Skip to main content

Advertisement

Log in

Fast approximate bi-objective Pareto sets with quality bounds

  • Published:
Autonomous Agents and Multi-Agent Systems Aims and scope Submit manuscript

Abstract

We present and empirically characterize a general, parallel, heuristic algorithm for computing small \(\epsilon \)-Pareto sets. A primary feature of the algorithm is that it maintains and improves an upper bound on the \(\epsilon \) value throughout the algorithm. The algorithm can be used as part of a decision support tool for settings in which computing points in objective space is computationally expensive. We use the bi-objective TSP and graph clearing problems as benchmark examples. We characterize the performance of the algorithm through \(\epsilon \)-Pareto set size, upper bound on \(\epsilon \) value provided, true \(\epsilon \) value provided, and parallel speedup achieved. Our results show that the algorithm’s combination of small \(\epsilon \)-Pareto sets and parallel speedup is sufficient to be appealing in settings requiring manual review (i.e., those that have a human in the loop) or real-time solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. This work extends a short paper which appeared in the Proceedings of The 6th International Conference on Algorithmic Decision Theory [7].

  2. Recall that \([k]=\{1, 2, 3,\ldots ,k\}\).

  3. See, for instance, [27] in the multi-objective combinatorial optimization setting.

  4. We say discovered, because we assume that the set of feasible solutions is not available to us. In fact, computing one point in the set may require us to solve computationally complex problems, like NP-hard ILPs for the TSP or graph clearing problems.

References

  1. Hansen, P. (1979). Bicriterion path problems. In Proceedings of the third conference on multiple criteria decision making theory and application. Springer, Hagen/Königswinter, West Germany.

  2. Abraham, D. J., Blum, A., Sandholm, T. (2007). Clearing algorithms for barter exchange markets: Enabling nationwide kidney exchanges. In Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 295–304. ACM, New York, NY, USA.

  3. Rădulescu, R., Mannion, P., Roijers, D. M., & Nowé, A. (2020). Multi-objective multi-agent decision making: A utility-based analysis and survey. Autonomous Agents and Multi-Agent Systems, 34(1), 1–52.

    Article  Google Scholar 

  4. Rothe, J. (Ed.). (2015). Economics and Computation, Springer.

  5. Brandt, F., Conitzer, V., Endriss, U., Lang, J., & Procaccia, A. D. (2016). Handbook of Computational Social Choice, Cambridge University Press.

  6. Brams, S. J., Kilgour, D. M., & Zwicker, W. S. (1998). The paradox of multiple elections. Social Choice and Welfare, 15(2), 211–236.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bailey, W., Goldsmith, J., Harrison, B., Xu, S. (2019). Approximating the Pareto front of bi-criteria kidney exchanges. In Proceedings of the 6th international conference on algorithmic decision theory, Pekeč, S., Venable, K.B. (eds.), pp. 161–163. Springer, Durham, NC, USA.

  8. McElfresh, D., Conitzer, V., Dickerson, J. (2018). Ethics and mechanism design in kidney exchange. Working draft.

  9. Wu, X., Gomes-Selman, J., Shi, Q., Xue, Y., Garcia-Villacorta, R., Anderson, E., Sethi, S., Steinschneider, S., Flecker, A., Gomes, C. (2018). Efficiently approximating the Pareto frontier: Hydropower dam placement in the amazon basin. In Proceedings of the AAAI conference on artificial intelligence, vol. 32.

  10. Daskalakis, C., Diakonikolas, I., & Yannakakis, M. (2016). How good is the chord algorithm? SIAM Journal on Computing, 45(3), 811–858.

    Article  MathSciNet  MATH  Google Scholar 

  11. Faulkenberg, S. L., & Wiecek, M. M. (2010). On the quality of discrete representations in multiple objective programming. Optimization and Engineering, 11(3), 423–440.

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, J., & Azarm, S. (2001). Metrics for quality assessment of a multiobjective design optimization solution set. Journal of Mechanical Design, 123(1), 18–25.

    Article  Google Scholar 

  13. Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing-a metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7(1), 34–47.

    Article  MATH  Google Scholar 

  14. Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications. PhD thesis, Swiss Federal Institute of Technology Zurich.

  15. Meng, H. -Y., Zhang, X. -H., Liu, S. -Y. (2005). New quality measures for multiobjective programming. In International conference on natural computation, Springer, pp. 1044–1048.

  16. Sayın, S. (2000). Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Mathematical Programming, 87(3), 543–560.

    Article  MathSciNet  MATH  Google Scholar 

  17. Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s thesis, Massachusetts Institute of Technology.

  18. Messac, A., & Mattson, C. A. (2004). Normal constraint method with guarantee of even representation of complete pareto frontier. AIAA Journal, 42(10), 2101–2111.

    Article  Google Scholar 

  19. Papadimitriou, C. H., Yannakakis, M. (2000). On the approximability of trade-offs and optimal access of web sources. In Foundations of Computer Science, Proceedings. 41st Annual Symposium On, pp. 86–92. IEEE Press, Redondo Beach, CA, IEEE.

  20. Diakonikolas, I., & Yannakakis, M. (2009). Small approximate Pareto sets for biobjective shortest paths and other problems. SIAM Journal on Computing, 39(4), 1340–1371.

    Article  MathSciNet  MATH  Google Scholar 

  21. Herzel, A., Ruzika, S., & Thielen, C. (2021). Approximation methods for multiobjective optimization problems: A survey. INFORMS Journal on Computing, 33, 1284–1299.

    MathSciNet  MATH  Google Scholar 

  22. Buesing, C., Goetzmann, K.-S., Matuschke, J., & Stiller, S. (2017). Reference points and approximation algorithms in multicriteria discrete optimization. European Journal of Operational Research, 260(3), 829–840. https://doi.org/10.1016/j.ejor.2016.05.027

    Article  MathSciNet  MATH  Google Scholar 

  23. Vassilvitskii, S., & Yannakakis, M. (2005). Efficiently computing succinct trade-off curves. Theoretical Computer Science, 348(2–3), 334–356.

    Article  MathSciNet  MATH  Google Scholar 

  24. Bazgan, C., Jamain, F., & Vanderpooten, D. (2015). Approximate Pareto sets of minimal size for multi-objective optimization problems. Operations Research Letters, 43(1), 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  25. Herzel, A., Bazgan, C., Ruzika, S., Thielen, C., & Vanderpooten, D. (2021). One-exact approximate Pareto sets. Journal of Global Optimization, 80(1), 87–115.

    Article  MathSciNet  MATH  Google Scholar 

  26. Jia, Z., Tang, P., Wang, R., Zhang, H. (2017). Efficient near-optimal algorithms for barter exchange. In Proceedings of the 16th conference on autonomous agents and multiagent systems, pp. 362–370 International Foundation for Autonomous Agents and Multiagent Systems.

  27. Aneja, Y. P., & Nair, K. P. (1979). Bicriteria transportation problem. Management Science, 25(1), 73–78.

    Article  MathSciNet  MATH  Google Scholar 

  28. Roijers, D. M., Whiteson, S., Oliehoek, F. A. (2014). Linear support for multi-objective coordination graphs. In Proceedings of the 2014 international conference on autonomous agents and multi-agent systems, pp. 1297–1304.

  29. Ilavarasi, K., Joseph, K. S. (2014). Variants of travelling salesman problem: A survey. In International conference on information communication and embedded systems (ICICES2014), pp. 1–7. https://doi.org/10.1109/ICICES.2014.7033850

  30. Burkard, R. E. (1979). Travelling salesman and assignment problems: A survey. Annals of Discrete Mathematics, 4, 193–215.

    Article  MathSciNet  MATH  Google Scholar 

  31. Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale traveling-salesman problem. Journal of the Operations Research Society of America, 2(4), 393–410.

    Article  MathSciNet  MATH  Google Scholar 

  32. Bixby, B., Reinelt, G. (1995). TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html. Accessed: June 7, 2022.

  33. Xu, S. (2018). Bi-objective optimization of kidney exchanges. Master’s thesis, University of Kentucky. Theses and Dissertations–Computer Science. https://uknowledge.uky.edu/cs_etds/62/

  34. Freedman, R., Borg, J. S., Sinnott-Armstrong, W., Dickerson, J. P., Conitzer, V. (2018). Adapting a kidney exchange algorithm to align with human values. In Proceedings of the thirty-second AAAI conference on artificial intelligence. AAAI Press, New Orleans, LA, USA. https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17384

  35. Roth, A. E., Sönmez, T., & Ünver, M. U. (2004). Kidney exchange. The Quarterly Journal of Economics, 119(2), 457–488.

    Article  MATH  Google Scholar 

  36. Saidman, S. L., Roth, A. E., Sönmez, T., Ünver, M. U., & Delmonico, F. L. (2006). Increasing the opportunity of live kidney donation by matching for two-and three-way exchanges. Transplantation, 81(5), 773–782.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their helpful input, and pointers to additional literature, including the work of Aneja and Nair [27].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Bailey or Judy Goldsmith.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailey, W., Goldsmith, J., Harrison, B. et al. Fast approximate bi-objective Pareto sets with quality bounds. Auton Agent Multi-Agent Syst 37, 5 (2023). https://doi.org/10.1007/s10458-022-09588-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10458-022-09588-0

Keywords

Navigation