
Experimenting with IDA* Search Algorithm in
Heterogeneous Pervasive Environments

Stan Kurkovsky

Department of Computer Science, Connecticut State University
1615 Stanley Street, New Britain, CT 0050

kurkovskysta@ccsu.edu

Abstract. Today, mobile and smart phones are often viewed as enablers of
pervasive computing systems because they provide anytime and anywhere
access to information services and computational resources. However, mobile
devices are inherently constrained in their computational power and battery
capacity making them mere “dumb terminals” connected to a resource-rich
pervasive environment. If they are ever to play a more prominent role as true
elements of a pervasive environment, mobile devices must be able to embed
more application logic and delegate processing requests to pervasive
infrastructure. In this paper we discuss distribution and offloading of
computationally intensive tasks in pervasive environments populated by mobile
devices. This approach is illustrated by experimenting with a distributed version
of iterative deepening A* search algorithm. In our approach, the solution space
of a problem being solved is partitioned and distributed among heterogeneous
mobile devices, which yields a significant increase in the time of finding an
optimal solution. Distributed IDA* search algorithm does not require any
coordination or communication between mobile devices, but added inter-
processor communication through shared memory further increases the
efficiency of the algorithm. This paper presents the results of our experiments
with the algorithm and discusses a number of issues related to its
implementation.

1 Introduction

A simple idea was introduced by Mark Weiser in his seminal paper [13] published
over 15 years ago: as digital technology advances, computing equipment will become
increasingly smaller but more powerful, which would allow ubiquitous devices to be
invisibly embedded in the surrounding environment. By providing seamless
communication, these miniature devices and their support infrastructure will be able to
enable a computing system that is omnipresent and easy to use. Today, this idea is
referred to as pervasive computing – an environment where access to computational
an information processing power is available anytime and anywhere.

There are many open questions in pervasive computing research. One of them is
how to create a computing system that is invisibly and seamlessly embedded in the
user surroundings while minimizing the user’s perception of the system’s possibly

intrusive actions? There are two mutually complementing approaches to creating
pervasive systems that are unobtrusively embedded into the environment: device
miniaturization and distribution of logic and computational capabilities, and achieving
a level of the system’s intelligence that will be able to anticipate user’s actions in a
given context. As a result, pervasive systems are envisioned to “fade into the
background” when the users will be able to interact with these systems as naturally as
they would with each other, without giving much thought to this process and focusing
more on the tasks at hand rather than on the idiosyncrasies of the system’s interface.

Today, in many respects, pervasive computing systems are fact rather than fiction
or bold vision of the future. In particular, a fundamental property of pervasive systems
is integration with the environment and providing ubiquitous services to the users.
Smart phones and other network-enabled mobile devices (e.g. iPod Touch) can be
viewed as a key element providing the user interface to the pervasive computing
environment. Anytime and anywhere availability of a pervasive computing system is
offered by the very nature of mobile phones – they are designed to provide network
access at any place whenever it is needed. Today, mobile phones can act as
personalized entry points for many networked information services. There is a large
number of commercial and academic projects that offer a range of services which
include mapping and navigation applications, personalized shopping list management,
and media acquisition and streaming. Personalization, a necessary component of many
pervasive services, is typically enabled by implementing different approaches to
context-awareness that vary from elementary user preferences to complex profile
management and matching.

Despite all the advantages of using ubiquitous mobile devices as gateways to
pervasive computing systems, they suffer from one inherent problem that is rooted in
their miniature size. Many modern mobile devices a significantly constrained in the
amount of built-in resources, in particular, processor power and battery capacity, both
of which may be a significant limiting factor in solving computationally intensive
tasks. A solution to this problem could be found by exploiting the intrinsic networking
features of a pervasive computing environment. A computationally intensive task
could be offloaded from the constrained device to the pervasive infrastructure and/or
distributed among other devices connected o the system. Here, we aim to illustrate the
feasibility of this approach.

In this paper, we discuss a distributed version of IDA* search algorithm for solving
computational problems in a pervasive computing environment consisting of
heterogeneous mobile devices. The nature of such problems and the network
infrastructure restricts the implementation of any distributed algorithm due to the
limitations of the network bandwidth and computational resources available to device.
Proposed distributed implementation of IDA* search algorithm is suitable for a wide
array of distributed computing applications hat can be solved in such environments.
We consider a community of mobile devices from the distributed artificial intelligence
perspective, which views a pervasive system as a multi-agent system [9].
Computational nodes are viewed as user-centric, autonomous, intelligent agents
capable of performing their own tasks, sharing their resources and communicating
with other agents within the system [8].

This paper is organized as follows. Section 2 briefly discusses the necessary
background related to intelligent agents, multi-agent systems and heterogeneous
pervasive computing systems. Section 3 presents our distributed implementation of
IDA* algorithm. Section 4 focuses on the issues related to increasing the performance
and robustness of the algorithm, while Section 5 describes the experimental results.
Section 6 concludes the paper.

2 Background

Intelligent agents are interactive entities that exist as a part of an environment shared
with other agents capable of communicating and cooperating with one another. A
multi-agent system is a loosely coupled network of intelligent agents working together
to solve problems that cannot be solved by any of the individual agents due to their
limited individual capabilities [1]. The term multi-agent system can also be used to
describe all types of systems composed of multiple autonomous components
displaying the following characteristics [5]:

• None of the agents have complete capabilities to solve the entire problem,
• There is no global system control,
• Available data is decentralized among many agents, and
• There is no centralized synchronization of computations.

In this work we use all these characteristics as the general design principles that can be
applied to pervasive computing systems populated by mobile devices (computational
nodes) and problem-solving algorithms that they use. Pervasive systems and
applications considered here usually have the following characteristics: processing
power of each mobile device within the pervasive computing system is relatively low;
at least one of these devices is designated as a coordinator that distributes
computational tasks to other computational nodes; there is no direct communication
among the nodes of the system; and the size of the computational problem is
exceedingly large. At the same time, mobile devices or computing nodes of a
pervasive computing system may be viewed as individual agents within a multi-agent
system: they are capable of solving their own tasks, but larger computational problems
require cooperation with other agents; each computational node has access to its own
data; and computations of each node are largely unsynchronized with the others.

3 Distributed Implementation of IDA* Search Algorithm

Search algorithms provide a universal mechanism for solving problems in artificial
intelligence and many other areas of computer science, mathematics and engineering.
In particular, different search algorithms can be used to solve discrete optimization
problems [4]. To solve a discrete optimization problem, an objective function
depending on one or more discrete variables must be minimized. Most discrete
optimization problems are NP-complete and their state space and solution time grows
exponentially. Applying a parallel or a distributed algorithm to solve a discrete

optimization problem cannot reduce the time of the worst-case solution without an
exponentially increased number of processors. It is possible, however, to find heuristic
functions and corresponding algorithms for specific problems, which may help to
reduce the average solution time to polynomial. Such an approach may be especially
important for problems where real-time solutions are needed. Such heuristic-based
algorithms may be applied to find a sub-optimal solution that may be acceptable in
certain problem domains [7].

Many discrete optimization problems may be viewed as the problem of finding a
path in a state space graph from a given initial node to one or more goal nodes [10].
The quality of a solution is measured by a cost function evaluating the path
corresponding to every solution. Following this approach, a discrete optimization
problem may be considered as an ordered pair (S, f), where the set of feasible
solutions S is a finite or countable infinite set of all solutions that satisfy a given set of
constraints. The function f : S → R is the cost function that maps each element in set S
onto the set of real numbers R. The objective of a discrete optimization problem is to
find a feasible solution X0, such that f(X0) < f(X) for all X ∈ S. In the vast majority of
practical problems, the set of feasible solutions S is quite large, but applying heuristics
may significantly reduce the time needed to find an optimal or a sub-optimal solution.

We focus on solving a discrete optimization problem using parallel iterative
deepening A* (IDA*) search method. Originally, IDA* was proposed by Korf as a
version of well-known A* search algorithm with linear memory requirements [6]. The
IDA* search method estimates the cost of the current partial solution from initial state
I to the current state n using a combined heuristic function f(n) = g(n) + h(n), where
g(n) is the cost of solution from the initial state I to state n, and h(n) is the estimated
cost of the solution from state n to the goal state G.

The IDA* search algorithm reduces its memory requirements by performing a
series of independent depth-first searches bounded by an f-cost value limiting the
length of an expanded path. Therefore, each iteration of IDA* expands paths from all
search space states inside the current f-cost contour, as shown in Fig. 1.

A number of distributed and parallel implementations of IDA* search algorithm
have been proposed. A distributed version of IDA* search algorithm is implemented
by Parallel Window Search, in which the entire problem search space is analyzed by
each processor, but with a different value of f-cost [11]. There are a number of parallel
implementations of IDA* search algorithm designed specifically for SIMD and
MIMD architectures [12]. These implementations require a mechanism for centralized
coordination of processors. Most of these algorithms are not easy to adapt to system
architectures where difference between the computational power of different
processors is unknown and where the capabilities for inter-processor communication
are limited. Parallel implementations of IDA* search algorithm rely heavily on the
ability to balance the load among different processors. In these implementations, the
problem search space is partitioned into sub-problems, and each processor is assigned
its own subspace to explore. For most problems, it is impossible to predict the actual
size of the search space measured as the number of nodes in the search space tree that
must be expanded before a solution is found. This may result in a wide disparity in the
size of the problem search space assigned to different processors. To improve the
speed of finding a solution, such algorithms require a complex scheme to dynamically

repartition the search space to minimize processor idling without a significant increase
in inter-processor communication.

Fig. 1. A graph for a shortest path problem with f-cost contours

We propose a distributed implementation of IDA* algorithm designed specifically
for distributed computing applications running within a pervasive computing system
populated with low-powered mobile devices. Our implementation of the algorithm has
the following characteristics:

• A central server is required for task initiation and solution assembly;
• Coordination of computing nodes is minimized;
• Synchronization of computation is not required;
• Communication among the computing nodes is not required;
• Computing nodes are heterogeneous and their computational power may vary;

and
• Fault-tolerance is achieved by reallocating a task to a new computing node.
The core of our distributed implementation of IDA* search algorithm consists of

three phases as follows:
Phase I. Search space partitioning. As shown in Fig. 2, a coordinator is required

to expand several of the first levels of the search space using a standard non-
distributed version of he IDA* algorithm. This generates a number of partial solutions
leading from the initial node I to several intermediate nodes within the search space
graph. Each partial solution corresponds to a subset of the solution search space, as
illustrated in Fig. 2.

Phase II. Distributed search. Each partial solution generated in Phase I is
assigned to a single computational node. The resulting partition of the search space
corresponding to each computing node is expanded until a feasible solution is found.
When the computational node finds a solution, it is optimal within the solution
subspace assigned to that node. However, the node itself cannot verify the global
optimality of this solution because the node cannot estimate the cost of solutions
found by other nodes.

Phase III. Solution assembly. After a computational node finds a feasible solution
within the search subspace assigned to it, this solution is returned to the coordinator. It
is the coordinator’s responsibility to identify an optimal solution among many feasible
solutions based on the optimality criteria (i.e. solution cost) specific to the given
problem.

Fig. 2. Search space of distributed implementation of IDA* algorithm

None of the three phases of our distributed implementation of IDA* search
algorithm require any synchronization or significant communication between each of
the computing nodes and the coordinator. Such communication is only required to
take place when a computing node receives its partial solution and when it reports the
found feasible solution back to the coordinator.

4 Improving Robustness and Performance of the Algorithm

A number of issues directly influence the performance of our distributed
implementation of the algorithm: timeout or loss of computational nodes, finding
suboptimal solutions, and boosting performance of the algorithm with shared memory.

In certain problems, such as finding a complex route on a large geographical map, a
suboptimal solution to the problem may be satisfactory. In the proposed algorithm,
feasible solutions arrive to the coordinator in an arbitrary order. For real-time
problems, when an end-user is monitoring the results of distributed search and is
waiting for a solution, the search process may be terminated as soon as a feasible
solution is deemed satisfactory by the human end-user.

Adding some coordination among the computing nodes through shared memory my
further increase the performance of our distributed algorithm. In the most basic
distributed implementation of the algorithm, each computing node is not aware of the
solution process taking place at other nodes. Consider a class of problems where the
solution cost function increases monotonously with the addition of each new node to

the current solution. If a feasible solution S with the cost f(S) has been found by a
given computing node, a subset of computing nodes will not be able to find an optimal
solution if these nodes are currently exploring partial solutions whose cost already
exceeds f(S). Therefore, distributed tasks on such computing nodes can be terminated
because it is known a priori that their solutions will not be optimal. Implementing such
a strategy requires that each computing node be informed about the cost of a solution,
which is currently considered best by the coordinator. This information is always
available to the coordinator and can be communicated to each computing node using a
two-way keep-alive protocol.

The nature of the proposed distributed implementation of IDA* search algorithm is
such that the length of partial solutions generated by the coordinator is increasing with
the addition of computing nodes. This results in the partitioning of the original search
space and in the simplification of the task of each computing node. However, this also
results in situations where computing nodes can only find feasible solutions that are
far from optimal; in some cases, feasible solutions may not even exist. It is important
to maintain a balance between the positive and negative effects of partitioning of the
search space. If the chosen number of computing nodes is too high, too many of them
will be exploring “dead end” search subspaces, where only expensive feasible
solutions can be found. In such situations, the coordinator’s computational load will
be too high because it will need to generate an excessive number of partial solutions.
Coordinator also will be overloaded with a very high communication overhead
because it will need to send all generated partial solutions to the computing nodes and
receive solutions back from them.

The efficiency of a distributed implementation of IDA* search algorithm can be
measured by the speedup gained by adding more computing nodes. Given a problem
of a fixed size (as discussed in the following section) the speedup usually does not
increase linearly with the number of computing nodes. This indicates that the overall
efficiency of the problem-solving process eventually starts to decrease as the total
number of computing nodes grows. This situation is best described by Amdahl’s law
stipulating that every algorithm has a certain sequential component, which cannot be
reduced by adding more processors; therefore as the number of processors grows, the
efficiency of the system drops.

5 Experimenting with the Algorithm

To prove the viability of our distributed implementation of IDA* search algorithm, we
conducted a range of computational experiments. We considered a problem of finding
the shortest path on a geographical map consisting of 180 locations. The feasibility of
the algorithm was tested using a varying number of computing nodes running on
actual Dell Axim PDAs and simulated mobile devices with realistic performance
characteristics running within emulators on host workstations. A central server
(coordinator) was responsible for generating partial solutions, sending them along
with the adjacency matrix to each computing node, collecting the results from them,
and identifying the optimal solution from a number of feasible solutions. In these

experiments, no provisions were made for timing out of the computing nodes since the
computers were used exclusively for this experiment.

Using the same adjacency matrix, we considered four different instances of the
shortest path problem with different initial and goal locations. Each instance of the
problem was solved using a non-distributed version of the IDA* search algorithm. The
time of finding this solution was used to calculate the relative speedup achieved by the
pervasive system by using distributed implementation of the same algorithm. Each
instance of the algorithm was solved by the pervasive computing system consisting of
an incrementally increasing number of computing nodes.

In the first series of experiments, we tested our distributed implementation of IDA*
search algorithm with no shared memory. Each computing node received its own
partial task together with the adjacency matrix from the coordinator and was allowed
to run the algorithm until a feasible solution was found or it was determined that a
feasible solution does not exist due to the restrictions imposed by the original partial
solution. Upon the completion of this task, each computing node sent its results back
to the coordinator. In each experiment in this series, we solved each of the four
problems using a fixed number of computing nodes; the number of computing nodes
gradually changed from one to fifty in the experiments conducted in this series. In our
implementation of the algorithm, using just one computing node was different from
solving the same problem using a non-distributed algorithm. If a distributed algorithm
uses a single computing node, that node starts computations from the partial path it
received, which consists of the initial location and one of its immediate neighbors. In
each experiment, we measured the time needed by a computing node to complete its
respective computational task. The speedup was measured as the ratio of the time
needed to solve a given problem using a non-distributed IDA* algorithm and the
average time taken by the entire pervasive computing system to solve the same
problem. Fig. 3 shows the complete results of this series of experiments.

0

2

4

6

8

10

0 10 20 30 40 50

Number of computing nodes

S
p

ee
d

u
p

Problem 1 Problem 2 Problem 3 Problem 4

Fig. 3. Speedup achieved by distributed IDA* search algorithm with no shared memory

As can be seen in Fig. 3, the speedup tends to increase as the number of computing
nodes grows. The graphs shown in Fig. 3 contain a mix of surges and plateaus with
occasional dips. The surges are formed when the coordinator generates a new partial
solution that significantly reduces the search space for one of the computing nodes.
For example, consider a problem of finding the shortest path from I to G on a graph
shown in Fig. 1. Suppose that for a given experiment, there are six computing nodes,
which receive the following partial solutions: I-A, I-B, I-E, I-J, I-M and I-N. The next
experiment will include seven computing nodes, which will receive the following
partial solutions: I-A, I-B, I-E, I-J-F, I-J-L, I-M and I-N. It is possible to assume that
the computing nodes receiving partial solutions I-J-F and I-J-L will produce optimal
solutions significantly faster than other computing nodes because the size of their
search spaces has been significantly decreased.

Given the discrete nature of the shortest path problem, certain combinations of
partial solutions resulted in a better solution time compared to other, often very similar
combinations. The dips in the graphs shown in Fig. 3 are formed as a result of moving
from a “good” combination of partial solution to a somewhat “worse” combination.
Nevertheless, the overall trend of the graphs reflects the improved speed of finding an
optimal solution with the increased number of computing nodes. Obviously, the
plateaus in the graphs shown in Fig. 3 are generates by sequences of experiments that
do not result in a surge or a dip. It is important to note that the increasing speedup
trend is not going to continue indefinitely. Eventually, the curve will saturate due to
the reasons described in the previous section.

0

20

40

60

80

0 10 20 30 40 50

Number of computing nodes

S
p

ee
d

u
p

Problem 1 Problem 2 Problem 3 Problem 4

Fig. 4. Speedup achieved by distributed IDA* search algorithm with shared memory

In the second series of experiments, we tested our distributed implementation of
IDA* search algorithm with shared memory (Fig. 4). Similarly to the first series of
experiments, each computing node received its own partial task and the corresponding
adjacency matrix from the coordinator. Unlike the previous series of experiments,
each computing node periodically received the cost value f(S) of a feasible solution S
that was currently considered best by the coordinator. This information was delivered

using the keep-alive protocol discussed in the previous section. In a situation when a
given computing node N is working on a solution Sn whose current cost f(Sn) ≥ f(S), N
was required to terminate its calculations because it would be unable to find a feasible
solution whose cost is lower than f(S). The results of measuring the speedup achieved
by our distributed implementation of IDA* algorithm with shared memory are shown
in Fig. 4. Overall, the speedup is several times higher than in the previous series of
experiments, in which we tested our implementation without using shared memory. It
is also noteworthy that the speedup graphs of this experiment tend to have more
pronounced surges and very few dips. Although the performance of this
implementation is significantly better than of the previous one, it is achieved by a
periodic exchange of messages between the coordinator and each of the computing
nodes using the keep-alive protocol. It is also important to note that the
communication overhead increases with the number of computing nodes. Similarly to
the previous series of experiments, a very high number of nodes may result in the
overloading of the coordinator and in the overall decrease in the efficiency of the
problem-solving process.

6 Summary

In this paper we presented a distributed implementation of IDA* search algorithm.
This algorithm is designed specifically for distributed applications running within a
pervasive computing system and is aimed to illustrate the feasibility of a mechanism
for offloading computationally intensive tasks from a mobile device with limited
resources and distributing these tasks within a pervasive system. Such pervasive
systems consist of a large number of mobile devices with relatively low-power
processors. Computational problems solved in such systems are initiated by a single
computational node, which also serves a coordinator in the problem-solving process.
We view the community of computational nodes as a multi-agent system, in which
each node is capable of solving its own task, but it has limited resources and therefore
must rely on cooperation with other nodes to solve larger tasks.

Experimental results presented in this paper indicate that distributed
implementation of IDA* search algorithm can be enhanced by allowing computational
nodes to communicate via a shared memory. However, it is important to keep the
balance between the gains in speed and the overhead of exchanging messages needed
to implement the shared memory.

References

1. Durfee, E., Lesser, V., Corkill, D.: Trends in Cooperative Distributed Problem Solving.
IEEE Transactions on Knowledge and Data Engineering, March 1989, 1(1), pp. 63-83.

2. Folding@home, Protein Folding Simulation Project: Available at
http://folding.stanford.edu.

3. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer Applications, 15(3), 2001.

4. Grama, A., Kumar, V.: State of the Art in Parallel Search Techniques for Discrete
Optimization Problems. IEEE Transactions on Knowledge and Data Engineering.
January/February 1999, pp. 28-35.

5. Jennings, N., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and
Development. Autonomous Agents and Multi-Agent Systems Journal, N.R. Jennings, K.
Sycara and M. Georgeff (Eds.), Kluwer Academic Publishers, Boston, 1998, 1(1), pp. 7-38.

6. Korf, R.: Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1985), pp. 97-109.

7. Korf, R.: Artificial Intelligence Search Algorithms. Algorithms and Theory of Computation
Handbook, CRC Press, 1999.

8. Kuang, H., Bic, L., Dillencourt, M.: Iterative Grid-Based Computing Using Mobile Agents.
In Proceedings of the 2002 International Conference on Parallel Processing, T.
Abdelrahman (Ed.), 2002, pp. 109-117.

9. O'Hare, G., Jennings, N.: Foundations of Distributed Artificial Intelligence, John Wiley and
Sons, 1996.

10. Pearl, J.: Heuristic-Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley, 1984.

11. Powley, C., Korf, R.: Single-agent Parallel Window Search. IEEE Transactions on Pattern
Analysis. 13(5), 1991, pp. 466-477.

12. Reinefeld, A., Schnecke, V.: AIDA* – Asynchronous Parallel IDA*. In Proceedings of 10th
Canadian Conference on Artificial Intelligence, Banff, Alberta, 1994, pp. 295-302.

13. M. Weiser, “The Computer for the Twenty-First Century,” Scientific American, Sep 1991,
pp. 94-104.

