Skip to main content

Advertisement

Log in

The Human Interactome Knowledge Base (HINT-KB): an integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, calculates a set of features of interest and computes a confidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdi H (2007) Discriminant correspondence analysis. In: Salkind NJ (ed) Encyclopedia of measurement and statistic. Sage, Thousand Oaks (CA), pp 270–275

    Google Scholar 

  • Andreeva A, Howorth D, Brenner SE, Hubbard TJP, Chothia C, Murzin AG (2004) SCOP database in 2004: refinements integrate structure and sequence family data. Nucl Acid Res 32:D226–D229

  • Aranda B, Achuthan P, Alam-Faruque Y et al (2010) The IntAct molecular interaction database. Nucl Acids Res 38:D525–D531

    Article  Google Scholar 

  • Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  Google Scholar 

  • Auerbach D, Thaminy S, Hottiger MO, Stagljar I (2002) The post-genomic era of interactive proteomics: facts and perspectives. Proteomics 2:611–23

    Article  Google Scholar 

  • Back T, Schutz M (1996) Intelligent mutation rate control in canonical genetic algorithms. In: Proceedings of the 9th international symposium, ISMIS 96. Springer, Berlin, pp 158–167

  • Bader GD, Donaldson I, Wolting C et al (2001) BIND: The Biomolecular Interaction Network Database. Nucl Acids Res 29:242–245

    Article  Google Scholar 

  • Barrett T, Troup D, Wilhite S et al (2011) NCBI GEO: archive for functional genomics data sets-10 years on. Nucl Acids Res 39(suppl 1):D1005–D1010

    Article  Google Scholar 

  • Berman H, Westbrook J, Feng Z et al (2000) The protein data bank. Nucl Acids Res 28(1):235–242

    Article  Google Scholar 

  • Box FJ (1987) Guinness, gosset, fisher, and small samples. Stat Sci 2(1):45–52

    Article  MathSciNet  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn J 45:5–32

    Article  MATH  Google Scholar 

  • Breukelaar R and Baeck T (2008) Self-adaptive mutation rates in genetic algorithm for inverse design of cellular automata. In: Proceedings of the 10th annual conference on Genetic and evolutionary computation, July 12–16, Atlanta, GA, USA. doi:10.1145/1389095.1389298

  • Chatrayamontri A, Ceol A, Palazzi LM et al (2007) MINT: The Molecular INTeraction database. Nucl Acids Res 35:D572–D574

    Article  Google Scholar 

  • Chen P, Li J (2010) Sequence-based identification of interface residues by an integrative profile combining hydrophobic and evolutionary information. BMC Bioinformatics 11:402

    Google Scholar 

  • Chen X, Liu M (2005) Prediction of protein–protein interactions using random decision forest framework. Bioinformatics 21:4394–4400

    Article  Google Scholar 

  • Demiris EN, Likothanassis SD, Beligiannis GN, Adamopoulos A (2000) Nonlinear AR model identification with unknown process order. In: Proceedings IEEE international symposium intelligent signal processing and communication systems (ISPACS), pp 777–782

  • Dimitrakopoulos CM, Theofilatos KA, Georgopoulos EF et al (2011) Efficient computational construction of weighted protein–protein interaction networks using adaptive filtering techniques combined with natural-selection based heuristic algorithms. Int J Syst Biol Biomed Technol (IJSBBT) 1(2):20–34

    Google Scholar 

  • Diniz PS (2002) Adaptive filtering: algorithms and practical implementation. Springer, Berlin

    Google Scholar 

  • Dotan-Cohen D, Letovsky S, Melkman AA, Kasif S (2009) Biological process linkage networks. PLoS ONE 4(4):e5313. doi:10.1371/journal.pone.0005313

    Article  Google Scholar 

  • Finn RD, Mistry J, Schuster-Bockler B et al (2006) Pfam: clans, web tools and services. Nucl Acids Res 34:D247–D251

    Article  Google Scholar 

  • Greene LH, Lewis TE, Addou S, Cuff A, Dallman T, Dibley M, Redfern O, Pearl F, Nambudiry R, Reid A, Sillitoe I, Yeats C, Thornton JM, Orengo CA (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucl Acids Res 35(Database issue):D291–D297

    Google Scholar 

  • Holland J (1995) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge

    Google Scholar 

  • Hunter S, Apweiler R, Attowood TK et al (2009) InterPro: the integrative protein signature database. Nucl Acids Res 37:D211–D215

    Article  Google Scholar 

  • Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human Protein Reference Database-2009 update. Nucl Acids Res 37:D767–D772

    Article  Google Scholar 

  • Kumar A, Snyder M (2002) Protein complexes take the bait. Nature 340:245–46

    Google Scholar 

  • MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763

    Google Scholar 

  • Moschopoulos CN, Pavlopoulos GA, Schneider R et al (2009) GIBA: a clustering tool for detecting protein complexes. BMC Bioinform 10(Suppl 6):S11

    Article  Google Scholar 

  • Lehne B, Schlitt (2009) The protein–protein interaction databases: keeping up with growing interactomes. Human Genomics 3(3):291–297

    Google Scholar 

  • Liu Y, Kim I, Zhao H (2008) Protein interaction predictions from diverse sources. Drug Discov Today 13:409–416

    Article  Google Scholar 

  • O’brien KP, Remm M, Sonnhammer ELL (2005) Inparanoid: a comprehensive database of eykaryotic orthologs. Nucl Acids Res 33:D476–D480

    Article  Google Scholar 

  • Pagel P, Kovac S, Oesterheld M et al (2005) The MIPS mammalian protein–protein interaction database. Bioinformatics 21:832–834

    Article  Google Scholar 

  • Puig O, Caspary F, Rigaut G et al (2001) The Tandem Affinity Purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229

    Article  Google Scholar 

  • Razick S, Magklaras G, Donaldson IM (2008) iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinform 9(1):405

    Article  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  Google Scholar 

  • Scott MS, Thomas DY, Hallett MT (2004) Predicting sucellular localization via protein motif co-occurrence. Genome Res 14(10A):1957–1966

    Article  Google Scholar 

  • Scott M, Barton G (2007) Probabilistic prediction and ranking of human protein–protein interactions. BMC Bioinform 8:239

    Article  Google Scholar 

  • Stark C, Breitkreutz B, Reguly T et al (2006) BioGRID: a general repository for interaction datasets. Nucl Acids Res 34:D535–D539

    Article  Google Scholar 

  • Szlarczyk D, Franceschini A, Kuhn M et al (2010) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucl Acids Res 39:D561–D568

    Article  Google Scholar 

  • Thahir M, Jaime C, Madhavi G (2010) Active learning for human protein–protein interaction prediction. BMC Bioinform 11(1):S57

    Article  Google Scholar 

  • Theofilatos KA, Dimitrakopoulos CM, Tsakalidis AK et al (2011) Computational approaches for the prediction of protein–protein interactions: a survey. Curr Bioinform 6(4):398–414

    Article  Google Scholar 

  • Theofilatos KA, Dimitrakopoulos CM, Tsakalidis AK et al (2010) A new hybrid method for predicting protein interactions using Genetic Algorithms and Extended Kalman Filters. In: Proceedings of the IEEE/EMBS Region 8 international conference on information technology applications in biomedicine (ITAB) art. no. 5687765, doi:10.1109/ITAB.2010.5687765

  • The UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucl Acids Res 40:D71–D75

    Google Scholar 

  • Troyanskaya O, Cantor M, Sherlock G et al (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17(6):520–525

    Article  Google Scholar 

  • Urquiza J, Tojas I, Romare H et al (2011) Method for prediction of protein–protein interactions in yeast using genomics/proteomics information and feature selection. Neurocomputing 74(2683):2690

    Google Scholar 

  • Urquiza J, Rojas I, Romares H et al (2012) Using machine learning techniques and genomic/proteomic information from known databases for defining relevant features for PPI classification. Comput Biol Med 42:639–650

    Article  Google Scholar 

  • Wang B (2007) Prediction of protein interactions by combining genetic algorithm with SVM method. In: Proceedings of the IEEE congress on evolutionary computation, pp 320–325

  • Wang B, Chen P et al (2010) Inferring protein–protein interactions using a Hybrid Genetic Algorithm/Support Vector Machine Method. Protein Pept Lett 17:1079–1084

    Article  Google Scholar 

  • Welch G, Bishop G (1995) An introduction to the Kalman filter. University of North Carolina at Chapel Hill, Chapel Hill

    Google Scholar 

  • Veenman CJ, Tax DM (2005) LESS: a model-based classifier for sparse subspaces. IEEE Trans Pattern Anal Mach Intell 27(9):1496–1500

    Google Scholar 

  • Von Mering C, Krause R, Snel B (2002) Comparative assessment of large data sets of protein–protein interactions. Nature 417(6887):399–403

    Article  Google Scholar 

  • Xenarios I, Salwinski L, Duan XJ et al (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucl Acids Res 30:303–305

    Article  Google Scholar 

  • Zhang Q, Petrey D, Garzon J et al (2012) PrePPI: a structure-informed database of protein-protein interactions. Nucl Acids Res. doi:10.1093/nar/gks1231

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Konstantinos Theofilatos or Seferina Mavroudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theofilatos, K., Dimitrakopoulos, C., Likothanassis, S. et al. The Human Interactome Knowledge Base (HINT-KB): an integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid technique. Artif Intell Rev 42, 427–443 (2014). https://doi.org/10.1007/s10462-013-9409-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-013-9409-8

Keywords

Navigation