Skip to main content
Log in

Research and development of neural network ensembles: a survey

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

A Neural Network Ensemble (NNE) combines the outputs of several individually trained neural networks in order to improve generalization performance. This article summarizes different approaches on the development and the latest studies on NNE. The introduction of the basic principles of NNE is followed by detailed descriptions of individual neural network generation method, conclusion generation method and fusion based on granular computing and NNE. In addition, for each of these methods we provide a short taxonomy in terms of their relevant characteristics, and analyze several of NNE applications, classic algorithms and contributions on various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbass HA (2000) A memetic pareto evolutionary approach to artificial neural networks. In: Proceedings of the 14th Australian joint conference on artificial intelligence. Springer, Berlin, pp 1–12

  • Abraham A, Grosan C, Han S, Gelbukh A (2005) Evolutionary multiobjective optimization approach for evolving ensemble of intelligent paradigms for stock modeling. In: Lecture notes in computer science. pp 673–681

  • Alhamdoosh M, Wang D (2014) Fast decorrelated neural network ensembles with random weights. Inf Sci 264:104–117

    Article  MathSciNet  MATH  Google Scholar 

  • Ao SI, Palade V (2011) Ensemble of Elman neural networks and support vector machines for reverse engineering of gene regulatory networks. Appl Soft Comput 11(2):1718–1726

    Article  Google Scholar 

  • Bakker B, Heskes T (2003) Clustering ensembles of neural network models. Neural Netw 16:261–269

    Article  Google Scholar 

  • Baumgartner D, Serpen G (2013) Performance of global-local hybrid ensemble versus boosting and bagging ensembles. Int J Mach Learn Cybern 4(4):301–317

    Article  Google Scholar 

  • Benediktsson JA, Sveinsson JR, Ersoy OK, Swain PH (1997) Parallel consensual neural networks. IEEE Trans Neural Netw 8(1):54–64

    Article  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MathSciNet  MATH  Google Scholar 

  • Breiman L (2000) Randomizing outputs to increase prediction accuracy. Mach Learn 40(3):229–242

    Article  MATH  Google Scholar 

  • Brown G (2004) Diversity in neural network ensembles. Ph.D. dissertation of University of Birmingham

  • Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a survey and categorization. Inf Fusion 6(1):5–20

    Article  Google Scholar 

  • Calderon D, Baidyk T, Kussul E (2013) Hebbian ensemble neural network for robot movement control. Opt Mem Neural Netw 22(3):166–183

    Article  Google Scholar 

  • Chandra A, Yao X (2004) DIVACE: diverse and accurate ensemble learning algorithm. In: Lecture notes in computer science. pp 619–625

  • Chen GC, Yu JS (2005) Particle swarm optimization neural network and its application in soft-sensing modeling. In: Lecture notes in computer science, vol 3611. pp 610–617

  • Chen H, Yuan S, Jiang K (2005) Wrapper approach for learning neural network ensemble by feature selection. In: Lecture notes in computer science. pp 526–531

  • Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  • Cunningham P , Carney J (2000) Diversity versus quality in classification ensembles based on feature selection. In: European conference on machine learning. Springer, Berlin, pp 109–116

  • Dai K, Zhao J, Cao F (2015) A novel decorrelated neural network ensemble algorithm for face recognition. Knowl Based Syst 89:541–552

    Article  Google Scholar 

  • Dietterich TG (1998) Machine-learning research: four current directions. Al Mag 18(4):97–136

    Google Scholar 

  • Dietterich TG, Bakiri G (1991) Error-correcting output codes: a general method for improving multiclass inductive learning Programs. In: Proceedings of the ninth AAAI national conference on artificial intelligence, AAAI Press, Menlo Park, CA, pp 572–577

  • Ding S, Li H (2014) Quotient space granularity selection based affinity propagation clustering algorithm. J Comput Inf Syst 10(6):2425–2433

    Google Scholar 

  • Ding S, Li H (2015) Twice clustering based individual neural network generation method. Neurocomputing 157:264–272

    Article  Google Scholar 

  • Ding S, Jia H, Chen J, Jin F (2014) Granular neural networks. Artif Intell Rev 41(3):373–384

    Article  Google Scholar 

  • Dong J, Zheng C, Kan G, Zhao M, Wen J, Yu J (2015) Applying the ensemble artificial neural network-based hybrid data-driven model to daily total load forecasting. Neural Comput Appl 26:603–611

    Article  Google Scholar 

  • Duin RPW, Tax DMJ (2000) Experiments with classifier combining rules. In: Proceedings of the international workshop on multiple classifier systems, Calgiari. Springer, Italy, pp 16–19

  • Eysa S, Saeed G (2005) Optimum design of structures by an improved genetic algorithm using neural networks. Adv Eng Softw 36(11):757–767

    Google Scholar 

  • Faußer S, Schwenker F (2015) Neural network ensembles in reinforcement learning. Neural Process Lett 41:55–69

    Article  Google Scholar 

  • Fernández C, Valle C, Saravia F, Allende H (2012) Behavior analysis of neural network ensemble algorithm on a virtual machine cluster. Neural Comput Appl 21:535–542

    Article  Google Scholar 

  • Freund Y (1995) Boosting a weak algorithm by majority. Inf Comput 121(2):256–285

    Article  MathSciNet  MATH  Google Scholar 

  • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  MATH  Google Scholar 

  • Fu X, Feng B, Ma Z, He M (2004) Method of incremental construction of heterogeneous neural network ensemble with negative correlation. J Xi’an Jiaotong Univ 38(8):796–799

    MATH  Google Scholar 

  • Fu Q, Hu SX, Zhao SY (2005) Clustering-based selective neural network ensembles. J Zhejiang Univ Sci 6A(5):387–392

    Google Scholar 

  • Gao H, Gao L, Zhou C, Yu D (2004) Particle swarm optimization based algorithm for neural network learning. Chin J Electron 32(9):1572–1574

    Google Scholar 

  • Garcia-Pedrajas N, Hervas-martinez C, Ortiz-boyer D (2005) Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans Evol Comput 9(3): 271–302

  • Ghazikhani A, Monsefi R, Yazdi HS (2013) Ensemble of online neural networks for non-stationary and imbalanced data streams. Neurocomputing 122:535–544

    Article  Google Scholar 

  • Giacinto G, Roli F (2001) An approach to the automatic design of multiple classifier systems. Pattern Recognit Lett 22:25–33

    Article  MATH  Google Scholar 

  • Gutta S, Wechsler H (1997) Face recognition using hybrid classifiers. Pattern Recognit 30(4):539–553

    Article  Google Scholar 

  • Gutta S, Huang JRJ, Jonathon P, Wechsler H (2000) Mixture of experts for classification of gender, ethnic origin, and pose of human faces. IEEE Trans Neural Netw 11(4):948–960

    Article  Google Scholar 

  • Hadavandi E, Shahrabi J, Shamshirband S (2015) A novel boosted-neural network ensemble for modeling multi-target regression problems. Eng Appl Artif Intell 45:204–219

    Article  Google Scholar 

  • Han M, Zhu X, Yao W (2012) Remote sensing image classification based on neural network ensemble algorithm. Neurocomputing 78(1):133–138

    Article  Google Scholar 

  • Hang C, Gao J (2010) Fast license plate character recognition based on AdaBoost. Comput Mod 9:140–143

    Google Scholar 

  • Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12(10):993–1001

    Article  Google Scholar 

  • Hansen LK, Salamon P (1992) Ensemble methods for handwritten digit recognition. In: Proceeding of IEEE workshop on neural networks for signal processing, Copenhagen, Denmark, pp 333–342

  • Hayashi Y, Setiono R (2002) Combining neural network predictions for medical diagnosis. Comput Biol Med 32:237–246

    Article  Google Scholar 

  • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Article  Google Scholar 

  • Islam MM, Yao X, Murase K (2003) A constructive algorithm for training cooperative neural network ensembles. IEEE Trans Neural Netw 14(4):820–834

    Article  Google Scholar 

  • Jang M, Cho S (2002) Observational learning algorithm for an ensemble of neural networks. Pattern Anal Appl 5(2):154–167

    Article  MathSciNet  MATH  Google Scholar 

  • Kanal L (1974) Patterns in pattern recognition. IEEE Trans Inf Theory (IT–20):697–722

    Article  MathSciNet  MATH  Google Scholar 

  • Khare V, Yao X (2002) Artificial speciation of neural network ensembles. In: Proceedings of the 2002 UK workshop on computational intelligence (UKCI’02), University of Birmingham, UK, pp 96–103

  • Kokkinos Y, Margaritis KG (2014) A distributed privacy-preserving regularization network committee machine of isolated peer classifiers for P2P data mining. Artif Intell Rev 42:385–402

    Article  Google Scholar 

  • Kokkinos Y, Margaritis KG (2015) Confidence ratio affinity propagation in ensemble selection of neural network classifiers for distributed privacy-preserving data mining. Neurocomputing 150:513–528

    Article  Google Scholar 

  • Kourentzes N, Barrow DK, Crone SF (2014) Neural network ensemble operators for time series forecasting. Expert Syst Appl 41(9):4235–4244

    Article  Google Scholar 

  • Krawczyk B (2015) Forming ensembles of soft one-class classifiers with weighted bagging. New Gener Comput 33:449–466

    Article  Google Scholar 

  • Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning. In: Advances in neural information processing systems 7, Denver, CO: MIT Press, Cambridge, MA, pp 231–238

  • Langdon WB, Barrett SJ, Buxton BF (2002) Combining decision trees and neural networks for drug discovery. In: Proceedings of the 5th european conference on genetic programming, Kinsale, Ireland, pp 60–70

  • Lazarevic A, Obradovic Z (2001) Effective pruning of neural network classifier ensembles. In: Proceedings of the international joint conference on neural networks, pp 796–801

  • Lee H, Kim E, Pedrycz W (2012) A new selective neural network ensemble with negative correlation. Appl Intell 37:488–498

    Article  Google Scholar 

  • Lee H et al (2014) A New gait recognition system based on hierarchical fair competition-based parallel genetic algorithm and selective neural network ensemble. Int J Control Autom Syst 12(1):202–207

    Article  Google Scholar 

  • Li H, Ding S (2013a) A novel neural network classification model based on covering and affinity propagation clustering algorithm. J Comput Inf Syst 9(7):2565–2573

    Google Scholar 

  • Li H, Ding S (2013b) Research and development of granular neural networks. Appl Math Inf Sci 7(3):1251–1261

    Article  MathSciNet  Google Scholar 

  • Li H, Ding S (2013c) Research of individual neural network generation and ensemble algorithm based on quotient space granularity clustering. Appl Math Inf Sci 7(2):701–708

    Article  MathSciNet  Google Scholar 

  • Li K, Huang H (2005a) A selective approach to neural network ensemble based on clustering technology. J Comput Res Dev 42(4):594–598

    Article  Google Scholar 

  • Li K, Huang H (2005b) An approach to improving diversity of neural network ensemble. Acta Electron Sin 33(8):1387–1390

    Google Scholar 

  • Li J, Peng M (2005) GDP forecasting model based on neural networks ensemble. Chin J Manag 4:434–436

    Google Scholar 

  • Li G, Yang J, Kong A, Chen N (2004) Clustering algorithm based selective ensemble. J Fudan Univ (Nat Sci) 43(5):689–692

    Google Scholar 

  • Li L, Liu X, Lu S (2007) Constructive methods for parallel learning neural network ensemble based on particle swarm optimization. ShanDong Sci 20(4):16–20

    Google Scholar 

  • Liao Y, Moody J (1999) Constructing heterogeneous committees using input feature grouping. Adv Neural Inf Process Syst 12:921–927

    Google Scholar 

  • Liew WS, Seera M, Loo CK (2015) Hierarchical parallel genetic optimization fuzzy ARTMAP ensemble. Neural Process Lett. doi:10.1007/s11063-015-9467-9

    Google Scholar 

  • Lin J, Peng M (2005) GDP forecasting model based on neural networks ensemble. Chin J Manag 2(4):434–436

    Google Scholar 

  • Lin J, Zhu B (2005) Neural network ensemble based on forecasting effective measure and its application. J Comput Inf Syst 1(4):781–787

    MathSciNet  Google Scholar 

  • Ling J, Zhou Z (2004) Causal discovery based on neural network ensemble method. J Softw 15(10):1479–1484

    MATH  Google Scholar 

  • Ling J, Chen Z, Zhou Z (2004) Feature selection based neural network ensemble method. J Fudan Univ (Nat Sci) 43(5):685–688

    Google Scholar 

  • Liu Y (1998) Negative correlation learning and evolutionary neural network ensembles. The University of New South Wales, Australian Defence Force Academy, Canberra, Australia

  • Liu Y, Yao X (1998) Negatively correlated neural networks for classification. In: Proceedings of the third international symposium on artificial life and robotics (AROBlll, 98), Beppu, Japan, pp 736–739

  • Liu Y, Yao X (1999a) Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Trans Syst Man Cybern B Cybern 29(6):716–725

    Article  Google Scholar 

  • Liu Y, Yao X (1999b) Ensemble learning via negative correlation. Neural Netw 12:1399–1404

    Article  Google Scholar 

  • Liu Y, Yao X (2002) Learning and evolution by minimization of mutual information. In: Lecture notes in computer science, pp 495–504

  • Liu Y, Yao X, Higuchi T (2000) Evolutionary ensembles with negative correlation learning. IEEE Trans Evol Comput 4(4):380–387

    Article  Google Scholar 

  • Liu H, Chen G, Song G et al (2010) AdaBoost based ensemble of neural networks in analog circuit fault diagnosis. Chin J Sci Instrum 4:851–856

    Google Scholar 

  • Loo CK, Liew WS, Seera M, Lim E (2015) Probabilistic ensemble fuzzy ARTMAP optimization using hierarchical parallel genetic algorithms. Neural Comput Appl 26(2):263–276

    Article  Google Scholar 

  • Luiz O, Morita M, Sabourin R (2006) Feature selection for ensembles using the multi-objective optimization approach. In: Studies in computational intelligence, vol 16, pp 49–74

  • Lu J, Zhang W (2002) Design for Chinese text classier. Comput Eng Appl 15:49–51

    Google Scholar 

  • Lysiak R, Kurzynski M, Woloszynski T (2014) Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 126:29–35

    Article  Google Scholar 

  • Maclin R, Shavlik JW (1995) Combining the predictions of multiple classifiers: using competitive learning to initialize neural networks. In: Proceedings of the 14th international joint conference on artificial intelligence, Montreal, Canada, pp 524–530

  • Mao J, Mohiuddin KM (1997) Improving OCR performance using character degradation models and boosting algorithm. Pattern Recognit Lett 18(11–13):1415–1419

    Article  Google Scholar 

  • Masoudnia S, Ebrahimpour R (2014) Mixture of experts: a literature survey. Artif Intell Rev 42(2):275–293

    Article  Google Scholar 

  • Mckay R, Abbass H (2011a) Analyzing anticorrelation in ensemble learning. In: Proceedings of 2001 conference on artifficial neural networks and expert systems, Otago, New Zealand, pp 22–27

  • Mckay R, Abbass H (2011b) Anticorrelation measures in genetic programming. In: Australasia–Japan workshop on intelligent and evolutionary systems, pp 45–51

  • Melville P, Mooney R (2003) Constructing diverse classifier ensembles using artificial training examples. In: Proceedings of the eighteenth international joint conference on artificial intelligence, Mexico, pp 505–510

  • Melville P, Mooney RJ (2005) Creating diversity in ensembles using artificial data. Inf Fusion 6:99–111

    Article  Google Scholar 

  • Mendes-Moreira J, Soares C, Jorge AM, de Sousa JF (2012) Ensemble approaches for regression: a survey. ACM Comput Surv 45(1), Article 10, p 40

  • Meng J, Wang Y, Wang T, Gong D (2005) Immune learning algorithm based on neural network ensemble. J China Univ Ming Technol 34(4):486–489

    Google Scholar 

  • Minsky M (1991) Logical versus analogical or symbolic versus connectionist or neat versus scruffy. Al Mag 12:34–51

    Google Scholar 

  • Navone HD, Verdes PF, Granitto PM, Ceccatto HA (2000) Selecting diverse members of neural network ensemble. In: Proceedings of the 6th Brazilian symposium on neural networks, pp 255–260

  • Nilsson NJ (1965) Learning machines: foundations of trainable pattern-classifying. McGraw Hill, New York

    MATH  Google Scholar 

  • Oliveira LS, Sabourin R, Bortolozzi F, Suen CY (2003) A methodology for feature selection using multi-objective genetic algorithm for handwritten digit string recognition. Int J Pattern Recognit Artif Intell 17(6):903–930

    Article  Google Scholar 

  • Opitz D (1999) Feature selection for ensembles. In: Proceedings of 16th national conference on artificial intelligence (AAAI), pp 379–384

  • Opitz DW, Shavlik JW (1996a) Generating accurate and diverse members of a neural network ensemble. In: Advances in neural information processing systems 8, Denver, CO: MIT Press, Cambridge, MA, pp 535–541

  • Opitz DW, Shavlik JW (1996b) Actively searching for an effective neural network ensemble. Connect Sci 8(3–4):337–353

    Article  Google Scholar 

  • Oza NC, Tumer K (2001) Input decimation ensembles: decorrelation through dimensionality reduction. In: Proceedings of the international workshop on multiple classifier systems, Cambridge, UK, Springer, pp 238–247

  • Parmanto B, Munro PW, Doyle HR (1996) Improving committee diagnosis with resampling techniques. Adv Neural Inf Process Syst 8:882–888

    Google Scholar 

  • Partridge D (1996) Network generalization differences quantified. Neural Netw 9(2):263–271

    Article  Google Scholar 

  • Partridge D, Yates WB (1996) Engineering multiversion neural network systems. Neural Comput 8(4):869–893

    Article  Google Scholar 

  • Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356

    Article  MATH  Google Scholar 

  • Pedrycz W (2001) Granular computing: an emerging paradigm. IEEE Trans Syst Man Cybernet 32(2):212–224

    Article  MATH  Google Scholar 

  • Perrone MP, Cooper LN (1993) When networks disagree: ensemble method for neural networks. Artif Neural Netw Speech Vision 12(10):126–142

    Google Scholar 

  • Pitoyo H, Shuji H (2002) Adaptive neural network ensemble that learns from imperfect supervisor. In: Proceedings of the 9th International conference on neural information processing (ICONIP02), vol 5, pp 2561–2565

  • Pulido M, Melin P, Castillo O (2014) Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange. Inf Sci 280(1):188–204

    Article  MathSciNet  MATH  Google Scholar 

  • Qian B, Li Y, Tang Z (2008) Speaker recognition algorithm based on neural network ensemble and its simulation study. J Syst Simul 5:1285–1288

    Google Scholar 

  • Qin Z, Liu Y, Heng X, Wang X (2005) Negatively correlated neural network ensemble with multi-population particle swarm optimization. In: Lecture notes in computer science, pp 520–525

  • Raviv Y, Intrator N (1996) Bootstrapping with noise: an effective regularization technique. Connect Sci 8:355–372

    Article  Google Scholar 

  • Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33:1–39

    Article  Google Scholar 

  • Roli F, Giacinto G, Vernazza G (2001) Methods for designing multiple classifier systems. In: Kittler J, Roli F (eds) MCS2001, Lecture notes in computer science. Springer, Beilin, pp 78–87

    Google Scholar 

  • Rosen BE (1996) Ensemble learning using decorrelated neural networks. Connect Sci Spec Issue Comb Artif Neural Netw Ensemble Approach 8(3&4):373–384

    Google Scholar 

  • Schapire RE (1990) The strength of weak learnability. Mach Learn 5(2):197–227

    Google Scholar 

  • Schapire RE, Freund Y, Bartlett Y, Lee WS (1998) Boosting the margin: a new explanation for the efectiveness of voting methods. Ann Stat 26(5):1651–1686

    Article  MATH  Google Scholar 

  • Schwenk H, Bengio Y (1997) Adaptive boosting of neural network for character recognition. Technical report, University de Montreal

  • Sesmero MP, Alonso-Weber JM, Gutiérrez G, Ledezma A, Sanchis A (2012) A new artificial neural network ensemble based on feature selection and class recoding. Neural Comput Appl 21(4):771–783

    Article  Google Scholar 

  • Sharkey N, Neary J, Sharkey A (1995) Searching weight space for back propagation solution types. In: Current trends in connectionism: Proceedings of the 1995 Swedish conference on connectionism, pp 103–120

  • Shen X, Zhou Z, Wu J, Chen Z (2000) Survey of boosting and bagging. Comput Eng Appl 12:31–33

    Google Scholar 

  • Shi Y, Huang C, Hou C (2004) Two-level ensemble of selective neural network based on stochastic gradient. Comput Eng 30(16):133–135

    Google Scholar 

  • Shi Y, Huang C, Hou C (2005) The study of the two-level selective neural network ensembles modeling for quantity structure-activity relationship (QSAR). Comput Appl Chem 22(2):153–156

    Google Scholar 

  • Shimshoni Y, Intrator N (1998) Classification of seismic signals by integrating ensembles of neural networks. IEEE Trans Signal Process 46(S):1194–1201

    Article  Google Scholar 

  • Smith C, Jin Y (2014) Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction. Neurocomputing 143:302–311

    Article  Google Scholar 

  • Soares SG, Araújo R (2015) An on-line weighted ensemble of regressor models to handle concept drifts. Eng Appl Artif Intell 37:392–406

    Article  Google Scholar 

  • Soares SG, Antunes CH, Araújo R (2013) Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development. Neurocomputing 121:498–511

    Article  Google Scholar 

  • Sollich P, Krogh A (1996) Learning with ensembles: how over-fitting can be useful. In: Advances in neural information processing systems, Denver, CO: MIT Press, Cambridge, MA, pp 190–196

  • Song X, Xia L (2004) Intelligent regulation of reservoir based on bagging algorithm. Comput Eng Appl 25:218–219

    Google Scholar 

  • Sun B, Gong N, Zhu W (2006) Application of neural network ensemble based on covering algorithm in speech recognition. J Nanjing Univ (Natural Sciences) 3:331–336

    Google Scholar 

  • Tang C, Gao X (2001) The researching development of evolutionary neural networks. J Syst Eng Electron 23(10):92–97

    Google Scholar 

  • Tian J, Li M, Chen F, Kou J (2012) Coevolutionary learning of neural network ensemble for complex classification tasks. Pattern Recognition 45(4):1373–1385

    Article  MATH  Google Scholar 

  • Tran TP, Nguyen TTS, Tsai P, Kong X (2011) BSPNN: boosted subspace probabilistic neural network for email security. Artif Intell Rev 35(4):369–382

    Article  Google Scholar 

  • Tsymbal A, Pechenizkiy M, Cunningham P (2005) Diversity in search strategies for ensemble feature selection. Inf Fusion 6:83–98

    Article  Google Scholar 

  • Valle C, Saravia F, Allende H, Monge R, Fernández C (2010) Parallel approach for ensemble learning with locally coupled neural networks. Neural Process Lett 32(3):277–291

    Article  Google Scholar 

  • Verma B, Hassan SZ (2011) Hybrid ensemble approach for classification. Appl Intell 34(2):258–278

    Article  Google Scholar 

  • Wang Q, Wen B (2009) High frequency ground wave radar sea clutter predicting based on artificial neural network selection and ensembling. Syst Eng Electron 12:2801–2805

    Google Scholar 

  • Wang W, Jones P, Partridge D (2000) Diversity between neural networks and decision trees for building multiple classier systems. In: Proceedings of the international workshop on multiple classier systems, Springer, Calgiari, Italy, pp 240–249

  • Wang Z-Q, Chen S-F, Chen Z-Q, Xie J-Y (2004) A parallel learning approach for neural network ensemble. In: AI 2004, advances in artificial intelligence, lecture notes in computer science 3339, pp 1200–1205

  • Wang Z, Chen S, Chen Z (2005) An active learning approach for neural network ensemble. J Comput Res Dev 42(3):375–380

    Article  Google Scholar 

  • Woods K, Kegelmeyer W, Bowyer K (1997) Combination of multiple classiers using local accuracy estimates. IEEE Trans Pattern Anal Mach Intell 19:405–410

    Article  Google Scholar 

  • Wozniak M, Graña M, Corchado E (2014) A survey of multiple classifier systems as hybrid systems. Inf Fusion 16:3–17

    Article  Google Scholar 

  • Wu J, Zhihua Z, Zhaoqian C (2001) Ensemble of GA-based selective neural network ensembles. In: Proceedings of the 8th international conference on neural information processing (ICONIP’01), Shanghai, China, pp 1477–1482

  • Xin Y (2001) Neural network ensembles and their application to traffic flow prediction in telecommunications networks. IEEE Trans Evol Comp 4:693–698

    Google Scholar 

  • Xing J, Xiao D (2007) CSTR state estimate based on neural network ensemble. Comput Appl Chem 4:433–436

    Google Scholar 

  • Xu H, Wang S, Wang R et al (2010) Research of P2P traffic identification based on neural network ensemble. J Nanjing Univ Posts Telecommun (Nat Sci) 3:79–83

    Google Scholar 

  • Yang T, Zhang C (2008) Freeway incident detection based on Adaboost RBF neural network. Comput Eng Appl 32:223–225

    Google Scholar 

  • Yang J, Zeng X, Zhong S, Wu S (2013) Effective neural network ensemble approach for improving generalization performance. IEEE Trans Neural Netw Learn Syst 24(6):878–887

    Article  Google Scholar 

  • Yao YY (2000) Granular computing: basic issues and possible solutions. In: Wang PP (ed) Proceedings of the 5th joint conference on information sciences. Association for Intelligent Machinery Press, Atlantic City, pp 186–189

  • Yao X, Liu Y (1998) Making use of population information in evolutionary artificial neural networks. IEEE Trans Syst Man Cybernet B Cybernet 28(3):417–425

    Google Scholar 

  • Yao W, Wang Q, Chen Z, Wang J (2004) The researching overview of evolutionary neural network. Comput Sci 31(3):125–129

    Google Scholar 

  • Yaochu J, Okabe T, Sendhoff B (2004) Neural network regularization and ensembling using multi-objective evolutionary algorithms. In: Congress on evolutionary computation, pp 1–81

  • Yates W, Partridge D (1996) Use of method ological diversity to improve neural network generalization. Neural Comput Appl 4(2):114–128

    Article  Google Scholar 

  • Yin XC, Huang K, Yang C, Hao HW (2014) Convex ensemble learning with sparsity and diversity. Inf Fusion 20:49–59

    Article  Google Scholar 

  • Yong L, Xin Y (1998) A cooperative ensemble learning system. In: IEEE world congress on computational intelligence. The 1998 IEEE international joint conference on neural networks proceedings, pp 2202–2207

  • Yong L, Xin Y, Qiangfu Z, Higuchi T (2001) Evolving a cooperative population of neural networks by minimizing mutual information. In: Proceedings of the 2001 congress on evolutionary computation, pp 384–389

  • Yu F, Liu H, Tan G (2007) Application of neural network ensemble for structural damage detection. J Jilin Univ (Engineering and Technology Edition) 2:438–441

    Google Scholar 

  • Yu J (2011) Online tool wear prediction in drilling operations using selective artificial neural network ensemble model. Neural Comput Appl 20(4):473–485

    Article  Google Scholar 

  • Zadeh LA (1996) Fuzzy logic = computing with words. IEEE Trans Fuzzy Syst 2:103

    Article  Google Scholar 

  • Zenobi G, Cunningham P (2001) Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: Lecture Notes in Computer Science 2169, pp 576–587

  • Zhang GP (2000) Neural Networks for classification: a survey. IEEE Trans Syst Man Cybernet C Appl Rev 30(4):451–462

    Article  Google Scholar 

  • Zhang X, Xu L (2003) The stock market forecast model based on neural network ensemble. Syst Eng Theory Pract 9:67–70

    Google Scholar 

  • Zhang L, Zhang B (2003) Theory of fuzzy quotient space: methods of fuzzy granular computing. J Softw 14(4):770

    MATH  Google Scholar 

  • Zhang Y, Zhong S (2013) A privacy-preserving algorithm for distributed training of neural network ensembles. Neural Comput Appl 22:S269–S282

    Article  Google Scholar 

  • Zhao Z-S, Feng X, Lin Y-Y, Wei F, Wang S-K, Xiao T-L, Cao M-Y, Hou Z-G (2015) Evolved neural network ensemble by multiple heterogeneous swarm intelligence. Neurocomputing 49:29–38

    Article  Google Scholar 

  • Zhang YQ, Fraser MD, Gagliano RA, Kandel A (2000) Granular neural networks for numerical-linguistic data fusion and knowledge discovery. IEEE Trans Neural Netw 11(3):658–667

    Article  Google Scholar 

  • Zheng J, Liu Y, Liu Q, Sun M (2004) A dynamic integration approach for a neural network ensemble. Comput Eng 30(03):49–50

    Google Scholar 

  • Zhou Z, Huang F, Zhang H (2001) View-invariant face recognition based on neural network ensemble. J Comput Res Dev 10:1204–1210

    Google Scholar 

  • Zhou Z, Wu J, Tang W (2002) Ensembling neural networks: many could be better than all. Artifi Intell 137(2):239–263

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu Q, Meng Q (2009) A new selective neural network ensemble method and its application in purified terephthalic acid solvent system. CIESC J 10:2510–2516

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No.61379101), the National Key Basic Research Program of China (No.2013CB329502), the Natural Science Foundation of Jiangsu Normal University (No. 14XLA12), National Natural Science Foundation of China (No. 61472424) and Fundamental Research Funds for the Central Universities under Grant 2013RC10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, X. & Ding, S. Research and development of neural network ensembles: a survey. Artif Intell Rev 49, 455–479 (2018). https://doi.org/10.1007/s10462-016-9535-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-016-9535-1

Keywords

Navigation