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Abstract. Today, mobile and smart phones are often vievse@rablers of
pervasive computing systems because they provigéinan and anywhere
access to information services and computatioreduees. However, mobile
devices are inherently constrained in their contrtal power and battery
capacity making them mere “dumb terminals” connédi® a resource-rich
pervasive environment. If they are ever to plapae prominent role as true
elements of a pervasive environment, mobile devinast be able to embed
more application logic and delegate processing esigu to pervasive
infrastructure. In this paper we discuss distributiand offloading of
computationally intensive tasks in pervasive envinents populated by mobile
devices. This approach is illustrated by experinmmgnivith a distributed version
of iterative deepening A* search algorithm. In approach, the solution space
of a problem being solved is partitioned and distied among heterogeneous
mobile devices, which yields a significant increasethe time of finding an
optimal solution. Distributed IDA* search algorithmioes not require any
coordination or communication between mobile desjicbut added inter-
processor communication through shared memory durtimcreases the
efficiency of the algorithm. This paper presents thsults of our experiments
with the algorithm and discusses a number of issuglated to its
implementation.

1 Introduction

A simple idea was introduced by Mark Weiser in &gsninal paper [13] published
over 15 years ago: as digital technology advaraasputing equipment will become
increasingly smaller but more powerful, which woaltbw ubiquitous devices to be
invisibly embedded in the surrounding environmeBty providing seamless
communication, these miniature devices and thgipstt infrastructure will be able to
enable a computing system that is omnipresent asyg ® use. Today, this idea is
referred to as pervasive computing — an environmdmre access to computational
an information processing power is available angtand anywhere.

There are many open questions in pervasive congpuéisearch. One of them is
how to create a computing system that is invisdalgl seamlessly embedded in the
user surroundings while minimizing the user’'s pptima of the system’s possibly



intrusive actions? There are two mutually completiingnapproaches to creating
pervasive systems that are unobtrusively embeddss the environment: device
miniaturization and distribution of logic and conttional capabilities, and achieving
a level of the system’s intelligence that will beleato anticipate user’s actions in a
given context. As a result, pervasive systems ards®oned to “fade into the
background” when the users will be able to interaith these systems as naturally as
they would with each other, without giving much tlgbt to this process and focusing
more on the tasks at hand rather than on the idavagies of the system’s interface.

Today, in many respects, pervasive computing system fact rather than fiction
or bold vision of the future. In particular, a furdental property of pervasive systems
is integration with the environment and providingiquitous services to the users.
Smart phones and other network-enabled mobile dsvie.g. iPod Touch) can be
viewed as a key element providing the user interfex the pervasive computing
environment. Anytime and anywhere availability opervasive computing system is
offered by the very nature of mobile phones — they designed to provide network
access at any place whenever it is needed. Todajpilenphones can act as
personalized entry points for many networked infation services. There is a large
number of commercial and academic projects tharoff range of services which
include mapping and navigation applications, pesiped shopping list management,
and media acquisition and streaming. Personalizatimnecessary component of many
pervasive services, is typically enabled by impletimg different approaches to
context-awareness that vary from elementary usefemnces to complex profile
management and matching.

Despite all the advantages of using ubiquitous taeobevices as gateways to
pervasive computing systems, they suffer from oerient problem that is rooted in
their miniature size. Many modern mobile devicesignificantly constrained in the
amount of built-in resources, in particular, pramgspower and battery capacity, both
of which may be a significant limiting factor inlgmg computationally intensive
tasks. A solution to this problem could be foundelgploiting the intrinsic networking
features of a pervasive computing environment. Anmatationally intensive task
could be offloaded from the constrained deviceh® pervasive infrastructure and/or
distributed among other devices connected o themsydHere, we aim to illustrate the
feasibility of this approach.

In this paper, we discuss a distributed versiolD@f* search algorithm for solving
computational problems in a pervasive computing irenment consisting of
heterogeneous mobile devices. The nature of sudblgms and the network
infrastructure restricts the implementation of afigtributed algorithm due to the
limitations of the network bandwidth and computaéibresources available to device.
Proposed distributed implementation of IDA* seaattporithm is suitable for a wide
array of distributed computing applications hat ¢@nsolved in such environments.
We consider a community of mobile devices fromdistributed artificial intelligence
perspective, which views a pervasive system as dti-agent system [9].
Computational nodes are viewed as user-centriocpnantous, intelligent agents
capable of performing their own tasks, sharingrtmesources and communicating
with other agents within the system [8].



This paper is organized as follows. Section 2 lbyriefiscusses the necessary
background related to intelligent agents, multirageystems and heterogeneous
pervasive computing systems. Section 3 presentdistributed implementation of
IDA* algorithm. Section 4 focuses on the issueates to increasing the performance
and robustness of the algorithm, while Section &cdbes the experimental results.
Section 6 concludes the paper.

2 Background

Intelligent agents are interactive entities thasteas a part of an environment shared
with other agents capable of communicating and emaimg with one another. A
multi-agent system is a loosely coupled networktdlligent agents working together
to solve problems that cannot be solved by anmyhefindividual agents due to their
limited individual capabilities [1]. The term muligent system can also be used to
describe all types of systems composed of multipieonomous components
displaying the following characteristics [5]:

* None of the agents have complete capabilities li®gbe entire problem,

» There is no global system control,

* Available data is decentralized among many agenis,

* There is no centralized synchronization of compantest
In this work we use all these characteristics aggimeral design principles that can be
applied to pervasive computing systems populatechblile devices (computational
nodes) and problem-solving algorithms that they. uBervasive systems and
applications considered here usually have the viatig characteristics: processing
power of each mobile device within the pervasivenpoting system is relatively low;
at least one of these devices is designated azoadinator that distributes
computational tasks to other computational nodeset is no direct communication
among the nodes of the system; and the size ofctmputational problem is
exceedingly large. At the same time, mobile devioescomputing nodes of a
pervasive computing system may be viewed as indalidgents within a multi-agent
system: they are capable of solving their own tasislarger computational problems
require cooperation with other agents; each contipui@ node has access to its own
data; and computations of each node are largelynahsonized with the others.

3 Distributed Implementation of IDA* Search Algorithm

Search algorithms provide a universal mechanismsédving problems in artificial
intelligence and many other areas of computer seiemathematics and engineering.
In particular, different search algorithms can lsedito solve discrete optimization
problems [4]. To solve a discrete optimization peolp, an objective function
depending on one or more discrete variables musmimémized. Most discrete
optimization problems are NP-complete and theitestpace and solution time grows
exponentially. Applying a parallel or a distributedgorithm to solve a discrete



optimization problem cannot reduce the time of wWagst-case solution without an

exponentially increased number of processors.dossible, however, to find heuristic

functions and corresponding algorithms for specifioblems, which may help to

reduce the average solution time to polynomial.hSae approach may be especially
important for problems where real-time solutions aeeded. Such heuristic-based
algorithms may be applied to find a sub-optimalugoh that may be acceptable in
certain problem domains [7].

Many discrete optimization problems may be viewsdte problem of finding a
path in a state space graph from a given initiglento one or more goal nodes [10].
The quality of a solution is measured by a costction evaluating the path
corresponding to every solution. Following this aygeh, a discrete optimization
problem may be considered as an ordered [&irf){ where the set of feasible
solutionsSis a finite or countable infinite set of all sobris that satisfy a given set of
constraints. The functioh: S - Ris the cost function that maps each element i®set
onto the set of real numbdrs The objective of a discrete optimization problisnio
find a feasible solutioiX,, such thaf(Xy) < f(X) for all X 0 S In the vast majority of
practical problems, the set of feasible solutiSis quite large, but applying heuristics
may significantly reduce the time needed to fincptimal or a sub-optimal solution.

We focus on solving a discrete optimization problesing parallel iterative
deepening A* (IDA*) search method. Originally, IDA%¥as proposed by Korf as a
version of well-known A* search algorithm with liaememory requirements [6]. The
IDA* search method estimates the cost of the ctipartial solution from initial state
| to the current state using a combined heuristic functiém) = g(n) + h(n), where
g(n) is the cost of solution from the initial stdtéo staten, andh(n) is the estimated
cost of the solution from stateto the goal staté.

The IDA* search algorithm reduces its memory regmients by performing a
series of independent depth-first searches boumgedn f-cost value limiting the
length of an expanded path. Therefore, each iteraif IDA* expands paths from all
search space states inside the curfren$t contour, as shown in Fig. 1.

A number of distributed and parallel implementasiaf IDA* search algorithm
have been proposed. A distributed version of IDA&reh algorithm is implemented
by Parallel Window Search, in which the entire peab search space is analyzed by
each processor, but with a different valué-ofst [11]. There are a number of parallel
implementations of IDA* search algorithm designegedfically for SIMD and
MIMD architectures [12]. These implementations iiegqa mechanism for centralized
coordination of processors. Most of these algorittare not easy to adapt to system
architectures where difference between the computt power of different
processors is unknown and where the capabilitiesnfer-processor communication
are limited. Parallel implementations of IDA* selaralgorithm rely heavily on the
ability to balance the load among different prooessin these implementations, the
problem search space is partitioned into sub-profleand each processor is assigned
its own subspace to explore. For most problemis,iihpossible to predict the actual
size of the search space measured as the numbedes$ in the search space tree that
must be expanded before a solution is found. Tlaig rasult in a wide disparity in the
size of the problem search space assigned to eliffgurocessors. To improve the
speed of finding a solution, such algorithms regjaircomplex scheme to dynamically



repartition the search space to minimize procestiog without a significant increase
in inter-processor communication.

Fig. 1. A graph for a shortest path problem wittost contours

We propose a distributed implementation of IDA*@&ithm designed specifically
for distributed computing applications running witla pervasive computing system
populated with low-powered mobile devices. Our iempéntation of the algorithm has
the following characteristics:

» A central server is required for task initiatiordasolution assembly;

» Coordination of computing nodes is minimized;

* Synchronization of computation is not required;

« Communication among the computing nodes is notiredu

» Computing nodes are heterogeneous and their cotigngbpower may vary;

and

» Fault-tolerance is achieved by reallocating a task new computing node.

The core of our distributed implementation of ID&&arch algorithm consists of
three phases as follows:

Phase |. Search space partitioning. As shown in Fig. 2, a coordinator is required
to expand several of the first levels of the seasphace using a standard non-
distributed version of he IDA* algorithm. This geates a number of partial solutions
leading from the initial nodé to several intermediate nodes within the seareltep
graph. Each partial solution corresponds to a gulifsthe solution search space, as
illustrated in Fig. 2.

Phase Il. Distributed search. Each partial solution generated in Phase | is
assigned to a single computational node. The ieguitartition of the search space
corresponding to each computing node is expandgbaufeasible solution is found.
When the computational node finds a solution, itofgimal within the solution
subspace assigned to that node. However, the riselé ¢annot verify the global
optimality of this solution because the node canesiimate the cost of solutions
found by other nodes.



Phase I 11. Solution assembly. After a computational node finds a feasible soluti
within the search subspace assigned to it, thigisalis returned to the coordinator. It
is the coordinator’s responsibility to identify aptimal solution among many feasible
solutions based on the optimality criteria (i.elufon cost) specific to the given
problem.

Fig. 2. Search space of distributed implementation of IAgorithm

None of the three phases of our distributed impteat®on of IDA* search
algorithm require any synchronization or signifitaommunication between each of
the computing nodes and the coordinator. Such corwation is only required to
take place when a computing node receives itsgbaaiution and when it reports the
found feasible solution back to the coordinator.

4 Improving Robustness and Performance of the Algorithm

A number of issues directly influence the perforoenof our distributed
implementation of the algorithm: timeout or loss admputational nodes, finding
suboptimal solutions, and boosting performancdefalgorithm with shared memory.

In certain problems, such as finding a complexeart a large geographical map, a
suboptimal solution to the problem may be satisfgctin the proposed algorithm,
feasible solutions arrive to the coordinator in arbitrary order. For real-time
problems, when an end-user is monitoring the resofitdistributed search and is
waiting for a solution, the search process maydmihated as soon as a feasible
solution is deemed satisfactory by the human eed-us

Adding some coordination among the computing ndlesigh shared memory my
further increase the performance of our distribugdgorithm. In the most basic
distributed implementation of the algorithm, eadmputing node is not aware of the
solution process taking place at other nodes. @ensi class of problems where the
solution cost function increases monotonously \ligh addition of each new node to



the current solution. If a feasible soluti®with the costf(S) has been found by a
given computing node, a subset of computing nodiésiet be able to find an optimal
solution if these nodes are currently exploringtiphisolutions whose cost already
exceedd(S). Therefore, distributed tasks on such computindes can be terminated
because it is known a priori that their solutions mot be optimal. Implementing such
a strategy requires that each computing node loenr&fd about the cost of a solution,
which is currently considered best by the coordinafhis information is always
available to the coordinator and can be communicetesach computing node using a
two-way keep-alive protocol.

The nature of the proposed distributed implemeortadif IDA* search algorithm is
such that the length of partial solutions generaethe coordinator is increasing with
the addition of computing nodes. This results i plartitioning of the original search
space and in the simplification of the task of eaaimputing node. However, this also
results in situations where computing nodes cag fntl feasible solutions that are
far from optimal; in some cases, feasible solutiow@y not even exist. It is important
to maintain a balance between the positive andtivegeffects of partitioning of the
search space. If the chosen number of computingsizdtoo high, too many of them
will be exploring “dead end” search subspaces, whenly expensive feasible
solutions can be found. In such situations, therdioator's computational load will
be too high because it will need to generate aessiee nhumber of partial solutions.
Coordinator also will be overloaded with a very thigommunication overhead
because it will need to send all generated pasthltions to the computing nodes and
receive solutions back from them.

The efficiency of a distributed implementation &A* search algorithm can be
measured by the speedup gained by adding more ¢mmgmodes. Given a problem
of a fixed size (as discussed in the following megtthe speedup usually does not
increase linearly with the number of computing reodehis indicates that the overall
efficiency of the problem-solving process evenuallarts to decrease as the total
number of computing nodes grows. This situatiohast described by Amdahl’s law
stipulating that every algorithm has a certain satjal component, which cannot be
reduced by adding more processors; therefore asutmber of processors grows, the
efficiency of the system drops.

5 Experimenting with the Algorithm

To prove the viability of our distributed implematibn of IDA* search algorithm, we
conducted a range of computational experimentscivisidered a problem of finding
the shortest path on a geographical map consisfid@0 locations. The feasibility of
the algorithm was tested using a varying numbecarfiputing nodes running on
actual Dell Axim PDAs and simulated mobile devicggh realistic performance
characteristics running within emulators on hostrkstations. A central server
(coordinator) was responsible for generating plagd@utions, sending them along
with the adjacency matrix to each computing noddlecting the results from them,
and identifying the optimal solution from a numherfeasible solutions. In these



experiments, no provisions were made for timingafuhe computing nodes since the
computers were used exclusively for this experiment

Using the same adjacency matrix, we considered @ifferent instances of the
shortest path problem with different initial andafdocations. Each instance of the
problem was solved using a non-distributed versitime IDA* search algorithm. The
time of finding this solution was used to calcultite relative speedup achieved by the
pervasive system by using distributed implementatd the same algorithm. Each
instance of the algorithm was solved by the peveasomputing system consisting of
an incrementally increasing number of computingesod

In the first series of experiments, we tested astriduted implementation of IDA*
search algorithm with no shared memory. Each coimputode received its own
partial task together with the adjacency matrixrfrithe coordinator and was allowed
to run the algorithm until a feasible solution wasnd or it was determined that a
feasible solution does not exist due to the resiris imposed by the original partial
solution. Upon the completion of this task, eacmpating node sent its results back
to the coordinator. In each experiment in thisesrive solved each of the four
problems using a fixed number of computing nodes;rtumber of computing nodes
gradually changed from one to fifty in the expenmseconducted in this series. In our
implementation of the algorithm, using just one poitng node was different from
solving the same problem using a non-distributgaréthm. If a distributed algorithm
uses a single computing node, that node starts gi@thpns from the partial path it
received, which consists of the initial locatiordaome of its immediate neighbors. In
each experiment, we measured the time needed bynputing node to complete its
respective computational task. The speedup wasurexhsas the ratio of the time
needed to solve a given problem using a non-diggib IDA* algorithm and the
average time taken by the entire pervasive compusiystem to solve the same
problem. Fig. 3 shows the complete results ofgbiges of experiments.
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Fig. 3. Speedup achieved by distributed IDA* search atbariwith no shared memory



As can be seen in Fig. 3, the speedup tends tedreras the number of computing
nodes grows. The graphs shown in Fig. 3 contairixaofmsurges and plateaus with
occasional dips. The surges are formed when thedo@dor generates a new patrtial
solution that significantly reduces the search spac one of the computing nodes.
For example, consider a problem of finding the skairpath from to G on a graph
shown in Fig. 1. Suppose that for a given experinibere are six computing nodes,
which receive the following partial solutionisA, I-B, I-E, 1-J, I-M andI-N. The next
experiment will include seven computing nodes, Whvall receive the following
partial solutionsi-A, I-B, I-E, I-J-F, I-J-L, I-M andI-N. It is possible to assume that
the computing nodes receiving partial solutibflsF andl-J-L will produce optimal
solutions significantly faster than other computingdes because the size of their
search spaces has been significantly decreased.

Given the discrete nature of the shortest path lpnopcertain combinations of
partial solutions resulted in a better solutionetiocompared to other, often very similar
combinations. The dips in the graphs shown in &igre formed as a result of moving
from a “good” combination of partial solution tosamewhat “worse” combination.
Nevertheless, the overall trend of the graphs ctflthe improved speed of finding an
optimal solution with the increased number of cotimmu nodes. Obviously, the
plateaus in the graphs shown in Fig. 3 are gerelgtesequences of experiments that
do not result in a surge or a dip. It is importeminote that the increasing speedup
trend is not going to continue indefinitely. Eveaty, the curve will saturate due to
the reasons described in the previous section.
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Fig. 4. Speedup achieved by distributed IDA* search athariwith shared memory

In the second series of experiments, we testeddstibuted implementation of
IDA* search algorithm with shared memory (Fig. &milarly to the first series of
experiments, each computing node received its awtigbtask and the corresponding
adjacency matrix from the coordinator. Unlike thevyious series of experiments,
each computing node periodically received the vakief(S) of a feasible solutio®
that was currently considered best by the coordmdthis information was delivered



using the keep-alive protocol discussed in theiptesvsection. In a situation when a
given computing nodal is working on a solutio®, whose current co$(S,) > f(S), N
was required to terminate its calculations becduseuld be unable to find a feasible
solution whose cost is lower th&®). The results of measuring the speedup achieved
by our distributed implementation of IDA* algorithmith shared memory are shown
in Fig. 4. Overall, the speedup is several timghéii than in the previous series of
experiments, in which we tested our implementatiihout using shared memory. It
is also noteworthy that the speedup graphs of ékjgeriment tend to have more
pronounced surges and very few dips. Although therfopmance of this
implementation is significantly better than of theevious one, it is achieved by a
periodic exchange of messages between the coawdinatl each of the computing
nodes using the keep-alive protocol. It is also artgmt to note that the
communication overhead increases with the numbeowfputing nodes. Similarly to
the previous series of experiments, a very high bamof nodes may result in the
overloading of the coordinator and in the overatmrase in the efficiency of the
problem-solving process.

6 Summary

In this paper we presented a distributed implentiemtaf IDA* search algorithm.
This algorithm is designed specifically for distribd applications running within a
pervasive computing system and is aimed to illtstthe feasibility of a mechanism
for offloading computationally intensive tasks froanmobile device with limited
resources and distributing these tasks within a/gsive system. Such pervasive
systems consist of a large number of mobile devieéh relatively low-power
processors. Computational problems solved in systesis are initiated by a single
computational node, which also serves a coordinattihe problem-solving process.
We view the community of computational nodes asudtiragent system, in which
each node is capable of solving its own task, blas limited resources and therefore
must rely on cooperation with other nodes to stdvger tasks.

Experimental results presented in this paper itdicaghat distributed
implementation of IDA* search algorithm can be emted by allowing computational
nodes to communicate via a shared memory. Howelvés, important to keep the
balance between the gains in speed and the ovedieagthanging messages needed
to implement the shared memory.
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