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Abstract Open interaction systems play a crucial role in agreement technologies because
they are software devised for enabling autonomous agents (software or human) to interact,
negotiate, collaborate, and coordinate their activities in order to establish agreements and
manage their execution. Following the approach proposed by the recent literature on agent
environments those open distributed systems can be efficiently and effectively modeled as a
set of correlated physical and institutional spaces of interaction where objects and agents are
situated. In our view in distributed open systems, spaces are fundamental for modeling the
fact that events, actions, and social concepts (like norms and institutional objects) should be
perceivable only by the agents situated in the spaces where they happen or where they are
situated. Institutional spaces are also crucial for their active functional role of keeping track
of the state of the interaction, and for monitoring and enforcing norms. Given that in an open
distributed and dynamic system it is fundamental to be able to create and destroy spaces of
interaction at run-time, in this paper we propose to create them using Artificial Institutions
(Als) specified at design time. This dynamic creation is a complex task that deserves to be
studied in all details. For doing that, in this paper, we will first define the various components
of Als and spaces using Semantic Web Technologies, then we will describe the mechanisms
for using Als specification for realizing spaces of interaction. We will exemplify this process
by formalizing the components of the auction Artificial Institution and of the spaces created
for running concrete auctions.
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1 Introduction

Open interaction systems play a crucial role in agreement technologies because they are
software devised for enabling autonomous agents (software or human) to interact, negotiate,
collaborate, and coordinate their activities in order to establish agreements for achieving
certain goals. These interactions may be finalized to the definition of contracts or agreements
among multiple parties and to their execution, monitoring, and enforcement. The most impor-
tant aspect of this type of systems is the lack of knowledge, in advance, of what agents may
participate in one of their enactment, therefore no assumption can be made on the internal
architecture of the participating agents or on their willing to satisfy the norms and the rules
that regulate the interaction (d’Inverno et al. 2012). Open interaction systems are crucial for
the design, development, and deployment of applications in different fields, like e-commerce,
e-government, supply-chain, management of virtual enterprise, and collaborative-resource
sharing systems.

Open interaction systems are dynamic distributed event based systems having the follow-
ing fundamental components:

— A state that evolves due to the events that happens and the actions (viewed as events with
an actor) performed by the interacting agents. Events and actions are described by means
of their preconditions, which need to be satisfied for the successful performance of the
events or actions, and their effects on the state of the system. Important events are due to
the elapsing of time or to the change of the value of some properties. Crucial actions are
communicative acts performed by the agents to interact and negotiate.

— Given that no assumption can be made on the expected behaviour of the interacting agents,
norms are a fundamental part of open systems. They are used to express obligations,
prohibitions, permissions that regulate the interaction of the agents. Norms can also be
used to express institutional powers, which are specific institutional conditions for the
successful performance of institutional actions. At design time norms are expressed in
an abstract form in terms of roles and they may contain some un-specified parameters
that become defined only at run-time during specific interactions among specific agents.

— Given that the interacting agents and the open interaction system itself are software that
are running on different platforms, it is required to define standard mechanisms and rules
for the agents for: (i) perceiving the state of the system, and the events and actions that
happen in the system; and (ii) for acting within the system. Moreover due to performance,
security, privacy, and relevance reasons in a distributed system limited observability of
events and actions and the contextual relevance of norms have to be taken into account
(Okuyama et al. 2008).

Following the approach proposed by the recent literature on agent environments (Weyns
et al. 2007; Ricci et al. 2011) those open distributed systems can be efficiently and effectively
modeled as a set of correlated physical and institutional spaces of interaction where objects
and agents are situated (Tampitsikas et al. 2012). In our view in distributed open systems,
spaces are fundamental for modeling the fact that events, actions, and social concepts (like
norms and institutional objects) should be perceivable only by the agents situated in the
spaces where they happen. Institutional spaces are also crucial for their active functional role
of keeping track of the state of the interaction, and for monitoring and enforcing norms.

This abstract concept of space presents some similarities with the notion of container
introduced in the GOLEM environment framework (Bromuri and Stathis 2009), the notions
of workspace introduced in the CArtAgO environment framework (Ricci et al. 2009), and
the concept of scene used in the formalization of Electronic Institutions (Esteva et al. 2001;
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d’Inverno et al. 2012). But spaces in our approach are not just the containers of agents and
objects (or artifacts as proposed in the CArtAgO framework) modeling the locality of the
application domain but in addition they are the main enforcers of the norms and regulators
of the open interaction systems’ evolution.

Given that in an open distributed and dynamic system it is fundamental to be able to
create and destroy spaces of interaction at run-time, in this paper we propose to create them
using Atrtificial Institutions (Als) specified at design time. In particular starting from our past
studies on Al (Fornara et al. 2007; Fornara and Colombetti 2009b) and on the formalization of
obligations using Semantic Web Technologies (Fornara and Colombetti 2010; Fornara 2011;
Fornara et al. 2012), in this paper we will first define the various components of Als using
Semantic Web Technologies (Hitzler et al. 2009). Then we will describe the mechanisms for
using Als specification for concretely realizing at run-time spaces of interaction formalized
using Semantic Web Technologies. Those institutional spaces will represent the multi-agent
environment where the agents will be situated. In order to be able to manage the effects and
the perception of social and institutional interactions among agents, and in particular the
performance of institutional actions (Fornara et al. 2007), the functionalities and services
encapsulated in existing models of agent environments should be extended coherently.

We will exemplify the proposed approach by formalizing the components of the auction AT
and by describing how to use that Al for dynamically creating the spaces required for running
concrete auctions. In this paper we will also propose to use this approach for concretely
realizing a prototype for running auctions where the environment component is obtained by
extending the functionalities of an existing environment framework: the GOLEM (Bromuri
and Stathis 2009) environment. In particular GOLEM will be extended and interfaced with the
Semantic Web representation of Als and spaces by implementing a suitable synchronization
component.

This paper is organized as follows. In Sect. 2 we introduce the notion of Artificial Institution
(AI), of space of interaction, and their connections. In Sect. 3 the OWL model of Al, of
spaces of interaction, and the mechanisms for using Als for dynamically creating at run-time
spaces of interaction are presented. In this section we will also discuss the need to define
hierarchies of Als (Colombetti et al. 2002) and hierarchies of the spaces realized using such
Als. In Sect. 4 the architecture of the prototype that we are implementing for testing the
proposed model is briefly described and compared to related approaches.

2 Spaces of interaction and artificial institutions

In our view, open interaction systems for autonomous heterogenous agents can be modeled
using Als, and enacted as a set of physical and institutional spaces of interaction (Tampitsikas
et al. 2012). Spaces are introduced to model the fact that interactions usually take place in a
limited physical and/or institutional place, for example in a classroom, in a meeting room,
during a run of an auction, or inside a team created for solving a specific problem.

The notion of space is fundamental in the specification of open systems to model limited
observability. A space, in fact, represents for the interacting agents the boundaries for the
effects and for the perception of the events and actions that happen in a space, which indeed
may be perceived only by the agents inside that space. A space has also functional responsi-
bilities, that is, it is in charge of mediating the events and the actions that happen inside the
space. This means that the space has to register the fact that an event or action has happened,
and it has to notify it to the agents in the space that are registered for its template. In this
paper we will extend this notion of space in order to be able to formalize the components
required for representing and managing the institutional aspects of the interaction.
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An environment for multi-agent systems (MAS) is composed by multiple spaces where
objects and agents are situated. In an agent environment objects are one of the building
blocks. They are used to represent the various non-autonomous components of the system,
like physical entities external with respect to the system (like databases or external files and
web services), offering an abstraction, for the agents, that hides the low level details. Objects
are fundamental also for representing institutional entities that are manipulated by the agents
during their institutional interaction. Institutional entities have one or more institutional
attribute, and their value can be changed thanks to the performance of institutional actions
(Fornara et al. 2008) and thanks to the common acceptance of the semantics of those actions
from the agents belonging to the space where the action is performed and the object, on
which it is performed, is situated. For example a run of an auction can be opened or closed by
suitable institutional actions that have the effect to change the state of the run of the auction,
similarly the attributes of an agreement or of a contract holding between different agents can
be set with specific values. Physical objects can be considered institutional objects when they
get institutional attributes during the dynamic evolution of the state of the environment.

In order to manage the performance of institutional actions and the fact that the interactions
are regulated by norms (that are used to express obligations, prohibitions, and permissions
to perform certain type of actions) it is necessary to extend the functionalities of spaces to
concretely realize the mechanisms for:

— Keeping track of the interactions among agents and computing the state of spaces on
the basis of the events, actions, and institutional actions performed by the agents and on
the basis of their pre-conditions and effects. For example in the Dutch auction the agent
playing the role of auctioneer can only lower the current ask price.

— Checking that the agent that performs an institutional action has the institutional power
for doing such an action and that all the other preconditions for the performance of the
action are satisfied. For example an agent that has not the institutional power of declaring
open the auction can attempt to do its effects will not change the state of the state of the
interaction where the action is performed, i.e. the action is void;

— Monitoring the interactions, that is represent in the most suitable way the actions and
events that happen in the system in the state of the interaction, then check if they are com-
pliant with a given set of norms used to express obligations, prohibitions, and permissions
related to type of actions;

— Enforcing the norms for example by applying sanctions (Fornara and Colombetti 2009a)
that change the reputation values of the agents.

We assume that in the environment used for creating an open interaction system there is
always a root space that contains all the physical laws of the system, this is also the space
where the agents need to register for starting to interact in a given open system. The agents
situated in such a root space need to realize complex interactions with the other agents,
and in particular they need to be able to dynamically create and destroy at run-time spaces
of interaction. Think for example to a market-place where the spaces for running specific
type of auctions or for negotiating different types of contracts are continuously created and
terminated. Given that defining all the rules, norms, and the context of interactions at run-
time is a complex task, in this paper we propose to create such spaces of interaction using
pre-defined pattern of interaction, defined at design time, which are modeled using the notion
of Artificial Institution (Al) (Fornara et al. 2007, 2008; Fornara and Colombetti 2009b). This
approach, from the software engineering point of view, has also the significant advantage
of making it possible to use many times existing specifications of Als. For example the Al
specification of a given type of auction, the Dutch Auction can be used for realizing different
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run of this type of auction in an open electronic market-place. As we will propose in next
sections, the process of re-using existing Al is encouraged and made easier if standard well-
known technologies, like the Semantic Web Technologies, are used for their formalization.

The creation at run-time of an institutional space by using Als defined at design time is
a complex task that deserves to be studied in all details. For doing that, in this paper, we
will first define the various application independent components of Als using Semantic Web
Technologies, in particular OWL 2 DL! (Hitzler et al. 2009). The model of Al that we propose
in this paper is inspired from the model presented in Fornara and Colombetti (2009b) where
Al are formalized using Event Calculus. Obviously given that in this proposal we adopt
other formal languages we will need to change some parts of the model and to extend it to
take into account its connections with the environment components, that is with spaces and
objects. For example an advantage of this new model is that the content of norms are not
any more specific actions but a classes of possible actions. Then in a second step we will
study and describe the mechanisms for using the specification of a generic Al for realizing
and executing spaces of interaction. Finally we will explain how we plan to use this model
based on OWL Als and spaces for the realization of a first prototype of a market-place. From
the architectural point of view an open interaction system is a particular type of distributed
event-based system, which is in charge of the complex task of distributing the perception and
notification of actions and events to the participating agents. Therefore for the architecture of
our prototype we decided to adopt and extend an already existing environment framework:
the GOLEM framework (Bromuri and Stathis 2009).

There are many advantages in using Semantic Web Languages (Antoniou and Harmelen
2008; Hitzler et al. 2009) for the specification and realization of an open interaction systems
with respect to the adoption of other formal languages, like for example the Z state-based
specification language based on set theory used in d’Inverno et al. (2012) for the specification
of Electronic Institutions. The first advantage is that Semantic Web languages are international
standards, and therefore it is possible to realize systems by reusing existing ontologies (for
example the Time Ontology) and the ontologies proposed in this work may be easily re-used
in other systems. Second it is possible to use some of the good existing tools and libraries for
editing ontologies and accessing them from programs, that is by directly using them for the
implementation of open systems. Moreover given that OWL 2 DL is a decidable fragment of
FOL there are several reasoners available? for reasoning on OWL specifications and deducing
knowledge. Finally given that OWL 2 DL ontologies coming from different sources can be
easily merged by taking the union of their axioms (or using ontology alignment mechanisms
when the different ontologies are not immediately compatible) it is possible for agents to
enter in different open systems and reason on their future actions, even if those interaction
systems have different set of norms, rules, and description of the context of the enabled
interactions.

3 Formal specification of Als and spaces using OWL
In this section we formalize, using Semantic Web Technologies, the classes, properties, indi-

viduals, axioms, and assertions required for the specification of Artificial Institutions at design
time. We also propose a formal specification of the concepts required for the definition and

1 http://www.w3.org/TR/owl2-syntax/.

2 W3C list of reasoners, editors, development environments, APIs: http://www.w3.0rg/2007/OWL/wiki/
Implementations.
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Event/Action Ontology IW)I Time Ontology

Timport
Artificial Institution/Space
Ontology import

Auction Ontology

Timpor‘t

State Ontology

Fig. 1 Import relationship among the proposed OWL 2 DL ontologies

dynamic evolution of institutional spaces at run-time and the process for dynamically creating
them using Al specifications. The concepts introduced will be exemplified by formalizing
some components of the Dutch auction Al and of the spaces that it is possible to generate
from this Al The constructs used for defining Als and spaces will be mainly defined in a set
of OWL 2 DL ontologies (see “Appendix A” for a brief introduction to the main components
of an OWL ontology) that represent different components of the proposed model.

Those ontologies, made available on-line,> have been created using Protégé ontology
editor* and checked (in order to determine whether or not the ontology is consistent, identify
subsumption relationships between classes, and many other things) by using the HermiT>
OWL 2 DL reasoner. In presenting their formalization we use capital initials for classes, and
lower case initials for properties and individuals. We assume that all individuals introduced
in the ABox of the ontologies are asserted being different individuals.

The process of actually creating and destroying spaces of interaction at run-time, is con-
cretely realized by a program that accesses, using OWL-APL?® the content of the ontology
where the model of the relevant Al is stored and that manipulates the content of the State
Ontology, used for representing the state of the existing spaces of interaction, by adding a
new individual that represents the new space. We decided to use a program and OWL libraries
for creating new individuals in the ontology because it is impossible to write an OWL 2 DL
axiom for doing that.

In order to be able to use already existing ontologies, like for example the W3C OWL Time
Ontology,” and for making the ontologies proposed in this paper usable in other applications,
we decide to create the following different ontologies for the formalization of our model:
an application independent ontology for describing events and actions, the Event/Action
Ontology; an application independent ontology where the concepts required for describing
artificial institutions and spaces are formalized, the Artificial Institution/Space Ontology;
an ontology for describing different type of auctions using the proposed model of Al, the
Auction Ontology, and an ontology used for describing at run-time the state of the spaces of
interaction dynamically created, the State Ontology. Those ontologies are connected by an
“import” relationship as depicted in Fig. 1.

The Time Ontology is used to represent instants of time, intervals, and relationships among
them. The Event/Action Ontology, introduced in one our previous work (Fornara 2011), is
used to represent events and actions (with the classes Event and Action) and it imports

3 http://www.people.lu.unisi.ch/ontolgy/ontologies.zip.
4 http://protege.stanford.edu/.

5 http://hermit-reasoner.com/.

6 http://owlapi.sourceforge.net/.

7 http://www.w3.org/TR/owl-time/.
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the Time Ontoloy. An event is connected to the instant of time when it happens by the
property atTime: Eventuality — TemporalEntity where Event = Eventuality and the
class Eventuality is used to generalize the notion of event and fluent (a state of affair that
can change in time). Every event has an atTime value as expressed by the following axiom:
Event = 3JatTime.Instant. Actions are particular type of events having an actor: Action
C Event; Action = JhasActor.Agent. The class ChangeEvent C Event represents the
events due to the change of the value of a property. The class TimeEvent C Event represents
a special type of events whose characteristic is simply of being associated to an instant of
time. They are useful for expressing deadline in obligations specification. In order to be able
to represent that an instant of time is elapsed we introduce the class Elapsed C Instant. If
events/actions are associated to an elapsed instant of time, they actually happened, otherwise
they are simply a description of those events/actions. The assignment of an instant of time
to the class Elapsed is realized by a the software in charge of representing or simulating the
time evolution of the system, this with the goal of being able to monitor the behavior of the
agents.

3.1 Institutional actions

Institutional actions (Fornara et al. 2007) (represented with the class InstAction C Action)
are a special type of actions whose effects change the value of institutional properties. For
example the action of opening or closing an auction, creating a space of interaction, or
assigning arole to an agent. An institutional action is successfully performed if and only if the
actor of the action has the institutional power to perform such an action and if other application
dependent contextual conditions are satisfied (Searle 1995), otherwise the effects of the action
are empty. In our previous institutional models (Fornara et al. 2007; Fornara and Colombetti
2009b) institutional actions were performed by means of declarative communicative acts.
This approach has the problem that the receiver of those acts should be the set of all agents
for which the institutional action is relevant. Computing this set of agents is a complex
task for one agent situated in a distributed open system with limited observability of the
state of the interaction. On the contrary in the model presented in Tampitsikas et al. (2012)
and in this paper, agents may attempt to perform institutional actions in a specific space
of the environment. Then the environment is in charge of checking if the preconditions of
the institutional action (at least the ones related to institutional power) are satisfied. If the
preconditions are satisfied the action happens and its effects are represented in the state of
the space where the action is performed and become perceivable, at least, by those agents
situated in that space and for which the action is relevant (the agents registered to a template
of the institutional action).

3.2 Atrtificial institutions and institutional spaces

Artificial institutions are defined at design-time and at run-time they can be used for creating
one or more institutional spaces. An Artificial Institution (Al) is characterized by: (i) a set
of concepts and properties introduced by the specific Al; for example in an auction Al it is
necessary to represent the products, the reservation price, the various ask-prices, the value
of the bids, the maximum duration of the auction, and so on; (ii) a set of actions available for
the agents and defined by the Al (iii) a set of roles, which are labels defined in a given Al
for abstracting from the specific agents that will take part at run-time to an interaction; (iv)
a set of norms for expressing at design time the obligations, permissions, prohibitions, and
institutional powers of the agents that will play a given role.
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A specific institutional space is characterized by: (i) the Al or Als used to create the space;
if more than one Al is used for creating a space, the problem of aligning different Als models
and checking the consistency of the specification obtained by using different Als arises; (ii)
the set of sub-institutional spaces dynamically created inside a given space; (iii) the list of
agents that are inside the space at a given instant of time; (iv) the list of roles defined in the
space that is generated from the list of roles of the Als used to create the space; (v) the list of
objects (i.e. the products sold in the auction, concrete obligations and institutional powers)
that the agents can manipulate in the space.

For representing those concepts we create the Artificial Institution/Space Ontology that
defines the Artificiallnst and InstSpace classes and the following property used to connect
a space with the Al used for its realization:

isRealizationOf: InstSpace — Artificiallnst.

For exemplifying those concepts we create the Auction Ontology used for defining an
artificial institution that can be used for realizing generic auctions. In this ontology we create
the individual auction that belongs to the Artificiallnst class. In those ontologies agents are
represented as individuals that belong to the Agent class. The isln: Agent — InstSpace
property is used to connect an agent with the spaces where it is situated.

We assume that at run-time every interaction system has a root-space that belongs to the
PhysicalSpace class. PhysicalSpace and InstSpace are both subclass of the Space class.
Every new space that should be created is a sub-space of an existing space. For representing
this relation among spaces we define the sub-space: Space — Space property.

Institutional actions for creating new spaces can be represented in the ontology as individ-
uals belonging to the CreateSpace C InstAction class. This action has various parameters,
some of them are independent from the type of the Al used for creating the space, they are:
(i) the actor (a general property of all type of actions) represented with the hasActor: Action
— Agent property; (ii) the name of the space where the action is performed, which should
be specified for every type of action and it is represented with the performedin: Action—
Space; Functional(performedin) property; (iii) the name of the new space that should be
created; and (iv) the name of the Al that should be used for creating the space. Some other
parameters of the create space action are strictly related to the Al used for creating the space,
for example if the auction Al is used, required values are the date when the auction will start
and the reservation price. The generic create space action performed by agent Robert in the
root-space at instant2 by using the auction Al can be represented in the State Ontology
with the following assertions:

CreateSpace(act01); hasActor(act01,Robert); performedin(act01,root-space);
newSpace(act01,run01); usedAl(act01,auction); Instant(instant2);
atTime(act01,instant2);

The effects of this action are represented by the following assertions:

InstSpace(run01); sub-space(run01, root-space);
isRealizationOf(run01,auction);

If the action is successful all those assertions are added to the ABox of the State Ontology
by the synchronization component described in Sect. 4. An agent situated in a space can
enter in all its sub-spaces and can be contemporarily in two or more institutional spaces. The
rules that regulate the action of entering in the various sub-spaces are defined in the external
space.
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3.3 Hierarchy of artificial institutions and spaces

The auction artificial institution defines the concepts and properties that are common to every
type of auction, like for example the ask-price, the reservation price, the action of bidding,
and the roles of auctioneer, participant, and winner. Specific type of auctions, like the English
auction or the Dutch auction defines further properties, roles, and norms, specific for that type
of auction. For example they have different rules for determining the winner of one run of the
auction. The winner of the English auction is the participant who did the highest bid once the
run of the auction is closed. The winner of the Dutch auction is the first participant who accepts
the current ask price declared by the auctioneer. In the Auction Ontology those different types
of auctions can be modeled with the following individuals belonging to the Artificiallnst class:
Artificiallnst(eng-auction), Artificiallnst(dutch-auction). Those different types of auctions
creates a hierarchy of Als that is crucial for the re-usability of AI models. Given that these
Als are represented in the ontology as individuals (not as classes) this hierarchy should be
explicitly represented by introducing the following transitive property:

specializes: Artificiallnst — Atrtificiallnst; Tra(specializes);
specializes(eng-auction, auction); specializes(dutch-auction, auction).

This hierarchy of Als influences the mechanisms by which the properties, the roles and the
norms of an Al are inherited by more specific type of Als, as we will discuss in the following
sub-sections. The specialize relation between Als, like the one previously introduced, creates
a hierarchy between the classes of the spaces created using those Als as asserted by the
following axiom:

isRealizationOf o specializes C isRealizationOf.

As consequence of this axiom the class of the spaces that realizes a specific Al, like for
instance the eng-auction Al, is sub-class of the class of spaces that realizes the more generic
Al like the auction Al as expressed in the following axiom. This is an important aspect,
because the properties having as domain the more generic class of spaces can be used also for
the more specific class of spaces. For example the property that associates to an auction space
the price that the winner has to pay for the auctioned product is a generic property defined for
every type of auction. A consequence of this axiom is also that a space that realizes a given
Al realizes also all its more generic Als. For example if the space run01-dutch-auction
realizes the dutch-auction Al it realizes also the auction Al

3.4 Roles

An Al may define different roles, for example in the auction Al we have the roles of auctioneer
and participant, in a company we have the roles of boss and employee. In our model a role
is a label defined in a given Al. We introduce the class RoleName to represent the set of
possible role labels and the following property that associates a role label to the Al where it
is defined:

isRoleOf: RoleName — Artificiallnst.

For example auctioneer is a role defined by the auction Al as stated by the following
assertions: RoleName(auctioneer); isRoleOf(auctioneer, auction);

At runtime agents situated in a given space may play the roles defined in the Als used
to create such a space. For example agent Robert may play the role auctioneer in the
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isRealizationOf
TBox 1‘ InstSpace | ------------------------- Artificiallnst

-“isin isDefinedin isRoleOf

|

ABox

-------- ------

Fig. 2 Classes, properties, and individuals related to the notion of role

institutional space run01 that realizes the auction Al This is a ternary predicates that cannot
be expressed as a single property in OWL3: the fact that Robert belongs to the institutional
space run01 is not enough to know that he is playing the role of auctioneer in this space.
This because Robert can belong also to another institutional space, for example run02 that is
arealization of the same Al used to create run01, but where Robert is not playing the role of
auctioneer. This is a very common problem in OWL ontologies, to solve it, similarly to what
is proposed in the W3C Organization Ontology® (where the Membership class is defined,
but where there is not the idea of defining reusable Al models), we introduce the Role class
used to collect the roles defined in a specific institutional space. These roles are connected
with their corresponding role names in the Als and with the space where are defined by the
following properties:

hasRoleName: Role — RoleName; Functional(hasRoleName);
isDefinedIn: Role — InstSpace; Functional(isDefinedIn);

When a new space is created it is necessary to add to the Role class the individuals used
for representing its roles. For example when the space run01 is created using the auction
Al the role auctioneer01 has to be created in the space and it has to be connected to the
role auctioneer defined in the auction Al by means of the following assertions:

Role(auctioneer01); isDefined(auctioneer01,run01);
hasRoleName(auctioneer01, auctioneer).

The property: hasRole: Agent — Role allows to represent the fact an agent plays a given
role. For example when agent Robert is in the space run01 and starts to play the role auc-
tioneer01 we have to add to the ontology the assertion hasRole(Robert,auctioneer01).All
those classes, properties, and individuals related to the notion of role are represented for more
clarity in Fig. 2.

The institutional actions for assigning a role to an agent are represented with the class
AssignRole C InstAction. These actions have as parameter the actor (like all type of actions),
the agent that will play the new role, and the role. For this type of actions, the space where
the action is performed is univocally determined by the name of the role. When an action

8 See http://www.w3.org/TR/swbp-n-aryRelations/ for acomplete explanation of how defining n-ary relations
on the Semantic Web.

9 http://www.w3.org/TR/vocab-org/.
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of this type is successfully performed it is registered in the OWL ontology, and its specific
parameters are represented by means of the following properties:

hasAssignedAgent: AssignRole — Agent
hasAssignedRole: AssignRole — Role.

Similarly the DismissRole C InstAction action is used to dismiss an agent from a given
role. In general the more specific type of Al for instance the dutch-auction Al, inherits from
the more generic Al, for example the auction Al, the list of its roles. This is expressed by
the following axiom:

isRoleOf o specializes™ C isRoleOf.

3.5 Norms

Norms in MAS have the following main characteristics (da Silva Figueiredo et al. 2010): (i)
they are used to define at design time the obligations, prohibitions, permissions, and institu-
tional powers, and they are all defined in terms of roles; (ii) they regulate the performance of
actions and they are active during a period of time that can be expressed through activation
and deactivation events. When they express obligations a deadline should be specified; (iii)
norms specify sanctions for norms violations, rewards for norm fulfillment, or sanctions for
the attempt to perform an institutional action without having the right institutional power or
when specific preconditions are not satisfied.

A norm is an individual that belongs to the Norm class, which is the domain of a set
of properties. First we define the properties for connecting the norm to the Al where it is
defined, for specifying its type, and for expressing its debtor:

isNormOf: Norm — Artificiallnst;
hasNormDebtor: Norm — RoleName;
hasNormType: Norm — {obl,perm,prohib,power}

Like for roles, in general the more specific type of Al inherits from the more generic Al
the list of its norms. This is expressed by the following axiom:

isNormOf o specializes ~ C isNormOf.

Norms have activation and deactivation events that are represented using classes of events,
and they have a content that is a class of actions whose performance is regulated by the norm.
The advantage of expressing them using classes instead of using specific individuals, is
that the debtor agent at run-time will be able to exploit its autonomy and the possibility to
perform automated reasoning on OWL ontologies for planning its action and choosing the
best one among a set of actions that will fulfill the obligation. If the norm is an obligation it
should have also a duration that will be used for computing the deadline within which the
obliged action has to be performed. Given that a norm is an individual and its activation,
content, and deactivation components are classes, we need to use OWL 2 punning process'®

10 http://www.w3.org/TR/owl2-new-features/#F12:_Punning.
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Class <> Individual (which allows to use the same term for both a class and an individual)
for connecting a norm to its components, this by using the following properties:

hasNormActivation: Norm — Event;
hasNormContent: Norm — Action;
hasNormEnd: Norm — Event;
hasDuration: Norm — Integer.

At design time we have less information about the value of certain norm properties with
respect to the information available at run-time. For example, the actual agents that will
take part to the interaction on which the norms should be applied and the value of some
parameters (i.e. the current ask-price of an auction) will become known only at run-time,
when a space for running the auction is created. Every norm, defined at design time, will
generate at run-time many specific obligations, prohibitions, permissions, and institutional
powers, one for every agent that will start to play the role of debtor of a norm. We will model
this aspect by having norms defined at design time and associated to specific Als, which
generate at run-time different types of objects belonging to specific institutional spaces. For
modeling those concepts in the Artificial Institution/Space Ontology we create the Object
class, which contains the classes Obligation, Prohibition, Permission, and InstPower. An
object is connected to its space by means of the property belongsTo: Object — Space;
Functional(belongsTo). In the definition of some components of norms we will use the
special individual InstSpace(new-space) for being able to refer at design time to the specific
space that will be generated by the Al where the norm belongs. When a norm generates a
specific object in a specific space such a special individual has to be substituted with the
individual used for representing the specific space.

In case the norm represents an obligation, following the approach presented in Fornara
(2011), we will represent the specific obligations generated by the norm as individuals belong-
ing to the class Obligation = Event. A specific obligation is treated as an event because
it has associated the instant of time when it is created. This is fundamental for writing the
axioms for deducing the state of obligations where we need to check that the event that
activates it and the action that fulfills it are subsequent to its creation. In a similar way we
model prohibitions that are used to express that an action belonging to its content should not
be performed, obviously the axioms for deducing their fulfillment or violation are different
with respect to the axioms of obligations. Specific institutional power objects can be created
when an agent starts to play a given role and they may become active when some conditions
are satisfied. Differently from obligations and prohibitions institutional powers are never ful-
filled or violated but they are used by the environment component for mediating the attempts
to perform institutional actions.

3.5.1 Example: the winner norm

In the specification of various types of auctions there is a norm that obliges the agent playing
the role of auctioneer to assign the role of winner to a participant with certain characteristics.
In the dutch-auction Al the winner is the agent that accepts the current auctioneer’s ask-
price. In the English auction the winner is the agent that did the highest bid during the run of
the auction. This norm for the dutch-auction Al is formalized with the following assertions:

Norm(norm-winner-du);
isNormOf(norm-winner-du,dutch-auction);
hasNormType(norm-winner-du, obl);
hasNormDebtor(norm-winner-du,auctioneer);
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Fig. 3 Proposed Architecture

The event that activates the obligation represented by this norm is the action of accepting
the current ask-price performed by one of the participants. This is an application dependent
institutional action that only an agent playing the role participant in one specific run generated
by the dutch-auction Al has the institutional power to perform. The effects of this action are
to create an obligation, for the accepting agent, to pay to the auction house the value of the
ask-price. The class of institutional actions used for accepting the ask-price of a run of this
type of auction is represented with the class AcceptAskPrice C InstAction. The activation
event of the norm-winner-du is a class defined as follows:

StartEvent-winner-du = AcceptAskPrice n performedin > new-space n
JhasActor.(3hasRole.(hasRoleName>participant risDefinedIn > new-space));
hasNormActivation(norm-winner-du, StartEvent-winner-du);

The content class of norm-winner is defined as:

Content-winner-du = AssignRole mhasAssignedRole.(hasRoleNameswinner)r
JhasAssignedAgent.(3hasActor~.(AcceptAskPrice rmperformedin.> new-space));
hasNormContent(norm-winner-du, Content-winner-du);

At run-time the debtor of this norm becomes known as soon as an agent starts to play
in a specific space a role having as role name auctioneer. When this happens a specific
obligation, used to model a specific realization of the norm norm-winner-du in the specific
space, has to be created. The start event class and the content class of the new obligation are
obtained substituting the individual new-space with the real name of the space. In order
to express the fact that the auctioneer has n instant of time for declaring the winner, we
assert hasNormDuration(norm-winner-du,n). At run-time this value will be used to set
the interval of the generated obligations (see Fornara 2011 for more details on the Obligation
Ontology).

4 Proposed architecture and related works

We are currently using the presented OWL model of artificial institutions and spaces for
realizing a first prototype of a market-place. The architecture of such a prototype consists of
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four main building blocks (depicted in Fig. 3): (i) the OWL 2 DL ontologies used to represent
Als and spaces at design time and also at run time; (ii) the agent environment whose core is
based on GOLEM platform (Bromuri and Stathis 2009) as we better explain below; (iii) the
synchronization component among them; (iv) an agent framework for the development of
cognitive agents able to plan their strategies, to perform actions on the environment and to
perceive the state of the environment. GOLEM is an agent environment that can be used to
create multi-agent applications where cognitive agents may interact. In our previous works
Tampitsikas et al. (2012, 2011) we have extended the GOLEM platform in order to specify
declaratively the agent environment and some institutional components, like norms, as a
logic-based theory concretely realized using PROLOG. Such a GOLEM platform is used
in our prototype for realizing inside the agent environment the spaces of interaction for the
participating agents.

In the architecture of our prototype we decided to formalize Artificial Institutions and the
spaces generated at run-time from those Als in OWL 2 DL ontologies. This for having the
advantages previously explained in Sect. 2, and in particular for the possibility to clearly
specify our model in a W3C standard language for which many tools are available, for the
advantage of using existing OWL ontologies and making our ontology re-usable in other
applications, and for the decidability of the formal language. We decided also to use the
GOLEM platform realized in PROLOG, a logic programming language, and in Object Event
Calculus (OEC) (Kesim and Sergot 1996) for the realization of the first-class environment
that the agents perceive and interact with. We did this choice because the OEC is suitable to
represent the evolution in time of complex structures by means of events. In fact it determines
the state of an object by assigning values to its attributes. Based on this property, it deals
with the evolution of an object over time, parameterizing its attributes with the time at which
these attributes hold their various values. Moreover PROLOG supports negation as failure a
type of non-monotonic reasoning that in our framework is important for deducing the state
of norms on the bases of the events that happen in the system.

As a consequence of those choices we need to introduce in our architecture a synchro-
nization component (implemented in Java using OWL-API'!) in charge of: (i) updating the
OWL 2 DL ontologies with actions and events that happen in the environment and with the
effects of agents’ interactions; (ii) querying the OWL 2 DL ontologies on behalf of the agent
environment for getting information contained in the ontologies, like for instance when an
institutional action is performed for getting the list of institutional powers of the actor of the
action. When information from OWL ontologies is retrieved into the agent environment, it
is represented as first-class objects and spaces that can be perceived and manipulated by the
software agents situated in a specific space.

To the best of our knowledge there are not other works where Semantic Web Technologies
are used for modeling Al specifications and where Als specifications are used at run-time
for dynamically creating spaces of interactions situated in agent environments. There exist
however a few interesting proposals that are partially correlated to our work and worth
mentioning.

Sensoy et al. proposed the OWL-POLAR framework (Sensoy et al. 2012) whose focus
is more on OWL policy representation and reasoning than on complete artificial institutions
specification and on their use at run-time. Despite this fact, the OWL-POLAR is related to
our work since the policies specified by the authors are equivalent to the norms in our Al
definition. According to the authors, policies should be interpreted at run-time and for this
reason they define a policy/norm language capable of: (i) clearly representing the different

1 http://owlapi.sourceforge.net/.
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types of policies in terms of related activities; (ii) reasoning on proper policy application; (iii)
reasoning on policy validity and potential policies conflict. While the semantic representation
of policies in OWL-POLAR shares common logical foundations with the norm representation
in Als, it differs on the fact that norms are situated in an agent environment. Norms in
our approach are first-class objects situated in and limited by spaces. Spaces constitute the
mechanism for monitoring the state of norms as well transforming their status. In advance,
our system is event-based, meaning that the norms’ states transition preconditions are not
related to the normative state of the system in general but on classes of agent produced
events.

Finally, the OWL-POLAR framework embeds strategies for resolving conflicts between
policies. The main concept of anticipating conflicting policies lies in transforming the prob-
lem into an ontology consistency checking task. On the contrary, in Als, norm interdepen-
dencies are realized and solved in the fist-class representation of the system and not in the
OWL description of the MAS (Tampitsikas et al. 2012) making easier their anticipation.
GOLEM queries the OWL 2 DL ontologies, depicts the state of the system, updates the
environment and it is the environment as an active entity that automatically detects norm
conflicts.

Another relevant related work is the paper (Zarafin et al. 2012) where the importance
of integrating Semantic Web technologies and Multi-Agent Systems is discussed and a first
draft of an OWL ontology of the MOISE organizational specification model is presented.

Finally another work related to our research line, but from a different perspective, is
the JaCaMo platform, recently developed by Boissier et al. (2011). A JaCaMo multi-agent
interaction system consists of three basic components:

— anagentorganization modeled and programmed in the MOISE Organization Management
infrastructure (Hiibner et al. 2002);

— aBDI agent programming framework realized with the Jason!? a platform for the develop-
ment of multi-agent systems that incorporates an agent oriented programming language;

— a distributed agent environment realized with CArtAgO, a framework and infrastruc-
ture for environment programming and execution in multi-agent systems (Ricci et al.
2009).

JaCaMo integrates these three frameworks by defining in particular a semantic link among
concepts of the different dimensions (agent, environment and organization) at the meta-model
and programming levels, in order to obtain a uniform programming model aimed at simpli-
fying the combination of those dimensions when programming multi-agent systems. From
the modeling point of view our approach differs from the approaches based on organization
specification because our focus is on artificial institutions and spaces, that is, on the definition
of the context and the conventions of the interaction and on the possibility to re-use such
specifications for the realization of different open interaction systems.
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Appendix A: OWL 2 DL

OWL 2 DL is a practical realization of a Description Logic known as SROZ Q(D). It allows
one to define classes, properties, and individuals. An OWL ontology consists of: a set of class
axioms that specify logical relationships between classes, which constitutes the Terminolog-
ical Box (TBox); a set of property axioms to specify logical relationships between properties,
which constitutes a Role Box (RBox); and a collection of assertions that describe individuals,
which constitutes an Assertion Box (ABox). Classes are formal descriptions of sets of objects
(taken from a nonempty universe), and individuals can be regarded as names of objects of
the universe. A class is either a basic class (i.e., an atomic class name) or a complex class
build through a number of available constructors. Properties can be either object properties,
which represent binary relations between objects of the universe, or data properties, which
represent binary relationships between objects and data values (taken from XML Schema
datatypes).

Through class axioms one may specify that subclass () or equivalence (=) relationships
hold between certain classes, and that certain classes are disjoint. In particular, class axioms
allow one to specify the domain and range of a property p (p: A— B where class A is the
domain and class B is the range), and that a property is functional or inverse functional.
Property axioms allow one to specify that a given property (or chain of subproperties) is
a subproperty of another property, that two properties are equivalent, or that a property is
reflexive, irreflexive, symmetric, asymmetric, or transitive. Finally, assertions allow one to
specify that an individual a belongs to a class C: C(a), that an individual a is (or is not)
related to another individual b through an object property R: R(a,b), that an individual is
(or is not) related to a data value through a data property, or that two individuals are equal or
different.

Complex classes can be specified by using Boolean operations on classes: C LI D is the
union of classes, C D is the intersection of classes, and — C is the complement of class C.
Classes can be specified also through property restrictions: (i) 3 R.C denotes the set of all
objects that are related through property R to some objects belonging to class C, at least one;
if we want to specify to how many objects an object is related we should write: < nR, > nR,
=nR where n is any natural number; (ii) V R.C denotes the set of all objects that are related
through R only to objects belonging to class C; (iii) R> a denotes the set of all objects that
are related to a through R.
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