In this case,
one wants to select a candidate of maximum total distance to the agents. We still suppose that the agents have declared
their preferences from the closest candidate to the farthest. However the distortion of a deterministic algorithm A for
a preference profile � is now defined as the maximum value taken by the ratio∑

i∈N d(i, opt(�))∑
i∈N d(i,A(�))

(6)

over all possible elections 〈N , C,�〉, where d is consistent with�,A(�) denotes the output ofA, and opt(�) denotes
the optimum. Compared to (2), the ratio is just reversed in order to keep its value above one.7

Our results rely on a parameter which is similar to α. The purpose of α-decisiveness is to quantify how good the
best candidate is compared to the second best candidate (namely, the closest and second closest candidates, respec-
tively). As we are now interested in selecting a candidate that should be as far as possible from the agents, there is a
need to adapt the notion of α-decisiveness. Let last(i) and stlast(i) be the last and the second to last elements of �i.
Thus, d(i, last(i)) is equal to maxf∈C d(i, f).

Definition 1. An instance is ᾱ-decisive if ᾱd(i, last(i)) ≥ d(i, stlast(i)) holds for all i ∈ N , where ᾱ ∈ [0, 1].

This means that ᾱd(i, last(i)) ≥ d(i, f) holds for all f ∈ C \ {last(i)}. Lemma 1 and Definition 1 imply that
every agent is in a (δ − 1)-dimensional ball.

In the sequel, Iᾱ denotes the set of all ᾱ-decisive instances. We say that the ᾱ-distortion of an algorithm A is the
largest value reached by (6) over all instances of Iᾱ.

4.1 Discussion on Decisiveness
Though they look similar, the α-decisiveness and the ᾱ-decisiveness do not constrain the instances in the same way.

7Again, we consider that the distortion is 1 when both its numerator and denominator are 0; it is infinite if the denominator is 0 but the numerator
is positive.
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Let us illustrate this fact with a simple example consisting of three aligned candidates {f1, f2, f3} such that f2 is
between f1 and f3, and one agent i whose preference is f1 �i f2 �i f3. Thus, f1 and f3 are the closest and farthest
candidates, respectively. The α-decisiveness gives:

d(i, f1) ≤ αd(i, f2) (7)
d(i, f1) ≤ αd(i, f3) (8)

According to Lemma 1, Inequality (7) forces i to belong to a (δ − 1)-dimensional ball of radius α
1−α2 d(f1, f2) and

center c such that c, f1 and f2 are aligned, and d(c, f1) = α2

1−α2 d(f1, f2). Inequality (8) forces i to belong to a
(δ − 1)-dimensional ball of radius α

1−α2 d(f1, f3) and center c′ such that c′, f1 and f3 are aligned, and d(c′, f1) =
α2

1−α2 d(f1, f3). Since α ∈ [0, 1], f1 belongs to both balls. The first ball is included into the second one because
d(f1, f2) < d(f1, f3). In other words, in comparison to Inequality (7), Inequality (8) does not put any additional
constraint on the location of i.

Now the ᾱ-decisiveness for the same example gives:

d(i, f1) ≤ ᾱd(i, f3) (9)
d(i, f2) ≤ ᾱd(i, f3) (10)

Inequality (9) means that i belongs to a (δ − 1)-dimensional ball of radius ᾱd(f1,f3)
1−ᾱ2 and center k such that k, f1 and

f3 are aligned, and d(k, f1) = ᾱ2d(f1,f3)
1−ᾱ2 . Inequality (10) forces i to belong to a (δ − 1)-dimensional ball of radius

ᾱ
1−ᾱ2 d(f2, f3) and center k′ such that k′, f2 and f3 are aligned, and d(k, f2) = ᾱ2

1−ᾱ2 d(f2, f3). The ball associated
with Inequality (9) is not necessarily included into the one associated with Inequality (10), so i is located in the
intersection of the two balls. As opposed to α-decisiveness, one cannot guarantee that one of the three candidates
belongs to both balls.

The given differences between α-decisiveness and ᾱ-decisiveness have the following consequence. Suppose the
locations of the candidates are given, together with a consistent preference profile �. For every α ∈ [0, 1], it is always
possible to locate the agents such that the instance is α-decisive, and the agents’ preferences for the candidates are
�: place every agent on her top choice. On the contrary, not every value of ᾱ is possible if one imposes a preference
profile consistent with a given location of the candidates. For example, one can observe that Iᾱ is empty when ᾱ = 0
and the instance contains at least 3 candidates having distinct locations. To see this, consider an agent i, her farthest
candidate f1, and two other candidates f2 and f3. By the ᾱ-decisiveness, we have ᾱ ≥ max(d(i,f2),d(i,f3))

d(i,f1) . Since f2

and f3 occupy distinct locations, max(d(i, f2), d(i, f3)) is strictly positive; so is ᾱ. Nevertheless, Iᾱ is non-empty for
all ᾱ ∈ [0, 1] when m = 2.

4.2 Two Candidate Instances
This section is devoted to the ᾱ-distortion in the case of only two candidates (m = 2) and the function d is a metric.
Thus, d satisfies identity, symmetry, and the triangle inequality, but d is not necessarily Euclidean. Preferences satisfy
(1), but Assumption 1 is not made.8 Ties between equidistant candidates can be broken arbitrarily.

We provide matching upper and lower bounds on the ᾱ-distortion of deterministic algorithms.

Theorem 1. When m = 2, the deterministic algorithm which outputs the candidate appearing in the last position of
a majority of agents (break ties arbitrarily) has ᾱ-distortion at most 1 + 2ᾱ.

Proof. Let C = {f1, f2}. Let Ni be the set of agents who are closer to fi than f3−i, with i ∈ {1, 2}. Suppose w.l.o.g.
that |N2| ≤ |N1|. Thus, the algorithm outputs f2. Let us suppose f1 is the optimal choice. One can upper bound the
distortion

∑
i∈N d(i,f1)∑
i∈N d(i,f2) as follows.

The instance being ᾱ-decisive, it holds that

ᾱd(i, f2) ≥ d(i, f1), ∀i ∈ N1. (11)

8The two candidates can even be co-located
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Since (N1,N2) is a partition of N , we have that∑
i∈N

d(i, f1) =
∑
i∈N1

d(i, f1) +
∑
i∈N2

d(i, f1).

Use the triangle inequality to obtain∑
i∈N

d(i, f1) ≤
∑
i∈N1

d(i, f1) +
∑
i∈N2

(d(i, f2) + d(f1, f2)) .

Use (11) to get that ∑
i∈N

d(i, f1) ≤ ᾱ
∑
i∈N1

d(i, f2) +
∑
i∈N2

d(i, f2) + |N2|d(f1, f2). (12)

The fact that |N2| ≤ |N1| implies
|N2|d(f1, f2) ≤ |N1|d(f1, f2). (13)

Use the triangle inequality for every agent i ∈ N1 to get that

|N1|d(f1, f2) =
∑
i∈N1

d(f1, f2) ≤
∑
i∈N1

(d(i, f1) + d(i, f2)) .

Inequality (13) becomes
|N2|d(f1, f2) ≤

∑
i∈N1

(d(i, f1) + d(i, f2)) .

Use (11) to obtain
|N2|d(f1, f2) ≤ ᾱ

∑
i∈N1

d(i, f2) +
∑
i∈N1

d(i, f2). (14)

Plug (14) into (12) to get that∑
i∈N

d(i, f1) ≤
∑
i∈N2

d(i, f2) + 2ᾱ
∑
i∈N1

d(i, f2) +
∑
i∈N1

d(i, f2)

=
∑
i∈N

d(i, f2) + 2ᾱ
∑
i∈N1

d(i, f2).

Since
∑
i∈N1

d(i, f2) ≤
∑
i∈N d(i, f2), it follows that

∑
i∈N d(i, f1) ≤ (1+2ᾱ)

∑
i∈N d(i, f2). Thus, the distortion

is upper bounded by 1 + 2ᾱ.

Proposition 1. When m = 2, any deterministic algorithm has ᾱ-distortion at least 1 + 2ᾱ.

Proof. Suppose there are two candidates f1 and f2, and two agents. Agent 1 has preference order f1 �1 f2 and agent
2’s preference order is f2 �2 f1. Suppose f2 is output (the case f1 is symmetric). There is a consistent 1-Euclidean
instance (both candidates and agents are on a line). The location of f1, f2, agent 1 and agent 2, are 0, ᾱ + 1, ᾱ, and
ᾱ+ 1, respectively.

The instance is ᾱ-decisive, and the distortion is 1 + 2ᾱ.

4.3 Aligned Candidates
We consider in this section the ᾱ-distortion under the AC domain. We have already seen that the AC domain is
single-peaked under Assumption 1 (Corollary 1). One property of the single-peaked domain is that at most two
candidates appear in the last positions of the agents’ rankings, corresponding to the candidates on the extremities of
the axis [7, 22]. The previous property is actually satisfied by the AC domain under the following weaker version of
Assumption 1.9

9Under Assumption 2, there is a unique leftmost candidate and a unique rightmost candidate on the candidate line. The least preferred candidate
of every agent (i.e., the farthest) must be one of them.
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Figure 4: Illustration of the proof of Theorem 2.

Assumption 2. Candidates occupy distinct locations.

In this section, we consider the AC domain under Assumption 2, and equidistant candidates can be ranked arbi-
trarily by the agents.

If one candidate appears in the last position of all agents, then it must be optimal. Otherwise, there are two
candidates in the last positions of the preferences. These candidates –let us denote them by f1 and fm– occupy the
leftmost and rightmost positions of the candidate line. Thus, it is easy to identify f1 and fm from the preference
profile. Let us first observe that the optimal solution for maximizing the sum of the agents’ distance must be either f1

or fm under the AC domain.10

Lemma 3. There exists f∗ ∈ {f1, fm} such that
∑
i∈N d(i, f∗) ≥

∑
i∈N d(i, f) holds for all f ∈ C.

Proof. Take an agent i ∈ N and let π(i) be its orthogonal projection onto the candidate line. The distance between i
and any candidate f ∈ C is

√
d(i, π(i))2 + d(π(i), f)2, where d(i, π(i))2 is constant while d(π(i), f)2 varies with the

position of f on the real line. The function x 7→
√
κ+ x2 being convex (κ is a non-negative constant), the distance

between i and f is a convex function of f ’s location on the line. Since the sum of convex functions is also convex, we
deduce that

∑
i∈N d(i, f) is a convex function of f ’s location on the line. Therefore,

∑
i∈N d(i, f) finds its maximum

on one of its extremities, namely f1 or fm.

As for the case of selecting a desirable candidate, it follows that the number of optimal candidates to the problem
of selecting an undesirable candidate under the AC domain can be reduced to 2, but these candidates are not the same.

We are going to characterize the best ᾱ-distortion for deterministic algorithms when selecting an undesirable
candidate under the AC domain. When m = 2, the results of Section 4.2 imply that the best ᾱ-distortion for the AC
domain is 1 + 2ᾱ. From now on we consider the case of m > 2 candidates.

First we note that a distortion of 1 is possible when ᾱ is small enough. Indeed, Theorem 2 states that all the agents
agree on which candidate is the farthest when ᾱ < 1/3. Afterwards, Theorem 3 provides lower bounds when 1/3 ≤ ᾱ.
We conclude with matching upper bounds (Theorem 4) achieved by the algorithm which outputs the farthest candidate
for a majority of agents.

Theorem 2. For m > 2 aligned candidates and ᾱ < 1/3, all agents agree on which candidate is the farthest.

Proof. The extreme candidates are f1 and fm. By contradiction, suppose there is an agent i1 for which f1 = last(i1)
and another agent im for which fm = last(im). Since m > 2, there must be a third candidate f2 on the line segment
f1fm. Let us suppose w.l.o.g. that d(f1, f2) ≥ d(f2, fm).

For the sake of simplicity, we assume that the coordinates of f1 and fm on the candidate line are 0 and 1, respec-
tively. The coordinate of f2 is in [0.5, 1). Let i′m be the orthogonal projection of im onto the line where the candidates
lie. See Figure 4 for an illustration.

Suppose d(f1, i
′
m) > 1/4. Thus, d(i′m, fm) = 1 − d(f1, i

′
m) < 3/4. Since ᾱ < 1/3, the ᾱ-decisiveness gives

d(im, fm) > 3d(im, f1). In other words,
√
d(im, i′m)2 + d(i′m, fm)2 >

√
9d(im, i′m)2 + 9d(f1, i′m)2. It follows that

d(i′m, fm)2 > 8d(im, i
′
m)2 + 9d(f1, i

′
m)2. Moreover, d(i′m, fm)2 > 9d(f1, i

′
m)2 because d(im, i

′
m) ≥ 0. This is in

contradiction with the hypotheses 3/4 > d(i′m, fm) and d(i′m, f1) > 1/4.

10See, for example, [16] and references therein for a similar result on a real line or a path.
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Now suppose d(f1, i
′
m) ≤ 1/4 holds. The ᾱ-decisiveness, together with ᾱ < 1/3 give d(im, fm) > 3d(im, f2).

Combined with d(im, f2)+d(f2, fm) ≥ d(im, fm) which follows from the triangle inequality, we get that d(f2, fm) >
2d(im, f2). Since i′m is the orthogonal projection of im, we know that d(im, f2) ≥ d(i′m, f2), leading to

d(f2, fm) > 2d(i′m, f2). (15)

Since f2 is in [0.5, 1), we have
0.5 ≥ d(f2, fm) (16)

and d(f1, f2) ≥ 0.5. This last inequality with d(f1, i
′
m) ≤ 0.25 give

d(i′m, f2) = d(f1, f2)− d(f1, i
′
m) ≥ 0.25. (17)

Inequalities (15), (16), and (17) lead to a contradiction.
To conclude, if f2 ∈ (0, 0.5], then switch the role of im and fm with i1 and f1.

Note that Theorem 2 cannot be extended to the case ᾱ = 1/3 because of the following 1-Euclidean instance.
Consider a real line with three candidates at coordinates 0, 0.5 and 1, respectively, and two agents at coordinates 0.25
and 0.75, respectively.

Theorem 3. In the presence of m > 2 aligned candidates, any deterministic algorithm has ᾱ-distortion at least
3ᾱ−ᾱ2

2−3ᾱ−ᾱ2 when 1/3 < ᾱ ≤
√

2− 1, and at least 1 + 2ᾱ when
√

2− 1 < ᾱ ≤ 1.

Proof. Suppose there are m candidates f1, . . . , fm, and two agents. The candidates are on a line, placed by ascending
index from left to right. Thus, the extremities are f1 and fm. Agent 1 has preference order f1 �1 f2 �1 · · · �1

fm−1 �1 fm and agent 2’s preference order is fm �2 fm−1 �2 · · · �2 f2 �2 f1. Suppose f ′ ∈ C \ {f1} is output
(the case f ′ ∈ C \ {fm} is symmetric).

Let us describe a consistent 1-Euclidean instance: each element e (i.e., candidate, agent or point) has a coordinate
x(e) ∈ R. See Figure 5 for an illustration.

Suppose x(f1) = 2δ for some δ > 0 and x(fm) = 1 + ᾱ. Candidates f2, . . . , fm−1 are on the line segment Pfm
and their coordinates are in the interval [2ᾱ− δ, 2ᾱ). There is a point P such that x(P ) = ᾱ where agent 1 is located.
The instance is ᾱ-decisive for agent 1 because her farthest candidate is fm and d(P, f) ≤ ᾱd(P, fm) = ᾱ holds for
all f ∈ C \ {fm}. The position of agent 2 depends on whether 1/3 < ᾱ ≤

√
2− 1 or

√
2− 1 < ᾱ ≤ 1.

• Case 1/3 < ᾱ ≤
√

2 − 1. Agent 2 is on a point Q of coordinate 2ᾱ−2ᾱδ
1−ᾱ , between coordinates 2ᾱ and

1 + ᾱ such that f1 and f2 are agent 2’s farthest and second farthest candidates, respectively. Since ᾱ ≤
√

2 − 1,
we do have x(Q) ≤ x(fm). The fact that f2 is the second farthest candidate imposes d(Q, fm) ≤ d(Q, f2) ⇔
1 + ᾱ − x(Q) ≤ x(Q) − 2ᾱ + δ ⇔ (1 + 3ᾱ − δ)/2 ≤ x(Q). Since ᾱ > 1/3, there exists δ > 0 such that
x(Q) = 2ᾱ−2ᾱδ

1−ᾱ ≥ (1 + 3ᾱ− δ)/2. The instance is ᾱ-decisive for agent 2 because ᾱ(x(Q)− 2δ) = x(Q)− (2ᾱ− δ).
The output f ′ of the algorithm is in {f2, . . . , fm}. The total distance to the agents is maximized (this is the worst

case for deriving a lower bound) when fm is output because fm is within {f2, . . . , fm}, the only candidate outside
[P,Q]. We have d(P, fm) + d(Q, fm) = 1 + 1 + ᾱ− 2ᾱ−2ᾱδ−δ

1−ᾱ . The optimal choice is f1 and d(P, f1) + d(Q, f1) =

ᾱ− 2δ + 2ᾱ−2ᾱδ−δ
1−ᾱ − 2δ. Therefore, the ᾱ-distortion tends to 3ᾱ−ᾱ2

2−3ᾱ−ᾱ2 when δ goes to 0.

• Case
√

2 − 1 < ᾱ ≤ 1. Agent 2 is co-located with fm. The instance is ᾱ-decisive for agent 2 because
her farthest candidate (f1) is at distance 1 + ᾱ − 2δ, and her second farthest candidate (f2) is at distance at most
1 + ᾱ− (2ᾱ− δ) = 1− ᾱ+ δ. Since ᾱ >

√
2− 1, there exists δ > 0 such that ᾱ(1 + ᾱ− 2δ) ≥ 1− ᾱ+ δ.

By construction, the output f ′ of the algorithm is on the line segmentPfm whose length is 1. Thus,
∑
i∈N d(i, f ′) =

d(P, fm) = 1 for all f ′ ∈ C \ {f1}. The optimal choice is f1, and
∑
i∈N d(i, f1) = ᾱ− 2δ + 1 + ᾱ− 2δ. Therefore,

the ᾱ-distortion tends to 1 + 2ᾱ when δ goes to 0.

Now we turn our attention to matching upper bounds. Regarding the following theorem, note that 3ᾱ−ᾱ2

2−3ᾱ−ᾱ2 = 1

when ᾱ = 1/3, 3ᾱ−ᾱ2

2−3ᾱ−ᾱ2 = 1 + 2ᾱ when ᾱ =
√

2− 1, and 3ᾱ−ᾱ2

2−3ᾱ−ᾱ2 < 1 + 2ᾱ for all ᾱ ∈ [1/3,
√

2− 1).
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ᾱ2δ 1 + ᾱ2ᾱ
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Figure 5: Illustration of the proof of Theorem 3.

Theorem 4. When there are m > 2 aligned candidates, the ᾱ-distortion of the algorithm which outputs the candidate
that a majority of agents places in last position (break ties arbitrarily) is 1 if ᾱ < 1

3 , 3ᾱ−ᾱ2

2−3ᾱ−ᾱ2 if 1
3 ≤ ᾱ <

√
2 − 1,

and 1 + 2ᾱ if
√

2− 1 ≤ ᾱ.

Proof. There are m candidates f1, . . . , fm with m > 2. Let us first observe that the ᾱ-distortion is at most 1 + 2ᾱ for
all possible value of ᾱ. This is due to the proof of Theorem 1 which can be reproduced: identify f1 and f2 in the proof
of Theorem 1 with the extreme candidates f1 and fm. This gives us the desired upper bound for the case

√
2− 1 ≤ ᾱ.

When ᾱ < 1/3, it is immediate from Theorem 2 that returning the last candidate of all preference orders has
ᾱ-distortion 1.

From now on, we suppose that 1/3 ≤ ᾱ <
√

2− 1, and the agents do not agree on which candidate is the farthest.
Since the preferences are single-peaked, and the element to be output is undesirable, every agent considers either f1

or fm (the leftmost and rightmost candidates) as her farthest candidate.
Every candidate f ′ ∈ C\{f1, fm} (there is at least one such candidate) is on the line segment f1fm. As explained in

the discussion (Section 4.1), the presence of f ′ ∈ C \{f1, fm} combined with the ᾱ-decisiveness add some constraints
on where the agents can be located. Therefore, the more candidates there are in C \ {f1, fm}, the smaller is the set
of possible instances. Since the ᾱ-distortion derives from a worst-case analysis over all possible instances, any upper
bound for the case m = 3 applies to the case m > 2.

Therefore, we can restrict ourselves to the case of 3 aligned candidates f`, fb, and fr, where `, b and r stand for
left, between, and right, respectively.

Following Lemma 3, the optimum is either fl or fr. Suppose w.l.o.g. that fr is returned by the algorithm whereas
f` is the optimum. Concretely, n1 agents declare that fr is the farthest, n2 agents declare that f` is the farthest,
n = n1 + n2, and n1 ≥ n2.

The algorithm only uses the candidates appearing in last position of the agents’ preferences. Therefore, we can
suppose w.l.o.g. that in an instance with largest possible distortion, the n1 agents for which fr is the farthest candidate
are co-located. Indeed, if two agents i and i′ have distinct locations but they agree on their farthest candidate, then
moving i to the location of i′ cannot increase the distortion (because the largest possible distortion is already reached)
or decrease it (otherwise moving i′ to the location of i would increase the distortion). Using similar arguments, we
can also suppose w.l.o.g. that the n2 agents for which f` is the farthest candidate are co-located.

In all, the worst case distortion appears in a 3 candidate instance where n1 agents, all located on a point that we
denote by P1, declare that fr is their farthest candidate, and n2 = n− n1 agents, all located on a point that we denote
by P2, declare that f` is their farthest candidate. Since f` and fr occupy distinct locations, d(f`, fr) is positive and we
suppose w.l.o.g. that d(f`, fr) = 1 (rescale the instance if it is not the case). Thus, we can suppose that x1(f`) = 0,
x1(fr) = 1, and 0 < x1(fb) < 1.

The ᾱ-decisiveness gives the following constraints:

ᾱd(P1, fr) ≥ d(P1, f`) (18)
ᾱd(P1, fr) ≥ d(P1, fb) (19)
ᾱd(P2, f`) ≥ d(P2, fr) (20)
ᾱd(P2, f`) ≥ d(P2, fb) (21)

Following Lemma 1, Inequalities (18) and (19) impose that P1 lies in the intersection of two (δ−1)-dimensional balls.
Similarly, Inequalities (20) and (21) force P2 to be in the intersection of two (δ − 1)-dimensional balls. See Figure 6
for an illustration.

In order to upper bound the distortion, we shall analyze the situation where P1 and P2 are as close as possible to
fr (the output of the algorithm) and, at the same time, as far as possible from f` (the optimum).
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Figure 6: Illustration of Theorem 4. The dashed spheres correspond to Inequalities (18) and (19), respectively. The
solid spheres correspond to Inequalities (20) and (21), respectively.

Concerning P1, it consists of sliding fb towards fr on the line segment f`fr as much as possible, i.e., until
Inequalities (18) and (19) leave a single feasible point, and by the fact that (18) and (19) are two balls, this point must
be on the line segment f`fb.

Using d(f`, P1) = x1(P1), d(P1, fr) = d(f`, fr)− d(f`, P1) = 1− x1(P1), and (18), we get that x1(P1) ≤ ᾱ
1+ᾱ ,

so we can fix
x1(P1) =

ᾱ

1 + ᾱ
,

and xj(P1) = 0 for all j 6= 1. It follows that d(P1, fr) = 1− ᾱ
1+ᾱ . Using (19), we get that ᾱ(1− ᾱ

1+ᾱ ) ≥ d(P1, fb) =

x1(fb)− x1(P1) = x1(fb)− ᾱ
1+ᾱ . This gives us 2ᾱ

1+ᾱ ≥ x1(fb) so we can fix

x1(fb) =
2ᾱ

1 + ᾱ
.

Since fb is on the candidate line, xj(fb) = 0 for all j 6= 1.
Now we can observe that P2 cannot be co-located with fr. Indeed, by contradiction, (21) gives ᾱd(fr, f`) ≥

d(fr, fb), i.e., ᾱ ≥ 1− x(fb) = 1− 2ᾱ
1+ᾱ which is equivalent to ᾱ2 + 2ᾱ− 1 ≥ 0. However, ᾱ2 + 2ᾱ− 1 ≥ 0 is not

valid because ᾱ <
√

2− 1.
Therefore, fr is outside the ball defined by Inequality (21). Since we analyze the situation where P2 is as close as

possible to fr, as far as possible from f`, and within the ball defined by Inequality (21), we deduce that P2 must be on
the line segment fbfr and at the boundary of the ball defined by Inequality (21). In other words,

ᾱd(P2, f`) = d(P2, fb)

ᾱx1(P2) = x1(P2)− x1(fb)

ᾱx1(P2) = x1(P2)− 2ᾱ

1 + ᾱ

x1(P2) =
2ᾱ

1− ᾱ2

and xj(P2) = 0 for all j 6= 1. One can verify that P2 is in the ball defined by Inequality (20).

ᾱd(P2, f`) ≥ d(P2, fr)

ᾱ
2ᾱ

1− ᾱ2
≥ 1− 2ᾱ

1− ᾱ2

3ᾱ2 + 2ᾱ− 1 ≥ 0

This last inequality holds because ᾱ ≥ 1/3.
By considering n1 agents onP1 of coordinates ( ᾱ

1+ᾱ , 0, . . . , 0), and n2 agents onP2 of coordinates ( 2ᾱ
1−ᾱ2 , 0, . . . , 0),

we get an upper bound on the ᾱ-distortion of

n1
ᾱ

1+ᾱ + n2
2ᾱ

1−ᾱ2

n1(1− ᾱ
1+ᾱ ) + n2(1− 2ᾱ

1−ᾱ2 )
.
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It finds its maximum when n2 is maximum, namely n1 = n2 = n/2. We get a ratio of 3ᾱ−ᾱ2

2−3ᾱ−ᾱ2 .

5 Conclusion and Future Work
We considered the problem of selecting a single candidate on the basis of the agents’ rankings when the latent distances
derive from a configuration where the candidates are aligned. In both cases (desirable or undesirable), the set of optima
can be reduced to two elements, and choosing the one supported by a majority of agents leads to the best possible
deterministic distortion (as a function of α or ᾱ).

A natural next step is to consider the distortion of randomized algorithms. For a desirable facility on a line, the best
distortion of randomized algorithms is 1 + α [5], but the algorithm assumes knowledge of α. In Proposition 2 of the
appendix, we show a lower bound of 1+2ᾱ

1+ᾱ on the distortion of randomized algorithms for an undesirable facility. An
interesting question is whether the lower bounds above can be matched by randomized algorithms that do not assume
any knowledge of α (resp., ᾱ) whatsoever.

Other interesting research directions regarding obnoxious facility location in general metrics include either to
extend the main result of [24] to the selection of an undesirable candidate (i.e., without assuming that the candidates
are aligned) or, as in [6, 15], to consider the case where the location of the candidates is known, but the agent locations
are unknown.

The amount of information available influences distortion [26, 30]. Improved upper bounds on the distortion may
be obtained for aligned candidates, if we could exploit either the full cardinal preferences profile of a selected agent
or the cardinal values of the agents’ top few candidates. An interesting direction would be to query the agent cardinal
preferences, so as to gain insight into the instance (e.g., [1, 32] follow this direction) or to learn the α (resp., ᾱ)
parameter. Can these queries help us to drop Assumption 1 or 2?

We focused on a social cost function defined as the sum of the agents’ distances to the winner. One can think of
other objective functions such as the maximum or median distance over the agents [5]. Finally, a possible future work
concerns the problem of selecting multiple winners [12, 25].
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[22] Bruno Escoffier, Jérôme Lang, and Meltem Öztürk. Single-peaked consistency and its complexity. In ECAI 2008
- 18th European Conference on Artificial Intelligence, Patras, Greece, July 21-25, 2008, Proceedings, pages
366–370, 2008.

[23] Michal Feldman, Amos Fiat, and Iddan Golomb. On voting and facility location. In Proceedings of the 2016
ACM Conference on Economics and Computation, EC ’16, Maastricht, The Netherlands, July 24-28, 2016, pages
269–286, 2016.

17



[24] Vasilis Gkatzelis, Daniel Halpern, and Nisarg Shah. Resolving the optimal metric distortion conjecture. In
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, pages 1427–1438, 2020.

[25] Ashish Goel, Reyna Hulett, and Anilesh K. Krishnaswamy. Relating metric distortion and fairness of social
choice rules. In Proceedings of the 13th Workshop on Economics of Networks, Systems and Computation, NetE-
con@SIGMETRICS 2018, Irvine, CA, USA, June 18, 2018, page 4:1, 2018.

[26] Stephen Gross, Elliot Anshelevich, and Lirong Xia. Vote until two of you agree: Mechanisms with small dis-
tortion and sample complexity. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, pages
544–550. AAAI Press, 2017.

[27] Sara Hosseini and Ameneh Moharerhaye Esfahani. Obnoxious Facility Location, pages 315–345. Physica-Verlag
HD, Heidelberg, 2009.

[28] Samuel Karlin. Total Positivity. Stanford University Press, 1968.

[29] David Kempe. An analysis framework for metric voting based on LP duality. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI 2020), pages 2079–2086. AAAI Press, 2020.

[30] David Kempe. Communication, distortion, and randomness in metric voting. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI 2020), pages 2087–2094. AAAI Press, 2020.

[31] Vicki Knoblauch. Recognizing one-dimensional euclidean preference profiles. Journal of Mathematical Eco-
nomics, 46(1):1–5, 2010.

[32] Debmalya Mandal, Nisarg Shah, and David P. Woodruff. Optimal communication-distortion tradeoff in voting.
In EC ’20: The 21st ACM Conference on Economics and Computation, Virtual Event, Hungary, July 13-17,
2020, pages 795–813, 2020.

[33] Lili Mei, Deshi Ye, and Guochuan Zhang. Mechanism design for one-facility location game with obnoxious
effects on a line. Theoretical Computer Science, 734:46–57, 2018.

[34] Lili Mei, Deshi Ye, and Yong Zhang. Approximation strategy-proof mechanisms for obnoxious facility location
on a line. Journal of Combinatorial Optimization, 36(2):549–571, 2018.

[35] James A. Mirrlees. An exploration in the theory of optimal income taxation. Review of Economic Studies,
38:175––208, 1971.

[36] Kamesh Munagala and Kangning Wang. Improved metric distortion for deterministic social choice rules. In
Proceedings of the 2019 ACM Conference on Economics and Computation, EC 2019, pages 245–262, 2019.

[37] Ariel D. Procaccia and Jeffrey S. Rosenschein. The distortion of cardinal preferences in voting. In Cooper-
ative Information Agents X, 10th International Workshop, CIA 2006, Edinburgh, UK, September 11-13, 2006,
Proceedings, pages 317–331, 2006.

[38] Arie Tamir. Obnoxious facility location on graphs. SIAM Journal on Discrete Mathematics, 4(4):550–567, 1991.

[39] Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

[40] Zvi Drezner and Horst W. Hamacher. Facility Location: Applications and Theory. Springer, 2004.

[41] William S. Zwicker. Introduction to the theory of voting. In Handbook of Computational Social Choice, pages
23–56. Cambridge University Press, 2016.

18



6 Appendix

6.1 About Randomization
In the following result, the ᾱ-distortion of a randomized algorithm A under preference profile � is the worst case
value that

∑
i∈N d(i,opt(�))

Ef∼A(�)[
∑

i∈N d(i,f)] takes.

Proposition 2. When m = 2, any randomized algorithm has ᾱ-distortion at least 1+2ᾱ
1+ᾱ .

Proof. Suppose there are two candidates f1 and f2, and two agents. Agent 1 has preference order f1 �1 f2 and
agent 2’s preference order is f2 �2 f1. Suppose f1 and f2 are output with probability p and 1− p, respectively, with
p ≤ 1− p (the case p > 1− p is symmetric).

Consider an instance where the candidates and the agents are on a line. The location of f1, f2, agent 1 and agent
2, are 0, ᾱ+ 1, ᾱ, and ᾱ+ 1, respectively.

The instance is consistent with the preference profile and ᾱ-decisive. The distortion is 1+2ᾱ
p(1+2ᾱ)+1−p = 1+2ᾱ

1+2ᾱp .
The largest value that p can take is 1/2, giving a lower bound of 1+2ᾱ

1+ᾱ .

19


