
Artif Intell Rev (2010) 33:275–306
DOI 10.1007/s10462-010-9156-z

A study of the effect of different types of noise
on the precision of supervised learning techniques

David F. Nettleton · Albert Orriols-Puig ·
Albert Fornells

Published online: 27 January 2010
© Springer Science+Business Media B.V. 2010

Abstract Machine learning techniques often have to deal with noisy data, which may
affect the accuracy of the resulting data models. Therefore, effectively dealing with noise is
a key aspect in supervised learning to obtain reliable models from data. Although several
authors have studied the effect of noise for some particular learners, comparisons of its effect
among different learners are lacking. In this paper, we address this issue by systematically
comparing how different degrees of noise affect four supervised learners that belong to dif-
ferent paradigms. Specifically, we consider the Naïve Bayes probabilistic classifier, the C4.5
decision tree, the IBk instance-based learner and the SMO support vector machine. We have
selected four methods which enable us to contrast different learning paradigms, and which
are considered to be four of the top ten algorithms in data mining (Yu et al. 2007). We test
them on a collection of data sets that are perturbed with noise in the input attributes and noise
in the output class. As an initial hypothesis, we assign the techniques to two groups, NB
with C4.5 and IBk with SMO, based on their proposed sensitivity to noise, the first group
being the least sensitive. The analysis enables us to extract key observations about the effect
of different types and degrees of noise on these learning techniques. In general, we find that
Naïve Bayes appears as the most robust algorithm, and SMO the least, relative to the other
two techniques. However, we find that the underlying empirical behavior of the techniques
is more complex, and varies depending on the noise type and the specific data set being
processed. In general, noise in the training data set is found to give the most difficulty to the
learners.
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1 Introduction

Supervised learning techniques are applied to extract novel, interesting and useful data from 
real-world problems. An important characteristic of real-world problems is that the training 
and/or test data frequently contains noise. That is, the quality of the data may be decreased by 
errors or deviations produced in the data collection phase, as a consequence of human error 
in translating information or due to limitations in the tolerance of the measurement equip-
ment. This may result in errors in the values of the attributes (attribute noise) or in the class 
of the instances (class noise). In general, noisy data may bias the learning process, making 
it more difficult for learning algorithms to form accurate models from the data. Therefore, 
developing learning techniques that effectively and efficiently deal with these types of data 
is a key aspect in machine learning. Recently, several works have studied the effect of noise, 
including attribute noise and class noise, for specific learners such as C4.5 (Zhu et al. 2003; 
Zhu and Wu 2004). Nevertheless, comparisons of the effect of noise on different learning 
paradigms are lacking.

The purpose of this work is to provide a fair comparison of the effect of attribute noise 
and class noise on the models created by four learning techniques that belong to different 
learning paradigms: (a) the Naïve Bayes probabilistic classifier (John and Langley 1995); (b) 
the C4.5 decision tree (Quinlan 1993); (c) the IBk instance-based algorithm (Aha et al. 1991) 
and (d) the SMO (Platt 1998) support vector machine (Vapnik 1995). We have selected four 
methods which enable us to contrast different learning paradigms, and which are considered 
to be four of the top ten algorithms in data mining (Yu et al. 2007). The performance of 
these four systems is compared on a collection of thirteen classification problems which are 
systematically perturbed with different proportions of attribute noise and class noise. The 
results enable us to highlight the strong and weak characteristics of the different approaches 
when presented with different degrees of noise, and to group the techniques in terms of their 
relative behaviors. The whole analysis is developed from the following initial hypothesis.

Initial hypothesis: Given the characteristics of each learning technique, we initially pro-
pose that NB and C4.5 have specific properties which should make them less sensitive to 
noise. On the other hand, we initially propose that SMO and IBk will be the two learners 
most sensitive to noise, again as a consequence of specific properties of these techniques. In 
Sect. 3 of the paper, we will go into the details of the properties of each learning technique, 
with respect to their robustness to noise, and to justify the initial hypothesis. Therefore, we 
initially group C4.5 with NB, expecting them to give better results relative to IBk and SMO. 
However, we highlight that this initial grouping is a theoretical characterization for conve-
nience, and the specific noise tolerance characteristics of the algorithms described in Sect. 3, 
together with the empirical results of Sect. 5, will bring to evidence a more complex situation.

The structure of the present paper is as follows: in Sect. 2 we summarize related work in 
noise analysis and different approaches. In Sect. 3 we present, in a summarized form, the 
four chosen learning techniques and we discuss the theoretical noise tolerance mechanisms 
of each technique. Section 4 describes the data sets which have been used for the experiments 
and explains the methodology used for the noise generation. Section 5 presents and analyzes 
the results, identifying any trends and reaching some conclusions about the performance of 
the different algorithms for different noise types and percentages. We analyze the results 
from different points of view: arithmetic mean, geometric mean, rankings, class imbalance, 
type of noise and specific data sets. Section 6 summarizes the results in terms of the different 
points of view which give different groupings for the four techniques. Finally in Sect. 7 we 
give the overall conclusions.
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2 Related work

The presence of noise in data is mainly related to the way in which it is acquired and pre-
processed from the environment. In this sense, two main sources of noise can be identified:
(1) the implicit measurement error introduced by sensors such as in electrical engineering, sig-
nal processing, or hardware sensor calibration domains; and, (2) the random error introduced
by batch processes or experts when they gather data such as in a document digitalization pro-
cess. The impact of noise in a data set has as result a partial alteration of the attributes’ values
and, as a consequence, it influences the algorithms’ performance. Therefore understanding
its impact in the performance of machine learning algorithms is a key issue for improving
their reliability, and it has motivated the study of how to generate and introduce noise in data
with the aim of measuring its impact in algorithms. The next sections describe different ways
of generating noise and review some of the most relevant papers in the literature related to
the effect of noise on machine learning algorithms, with special emphasis on the work of
Quinlan (1986, 1993) and Zhu et al. (2003), Zhu and Wu (2004).

2.1 Noise generation

The generation of noise can be characterized in different ways. Firstly, it can be characterized
by its distribution, which can be, for example, normal (Gaussian) (Zhu et al. 2003; Zhu and
Wu 2004). Secondly, noise can be characterized by where the noise is introduced, which
can be in the input attributes, in the output class, in the training data, in the test data, or a
combination of all of these. When the noise is in the training data, as a consequence, the
learning process and resulting model is impaired by imperfect examples. This situation has
been studied previously in the literature for specific algorithms, such as ID3 tree induction
(Quinlan 1986) and C4.5 tree induction (Quinlan 1993; Zhu et al. 2003; Zhu and Wu 2004).
Finally, noise can be characterized by distinguishing if the magnitude of the generated noise
values is relative to each data value of each variable, or if it is relative to the min, max and
standard deviation for each variable (Zhu et al. 2003; Zhu and Wu 2004).

Our study offers an additional aspect to the analysis of the effects of noise on supervised
learning, given that many studies tend to use just one machine learning method, and do not
tend to compare results from different methods. Also, some studies do not clearly explain
how they define and generate noise, and why they use one type of noise, and not another.

2.2 The impact of noise in algorithms

In Quinlan (1986), a study is made of the effect of noise on machine learning techniques,
and specifically on the ID3 induction algorithm. This paper analyzed how ID3 should handle
noise, from a heuristic point of view, for different noise levels which were applied in three
different ways: (a) to the values of the most noise-sensitive attribute; (b) to the values of all
attributes simultaneously, and (c) to the class information.

In Zhu et al. (2003), Zhu and Wu (2004), Zhu analyzed different types of noise: in the
input attributes, in the output class, in the test data, in the training data, in both the training
and test data. Zhu realized an exhaustive analysis of noise using the C4.5 algorithm. Some
comparative testing is done using different techniques (C4.5, HCV, 1R and Prism).

In current data mining philosophy, some machine learning techniques are considered more
“robust” to noise, errors and missing values than others. For example, ID3 cannot process
missing values, whereas C4.5 has a heuristic which incorporates a “lost information” calcu-
lation. Another approach is to estimate “a priori” the “risk” of there being noise or errors,



D. F. Nettleton et al.

and assigning “weights” to variables and/or data ranges to proportionally compensate the 
risk. Following this approach, one can define a weighting vector which corresponds to given 
data ranges, for each input variable, and which can be interpreted as the “reliability” of each 
data range of each variable. In Nettleton (2001) and  Nettleton and Muñiz (2001)), weighting 
coefficients were learned by a genetic algorithm in order to construct a predictive data model, 
which were used to quantify the relevance of the input variables and the reliability of the data 
values, respectively. Also, in the context of aggregation operators, Torra (1997) defined the 
WOWA aggregation operator which uses two weighting vectors to model a data set: vector 
ρ can be interpreted as corresponding to the “relevance” of the variables, and vector ω can 
be interpreted as corresponding to the “relevance” of the data values.

With respect to other studies of noise in data, in the literature (Sloan 1988; Angluin and 
Laird 1988; Goldman and Sloan 1995; Sloan 1995; Meeson et al. 1996; Kearns 1998; Nelson 
2005), we have observed that many approaches tend to reflect and be specific to the domain 
and problem.

In Goldman and Sloan (1995) a study is made of the robustness of Probably Approximately 
Correct (PAC) learning algorithms when the instance space is {0,1}n , and  the examples are  
corrupted by purely random noise affecting only the attributes (and not the labels). The 
results for uniform attribute noise, in which each attribute is flipped independently at random 
with the same probability, are compared with the results for product random attribute noise, 
where each attributei is flipped randomly and independently with its own probabilityi . PAC  
represents a formalism for deciding how much data has to be collected in order for a given 
classifier to achieve a given probability of correct predictions on a given proportion of unseen 
test data. In Sloan (1995) an evaluation is made of the effect on the quality learning by a PAC 
algorithm, of the introduction of four types of noise in the data.

Another consideration is whether the noise is present in the training data, or if we can 
guarantee that the training data is good, but the subsequent test (field) data is that which con-
tains the noise. In Angluin and Laird (1988) a study is made of the problem of learning from 
noisy examples, that is, how a learning algorithm can cope with incorrect training examples. 
Angluin states that when a “teacher” makes independent random errors in classifying the 
example data, the strategy of selecting the most consistent rule for the sample is sufficient, 
and generally requires a relatively small number of examples, in a situation in which the noise 
affects less than half the examples. They state that it was possible to estimate the rate of noise 
using only the knowledge that the rate is less than one half. Finally, in Kearns (1998), a statis-
tical approach to noise tolerant learning is proposed, which considers the problem of learning 
in the presence of classification noise for the probabilistic learning model of Valiant and its 
variants. A general formalization of the class of “robust” learning algorithms is defined, from 
which a novel model is derived for learning from statistical queries. In this model, a learning 
algorithm is restricted from examining individual examples of the unknown target function.

On the other hand, in the context of data acquisition systems, Nelson (2005) presents a  
study to evaluate if the operation of near DC or upwards of 1 GHz, can suffer adverse effects 
from seven types of noise: quantization noise, internal analog-to-digital converter (ADC) 
noise, power-line noise, time skew, aliasing noise, common-mode noise, and radiated noise 
(Nelson 2005). In Meeson et al. (1996) a study is made of the quality of data and its effect 
on the reliable interpretation of EIT images in the clinical environment. A clinical imag-
ing system has to be assessed for each clinical investigation, with comparison to a known 
standard, or with previous studies. The method depends on calculating the variances of the 
differences in reciprocity measurements as a function of the distance between the current 
drive electrodes and the receive voltage electrodes. These measurements fit the ‘noise 
model’,
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with minimal interference from physiological variability, and permit a figure of merit to be
calculated which is a representation of the noise presented at the inputs to the system.

3 Heuristics of chosen algorithms

The present work focuses on analyzing the influence and impact of the noise on different
types of learning algorithms. For the purposes of the present study, we have grouped the
learning algorithms into two families, as mentioned in the introduction to the paper. Group
1 is comprised of Naïve Bayes and C4.5, and Group 2 is comprised of IBk and SMO. Now
we will comment the justification for grouping the learning algorithms in this manner. With
reference to Group 1, NB is a Bayes learner which uses conditional probabilities to derive
posterior probabilities. As conditional probability values are relatively less sensitive to data
errors, we would expect that NB would perform relatively well when compared with the
other chosen methods. C4.5 includes some specific aspects to make it less sensitive to noise,
such as the detection of over fitting and the gain ratio heuristic.

On the other hand, with reference to Group 2, SMO and IBk rely on each single instance
to derive a decision model, and therefore we would expect that SMO and IBk will be the two
learners which are most sensitive to noise. Thus, it seems reasonable to group SMO and IBk
together in Group 2 as the most sensitive to noise (when compared with Group 1), and NB
and C4.5 together in Group 1 as the least sensitive to noise (when compared with Group 1).

The noise tolerant properties of each technique are explained in more detail in the follow-
ing Sects. 3.1 and 3.2.

We have used the versions of these algorithms which are available in Weka Version 3.5.5
(Hall et al. 2009): (1) Naïve Bayes probabilistic classifier (John and Langley 1995); (2) C4.5
decision tree (Quinlan 1993); (3) IBk instance-based algorithm (Aha et al. 1991) and (4)
SMO (Platt 1998) support vector machine (Vapnik 1995). We have selected four methods
which enable us to contrast different learning paradigms, and which are considered to be four
of the top ten algorithms in data mining (Yu et al. 2007), thus allowing other researchers to
compare results.

This section briefly describes how they work, with special reference to each method’s
inherent noise handling mechanisms, allowing us a better understanding of the results of
the impact of noise on them in the experimentation section. We only briefly introduce each
learning method given that we assume that the reader already has a basic knowledge of these
popular methods, before going into a description of what noise handling capabilities, if any,
are inherent in each technique. If the reader wishes more detail about the basic functionality
of each technique, s/he can refer to the given corresponding references in the literature.

3.1 Group 1

Group 1 represents the two types of algorithms which we initially presume will be the least
sensitive to noise.

3.1.1 Naïve Bayes

The Naïve Bayesian (NB) classifier (John and Langley 1995) is a simple probabilistic classi-
fier based on the application of the Bayes’ theorem which represents and processes knowledge
which includes probabilistic information about data. It is called ‘naïve’ because it makes two
key simplifying assumptions: (a) the predictive attributes are conditionally independent with
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respect to the output class; (b) there are no latent or hidden attributes which influence the 
prediction process. Considering these two assumptions, NB estimates the parameters of a 
simplified Bayes probabilistic model by considering the relative frequencies of each attribute 
and value per class in the training data set.

Noise Tolerance: one significant characteristic of Naïve Bayes in general is the assump-
tion of the independence of the different input attributes, which may be an advantage when 
noise is introduced into the data set. NB is also a Bayes learner which uses conditional prob-
abilities to derive posterior probabilities. As conditional probability values are relatively less 
sensitive to data errors, this would lead us to expect that NB would perform more favorably 
with respect to the other chosen learning methods. The numeric estimator precision values 
are chosen based on the analysis of the training data. As a consequence, the classifier is not 
an “updateable classifier”, which is normally initialized with zero training instances.

In John and Langley (1995), a benchmarking was carried out of two versions of a Bayesian 
Classifier, both of which model a probability distribution. They are proposed as solutions to 
the handling of continuous variables by density estimation: the first version assumes normal-
ity and models each conditional distribution using a single Gaussian; the second version uses 
a non-parametric kernel density estimation. Their results demonstrate a significant reduction 
in error on several of the test data sets.

Version used: We have used the “Naive Bayes” classifier (John and Langley 1995), which 
uses estimator classes, as implemented in Weka 3.5.5. The following Weka parameters were 
used: debug = false; useKernelEstimator = false; useSupervisedDiscretization = false. The 
Weka class is “weka.classifiers.bayes.NaiveBayes”.

3.1.2 C4.5—decision tree generator

C4.5 (Quinlan 1993) is an induction algorithm based on an iterative process in which a 
decision tree that correctly classifies a successively greater number of cases (defined by the 
‘window size’) is iteratively built. In each iteration, a sub-model is executed against the 
remaining cases (those which are not in the window) and the incorrectly classified cases 
are given precedence to be included in the next window (which will be x% bigger than the 
previous window). It is assumed that the distribution of cases and attribute values is well 
balanced.

Noise Tolerance: As indicated in Fürnkranz (1997), a principal problem with learning 
techniques which rely on windowing is that, in noisy domains, the process will eventually 
incorporate all noisy examples into the learning window, because they will be ‘misclassified 
by a good theory.’ Also, the window will typically contain a subset of the original learning 
examples, which after a few iterations, can give arise to a situation where the proportion of 
noisy examples in the learning window is much higher than the noise level in the entire data 
set, which will make learning considerably more difficult.

It is stated in Quinlan (1986), that, “for higher noise levels, the performance of the correct 
decision tree on corrupted data was found to be inferior to that of an imperfect decision tree 
formed from data corrupted to a similar level.”

It is concluded that a worse result is obtained if the noise is filtered out of the attribute 
information in the training set, when the test set contains similar levels of noise in the same 
attributes. Also, it is better to keep the instances which contain attribute noise in the training 
data set, so as not to eliminate valuable information in other attributes of the instance.

In general, in domains with noise or uncertainty, the system may try to decrease the train-
ing error by completely fitting all the training examples. Therefore we should try to avoid 
‘over-fitting’ by not including branches that fit the data too specifically. In order to avoid
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‘over-fitting’ to the noise, two options are open when building a decision tree: (a) pre-prune:
stop growing a branch when information becomes unreliable; (b) post-prune: take a fully-
grown decision tree and discard unreliable parts. C4.5’s method derives a confidence interval
from the training data and uses a heuristic limit, derived from this, for pruning, following a
standard Bernoulli-process-based method. But, this process is based on possibly “unreliable”
statistical assumptions, given that it depends on the training data.

In the context of the partition of the training data set, the heuristic of C4.5 has a key
dependence on an information gain calculation to evaluate which attribute to incorporate
next, and where to incorporate it in the induction tree. But, any disturbance to the values of
an attribute may change its correlation with other attributes and therefore provoke an errone-
ous decision by C4.5. This problem is addressed in Zhu and Wu (2004), making reference to
the ‘Information Gain’ measure (Hunt et al. 1966), used to classify the correlation direction
between attribute A and attribute B, which they also understand as the mutual information
between A and B. This measure is given by Eq. 1:

GainB(A) = I (A; B) =
∑

a

∑

b

P(a, b) log
P(a, b)

P(a)P(b)
(1)

where a and b indicate the attribute values of attributes A and B, respectively.
Version used: We have used the “J48” classifier (Quinlan 1993), implemented in Weka

3.5.5. The following Weka parameters have been used: binary splits = false; confidence fac-
tor = 0.25; debug = false; minNumObj = 2; numFolds = 3; reducedErrorPruning = False;
saveInstanceData = False; Seed = 1; subtreeRaising = True; unpruned = False; useLaplace
= False. The Weka class is “weka.classifiers.trees.J48”

3.2 Group 2

Group 2 represents the two types of algorithms which we propose will be the most sensitive
to noise.

3.2.1 IBk—instance based learning

The Instance Based Learning algorithm (IBk) (Aha et al. 1991), retrieves the K most similar
cases for proposing a new solution. The basic similarity function used is the Euclidean dis-
tance. This mechanism is also known as k-NN, or K-Nearest-Neighbors classifier. We have
used the method with K = 1.

Noise Tolerance: with reference to the family of ‘IBN’ (Instance Based) algorithms, the
IB1 method relies on each single instance to derive the decision model, hence the decision
regions of IB1 can be easily altered by the inclusion or exclusion of a single noisy instance.
IB2 was an improved version of IB1 in terms of memory storage requirements; IB3 was
an extension to improve tolerance to noisy data by only retaining some exemplars of each
class and discarding ones that did not have a good classification history. IB4 and IB5 were
described in Aha (1992) as extensions to IB3, which handled irrelevant and novel attributes.

On the other hand, IBk in Weka has a similar approach but with the following differences.
The ‘IBN’ algorithms employ the nearest neighbor approach, which classifies an instance
as being a member of the same concept as its most similar instance. The k-nearest neighbor
classification function does the same, but takes a majority vote among its k most similar
instances (we set k to 1).”

The difference between IBk using 1 nearest neighbor and IB1 in Weka is that IB1 always
uses one training instance to make a prediction, whereas IBk might use more than 1. For
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example, if there are ties in the distance for the nearest neighbor, they are voted to produce a 
prediction. On the other hand, IB1 just uses the first one found. Therefore, in terms of noise 
tolerance, we would expect IBk to perform better than IB1.

Version used: We have used the “IBk” classifier (Aha and Kibler, 1991), implemented in 
Weka 3.5.5. The following Weka parameters have been used: KNN = 1; Crossvalidate = 
false; debug = false; distanceWeighting = no distance weighting; meanSquared = false; nea-
restNeighborSearchAlgorithm = LinearNN—A weka.core.EuclideanDistance; windowSize 
= 0. The Weka class is “weka.classifiers.lazy.IBk”

3.3 SMO

Support Vector Machines (SVMs) (Vapnik 1995) represent a family of supervised learning 
methods for classification and regression. Focusing on classification tasks, the objective of 
SVM is to build a hyperplane that separates instances of different classes and that maximizes 
the distance (or the margin) with the nearest data points, which are addressed as support 
vectors. In order to calculate the margin, it calculates two parallel hyper planes, one on each 
side of the separating hyper plane. These parallel hyper planes are used to process the two 
data sets. In general, a good separation is achieved when a hyper plane has a greater dis-
tance from the neighboring point data values of both classes. This is so because in general a 
greater margin implies a reduction in the generalization error of the classifier. In Platt (1998), 
a new algorithm for training SVMs was presented, which is called ‘Sequential Minimal 
Optimization’ (SMO).

Noise Tolerance: SMO relies on the support vectors, which are identified by considering 
each single instance, to derive the decision model. Thus, as in the case of IB1, the hyper-
planes of SMO can be easily altered by inclusion or exclusion of a single noisy instance. 
Also, the implicit interdependence of the input attributes (as they are fused into just two 
factors as required by the SVM), may also cause difficulties when noise is introduced into 
the training data, which disrupts the interrelations and correlations between the attributes. 
Thus, we would expect that SMO will be a learning technique which is more sensitive to 
noise than the Group 1 techniques (NB and C4.5).

Version used: We have used the SMO algorithm (Witten and Frank 2005), which imple-
ments Platt’s sequential minimal optimization algorithm (Platt 1998) for training a support 
vector classifier (Vapnik 1995), implemented in Weka 3.5.5. The following parameters have 
been used: buildlogisticModels = false; C = 1.0; checksTurnedOff = false, debug = false; 
epsilon = 1.0E-12; filtertype = normalized training data; kernel = Polykernel—C 250007-
E1.0; numfolds = −1; randomseed = 1; tolerance parameter = 0.0010. The Weka class is 
“weka.classifiers.functions.SMO”

3.4 Summary of the noise tolerance characteristics of the techniques

Naïve Bayes: has two strong points: (s1) the assumption of the conditional independence 
(Naive) of the different input attributes; (s2) a Bayes learner uses conditional probabilities 
to derive posterior probabilities.

C4.5: the first strong point (s1) is that it derives a confidence interval from the training 
data and uses a heuristic limit, derived from this, for pruning, following a standard Bernoulli-
process-based method. However, a weak point (w1) is that this process is based on possibly 
“unreliable” statistical assumptions, given that it depends on the training data. The second 
strong point (s2) would be the use of the Information Gain measure to classify the correlation



A study of the effect of different types of noise

direction between attribute A and attribute B, when choosing the next decision attribute for
the tree.

IBk: the main weak point would be (w1) that the basic method relies on each support
vector (and by extension on each single instance) to derive the decision model, hence the
decision regions can be easily altered by the inclusion or exclusion of a single noisy instance.
However, as a strong point, (s1) if we use IBk, it may use more than one training instance to
make a prediction, when there are ties.

SMO: the main weak point (w1) would be that the basic method relies on each single
instance to derive the decision model. Thus, as in the case of IBk, the hyper planes of SMO
could be easily altered by inclusion or exclusion of a single noisy instance. A second weak
point (w2) would be the implicit interdependence of the input attributes, in contrast to the
independence assumption of NB.

4 Design of experiments

To create the test bed, we designed a synthetic data set and selected 6 problems from the UCI
repository (Asuncion and Newman 2007). The synthetic data set was designed to have no
noise, a high class imbalance, and one redundant variable; so, this problem permitted testing
the ability of the learners to deal with under-sampled concepts and to generalize useless attri-
butes regardless of the degree of noise. The other data sets were selected for their different
data structures and complexities.

All the data sets consisted of only numerical attributes. Data sets that contained m classes
(where m > 2) were transformed to m 2-class data sets. To achieve this transformation, we
applied the following procedure. For each one of the m classes, we created a data set that
contained the instances of the selected class and labeled all the other instances with a new
class value. Therefore, this procedure enabled us to analyze whether the learners could extract
accurate models for each of the classes of the problem. This process resulted in a total of 13
data sets, whose characteristics are summarized in Table 1. In addition, all the data sets were
perturbed with different degrees of attribute and class noise.

In the remainder of this section we explain how the synthetic data set was generated and
how the attribute noise and the class noise were added to the problems. Furthermore, we
provide a case study that shows the effect of noise. This case study is not to extract general
conclusions, but to intuitively show some possible difficulties that learners may tackle to
extract accurate models from noisy problems.

With reference to Table 1, we can distinguish three main groups of data sets: (1) those with
a greater complexity due to the number of attributes and the relations between them (wbcd,
bpa and pim); (2) those with a class imbalance problem (INI, thy2c1, th2yc2, th2yc3, bal2c1);
(3) other data sets (bal2c2 and bal2c3, iris2c1, iris2c2, iris2c3). This enables us to analyze
the results also in terms of which methods give the best results for more complex data sets,
and which methods give the best results for data sets with a class imbalance problem. The
chosen data sets are frequently used in the literature for benchmarking, which will facilitate
the comparison of our results with those of other investigators In Fig. 1 we see a scenario of
over fitting to noisy instances by a rule induction technique.

4.1 INI synthetically generated data set

We have designed a simple artificial problem based on a series of intervals. By creating
the data set ourselves with fixed rules/ranges, we can guarantee that the data set is 100%
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Table 1 Benchmark data sets for
our experiments

Data Number of Number of Number of
set instances attributes instances (class1, class2)

wbcd 699 9 458, 241

bpa 345 6 200, 145

pim 768 8 500, 268

INI 210 4 170, 40

thy2c1 215 5 185, 30

thy2c2 215 5 180, 35

thy2c3 215 5 150, 65

bal2c1 625 4 576, 49

bal2c2 625 4 337, 288

bal2c3 625 4 337, 288

iris2c1 150 4 100, 50

iris2c2 150 4 100, 50

iris2c3 150 4 100, 50

Fig. 1 Scenario of over fitting to noisy instances by a rule induction technique

Fig. 2 Pseudo-code of rules used to generate instances for the INI synthetic data set

free from noise. On the other hand, the UCI data sets, as they are based on real data (data 
descriptions of real objects or events), may contain a certain amount of background noise, 
erroneous values, and so on. We have created the INI data set with 4 attributes which are 
partitioned so as to create three intervals of equal length, assuming that the attribute has a 
minimum value of 0 and a maximum value of 1. The intervals go from 0 to 0.3, from 0.3 to 
0.7, and from 0.7 to 1. In Fig. 2 we see the rules which were applied to generate the instances. 
If we run C4.5 on the training data set (fold 8), it produces the pruned tree shown in Fig. 3. 

We observe that for this data set there is a significant imbalance of the number of instances 
per class: the ratio of class1 to class 2 is approx. 3:1. In the training set (fold 8), there are 
153 instances of class 1 and 36 instances of class 2. In the test data set (fold 8) there are 17
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Fig. 3 Pruned tree generated by
rule induction on INI training
data set (fold 8)

Table 2 Basic statistics for INI
data set

Min Max Mean SD

V1 0.0 1.0 0.752 0.266

V2 0.0 1.0 0.554 0.359

V3 0.0 1.0 0.368 0.336

V4 0.0 0.7 0.177 0.167

Table 3 Variable correlations for
INI data set

V1 V2 V3 V4

V1 1 0.64 0.37 0.18

V2 1 0.66 0.33

V3 1 0.57

V4 1

instances of class 1 and 4 instances of class 2. This represents an approximate ratio of 81% to
19%. This imbalance is introduced intentionally to observe the performance of the different
algorithms for the minority class.

With reference to Tables 2 and 3, we can see a summary of basics statistics and correlations
between variables for the INI data set. We observe that all values for the data variables are in
the range from 0.0 to 1.0 and that the highest correlations are V2 with V3 (0.66) and V1 with
V2 (0.64).

4.2 Generation of noise—general discussion

The generation of noise can be classified in different ways: (1) by its distribution, which can
be, for example, normal or Gaussian; (2) by where the noise is introduced, which can be in
the input attributes, in the output class, in the training data, in the test data, or a combination
of all of these; (3) if the magnitude of the generated noise values is relative to each data value
of each variable, or if it is relative to the min, max and standard deviation for each variable.

When we consider the distribution (1), values are perturbed under some constraints such
as for example altering values according to some data distributions like Normal or Gaussian
distribution. In the case of numerical attributes, the distribution is typically Gaussian, whereas
for categorical attributes (such as the output class), a Normal distribution is typically used.

For example, if we are modifying a value “14” which corresponds to variable C, in the
second case we establish the min (for example, 10) and max(for example, 85) of variable C.
Then we generate a random number with Gaussian distribution, between the ranges 10 and
85. This may result in the value “14” being overwritten with the value “55”, for example. In
the first case (the generated noise is proportional to the value to be modified), the random
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Table 4 Possible situations of
noise in data sets

* A = noise in train, B = noise in
test, C = noise in train and test

Input data Output class

A* D

B

C

number generated would be related to the value “14”, and so a Gaussian distribution based
on the value of “14” as the mean value, would in the majority of cases generate a noise
value between 10 and 18. The alteration of numerical values using a Gaussian distribution
and based on the min/max values of the corresponding variable will be the method used for
generating noise in our experiments (Zhu et al. 2003; Zhu and Wu 2004).

Once we have decided upon the way in which values are altered, the next step is to decide
which attributes have to be modified. This is usually done by generating a random integer
(which serves as an index into the data vector) using a normal distribution. Noise can occur
in different combinations of situations, some of which are listed as follows and summarized
in Table 4.

1. Noise in the test data which affects the input variables.
2. Noise in the training data which affects the input variables.
3. Noise in both the train and the test data which affects the input variables.
4. Noise in the training data which affects the output class.

From a practical point of view, it is interesting to study different perspectives of noise pres-
ence. This perspective reasons that in the case of data such as that from sensors, we assume 
that we train in a controlled environment but with real data, which includes any possible 
errors or background noise in the sensor data.

The training noise may affect the input attributes and/or the output class. When we con-
sider the test data, if the sensor is functioning in the “field” (and therefore generating “test” 
data), it may start to malfunction progressively over time, due to physical deterioration. The 
sensor may also temporarily receive “noise” due to some external agent, after which it returns 
to correct operation.

4.3 Generation of noise—implementation details

In this section we describe how two different types of noise are generated: input attribute 
noise and output class noise.

4.3.1 Attribute noise

The noise is generated and introduced in the test data sets in the following manner. Firstly, for 
each variable, we generate N random numbers Rv with a Gaussian distribution and within 
a range between the max and min of the corresponding variable, to modify the data values, 
where N is equal to the number of examples in the test data set multiplied by the fraction 
of noise (Fn) we wish to introduce in the data set. Then we generate random numbers Rc 
with a uniform distribution within the range 1 to the number of cases, which indicates the 
case whose data value is to be modified. The number of random numbers generated is equal 
to the number of cases multiplied by the desired fraction of noise Fn . This is repeated for 
each variable. This procedure for generating input attribute noise, is adopted from similar
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Table 5 First 5 random values generated for Iris2c1 variables

Value Variable 1 Variable 2 Variable 3 Variable 4

Original
value, ran-
dom value
generated

Exam-
ple to be
modified

Original
value, ran-
dom value
generated

Exam-
ple to be
modified

Original
value, ran-
dom value
generated

Exam-
ple to be
modified

Original
value, ran-
dom value
generated

Exam-
ple to be
modified

1 7.7, 6.1 15 3.8, 2.9 12 1.6, 1.5 20 0.2, 2.5 15

2 6.8, 5.0 19 3.0, 3.3 7 4.4, 2.3 14 1.8, 0.3 1

3 5.1, 5.4 6 2.3, 3.1 11 4.4, 6.0 6 1.2, 1.8 20

4 4.4, 5.6 4 2.6, 2.9 18 5.7, 5.6 13 2.0, 0.8 7

5 4.6, 5.2 17 3.2, 4.0 6 5.6, 1.6 4 1.0, 1.2 16

widely referenced work with machine learning algorithms and artificially generated noise,
specifically that of Zhu et al. (2003), Zhu and Wu (2004) and Quinlan (1986).

Depending on the noise percentage we wish to achieve, we modify the corresponding
number of cases with respect to the complete test data set. For example, if the test data set
has 20 examples, a 10% noise would modify 2 examples randomly chosen in the manner we
have described, for each variable. Each randomly chosen example would have the data value
corresponding to the current variable modified and the randomly generated value between
the given ranges as described previously.

In Table 5 we can see an example of random data value generation (first 5 values per
variable) for the Iris2c1 data set. Both the data value itself, and the example number to be
modified are randomly generated, the former with a Gaussian distribution and the latter with
a Normal distribution. For example, in the case of Variable 2, the first example to be modified
will be example 12 and its current value (3.8) will be overwritten with the noisy value (2.9).
Then, the second example to be modified for Variable 2 will be example 7 whose original
value (3.0) will be assigned a noise value of 3.3, and so on. This is repeated for the number
of values determined by the current noise percentage, and for each variable.

With reference to Fig. 5a, b, we see the distribution of each of the four variables of the
INI data set before and after the introduction of noise. In this case the noise introduced was
50%. Also, the proportions of the output class in each range block are indicated in dark
grey and light grey. Black indicates class 1 and grey indicates class 2. We observe that,
with the introduction of 50% noise, the distribution of each variable in specific ranges is
changed to a certain degree, although the general forms of the distributions remain quite
similar.

In the case of 10% noise for a given data set of 20 instances, the pseudo-code the random
noise generator is shown in Fig. 4.

Likewise, in Fig. 5c, d, we see the distribution of each of the four variables of the Iris2c1
data set before and after the introduction of noise (50%). This time, we observe that with the
introduction of 50% noise, the distributions of variables 1, 3 and 4 are changed to a greater
degree, whereas for variable 2, the distribution is very similar.

4.3.2 Class noise

The class noise is generated in the following manner: First we identify (by a simple fre-
quency count), which is the majority class, assuming our data sets only have two output
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Fig. 4 Pseudo-code of random noise generator for example of 10% noise and 20 instances

classes, which is the case. For example, if there are 20 1’s and 10 2’s in a data set of 30 
instances, then the 1’s will be the majority class. Then, a noise level, Nc is assigned, between 
0 and 1.0. For example, if Nc equals 0.1, this implies a noise level of 10%. Now we repeat 
the following for each instance in the data set: for each instance, a random uniform number 
Ru is generated, between 0 and 1. If Ru is less than Nc, then we modify the corresponding 
instance. For a chosen instance, we then check if its class is the majority class (in the example, 
the 1’s), and if so, we change the class value from 1 to the other class (in the example, 2). 
Otherwise (if the class is not the majority class), we do not make any change. We observe 
that the distribution of the noise is uniform. This procedure of generating noise for the output 
class is adopted from similar widely referenced work with machine learning algorithms and 
artificially generated noise, specifically that of Zhu and Wu (2004) and  Quinlan (1986).

5 Results

With the experimental methodology and the aspects highlighted by the case studies of the 
previous section in mind, we are now in position to start with the experimental analysis. 
As aforementioned, we are interested in comparing the performance of the different learn-
ing techniques on data with different proportions of attribute noise and class noise in both 
the training and the test data sets. We have initially grouped the learning techniques into 
two groups, based on their characteristics and their hypothetical sensibility to noise. Group 
1 (NB and C4.5) represents techniques which it is proposed will be more robust to noise, 
and Group 2 (IBk and SMO) represents techniques which it is proposed will be more sen-
sitive to noise. In our experiments, we use two measures to evaluate the learners’ perfor-
mance: (1) the average test accuracy and (2) the geometric test accuracy. In the following 
subsections, these two comparisons are elaborated in more detail, and a discussion of the 
fundamental differences observed in both analyses is conducted throughout this section. 
Furthermore, the effect of noise on particular problems (data sets) and noise types, is also 
studied.

The results are structured in the following manner: in Sect. 5.1, we evaluate the  overall  
performance of the methods using the arithmetic mean of the precision, and the correspond-
ing relative rankings of the methods for each noise combination. In Sect. 5.2, we evaluate  
the overall performance of the methods using the geometric mean of the precision, and the 
corresponding relative rankings of the methods for each noise combination. In this section,
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Fig. 5 a INI data variable distributions for 0% noise. b INI data variable distributions for 50% noise. c Iris2c1
data variable distributions for 0% noise. d Iris2c1 data variable distributions for 50% noise

we also evaluate the performance of the different methods for data sets with class imbalance.
In Sect. 5.3 we evaluate the geometric mean ranking results in more detail in terms of the
type and incidence of noise. Finally, in Sect. 5.4 we evaluate the effect of noise in more detail
by data set, and for two specific data sets, ‘wbcd’ and ‘thy2c1’.
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5.1 Overall performance of the methods: arithmetic mean

As most often done in the literature for these types of comparisons (Zhu et al. 2003; Zhu 
and Wu 2004), in our first analysis we compare the performance of the learning systems 
according to the test accuracy of their models. For this purpose, Table 7 represents the 
summarized results obtained by Naïve Bayes, C4.5, IBk and SMO, respectively, on the 
original data sets and the data sets perturbed with attribute noise and class noise. More spe-
cifically, for each learning method, the systems were trained with the original data set with 
(1) 0% added noise (train0), (2) 10% added noise (train10), and (3) 50% added noise (train50) 
in the input attributes. Each one of these configurations was tested with a data set with (1) 
0% added noise (test0), (2) 10% added noise (test10), and (3) 50% added noise in the input 
attributes (test50). This resulted in nine combinations of training/test data sets with which 
we evaluated the capability of the learners to deal with noise in both the training and the test 
examples. In addition, we also included two configurations that were used to evaluate the 
learners’ performance in data sets with (1) 10% of class noise and (2) 50% of class noise in 
the training instances. Therefore, these two last configurations enable us to study whether the 
learners can obviate a certain proportion of mislabeled training instances. As we proceed, 
several conclusions are drawn from these results. That is, we first statistically compare the 
results and then we analyze the results obtained with particular data sets.

Our first concern was to analyze which algorithms performed the best for each type of 
noise. For this purpose, we first compared the results obtained by the different methods for 
each proportion of noise in the training and test instances. This resulted in 11 different com-
parisons of the four learners. Then, for each comparison, we applied the Friedman’s procedure 
to test the null hypothesis that all the learners performed the same, on average (Friedman 
1937, 1940). In addition, we computed the average rank of each method as follows. For each 
data set, we ranked the learning algorithms according to their performance; the learner with 
highest accuracy held the 1st position, whilst the learner with the lowest accuracy held the 
last position of the ranking. If a subset of learners had the same performance, we assigned 
the average rank of the subset to each of the learners in the subset. Table 6 summarizes 
the p-values returned by the Friedman’s procedure and the average rank and the standard 
deviation of the rank obtained by each learning system for each degree of noise.

With reference to Table 6, the Friedman’s test enabled us to reject the null hypothesis that 
all the learners performed the same on average, at α = 0.10, for the problems with (1) 0%
noise in training and 50% noise in test, (2) 50% noise in training and 0%, 10%, and 50%
noise in test, and (3) 50% class noise in training.

It is important to note that the results shown in Tables 6 and 7 are calculated using the 
arithmetic mean of the precision for the output classes. This will give a biased result when the 
learner favors a majority output class in order to improve the overall precision. In Sects. 5.2 
to 5.4, we calculate the precisions using the geometric mean, which considers the precision 
for each output class, individually, and we compare the results.

In terms of the arithmetic mean precisions, we can see, in Table 6, that the first and second 
best techniques for each category of noise (reading horizontally) are indicated with a grey 
background. Thus, for example, it can be clearly seen that Naïve Bayes is the method that 
presents better average ranks in general (is the best method on average in five degrees of 
noise), followed by IBk and SMO (being the best method on average in three degrees of 
noise), and C4.5 (which is only the best method for one degree of noise). Therefore, we 
could say, in terms of rankings, that these initial results support the hypothesis that the Group 
2 techniques (IBk, SMO) give similar overall performance, whereas the Group 1 techniques



A study of the effect of different types of noise

Table 6 Comparison of the average rank (and standard deviation) of the test accuracy obtained by Group 1
(Naïve Bayes and C4.5) and Group 2 (IBk and SMO)

Rankings based on Arithmetic Test Accuracy  

(1=highest, 4=lowest)

NB C4.5 Ibk SMO Friedman

tr0 ts0
†

2.23 ± 0.98 2.77 ± 1.10 2.46 ± 1.09 2.54 ± 1.22 0.746 

tr0 ts10 2.35 ± 0.96 3.00 ± 1.05 2.15 ± 1.13 2.50 ± 1.10 0.348 

tr0 ts50 2.46 ± 1.22 2.92 ± 0.92 2.85 ± 1.12 1.77 ± 0.73 0.074

tr10 ts0 2.23 ± 0.99 2.54 ± 1.03 2.65 ± 1.13 2.58 ± 1.25 0.830 

tr10 ts10 2.69 ± 0.93 2.42 ± 1.03 2.42 ± 1.24 2.46 ± 1.22 0.936 

tr10 ts50 2.50 ± 1.16 2.65 ± 0.81 2.85 ± 1.13 2.00 ± 1.02 0.329 

tr50 ts0 1.92 ± 1.02 2.04 ± 0.88 3.42 ± 0.75 2.62 ± 1.11 0.009

tr50 ts10 1.92 ± 0.84 2.35 ± 0.76 3.35 ± 0.90 2.38 ± 1.20 0.024

tr50 ts50 1.81 ± 0.77 2.42 ± 0.91 3.73 ± 0.54 2.04 ± 1.03 0.000

tr10c ts0
‡

2.38 ± 1.08 2.31 ± 1.08 3.23 ± 0.73 2.08 ± 1.18 0.105 

tr50c ts0 1.77 ± 0.91 2.62 ± 0.50 1.62 ± 0.63 4.00 ± 0.00 0.000

Mean 2.21 2.55 2.79 2.45

The last column provides the p-value returned by Friedman’s test
Bold values represent the most significant values
† tr 0 = training set with 0% noise, ts 0 = test set with 0% noise, ts 10 = test set with 10% noise, etc
‡ tr10c = output class of training set with 10% noise, etc

Table 7 Summarized test accuracies (in percentage) for all data sets and noise configurations (arithmetic
means)

Noise in test Noise in train Noise in
train and
test

Noise in
train label

Mean
precision

tr0 tr0 tr0 tr10 tr10 tr10 tr50 tr50 tr50 tr10c tr50c

ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts0

NB 90.10 87.71 73.73 89.23 87.29 75.84 88.10 86.43 77.12 86.91 68.22 82.78

C45 89.30 86.73 73.67 90.05 87.81 75.84 86.30 84.77 75.68 89.09 53.99 81.20

IBk 90.80 88.56 74.26 88.95 86.92 75.50 82.30 81.16 72.60 86.16 60.54 80.70

SMO 87.20 85.82 77.27 87.39 85.76 77.91 84.80 83.44 77.03 86.57 39.44 79.33

give the best (NB) and the worst (C4.5) performance. However, no strong grouping trends
for the techniques are evident over all noise types.

We also note that SMO gives relatively high rankings for high noise percentages in the
data attributes, but this is due to the strategy of the method, which is to favor the majority
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Table 8 Summarized test accuracies (in percentage) for all data sets and noise configurations (geometric
means)

Noise in test Noise in train Noise in train
and test

Noise in
train label

Mean Precision

tr0 tr0 tr0 tr10 tr10 tr10 tr50 tr50 tr50 tr10c tr50c

ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts0

NB 77.85 75.20 52.66 76.57 73.94 56.73 71.74 69.50 53.09 76.33 67.59 68.29

C45 80.23 77.77 61.39 80.94 77.77 59.54 64.69 61.59 46.93 80.15 46.98 67.09

IBk 81.99 79.29 58.50 79.87 76.53 60.49 69.46 66.34 53.10 79.15 63.81 69.87

SMO 60.62 59.81 45.06 60.65 58.57 45.43 46.97 43.91 32.91 65.76 17.42 48.83

Table 9 Comparison of the average rank (and standard deviation) of the geometric test accuracy obtained by
Group 1 (Naïve Bayes and C4.5), and Group 2 (IBk and SMO)

Rankings based on Geometric Test Accuracy  

(1=highest, 4=lowest)

NB C4.5 Ibk SMO Friedman

tr0 ts0
†

1.96 ± 1.05 2.88 ± 0.96 2.35 ± 0.85 2.81 ± 1.22 0.182 

tr0 ts10 1.96 ± 0.88 2.81 ± 1.15 2.31 ± 0.88 2.92 ± 1.21 0.163 

tr0 ts50 2.31 ± 1.25 2.23 ± 0.93 2.38 ± 1.04 3.08 ± 1.12 0.300 

tr10 ts0 2.12 ± 0.96 2.58 ± 1.04 2.50 ± 1.04 2.81 ± 1.22 0.537 

tr10 ts10 1.96 ± 0.88 2.42 ± 0.95 2.65 ± 1.31 2.96 ± 1.01 0.212 

tr10 ts50 1.96 ± 1.05 2.35 ± 1.03 2.50 ± 0.96 3.19 ± 1.03 0.082 

tr50 ts0 1.92 ± 1.02 2.54 ± 0.78 2.54 ± 1.27 3.00 ± 1.14 0.188 

tr50 ts10 1.92 ± 0.93 2.69 ± 0.75 2.54 ± 1.20 2.85 ± 1.33 0.260 

tr50 ts50 1.96 ± 0.92 2.46 ± 0.78 2.31 ± 1.32 3.27 ± .1.01 0.059 

tr10c ts0
‡

2.19 ± 0.99 2.50 ± 1.12 2.58 ± 0.95 2.73 ± 1.30 0.729 

tr50c ts0 1.69 ± 0.85 2.69 ± 0.48 1.62 ± 0.65 4.00 ± 0.00 0.000 

Mean 1.99 2.56 2.39 3.05

The last column provides the p-value returned by Friedman’s test
Bold values represent the most significant values
† tr0 = training set with 0% noise, ts0 = test set with 0% noise, ts 10 = test set with 10% noise, etc
‡ tr10c = output class of training set with 10% noise, etc

class. This fact becomes clearly evident in Sect. 5.2 (Table 9) when we use the geometric 
mean, instead of the arithmetic mean, to calculate the overall precisions.

Table 7 is a summary of the detailed results tables for each learning method. We observe 
that in terms of the mean arithmetic precision for all data sets and noise permutations, Group 
1 (NB and C45) have a slight advantage over Group 2 (IBk and SMO). However, for noise 
in training and test data, SMO is the best classifier for high noise percentages (due to bias
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on the majority class), followed by NB. For a high noise percentage in the training label, NB
(68.22) and IBk are the best classifiers, and SMO (39.44) is significantly the worst.

Note that in Tables 7 and 8, we can take the mean of the average precisions, given that
all the original values have the same cardinality, that is, the same number and type of N-fold
cross-validation tests, data sets and noise configurations.

5.2 Noise combined with the class imbalance problem: geometric mean

The results provided in the previous section enabled us to extract valuable observations of the
performance of the different algorithms on noisy data. However, as we used the arithmetic
test accuracy as the performance measure, we could not evaluate how the different learners
modeled the different classes of the data sets. In addition, it is well known that the arithmetic
test accuracy is biased toward the majority class in the training data set, which may lead to
the extraction of poor conclusions.

For example, in problems with 90% of instances of class A and 10% of instances of class
B, a model that always predicts the majority class would have 90% accuracy. Nevertheless,
the model would not reflect any novel knowledge. This effect may be more severe when noise
is added; that is, as the instances of different classes begin to overlap due to the added noise,
the learning system may decide to predict the majority class to minimize the global error.
Therefore, the final model, which appears quite accurate, would not reflect knowledge that
is useful for human experts. As we proceed, it is proposed to use the test geometric mean as
a more reliable performance measure, repeat the same experiments of the previous section
but using the new performance metric, and study the differences between them.

Tables 16 to 19 give the detailed geometric test accuracies obtained by the four learners
on the data sets with different degrees of noise, and Table 8 is a summary of these four tables.
With reference to Table 8, we observe that in terms of the average geometric precision for all
data sets and noise permutations, IBk, NB and C.45 have the best results, with 69.87, 68.29
and 67.09, respectively, and SMO is the worst performer with a significantly lower precision
(48.83). However, for noise in training or test data, C45 and IBk are the best classifier for
high noise percentages, followed by NB. For a high noise percentage in the training and test,
IBk (53.10) and NB are the best classifiers, and SMO (32.91) is significantly the worst. For
a high noise percentage in the training label, NB (67.59) and IBk are the best classifiers, and
SMO (17.42) is significantly the worst.

The geometric mean is said to be nonbiased toward the majority class in the learning data
set since it considers the accuracy of each class regardless of the number of examples of the
class in the training data set. Table 9 summarizes the statistical analysis of the results in terms
of rankings.

With reference to Table 9, several conclusions can be drawn from the statistical analysis
and the particular results on each noise combination. First, note that Friedman’s test only
rejects the null hypothesis that all learners perform the same on average, with α=0.10, for (1)
the problems with 10 and 50% noise in the training data set and 50% noise in the test data
set and (2) for the problem with 50% class noise and 0% noise in the test data set. For all the
other cases, the models created by all the learners are not statistically different. Nevertheless,
note that, for all the configurations, except for (1) 0% noise in the training data set and 50%
noise in the test data set and (2) 50% class noise in the training data set and 0% noise in the
test data set, the most accurate models are built by Naïve Bayes.

In general, in terms of the first and second rankings, indicated in grey in Table 9 we
observe that NB and IBk are the best, followed by C4.5. SMO comes last in the ranking for
all noise types, and has therefore clearly suffered a major loss in precision when we use the
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geometric mean when compared to the arithmetic mean used in Sect. 5.1 (Tables 6 and 7). As
we mentioned, this is due to the technique having a low precision on the minority class label.
We observe that although IBk wins second ranking place on more occasions, C4.5 wins for
some of the greater noise percentages (tr0, ts50; tr10, ts10; tr10, ts50), that is, when the noise
is in the training or in the test data sets, but not in both.

IBk, on the other hand, gives better results for lower noise percentages and when the noise
is in both the train and the test (tr50, ts0; tr50, ts10; tr50, ts50). In terms of general group-
ings of the techniques, a strong trend is not clear, although we could isolate NB (designated
as Group 1) on the one hand and SMO (designated as Group 2) on the other. In terms of
secondary rankings, we could then group together IBk and C4.5.

5.3 Analysis of the results in terms of the type of noise: noise in the test data set, noise
in the training data set, noise in training and test, noise in the output class used
for training

With reference to Table 9, we now perform a more detailed analysis of the relative rankings,
considering where the noise is (in the test, training or output class), reveals the following
trends:

1. For noise only in the test data (first 3 rows of Table 9), the relative rank position of C4.5
with respect to the other techniques gets significantly better for the highest noise percent-
age (50), whereas the relative ranking of the other three techniques gets progressively
worse.

2. For noise only in the training data (rows 1, 4 and 7 of Table 9), we again observe a pro-
gressive relative improvement of C4.5 with respect to the other techniques, for increasing
test noise, whereas IBk and SMO lose relative ranking. In the case of Naïve Bayes, it
loses ranking (1.96 → 2.12) from 0 to 10% noise, but recovers again (2.12 → 1.91) for
10–50% noise.

3. For noise in the training and test data (rows 1, 5 and 9 of Table 9), we observe that C4.5’s
ranking gets significantly better (2.88 → 2.42) for 0–10% noise and slightly worse (2.42
→ 2.46) for 10–50% noise. In contrast, NB has a very good resistance in the same noise
situation, maintaining as constant its high ranking (1.96). On the other hand, IBk gets
worse for 0–10% noise (2.35 → 2.65) then better for 10–50% noise (2.65 → 2.31).
Finally, SMO gets progressively worse for increasing noise in training and test (2.81 →
2.96 → 3.27).

4. For noise in the output class (rows 1, 11 and 12 of Table 9), we observe that NB and
IBk worsen their relative performance for 0–10% noise (2.35 → 2.58 for IBk and 1.96
→ 2.19 for NB), and then improve for 10–50% noise (2.58 → 1.62 for IBk and 2.19 →
1.69 for NB). In the case of C4.5, it improves ranking from 0–10% noise and then loses
slightly for 10–50% noise. Finally, SMO improves slightly to 2.73 for 0–10% noise, and
then worsens significantly to 4.00 for 10–50% noise.

Technique groupings: From the observations of the tendencies of each technique for different 
percentages and types of noise, we can summarize the following as possible groupings: for 
noise in the training data (point 2, above) we can group IBk and SMO as having similar 
behavior; for noise in the output class (point 4) we can group NB with IBk. SMO seems to 
have a singular behavior relative to the other three techniques. C4.5 also behaves differently 
for noise in the test data (point 1) and in the training data (point 2), in which cases its relative 
ranking with respect to the other three techniques progressively improves.
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Table 10 Ranking of the noise
types with the highest precisions
per technique

Ranking of noise types with highest 

precisions per technique 

1st 2nd 3rd 4th

NB tr10te0 tr10cte0 tr0te10 tr10te10 

C4.5 tr10te0 tr10cte0 tr10te10 tr0te10 

IBk tr10te0 tr0te10 tr10cte0 tr10te10 

SMO tr10cte0 tr10te0 tr0te10 tr10te10

Table 11 Ranking of the noise
types with the lowest precisions
per technique

Ranking of noise types with lowest 

precisions per technique 

1st 2nd 3rd 4th

NB tr0te50 tr50te50 tr10te50 tr50cte0 

C4.5 tr50te50 tr50cte0 tr10te50 tr0te50 

IBk tr50te50 tr0te50 tr10te50 tr50cte0 

SMO tr50cte0 tr50te50 tr50te10 tr0te10

With reference to Table 10, we observe that all techniques predict best tr10te0; tr10cte0
comes 2nd for NB and C4.5, and 3rd for IBk; tr0te10 comes 2nd, 3rd or 4th for all techniques;
tr10te10 comes 3rd or 4th for all techniques. It can be seen that the ranking of noise types
with highest precision is not very discriminative for the techniques. The only aspect we can
differentiate is that SMO had tr10cte0 as 1st ranked, although this can be partially explained
by the relatively low precisions obtained in other noise types.

With reference to Table 11, as is to be expected, we observe that high noise percent-
ages (50%) predominate the most difficult noise types to predict. C4.5 and IBk are the only
two techniques which coincide in their most difficult noise type (tr50te50), although this
data type comes in the first two ranked, for all techniques. SMO and C4.5 have particu-
lar difficulties with tr50cte0 (noise in the output label, also taking into account the mean
precision).

In order to try to group the techniques in terms of these rankings we will calculate the
‘Hamming distance’.

Hamming distance: we define the hamming distance in the following manner, for the first
four ranked noise types: if a noise type for technique A does not appear for technique B,
distance = 10; if a noise type for technique A appears for technique B and also is in the same
ranked position, distance = 0; if a noise type for technique A appears for technique B but
in another rank position, the distance is equal to the difference between the rankings. For
example, if noise type ‘tr0te50’ is ranked in 1st position for technique NB, and this same
noise type is ranked in 4th position for technique C4.5, then the distance is calculated as 4−1
= 3. The distances are summed for each of the four rankings, for each technique with every
other technique.

If we calculate the hamming distance for the lowest precision rankings (Table 11), the
following distances are obtained: NB with C4.5, 6; NB with IBk, 2; NB with SMO, 23; C4.5
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with IBk, 4; C4.5 with SMO, 22; IBk with SMO, 23. Therefore, in terms of these distances, 
NB would be grouped with IBk (lowest distance of 2), C4.5 with IBk (distance of 4), and 
SMO would be in its own group.

5.4 The effect of noise on specific data sets

Having extracted conclusions on the general performance of the different learners, in this 
section we now focus on how the noise affects the different techniques in particular data sets.

5.4.1 Results for data sets with the class imbalance problem

We now study the detailed data set results technique by technique with reference to Tables 16 
to 19 (included at the end of the paper). Interesting conclusions can be extracted from the 
analysis of the results obtained with each individual data set. The results denote that there 
are some data sets that are especially difficult for all learners. For example, note that all of 
the techniques have had great difficulties with the ‘bal2c1’ data set. As a first hypothesis we 
can attribute this to the high class imbalance of this data set (576 : 49), and a zero precision 
for the minority class which gives an overall geometric precision of zero (rounded to two 
places after the decimal point). Similarly, the ‘INI’ problem poses particular difficulties to 
Naïve Bayes (Table 16) which was one of the data sets with the lowest precision for this 
technique. Finally, for SMO (Table 19), some of the worst results are again obtained with the 
INI data set. Finally, we observe some that SMO had some specific problems for ‘thy2c1’ 
and ‘thy2c3’ data sets, for 50% noise in the train only, 50% noise in training and test, and 
50% noise in the output class.

If we look at the results for ‘INI’ when the noise is in both the training and the test data 
sets, IBk (Table 18) gave the best overall results, where the other techniques achieved a zero 
precision (NB, SMO) or below 20% (C4.5).

5.4.2 Results for data sets without the class imbalance problem

Looking in more detail at the case of C4.5 (Table 17), we observe that the data sets with 
the lowest precisions are ‘bpa’ and ‘pim’. These data sets do not have any significant class 
imbalance. In the case of IBk (Table 18), we observe that the data sets with the lowest overall 
precisions are again ‘bpa’ and ‘pim’. In the case of Naïve Bayes (Table 16), the data set with 
the lowest precision is ‘bpa’. C4.5 had a particular difficulty with ‘bpa’ for noise in the train 
and test with precisions below 12%. The precisions of C4.5 for ‘pim’ are also inferior the 
general precision of the other data sets. Finally, for SMO (Table 19), the worst results are 
again obtained with the ‘bpa’ data set. SMO also had particular difficulties with the ‘iris2c3’ 
data set, which did not occur for the other three techniques.

5.4.3 Results for all data sets

With reference to Table 12, if we group the techniques by a ranking based on the data sets with 
the lowest precisions per technique, we could say that C4.5 and IBk have the most similarity. 
We also note that the two techniques which gave relatively good results with the ‘INI’ data 
set, were IBk and C4.5, whereas for this data set, NB and SMO had very low precisions for 
all noise types.

If we calculate the Hamming distance on Table 12, using  the same procedure as used  
for the noise types in Sect. 5.3, we obtain the following ‘distances’: NB with C4.5, 4; NB
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Table 12 Ranking of the data
sets with the lowest precisions
per technique

Ranking of data sets with lowest 
precisions per technique 

1st 2nd 3rd 4th

NB bal2c1 ini bpa pim

C4.5 bal2c1 bpa pim ini 

IBk bal2c1 bpa pim ini 

SMO ini bal2c1 iris2c3 bpa

Table 13 Ranking of the data
sets with the highest precisions
per technique

Ranking of data sets with highest 
precisions per technique 

1st 2nd 3rd 4th

NB wbcd iris2c2 thy2c2 bal2c2 

C4.5 wbcd iris2c2 iris2c1 bal2c3 

IBk iris2c2 wbcd iris2c3 iris2c1 

SMO wbcd iris2c2 bal2c2 bal2c3

with IBk, 4; NB with SMO, 13; C4.5 with IBk, 0; C4.5 with SMO, 16; IBk with SMO, 16.
Therefore, in terms of these distances, NB would be grouped with IBk and C4.5 (lowest
distance of 4), C4.5 with IBk (distance of 0), and SMO would be in its own group.

With reference to Table 13, we observe that two data sets which are easiest to predict are
‘wbcd’ and ‘iris2c2’. If we look at the third and fourth ranked data sets, NB and SMO have
‘bal2c2’ in common, whereas C4.5 and IBk have ‘iris2c1’ in common and C4.5/SMO have
‘bal2c3’ in common.

5.4.4 ‘Wbcd’ data set

For the sake of compactness, we only consider two particular data sets in detail: (1) the
‘wbcd’ and (2) ‘thy2c1’ data sets. The former represents a data set without a class imbalance
problem (66 /34%), and the latter represents a data set which has a class imbalance problem
(86/14%). For this purpose, Figs. 6, 7 show tendencies for the four machine learning tech-
niques, contrasted for different noise percentages (0, 10 and 50%), and given different types
of noise for ‘wbcd’ and ‘thy2c1’. In what follows, we analyze how the quality of the models
decreases as the degree of noise increases in these two data sets.

We first analyze the results obtained with the ‘wbcd’ problem. Figure 6a represents the
case when there is 0% noise in the training data set, and we progressively increment the noise
in the test data set with 0, 10 and 50% noise. A first observation we can make is that NB
goes from being the equally most precise method at 0% noise, to being the third most precise
at 10%, and finally has equal worst precision at 50% noise. We could say that the Group 2
techniques (SMO and IBk) have suffered the smallest loss of precision of approx. 97–84 and
96–81% respectively, whereas the Group 1 techniques (NB and C4.5) have suffered a greater
loss of approx. 97–75 and 93–75%, respectively. In general we observe that the precision
loss is ranging between approximately 22 percentage points (97–75%).
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(a) (b)

(d)(c)

Fig. 6 Analysis of the evolution of the accuracy as the noise increases in the ‘wbcd’ data set. a ‘wbcd’ data
set with tra0 and incrementing test noise. b ‘wbcd’ data set with ts0 and incrementing training noise. c ‘wbcd’
data set with incrementing training and test noise. d ‘wbcd’ data set with ts0 and incrementing class noise

(a) (b)

(d)(c)

Fig. 7 Analysis of the evolution of the accuracy as the noise increases in the ‘thy2c1’ data set. a ‘thy2c1’
data set with tra0 and incrementing test noise. b ‘thy2c1’ data set with ts0 and incrementing training noise. c
‘thy2c1’ data set with incrementing test noise. d ‘thy2c1’ data set with ts0 and incrementing class noise
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Figure 6b represents the case when there is 0% noise in the test data set, and we pro-
gressively increment the noise in the training data set with 0, 10 and 50% noise. We would
expect noise in the training data to affect the learning process, and so the result for the dis-
tinct techniques and groupings of techniques would be more different due to their different
approaches to learning. From Fig. 6b we can observe this is clearly the case for C4.5, which
progressively improves its precision as the noise increases. With respect to the other tech-
niques, we observe that IBk loses most precision, SMO the least and Naïve Bayes has an
intermediate performance. In general we observe that the precision loss is between a range
of approx. 6 percentage points (97–91%), which is a much smaller precision loss than that
which we observed in Fig. 6a (when the noise is in the test data).

Figure 6c represents the case when there is a progressive increment (0, 10 and 50%) of
noise both in the test data set and in the training data set. The first observation we can make
with respect to Fig. 6c is that it has similar general characteristics to Fig. 6a (noise only
in test). The range of precision loss is also similar, approx. 97–75%, which is significantly
greater than the case when the noise is only in the test data (Fig. 6b). However, when we
study which methods have suffered greater precision loss, we observe that NB is now equal
best (instead of equal worst) at 50% noise, and C4.5 has got slightly better, and IBk now
comes last at 50% noise, having lost 10 percentage points with respect to its performance for
noise only in the test (Fig. 6a).

Figure 6d represents the case when there is a progressive increment of noise in the output
class of the training data set (0, 10, 50%), and no noise in the test data set. The graph of Fig. 6d
shows a different result to those of the previous Fig. 6a–c. Firstly, we can highlight that the
precision loss is much greater for all methods, with the exception of NB. The precision loss
range overall is approx. 95–27%, with SMO suffering the worst precision loss (27% precision
at 50% noise). We also observe that C4.5 is the third worst performer with 48% precision at
50% noise, followed by IBk with 66% precision at 50% noise. The result of NB is relatively
good, and this is confirmed by its performance with the other data sets for this type of noise
(in the output class of the training data). We can also conclude that overall, SMO shows a
relatively good performance for the ‘wbcd’ data set, with the exception of noise in the output
class (Fig. 6d).

In terms of possible groupings of the techniques in terms of their observed behavior with
the ‘wbcd’ data set, we can identify the following: in Fig. 6a (incrementing test noise), SMO
and IBk (Group 2) follow a similar tendency; in Fig. 6c (incrementing training and test noise),
SMO and NB follow a similar tendency, and IBk behaves similarly to C4.5; in Fig. 6d, IBk
and C4.5 follow similar paths between the trajectories of NB (upper) and SMO (lower).
Therefore there is not a clear behavior pattern in terms of our original technique groupings,
and the behavior depends on the type of noise.

5.4.5 Thy2c1 data set

Now we consider the ‘thy2c1’ problem, which has 5 variables and a high class imbalance
(86% class1 and 14% class2). Figure 7a represents the case when there is 0% noise in the
training data set, and we progressively increment the noise in the test data set with 0%, 10%
and 50% noise.

We observe that for the ‘thy2c1’ data set (Fig. 7a), the loss in precision for all methods
is much greater than in the case of the ‘wbcd’ data set (Fig. 6a). The range of precision loss
is 95–37%. We observe this time that SMO is the worst performer with a precision of only
37% at 50% noise, whereas the Group 1 techniques (Naïve Bayes and C4.5) are the best
performers with approx. 64% precision at 50% noise.
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Figure 7b represents the case when there is 0% noise in the test data set, and we progres-
sively increment the noise in the training data set with 0, 10 and 50% noise. Again we observe 
a much greater precision loss (95–30%) for increasing noise in ‘thy2c1’, when compared to 
the ‘wbcd’ data set. The worst performer is SMO, and the best is again Naïve Bayes.

Figure 7c represents the case when there is a progressive increment of noise both in the 
test data set and in the training data set. Both data sets increment with the same percentage of 
noise, that is, 0, 10 and 50%. We observe again a much greater precision loss for the ‘thy2c1’ 
data sets for all methods. In this case (Fig. 7c) we see that none of the methods maintains 
a reasonable precision for 50% noise (in training and test). Relatively, Naïve Bayes has the 
best precision (35%) and SMO the worst (7%) at 50% noise.

Finally, Fig. 7d represents the case when there is a progressive increment of noise in the 
output class of the training data set (0, 10, 50%), and no noise in the test data set. In this 
case, we observe in Fig. 7d (‘thy2c1’ data set) a result which is very similar to that of Fig. 6d 
(‘wcbd’ data set): SMO is the worst performer and Naïve Bayes is the best with very little 
precision loss at 50% noise in the output class. C4.5 and IBk converge to the same precision 
(approx. 62%) at 50% noise.

The overall results provided in Figs. 6 and 7 show that SMO is in general relatively the 
worst performer and Naïve Bayes is relatively the best. NB shows good results for noise 
in the output class, with respect to the other methods (Figs. 6d and 7d). In general, it also 
appears that noise in the test set is more difficult for the methods to deal with, indicated by 
a more significant loss in precision (Figs. 6a and 7a).

In terms of possible groupings of the techniques in terms of their observed behavior with 
the ‘thy2c1’ data set, we can identify the following: in Fig. 7a (incrementing test noise), NB 
and C4.5 follow a similar tendency (Group 1), as do IBk and SMO (Group 2); in Fig. 7b, 
NB and IBk follow a similar tendency; in Fig. 7c (incrementing training and test noise), all 
methods follow a similar tendency, although NB more closely follows IBk and C4.5 more 
closely follows SMO; in Fig. 6d, IBk and C4.5 follow similar paths between the trajectories 
of NB (upper) and SMO (lower). Therefore, as with the ‘wbcd’ data set, ‘thy2c1’ shows 
that there is not a clear behavior pattern in terms of our original technique groupings, and 
the behavior depends on the type of noise, and the data set. The only noise configuration 
which has shown the same relative technique behavior between data sets is for the noise in 
the output class (compare Figs. 6d and  7d).

In conclusion, if we compare the results of the ‘wbcd’ data set with the results of the 
‘thy2c1’ data set, we observe that the methods are sensitive to the specific data set charac-
teristics. We recall that the ‘thy2c1’ data set has a class imbalance, whereas ‘wbcd’ does 
not.

6 Summary

In this section we summarize the results in terms of different criteria: (6.1) grouping of tech-
niques in terms of behavior for increasing noise percentages and types; (6.2) grouping of 
techniques in terms of behavior for type of noise; (6.3) grouping of techniques in terms of 
behavior for specific data sets; (6.4) grouping of techniques in terms of geometric rankings 
for noise percentages and types (Table 9); (6.5) Grouping of techniques by difficulty of pro-
cessing data sets with class imbalance; (6.6) Ranking of noise types by degree of difficulty;
(6.7) Groupings of techniques as a consensus of groupings 6.1 to 6.5.
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Fig. 8 Grouping of techniques in
terms of behavior for increasing
noise percentages for different
noise types

Fig. 9 Grouping of techniques based on hamming distance of similarity of ranking of noise types by difficulty

Fig. 10 Grouping of techniques based on hamming distance of similarity of ranking of specific data sets by
difficulty

6.1 Grouping of techniques in terms of behavior for increasing noise percentages
and types (Table 9, Sect. 5.3)

With reference to Fig. 8, in terms of the behavior for increasing noise percentages, we could
define four groups: NB and IBk; IBk and SMO; SMO in its own group, and C4.5 in its own
group. Each of these groupings is dependent on a particular combination of noise.

6.2 Grouping of techniques in terms of behavior for type of noise
(Ref. Table 11, Sect. 5.3)

With reference to Fig. 9, in terms of the results for type of noise (where the noise is found
and its percentage), we could define four groups: NB and IBk; C4.5 and IBk; NB and C4.5
and SMO in its own group. For an explanation of the Hamming distance calculation, refer to
Sect. 5.3 and Table 11.

6.3 Grouping of techniques in terms of behavior for specific data sets
(Ref. Table 12, Sect. 5.4)

With reference to Fig. 10, in terms of the results for specific data sets, we could define
four groups: C4.5 and IBk; NB and C4.5; NB and IBk and SMO in its own group. For an
explanation of the Hamming distance calculation, refer to Sect. 5.4 and Table 12.
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6.4 Grouping of techniques in terms of geometric rankings for noise percentages and types
(Table 9)

In terms of geometric rankings (Table 9), we could say that C4.5 and IBk form a first group
for similar behaviors, NB forms a second group on its own and SMO a third group on its
own.

6.5 Grouping of techniques by difficulty of processing datasets with class imbalance

For the data sets with the class imbalance problem (thy2c1, thy2c2, thy2c3, bal2c1 and INI),
NB was the technique with the best mean geometric precision (66.33), followed by IBk with
59.01, C4.5 with 55.18 and SMO with 26.40. The specific details of the results with data sets
for class imbalance were given in Sect. 5.4.1. In terms of technique groupings, NB and SMO
had lower results for the ‘INI’ data set, whereas IBk and C4.5 had better results for ‘INI’.
SMO also had significantly lower precisions for data sets ‘thy2c1’, ‘thy2c2’ and ‘thy2c3’,
with respect to the other techniques. Thus in terms of behavior with the class imbalance data
sets, we could group the techniques as: NB with SMO, NB in its own group, SMO in its own
group, and C4.5 with IBk.

6.6 Ranking of noise types by degree of difficulty

In this section we rank the noise combinations in decreasing order of difficulty. With refer-
ence to Table 14, we observe that the most difficult combinations (considering the first six)
were those which contained 50% noise in one of the data sets (especially in the train). A high
noise percentage in the output class (50%) was the second most difficult, although the lower
noise percentage in the output class (10%) came penultimate.

6.7 Grouping of groupings of techniques (consensus of groupings 6.1 to 6.5)

In order to obtain a final consensus on the groupings of the techniques, we have noted the
number of times a given combination occurs using the different criteria of Sects. 6.1 to 6.5.

Table 14 Ranking of noise
combinations in decreasing order
of difficulty

a c = Noise in output class

Rank 
(1=most 
difficult) 

Noise combination /    
percentage 

Mean accuracy (based 
on geometric mean) for 

all techniques 
Train Test 

1 50 50 46.51
2 50c* 0 48.95
3 0 50 54.4
4 10 50 55.54
5 50 10 60.33
6 50 0 63.22
7 10 10 71.70
8 0 10 73.02
9 10 0 74.51

10 0 0 75.18
11 10c* 0 75.35
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Table 15 Grouping of groupings
of techniques (derived from
Sects. 6.1 to 6.5)

* Number of times this technique
was considered as a group on its
own

NB C4.5 IBk SMO

NB 1* 2 3 1 

C4.5 1 4 0 

IBk 0 1 

SMO 4

This summary is shown in Table 15. Therefore, from Table 15, based on the highest frequen-
cies, we can see that SMO forms its own group, C4.5 and IBk form a second group, and NB
with IBk form a third group (which overlaps with group 2).

7 Conclusions

In this paper, we proposed a systematic study to analyze how attribute noise and class
noise affect the quality of the models created by different learning techniques that rep-
resent different learning paradigms. Initially, we have defined two groups of techniques,
Group 1, comprised of the Naïve Bayes probabilistic classifier and C4.5 tree induction,
and Group 2 comprised of the IBk instance-based classifier and the SMO support vec-
tor machine. However, the detailed analysis using different evaluation criteria shows a
more complex situation, in which the behavior of each technique depends on the type
and percentage of noise, class imbalance and the characteristics of the data sets them-
selves.

The evaluation has a clear utility for situations in which we have to process real-world data
which may contain intrinsic or introduced errors. The simple observation is that NB is the best
general performer relative to the other three techniques, and SMO gives the poorest relative
results. However, in terms of technique groupings based on behavior, it has been seen that
this depends on the noise configuration and data set. Different overlapping similarities can
be found: NB in a group of its own, SMO in a group of its own, IBk and C4.5 as a group, NB
and IBk as a group and NB with C4.5 as a group. The general summary is shown in Table 15.

Returning to the initial hypothesis of groupings which was proposed in the introduc-
tion to the article, the superior performance of Group 1 (NB/C4.5), would be mainly
due to NB, and the poorer performance of Group 2 (IBk and SMO) would be mainly
due to SMO. IBk and C4.5 are on a general parity in terms of performance, and
IBk has given superior performance in some cases. With reference to the (theoretical)
noise tolerance characteristics of each technique that we described in Sect. 3.4, NB has
confirmed that its two strong points (conditional independence assumption and use of con-
ditional probabilities) make it relatively more robust to noisy data. C4.5 has also dem-
onstrated some relatively good results, given its strong points of a heuristic limit for
pruning and a confidence measure for creating decision nodes. IBk has shown relatively
good results, possibly as a consequence of its using more than one training instance to
make a prediction. Finally, SMO has confirmed that its two weak points (reliance on
support vectors, and therefore on single instances, and interdependence assumption of
attributes) have given it a poorer performance in the presence of noise (Tables
16, 17, 18, 19).
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Table 16 Naïve Bayes: geometric test accuracy (in percentage) for all data sets and noise configurations

Naïve Bayes geometric test accuracy

tr0 tr0 tr0 tr10 tr10 tr10 tr50 tr50 tr50 tr10c tr50c
ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts0

bal2c1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 29.57

bal2c2 94.66 88.22 67.92 95.54 89.10 68.55 92.30 87.54 66.81 90.21 44.08

bal2c3 95.20 85.91 68.08 95.47 85.42 67.85 91.27 83.75 67.25 91.40 49.84

bpa 58.33 58.09 50.17 57.94 59.11 55.29 51.63 50.32 43.78 53.59 29.57

INI 14.24 14.08 4.85 9.39 9.22 9.70 0.00 0.00 0.00 22.34 47.26

iris2c1 92.42 91.85 54.97 88.30 89.52 58.29 88.63 89.01 63.12 82.46 74.54

iris2c2 100.00 95.78 44.21 100.00 97.89 68.69 100.00 97.92 80.70 98.46 90.43

iris2c3 90.70 88.19 36.48 87.88 86.11 42.78 83.57 83.41 52.33 86.42 58.69

pim 71.04 71.43 57.67 70.59 70.36 57.89 65.31 64.24 51.86 72.34 65.75

thy2c1 93.86 89.32 64.90 93.86 87.24 58.24 85.36 79.22 37.21 93.29 90.65

thy2c2 98.50 97.29 68.66 96.97 94.97 71.63 81.26 80.32 56.85 94.47 82.04

thy2c3 88.00 83.66 67.64 83.33 76.58 71.79 75.45 69.28 56.44 89.93 90.69

wbcd 96.67 94.42 74.93 96.36 94.48 81.29 94.35 93.47 84.06 96.67 96.29

Table 17 C4.5: geometric test accuracy (in percentage) for all data sets and noise configurations

C4.5 geometric test accuracy

tr0 tr0 tr0 tr10 tr10 tr10 tr50 tr50 tr50 tr10c tr50c

ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts0

bal2c1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.01

bal2c2 83.42 80.16 67.73 83.89 81.27 68.21 75.91 74.72 63.66 83.09 47.39

bal2c3 83.28 77.96 65.96 82.77 77.68 66.69 77.60 76.56 62.92 84.02 56.66

bpa 57.32 57.68 48.14 60.32 57.26 49.24 11.89 11.58 11.00 55.80 22.61

INI 94.34 90.65 71.38 94.78 92.13 72.48 19.14 10.00 4.70 94.48 52.15

iris2c1 92.87 88.75 70.61 93.18 91.39 67.27 95.55 90.77 69.30 92.87 34.81

iris2c2 98.94 95.29 61.73 98.94 96.32 61.94 96.92 92.04 72.75 98.94 41.89

iris2c3 90.71 90.74 72.37 90.43 87.83 62.49 88.48 87.56 59.16 93.80 56.15

pim 66.83 67.69 57.10 66.99 69.05 59.89 53.49 53.96 52.77 69.31 38.35

thy2c1 93.58 91.95 62.59 90.93 84.87 43.68 64.87 54.67 13.74 87.71 62.71

thy2c2 86.43 85.71 61.73 93.36 86.57 66.51 59.97 59.80 41.51 84.16 42.53

thy2c3 88.58 80.85 65.91 88.16 77.16 57.45 72.75 63.88 50.99 88.94 57.30

wbcd 93.47 90.37 74.99 94.60 93.61 76.81 94.77 93.67 78.48 94.69 51.29

In terms of the noise combinations, we observe that noise in the training data set gave the 
most difficulty in general, for all the learners.

The observations of the performance of the techniques for specific types of noise, noise 
combinations, and percentages may serve as a reference for those who wish to select an 
appropriate technique for their data environment.
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Table 18 IBk: geometric test accuracy (in percentage) for all data sets and noise configurations

IBk geometric test accuracy

tr0 tr0 tr0 tr10 tr10 tr10 tr50 tr50 tr50 tr10c tr50c

ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts0

bal2c1 0.00 0.00 4.87 0.00 0.00 0.00 14.55 4.82 9.36 0.00 43.45

bal2c2 88.54 85.14 65.35 82.48 79.89 64.70 67.22 65.41 58.78 87.94 64.90

bal2c3 89.96 83.10 66.95 82.99 76.41 65.06 66.65 65.60 60.35 89.34 67.13

bpa 58.24 53.84 50.67 56.89 54.20 55.26 48.02 45.01 52.08 57.00 50.15

INI 84.59 84.29 55.54 78.57 75.98 65.01 42.98 35.73 34.32 82.14 65.34

iris2c1 93.81 91.22 65.46 91.02 86.59 63.52 81.67 80.59 58.53 84.68 70.96

iris2c2 100.00 98.43 68.76 100.00 99.49 72.18 96.18 94.86 69.47 94.61 68.23

iris2c3 95.83 92.68 66.36 94.78 92.00 73.18 87.98 82.65 58.31 93.32 68.46

pim 65.87 65.21 52.85 64.86 61.00 56.09 58.07 57.34 52.93 64.33 53.02

thy2c1 87.80 85.16 46.34 88.00 78.28 53.81 79.57 73.99 29.63 82.52 61.97

thy2c2 97.57 96.43 59.78 97.57 95.43 64.93 67.00 69.32 49.54 92.11 68.76

thy2c3 95.40 86.92 57.68 90.10 82.64 54.14 79.36 71.40 58.33 91.19 71.45

wbcd 95.58 94.90 80.48 94.91 94.39 80.47 91.21 90.58 76.09 95.13 67.21

Table 19 SMO: geometric test accuracy (in percentage) for all data sets and noise configurations

SMO geometric test accuracy

tr0 tr0 tr0 tr10 tr10 tr10 tr50 tr50 tr50 tr10c tr50c
ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts10 ts50 ts0 ts0

bal2c1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.83
bal2c2 93.51 88.54 66.66 94.70 88.26 67.61 91.90 87.89 65.43 90.39 24.82
bal2c3 91.61 84.38 68.11 94.91 85.31 67.67 90.74 83.27 66.24 91.74 30.81
bpa 0.00 13.15 6.10 0.00 2.37 11.20 0.00 0.00 0.00 51.62 0.00
INI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.43
iris2c1 94.95 90.60 56.70 93.90 88.49 59.02 91.78 91.14 62.02 91.11 27.33
iris2c2 100.00 98.43 68.27 100.00 98.94 69.98 100.00 97.92 68.63 100.00 27.64
iris2c3 4.47 4.47 7.75 4.47 4.47 7.75 0.00 0.00 0.00 40.63 3.16
pim 68.64 67.13 52.98 67.61 67.53 51.17 19.59 18.71 12.89 70.20 0.00
thy2c1 85.36 79.50 38.28 85.36 79.50 38.28 31.21 21.21 7.07 73.64 29.06
thy2c2 61.82 59.98 50.03 61.82 57.59 42.28 25.49 17.32 5.77 61.82 13.05
thy2c3 54.86 60.43 46.51 53.17 55.96 49.20 15.63 8.16 4.08 56.16 0.00
wbcd 96.70 95.81 84.22 96.37 95.37 85.59 95.93 95.03 84.65 96.48 28.86
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