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Abstract  

Krill herd (KH) is a novel swarm-based metaheuristic optimization algorithm inspired by the krill 

herding behavior. The objective function in the KH optimization process is based on the least 

distance between the food location and position of a krill. The KH method has been proven to 

outperform several state-of-the-art metaheuristic algorithms on many benchmarks and engineering 

cases. This paper presents a comprehensive review of different versions of the KH algorithm and 

their engineering applications. The study is divided into the following general parts: KH variants, 

engineering optimization/application, and theoretical analysis. In addition, specific features of KH 

and future directions are discussed.   
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1. Introduction 

Optimization is the process of minimizing/maximizing an objective function within a given 

domain. With the increment of the complexity of the optimization problems, the traditional 

mathematical methods sometimes fail to address them. Inspired by nature, modern metaheuristic 

algorithms have been developed and applied to deal with these complicated problems. Some well-

known methods in this context are particle swarm optimization (PSO) [1-4], monarch butterfly 

optimization (MBO) [5-9], earthworm optimization algorithm (EWA) [10], artificial bee colony 

(ABC) [11], ant colony optimization (ACO) [12], elephant herding optimization (EHO) [13,14], 

differential evolution (DE) [15-17], firefly algorithm (FA) [18-23], simulated annealing (SA) [24], 

intelligent water drop (IWD) algorithm [25], monkey algorithm (MA) [26], genetic algorithm (GA) 

[27], biogeography-based optimization (BBO) [28-31], evolutionary strategy (ES) [32], krill herd 

(KH) [33], water cycle algorithm (WCA) [34], cuckoo search (CS) [35-40], free search (FS) [41], 

probability-based incremental learning (PBIL) [42], moth search (MS) algorithm [43], dragonfly 

algorithm (DA) [44], interior search algorithm (ISA) [45], bat algorithm (BA) [46-54], chicken 

swarm optimization (CSO) [55], fireworks algorithm (FWA) [56], brain storm optimization (BSO) 

[57,58], harmony search (HS) [59-62], and stud GA (SGA) [63].  

After studying the herding behavior of the krill in seas, Gandomi and Alavi [33] proposed a 

new swarm intelligence-based [64] global optimization algorithm, called krill herd (KH). The whole 

optimization process in KH can be divided into three movements. Each krill individual is then 

updated considering these movements. The objective function is the distance of food location and 

the position of the krill. KH has drawn many attentions from scholars and engineers due to its 

excellent performance. In this paper, the current research on the KH algorithm is comprehensively 

reviewed. The paper is structured as follows. Section 2 reviews the main steps of the KH algorithm. 

Section 3 presents different improved KH algorithms. This is followed by a review of the KH 

applications for solving engineering optimization/application of KH in Section 4. A theoretical 

analysis of KH is provided in Section 5. Section 6 presents some concluding remarks and 

suggestions for further work. 

 

2. Krill Herd Algorithm: The Development History 

 

2.1 Krill Herd Research Trends 

The original KH algorithm is simple in concept and easy for implementation. There are three 

movements in this algorithm: motion induced by other krill, foraging motion, and physical diffusion. 

The krill individuals in the population are updated according to the three movements. 

KH has received significant attention from scholars and engineers owing to its advantages over 

other optimization methods. The original paper has been cited 421 times according to Google 

Scholar (https://scholar.google.com/) till February 12, 2017. Since the development of the KH 

algorithm in 2012, 77 related studies have been published in conferences/journals/dissertation till 

https://scholar.google.com/
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February 12, 2017. Among these 77 papers, 8 papers are published in 2012 and 2013, 24 papers are 

published in 2014, 22 papers are published in 2015, 22 papers are published in 2016, and the 

remained one paper is published in this year. Fig. 1 gives the number of the KH related papers since 

2012. While many papers may be still in press, it is not possible to get hold of all these papers. 

These 64 papers can build a solid foundation for the future KH research. 

 

 

Fig. 1 The number of KH related publications since 2012 

 

It should be mentioned that among KH-related papers, the original study in Dec 2012 was 

selected as the most cited articles published since 2012, extracted from Scopus1, and the most 

downloaded articles from Communications in Nonlinear Science and Numerical Simulation in the 

last 90 days2. In addition, three papers, titled “Chaotic Krill Herd Algorithm” (Information Sciences, 

2014, 274: 17-34), “Stud Krill Herd Algorithm” (Neurocomputing, 2014, 128: 363-370), and 

“Incorporating Mutation Scheme into Krill Herd Algorithm for Global Numerical Optimization” 

(Neural Computing & Applications, 2014, 24(3): 853-871), were selected as the top 1% highly cited 

paper by Web of Science3,4,5 and Scopus6,7,8; three papers regarding KH algorithm were selected as 

 
1https://www.journals.elsevier.com/communications-in-nonlinear-science-and-numerical-simulation/most-cited-

articles. It can be accessed on February 12, 2017 
2https://www.journals.elsevier.com/communications-in-nonlinear-science-and-numerical-simulation/most-

downloaded-articles. It can be accessed on February 12, 2017 
3 

http://apps.webofknowledge.com/summary.do?locale=en_US&errorKey=&viewType=summary&SID=2AgwI9sC

7bg8xd5t2JR&product=UA&parentQid=1&qid=2&search_mode=GeneralSearch&mode=refine. It can be 

accessed on February 12, 2017 
4 

http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=4FoLn

hGbN5R13GuUEGD&page=1&doc=1. It can be accessed on February 12, 2017 
5 

http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=6&SID=4FoLn

hGbN5R13GuUEGD&page=1&doc=2. It can be accessed on February 12, 2017 
6 http://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-84899913398&origin=recordpage#tabs=0. It can be 

accessed on February 12, 2017 
7 https://www-scopus-com.scopeesprx.elsevier.com/record/pubmetrics.uri?eid=2-s2.0-

84893641121&origin=recordpage. It can be accessed on February 12, 2017 
8 https://www-scopus-com.scopeesprx.elsevier.com/record/pubmetrics.uri?eid=2-s2.0-

84884521545&origin=recordpage. It can be accessed on February 12, 2017 

https://www.journals.elsevier.com/communications-in-nonlinear-science-and-numerical-simulation/most-cited-articles
https://www.journals.elsevier.com/communications-in-nonlinear-science-and-numerical-simulation/most-cited-articles
https://www.journals.elsevier.com/communications-in-nonlinear-science-and-numerical-simulation/most-downloaded-articles
https://www.journals.elsevier.com/communications-in-nonlinear-science-and-numerical-simulation/most-downloaded-articles
http://apps.webofknowledge.com/summary.do?locale=en_US&errorKey=&viewType=summary&SID=2AgwI9sC7bg8xd5t2JR&product=UA&parentQid=1&qid=2&search_mode=GeneralSearch&mode=refine
http://apps.webofknowledge.com/summary.do?locale=en_US&errorKey=&viewType=summary&SID=2AgwI9sC7bg8xd5t2JR&product=UA&parentQid=1&qid=2&search_mode=GeneralSearch&mode=refine
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=4FoLnhGbN5R13GuUEGD&page=1&doc=1
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=4FoLnhGbN5R13GuUEGD&page=1&doc=1
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=6&SID=4FoLnhGbN5R13GuUEGD&page=1&doc=2
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=6&SID=4FoLnhGbN5R13GuUEGD&page=1&doc=2
http://www.scopus.com/record/pubmetrics.uri?eid=2-s2.0-84899913398&origin=recordpage#tabs=0
https://www-scopus-com.scopeesprx.elsevier.com/record/pubmetrics.uri?eid=2-s2.0-84893641121&origin=recordpage
https://www-scopus-com.scopeesprx.elsevier.com/record/pubmetrics.uri?eid=2-s2.0-84893641121&origin=recordpage
https://www-scopus-com.scopeesprx.elsevier.com/record/pubmetrics.uri?eid=2-s2.0-84884521545&origin=recordpage
https://www-scopus-com.scopeesprx.elsevier.com/record/pubmetrics.uri?eid=2-s2.0-84884521545&origin=recordpage
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the top 1% highly cited papers by Scopus, which are (we get the information from Web of Science 

and Scopus on February 12, 2017, and this information will be updated.):  

 An effective krill herd algorithm with migration operator in biogeography-based 

optimization. Applied Mathematical Modelling, 2014, 38(9-10): 2454-24629 

 Hybrid krill herd algorithm with differential evolution for global numerical optimization. 

Neural Computing and Applications, 2014, 25(2): 297-30810 

 A new improved krill herd algorithm for global numerical optimization. Neurocomputing, 

2014, 138: 392-40211 

 

2.2 Krill Herd Algorithm 

In KH, the distance between the food location and the position of the krill individuals is 

considered as objective. The optimization process of the KH can be divided into the three following 

steps [33]: 

i. movement induced by other krill individuals; 

ii. foraging action; and 

iii. random diffusion 

The three actions mentioned above can be mathematically represented as follows. 

 i
i i i

dX
N F D

dt
= + +  (1) 

where Ni is the motion induced by other krill; Fi is the foraging motion, and Di is the physical 

diffusion of the ith krill individuals. 

 

2.2.1. Motion induced by other krill 

For the first motion, the direction of motion, αi, can loosely be divided into the following three 

components: the target effect, the local effect, and the repulsive effect [33]. For the krill i, it can 

mathematically be represented as: 

 
maxnew old

i i n iN N N = +  (2) 

where 

 
local target

i i i  = +  (3) 

and Nmax is the maximum induced speed, ωn is the inertia weight in [0, 1], 
old

i
N  is the last motion 

induced, 
local

i
  is the local effect and 

target

i  is the target direction effect.  

Moreover, 
local

i
  can be calculated as follows: 
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where 
worstK  and 

bestK  are, respectively, the best and the worst fitness of the krill; Ki and Kj 

represent the fitness of the ith and jth krill, respectively; Kj is the fitness of jth (j=1,2,…, NN) 

neighbor; X represents the related positions, and NN is the number of the neighbors.  

In addition, 
target

i  can be given as: 

 , ,
ˆ ˆtarget best

i i best i bestC K X =  (7) 

where, Cbest is the effective coefficient of the krill individual with the best fitness to the ith krill 

individual.  

 

2.2.2. Foraging motion 

The second action can be represented as two parts: food location and its previous experience. 

For the ith krill, it can be expressed below:  

 
old

i f i f iF V F = +  (8) 

where 

 
food best

i i i  = +  (9) 

and Vf is the foraging speed, ωf is the inertia weight in [0, 1], 
old

iF  is the last foraging motion, 

food

i  is the food attractive and 
best

i  is the effect of the best fitness of the ith krill so far.  

 

2.2.3. Physical diffusion 

 

Physical diffusion is essentially a random process. It can be formulated as follows: 

 
max

iD D =  (10) 

where Dmax is the maximum diffusion speed, and δ is the random vector in [-1, 1].  

Inspired by the evolutionary computation, two genetic reproduction mechanisms, crossover 

operator and mutation operator, are further added the basic KH algorithm [33]. More detailed 

information about two genetic reproduction operators and KH algorithms can be found in [33].  
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According to the analyzes mentioned before, the main steps of the KH algorithm is represented 

in Fig. 2. The corresponding flowchart can also be seen in Fig. 3. In Fig. 2, Gmax is the maximum 

generation. The MATLAB code of the KH can be found in the website: 

http://www.mathworks.com/matlabcentral/fileexchange/55486-krill-herd-algorithm.  

 

Krill herd algorithm 

Begin 

Step 1: Initialization. Set the generation counter G=1; initialize the population P of NP krill 

individuals randomly; set the foraging speed Vf, the maximum diffusion speed Dmax, 

and the maximum induced speed Nmax. 

Step 2: While the termination criteria is not satisfied or G<Gmax do 

Sort the population/krill from best to worst. 

for i=1:NP (all krill) do 

Perform the following motion calculation. 

Motion induced by the presence of other individuals 

Foraging motion 

Physical diffusion 

Implement the genetic operators. 

Update the krill individual position in the search space. 

Evaluate each krill individual according to its position. 

end for i 

Sort the population/krill from best to worst and find the current best. 

G=G+1. 

Step 3: end while 

Step 4: Post-processing the results and visualization. 

End. 

 

Fig. 2 The KH algorithm 

 

http://www.mathworks.com/matlabcentral/fileexchange/55486-krill-herd-algorithm
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Is termination 

condition met?

Output the best solution

Motion induced by other individuals

Foraging motion

Physical diffusion

Implement the genetic operator(s)

Y

N

Three motions

Update the krill individual position

Fitness evaluation

End

t=t+1

i=0

i=i+1

i>NP
N

Y

Initialization

Start

t=0

 

Fig. 3 Flowchart of the KH algorithm 

 

3. Different Variants of KH 

A recent study on the performance the KH algorithm was carried out by Madamanchi [65]. 

Five different benchmark functions (Alpine, Ackley, Griewank, Rastrigin and Sphere) are 

considered. The obtained results proved the efficiency of KH in solving the optimization problems 

[65]. However, the variants of KHs can be generally divided into the following three groups.  
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3.1 Improved KH Algorithms 

A list of the improved KH algorithms is shown in Table 1. The details for each of these methods are 

as given below.  

 

3.1.1. Chaotic KH 

Wang et al. [66] introduced the chaos theory into the KH optimization process. The range of a 

chaotic map is always between 0 and 1 through normalization. Twelve chaotic maps are used to 

tune the inertia weights (ωn, ωf) used in KH on fourteen benchmarks. The best chaotic map (Singer 

map) is selected to generate the chaotic KH (CKH) algorithm [66], and it is further compared with 

other eight state-of-the-art metaheuristic algorithms (ACO [12], BA [49], CS [35], DE [15], ES [32], 

GA [27], PBIL [42], and PSO [1]).  

Wang et al. [67] proposed a chaotic particle-swarm krill herd (CPKH) algorithm. In CPKH, 

thirteen different chaotic maps are used to tune the parameters, and the best chaotic map (singer 

map) is selected to form CPKH algorithm. The formed CPKH algorithm is verified by thirty-two 

different benchmarks and a gear train design problem in comparison with other six metaheuristic 

algorithms (ABC [11], DE [15], ES [32], HS [59], PBIL [42], and PSO [1]).  

Saremi et al. [68] incorporated three 1-D chaotic maps (Circle, Sine, and Tent) into the basic 

KH algorithm to overcome the stagnation in local optima and slow convergence. Comparing with 

the basic KH, the proposed method can avoid local optima and has much faster convergence speed 

on four benchmarks [68].  

Mukherjee et al. [69] used various chaotic maps to generate chaotic KH (CKH) with the aim 

of improving the performance of the basic KH method. It is observed that Logistic map-based 

CKHA offers better results as compared other chaotic maps.  

Bidar et al. [70] proposed another version of chaotic KH optimization algorithm by adopting 

chaos theory in KH algorithm. In this method, chaos theory brings dynamism and instability 

properties to the algorithm so that by strengthening the performance of random search, it helps the 

algorithm to escape from local optimum traps. The results showed that this improved method had a 

better performance than the standard KH method.  

 

3.1.2. OKH 

The opposition-based learning (OBL) is an important learning strategy. OBL has been 

successfully used to guide the search capability of the metaheuristic algorithms. The studies that use 

this strategy to improve KH are listed below.  

Wang et al. [71] proposed an improved version of KH based on OBL namely Opposition Krill 

Herd (OKH). In OKH, two other important optimization strategies called position clamping (PC) 

and heavy-tailed Cauchy mutation (CM) are also added with the aim of avoiding getting stuck in 

local optima.  

Li et al. [72] proposed another version of the KH algorithm based on the OBL strategy and 

free search operator called opposition-based free search krill herd optimization algorithm (FSKH). 

In FSKH, each krill individual can search according to its own perception and scope of activities. 
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The free search strategy highly encourages the individuals to escape from being trapped in local 

optimal solution. Compared to PSO [1], DE [15], HS [59], FS [41], and BA [49], the FSKH 

algorithm shows a better optimization performance and robustness.  

Sultana and Roy [73] introduced the idea of OBL into KH to minimize annual energy losses 

when different renewable resources are used. Also, the OKH is used to solve optimal capacitor 

allocation problem (33-bus and 69-bus) in reconfigured distribution network [74].  

Mukherjee et al. [75] proposed opposition-based KHA (OKHA). In OKHA, the concept of 

opposition-based population initialization and generation jumping are introduced into the basic KH 

with the aim of accelerating the convergence speed.  

 

3.1.3. Lévy flights 

Wang et al. [76] proposed an improved krill herd (IKH). The main improvement pertains to 

the exchange of information between top krill during motion calculation process to generate better 

candidate solutions. Furthermore, the IKH method uses a new Lévy flight distribution and elitism 

scheme to update the KH motion calculation. Several standard benchmark functions are used to 

verify the efficiency of IKH. Based on the results, the performance of IKH is superior to or highly 

competitive with the standard KH and other population-based optimization methods (GA [27], BA 

[49], CS [35], DE [15], HS [59], PSO [1]). 

Wang et al. [77] introduced Lévy flights into the basic KH algorithm, which significantly 

improved the performance of the KH. A local Lévy flights (LLF) operator was added to the krill 

updating process, and the updating strategies of the krill individuals were then modified [77]. The 

LLF operator encourages the exploitation and makes the krill individuals search the space carefully 

at the end of the search. The elitism scheme is also applied to keep the best krill during the process 

when updating the krill.  

 

3.1.4. Multi-stage krill herd 

Wang et al. [78] highlighted the exploration stage and exploitation stage separately, and 

proposed a multi-stage krill herd (MSKH) algorithm. In MSKH, the basic KH and a focused local 

mutation and crossover (LMC) operator are used to implement global search and local search, 

respectively. That is to say, the exploration stage uses a basic KH algorithm to select a good 

candidate solution set. It is followed by fine-tuning a good candidate solution in the exploitation 

stage with a focused local mutation and crossover (LMC) operator in order to enhance its efficiency 

and reliability when solving global numerical optimization problems.  

 

3.1.5. Krill herd with linear decreasing step 

Li et al. [79] proposed an improved KH with linear decreasing step (KHLD). KHLD tackles 

the deficiency of KH in achieving the excellent balance between exploration and exploitation in 

optimization processing. Twenty benchmark functions are used to verify the effectiveness of these 

improvements. It is illustrated that, in most cases, the performance of KHLD is superior to the 

standard KH [79]. 
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3.1.6. KH clustering algorithm 

Singh and Sood [80] introduced the concept of clustering into the KH algorithm to develop a 

new krill herd clustering (KHC) algorithm. In the basic KH, the krill follow the shortest path to 

search for the solutions, while KHC employs density-based spatial clustering of applications with 

noise (DBSCAN) technique to find the shortest path for the krill individuals.  

 

Table 1. The improved KH algorithms 

Name Author Reference 

Chaotic krill herd algorithm Wang et al. [66] 

Chaotic particle-swarm krill herd Wang et al. [67] 

Chaotic KH optimization algorithm Saremi et al. [68] 

Chaotic KH (CKH) Mukherjee et al. [69] 

Chaotic KH optimization algorithm  Bidar et al. [70] 

Opposition krill herd (OKH) Wang et al. [71] 

Opposition-based free search KH (FSKH) Li et al. [72] 

Oppositional krill herd (OKH) Sultana and Roy [73] 

Opposition based KHA (OKHA) Mukherjee et al. [75] 

Improved krill herd (IKH) Wang et al. [76]. 

Lévy-flight krill herd (LKH) Wang et al. [77] 

Multi-stage krill herd (MSKH) Wang et al. [78] 

Krill herd with linear decreasing step (KHLD) Li et al. [79] 

Krill herd clustering (KHC) algorithm Singh and Sood [80] 

 

3.2 Hybrid KH Algorithms 

Table 2 presents the hybrid KH algorithms. The details for each of these methods are presented 

in the following sections.  

 

3.2.1. CSKH 

Wang et al. [35] proposed a hybrid metaheuristic algorithm namely CSKH by a combination 

of the advantages of cuckoo search (CS) and KH. In CSKH, two operators inspired by the CS 

algorithm, krill updating (KU) and krill abandoning (KA) were introduced into the basic KH [81]. 

The KU operator inspires the intensive exploitation and makes the krill individuals search the space 

carefully in the later run phase of the search. This is while the KA operator is used to further enhance 

the exploration of the CSKH in place of a fraction of the worse krill at the end of each generation. 
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3.2.2. HSKH  

Wang et al. [59] improved the performance of the KH by incorporating harmony search (HS) 

into the basic KH algorithm. In the proposed HSKH approach, the mutation operator originated 

from HS is to mutate between krill instead of physical diffusion used in KH [82]. In fact, HSKH 

combines the exploration of HS with the exploitation of KH effectively. Hence, it can generate the 

promising candidate solutions. Fourteen standard benchmark functions are applied to verify the 

effects of these improvements. It is demonstrated that, in most cases, the performance of the HSKH 

is superior to, or at least highly competitive with, the standard KH and other population-based 

optimization methods, such as ACO [12], BBO [28], DE [15], ES [32], GA [27], HS [59], PSO [1], 

and SGA [63].  

 

3.2.3. SKH 

Wang et al. [83] added an updated version of reproduction schemes called stud selection and 

crossover (SSC) operator to the basic KH algorithm. Accordingly, a new version of the KH 

algorithm termed as Stud Krill Herd (SKH) was proposed. The added SSC operator is inspired by 

the Stud genetic algorithm [63]. It selects the best krill (Stud) to perform the crossover operator. 

This approach appears to be well capable of solving various functions. Several problems are used 

to test the SKH method. In addition, the influence of the different crossover types on convergence 

and performance is carefully studied.  

Pulluri et al. [84] used SKH algorithm to tackle the optimal power flow (OPF) problems in a 

power system network. In order to investigate the performance, SKH algorithm is demonstrated on 

the optimal power flow problems of IEEE 14-bus, IEEE 30-bus and IEEE 57-bus systems. The 

different objective functions considered are minimization of total production cost with and without 

valve-point loading effect, minimization of active power loss, minimization of L-index and 

minimization of emission pollution. The OPF results obtained with SKH are compared with the 

other evolutionary algorithms recently reported in the literature. 

Pulluri et al. [85] used SKH algorithm to solve another kind of OPF problem. The SKH 

algorithm has been demonstrated on the OPF problems of IEEE 30-bus, Algerian 59-bus, and IEEE 

118-bus systems considering various objective functions such as total production cost, L-index, 

power loss, and emission pollution to be minimized.  

 

3.2.4. BBKH 

Wang et al. [28] proposed a biogeography-based krill herd (BBKH) algorithm inspired by 

biogeography-based optimization (BBO). In BBKH, a new krill migration (KM) operator is used to 

update the krill individuals, especially at the stage of the exploitative stage [86]. The KM operator 

emphasizes the exploitation and lets the krill cluster around the best solutions at the later run phase 

of the search. The effects of these enhancements are tested by various well-defined benchmark 

functions. Based on the experimental results, this novel BBKH approach performs better than the 

basic KH and other twelve optimization algorithms, which are ABC [11], ACO [12], BA [49], BBO 
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[28], CS [35], DE [15], ES [32], GA [27], HS [59], PBIL [42], PSO [1], and SGA [63]. 

 

3.2.5. DEKH 

Wang et al. [87] incorporated the idea of differential evolution [15] into the KH algorithm. The 

derived hybrid method is called differential evolution KH (DEKH). In DEKH, the hybrid 

differential evolution (HDE) operator is used to search for the promising solutions with the given 

region. DEKH is validated by twenty-six benchmark functions. From the results, the proposed 

methods are able to find a more accurate solution than the KH and other methods. In addition, the 

robustness of the DEKH algorithm and the influence of the initial population size on convergence 

and performance are investigated by a series of experiments. This is another good paradigm of the 

combination of swarm intelligence algorithm and evolutionary computation.  

 

3.2.6. KH-QPSO 

Wang et al. [88] introduced quantum-behaved particle swarm optimization (QPSO) [3] into 

KH algorithm. The so-called KH-QPSO algorithm is capable of avoiding the premature 

convergence and eventually finding the function minimum. More especially, KH-QPSO can make 

all the individuals proceed to the true global optimum without introducing additional operators to 

the basic KH and QPSO algorithms. To verify the performance of KH-QPSO, various experiments 

are carried out on an array of test problems as well as an engineering case. 

 

3.2.7. SAKH 

Wang et al. [89] proposed a hybrid KH algorithm called simulated annealing-based krill herd 

(SAKH) by a combination of simulated annealing (SA) [24] and KH. In SAKH, a krill selecting 

(KS) operator is an improved version of greedy strategy and accepts few not-so-good solutions with 

a low probability originally used in SA. In addition, a kind of elitism scheme is used to save the best 

individuals in the population in the process of the krill updating. The merits of these improvements 

are verified by an array of standard functions. The experimental results show that the performance 

of the SAKH method is superior to, or at least highly competitive with, the standard KH and other 

optimization methods (ABC [11], BA [49], CS [35], DE [15], ES [32], GA [27], HS [59], PBIL 

[42], PSO [1], and SA [24]). 

 

3.2.8. PBILKH 

Wang et al. [42] proposed a hybrid algorithm called PBILKH by introducing the population-

based incremental learning (PBIL) into the KH optimization process. In PBILKH, a new KU 

operator is used to implement local search at the exploitation stage in terms of probability updating 

(PU) operator [90]. In addition, a type of elitism is applied to memorize the krill with the best fitness 

when finding the best solution. The effectiveness of the PBILKH is verified by various benchmarks. 

The experimental results demonstrate that the PBILKH is well capable of overtaking the KH 

algorithm and other optimization methods such as ABC [11], DE [15], ES [32], GA [27], HS [59], 
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PBIL [42], and PSO. 

 

3.2.9. FiKH 

Wang et al. [20] combined the advantage of KH and FA and proposed a hybrid firefly-inspired 

KH (FiKH) [91]. In order to improve the ability of the local search, an attractiveness and light 

intensity updating (ALIU) operator inspired by FA is implemented at the later of the search process. 

Moreover, an elitism strategy is adopted to maintain the optimal krill with the best fitness when 

updating the krill. The results indicated that FKH performs more accurate and effective than the 

basic KH and other optimization algorithms. 

 

3.2.10. MAKHA 

Khalil et al. [92] developed a reliable and efficient optimization method via the hybridization 

of two bio-inspired swarm intelligence optimization algorithms, namely, monkey (MA) [26] and 

KH algorithms. The hybridization made use of the efficient steps in each of the two original 

algorithms and provided a better balance between the exploration/diversification steps and the 

exploitation/intensification steps. The new hybrid algorithm, MAKHA, is rigorously tested with 

twenty-several benchmark problems. The results were compared with the results of the two original 

algorithms. MAKHA proved to be considerably more reliable and more efficient in tested problems.  

 

Table 2. The hybrid KH algorithms 

 

Name Author Reference 

Cuckoo search Wang et al. [81] 

Harmony search Wang et al. [82] 

Stud genetic algorithm Wang et al. [83] 

Biogeography-based optimization  Wang et al. [86] 

Differential evolution Wang et al. [87] 

Quantum-behaved particle swarm optimization Wang et al. [88] 

Simulated annealing Wang et al. [89] 

Population-based incremental learning Wang et al. [90] 

Monkey algorithm Khalil et al. [92] 

 

3.3 Variants of KHs 

Table 2 presents different variants of the KH algorithm. The details for each of these methods 

are presented herein.  
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3.3.1. Discrete KH 

Wang et al. [93] incorporated some optimization strategies into the basic KH algorithm to 

generate a discrete version called discrete krill herd (DKH). The intention has been to use DKH 

towards solving the discrete optimization problem. 

Sur and Shukla [94] described different kinds of the creature activities, and then proposed a 

discrete version of the KH. This method is further used to solve graph network based search and 

optimization problems.  

 

3.3.2. Binary KH 

Rodrigues et al. [95] proposed a binary version of KH algorithm. This algorithm is used to 

solve feature selection purposes problem in several datasets. The experiments showed that the 

proposed technique outperforms three other metaheuristic algorithms for this task. 

 

3.3.3. Fuzzy KH 

Fattahi et al. [96] proposed a fuzzy KH (FKH) which can dynamically adjust the participation 

amount of exploration and exploitation by looking the progress of solving the problem at each step. 

Some standard benchmark functions and the Inventory Control Problem was used to evaluate the 

FKH algorithm. The experimental results indicate the superiority of the FKH algorithm in 

comparison with the standard KH optimization algorithm.  

Fattahi et al. [97] used a fuzzy system as a parameter tuner to adjust the participation amount 

of the global and local search and proposed a fuzzy KH. The higher performance of the fuzzy KH 

method is verified on different benchmarks. 

 

3.3.5. Multi-objective KH 

Ayala et al. [98] proposed a new multi-objective KH (MKH) algorithm to solve multi-objective 

optimization problems. The modified MKH approach uses the beta distribution in the inertia weight 

tuning.  

 

Table 3. Different variants of KH 

 

Name Author Reference 

Discrete krill herd  Wang et al. [93] 

Discrete krill herd  Sur and Shukla [94] 

Binary krill herd Rodrigues et al. [95] 

Fuzzy krill herd Fattahi et al. [96] 

Fuzzy krill herd Fattahi et al. [97] 
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Multi-objective KH Ayala et al. [98] 

 

4. Engineering Optimization/Applications 

Different engineering optimization and applications of the KH algorithm are classified into the 

following categories: continuous optimization, combinatorial optimization, constrained 

optimization, mluti-objective optimization, dynamic and noisy environment, and other engineering 

applications. Table 4 presents a summary of the applications of KH in engineering optimization. 

 

4.1 Continuous optimization 

 

4.1.1. Neural networks 

Kowalski and Łukasik [99] used the KH algorithm to train artificial neural network (ANN). 

The trained network is used for the classification of examples drawn from the UCI Machine 

Learning Repository. It has been concluded that the application of KH improves the accuracy of 

ANN as well as the time needed for its training. 

Lari and Abadeh [100] used the KH method to help ANNs select the best structure and weights. 

The task of optimizing the network structure was on the three components of this algorithm 

(movement induced by the other krill, random diffusion, and foraging motion) along with a genetic 

operator. Five UCI data sets are used to evaluate the proposed method. The results indicated that 

KH considerably improved the classification accuracy of ANN.  

Faris et al. [101] used the KH algorithm to train the feed-forward neural network and optimize 

its connection weights. The trained networks are used to solve E-mail spam detection problem. The 

results showed that this KH-ANN approach outperforms the Back propagation and GA.  

Stasinakis et al. [102] proposed a KH Support Vector Regression (KH-vSVR) [103,104] model. 

The KH optimizes the SVR parameters by balancing the search between local and global optima. 

The proposed model is applied to the task of forecasting and trading three commodity exchange 

traded funds on a daily basis over the period 2012-2014. The inputs of the KH-vSVR models are 

selected through the model confidence set from a large pool of linear predictors. The KH-vSVR's 

statistical and trading performance is benchmarked against traditionally adjusted SVR structures 

and the best linear predictor.  

Wang et al. [105] used support vector machine (SVM) [106] to distinguish indoor pollutant 

gases. An effective enhanced KH algorithm (EKH) based on a novel decision weighting factor 

computing method is proposed to optimize the SVM parameters. In EKH, an updated crossover 

operator is added. The research results showed that EKH significantly improves the performance of 

our electronic nose (E-nose) system. The study done by Wang et al. [105] revealed the potential of 

improved KH-based methods in E-nose research area. 
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4.1.2. Clustering problem 

Li et al. [107] proposed a new version of KH in combination with elitism strategy namely KHE. 

This method is then used to solve clustering problem. Elitism strategy has a strong ability to prevent 

the krill population from degrading. In addition, the well-selected parameters are used in the KHE 

method instead of originating from nature. The clustering results showed that KHE performs better 

than fuzzy C-means (FCM) clustering algorithm [108].  

Jensi et al. [109] proposed another improved KH algorithm by adding global search operator 

for exploration around the defined search region. The elitism strategy is also applied to maintain the 

best krill during the krill update steps. The proposed method is tested on a set of twenty-six well-

known benchmark functions and is compared with thirteen popular optimization algorithms. In 

addition, the proposed method has high convergence rate. The high performance of the proposed 

algorithm is then employed for data clustering problems and is tested using six real datasets 

available from UCI machine learning laboratory [110]. The experimental results thus show that the 

proposed algorithm is efficient for solving data clustering problems. 

 

4.1.3. Phase equilibrium calculation 

Moodley et al. [111] used the KH algorithm and the modified Lévy-flight KH algorithm (LKH) 

[77] to phase stability (PS) and phase equilibrium calculations phase stability (PS) and phase 

equilibrium calculations, where global minimization of the total Gibbs energy is necessary. Several 

phase stability and phase equilibrium systems are considered for the analysis of the performance of 

the technique. 

 

4.1.4. Control 

Younesi and Tohidi [112] used the KH algorithm to adjust the parameters of the sensorless 

controllers for a permanent magnet synchronous motor (PMSM). A frequency-adaptive disturbance 

observer has been proposed to remove the disturbances in estimating the stator flux and to enhance 

the accuracy of the rotor angle estimation [112]. The design and utilization of the proposed observer 

are detailed under the consideration of its application to the practical system driving PMSM. The 

performance of the proposed sensorless method is assessed through experiments at low-speed 

operations, where the sensorless drive of PMSM is regarded as being extremely difficult without 

the signal injection. 

Yaghoobi et al. [113] presented an improved version of KH algorithm. The proposed algorithm 

has been applied to determine coefficients of PID controller to achieve desired system response. For 

this purpose, a cost function based on weighted sum of step response characteristics is considered 

to be minimized. Simulation results compare the performance of the ICKH algorithm with many 

other optimization algorithms. 

 

4.1.5. Inverse radiation problem 

Ren et al. [114] proposed three improved versions of the KH algorithm to solve inverse 
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radiation problems. Additionally, the extinction coefficient and scattering albedo in a parallel slab 

with short pulse laser incident are retrieved using the improved algorithms. Consequent numerical 

simulations indicated that radiative properties can be retrieved accurately even with measurement 

errors. 

 

4.1.6. Channel equalization problem 

Pandey et al. [115] described the design of an adaptive channel equalizer based on the KH 

algorithm. The designed KH-based equalizer has better channel equalization than other 

metaheuristic algorithms, e.g., PSO [1] and DE [15]. 

 

4.1.7. Dual-cluster routing in UWSNs 

Aimed at the limited energy of nodes in underwater wireless sensor networks (UWSNs) [116] 

and the heavy load of cluster heads in clustering routing algorithms, Jiang et al. [117] proposed a 

dynamic layered dual-cluster routing algorithm based on KH algorithm in UWSNs. Cluster size is 

first decided by the distance between the cluster head nodes and sink node, and a dynamic layered 

mechanism is established to avoid the repeated selection of the same cluster head nodes. The 

simulation results show that the proposed algorithm can effectively decrease cluster energy 

consumption, balance the network energy consumption, and prolong the network lifetime. 

 

4.1.8. Model turbine heat rate 

To improve the solution quality and to quicken the global convergence speed of KH, Niu et al. 

[118] proposed an ameliorated KH algorithm (A-KH) to solve the global optimization problems. 

Compared with other several state-of-art algorithms, A-KH shows better search performance. 

Furthermore, A-KH is adopted to adjust the parameters of the fast learning network (FLN) so as to 

build the turbine heat rate model of a 600MW supercritical steam and obtain a high-precision 

prediction model. Experimental results show that, compared with other several turbine heat rate 

models, the tuned FLN model by A-KH has better regression precision and generalization capability. 

 

4.2 Combinatorial optimization 

4.2.1. Scheduling 

Wang et al. [93] used a multilayer coding strategy in the preprocessing stage and then the DKH 

method to solve the flexible job-shop scheduling problem (FJSSP) [93]. In addition, elitism strategy 

is integrated into DKH with the aim of making the krill swarm move towards the better solutions 

all the time. The performance of the DKH algorithm is verified by two FJSSP instances. Based on 

the results, the developed approach is able to find the better scheduling in most cases than some 

existing state-of-the-art algorithms, e.g., ABC [11], ACO [12], and GA [27].  

Puongyeam et al. [119] proposed a modified KH (MKH) algorithm and used it to solve 

production scheduling problem. The computational experiments were carried out using various sizes 
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of scheduling problem obtained from a capital goods company. The analysis of the computational 

results indicated that the MKH algorithm significantly performs better than the conventional KH 

algorithm for all problems. 

Roy et al. [120] combined DE with the KH algorithm to solve the short-term hydrothermal 

scheduling (HTS) problem. The potentialities of DE are used in the KH technique to improve the 

convergence speed and robustness. The practical short-term HTS problem is solved using the KH 

technique in which the crossover and mutation operations of the DE algorithm are employed to 

efficiently control the local and global search. The quality and usefulness of this approach is 

demonstrated through its application to two standard test systems. The simulation results revealed 

that the method is better in comparison with the other existing techniques in terms of computational 

time and the quality of the obtained solutions. 

 

4.2.2. QoS Routing 

Kalaiselvi and Radhakrishnan [121] proposed a differentially guided krill herd based algorithm 

called DGKH. In DGKH, the krill individuals are updated by using the information from various 

krill individuals instead of the corresponding previous one. Also, the DGKH is used to solve multi-

constrained QoS Routing problem in Mobile Ad Hoc Networks. It is demonstrated that the proposed 

DGKH algorithm is an effective approximation algorithm exhibiting satisfactory performance than 

the KH and existing algorithms in the literature by determining an optimum path that satisfies more 

than one QoS constraint in MANETs.  

 

4.2.3. Portfolio optimization 

Bacanin et al. [122] solved the constrained portfolio optimization problem using the KH 

algorithm. Comparing with the traditional methods, the experimental results indicated that KH is a 

promising algorithm for tackling portfolio optimization problems. 

Moreover, Tuba et al. [123]used the KH to solve the constrained portfolio selection problem. 

The results showed that the KH algorithm is a promising technique for portfolio optimization 

problem and can outperform other optimization metaheuristics such as GA [27] and FA [20].  

 

4.2.4. Feature selection 

Rodrigues et al. [95] proposed a binary version of KH algorithm for feature selection in several 

datasets. The experiments showed that the proposed technique outperforms three other 

metaheuristic algorithms, i.e., FA [20], HS [59] and PSO [1], for this task. 

 

4.2.5. Optimal power flow 

Mukherjee et al. [69] used the best Logistic map from a set of chaotic maps to generate chaotic 

KH (CKH). In addition, the proposed method is applied to standard 26-bus and IEEE 57-bus test 

power systems for the solution of optimal power flow of power system with different objectives that 

reflect minimization of fuel cost or active power loss or sum of total voltage deviation. The obtained 
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results showed that the CKH algorithm outperforms other evolutionary optimization techniques in 

terms of convergence rate and global search ability.  

Mukherjee et al. [75] proposed opposition based KHA (OKHA) to solve the optimal power 

flow (OPF) problem of power systems. The potential of the proposed OKH is successfully assessed 

on modified IEEE-30 bus and IEEE-57 bus test power systems. The simulation results indicated 

that the proposed approach yields a better solution than the other popular methods. The effectiveness 

of OKH for tackling the OPF problem of power system equipped with flexible AC transmission 

systems (FACTS) devices is also verified.  

As mentioned before, Pulluri et al. [84] used SKH algorithm to tackle the optimal power flow 

(OPF) problems in a power system network on the optimal power flow problems of IEEE 14-bus, 

IEEE 30-bus and IEEE 57-bus systems. Later, Pulluri et al. [85] used SKH algorithm to solve the 

OPF problems of IEEE 30-bus, Algerian 59-bus, and IEEE 118-bus systems considering various 

objective functions. 

 

4.2.6. Mobility tracking 

Vincylloyd and Anand [124] used the KH algorithm to solve mobility tracking problems in 

wireless communication systems. They presented a novel hybrid method using a krill herd algorithm 

designed to optimize the location area (LA) within available spectrum such that total network cost, 

comprising location update (LU) cost and cost for paging, is minimized without compromise. Based 

on various mobility patterns of users and network architecture, the design of the LR area is 

formulated as a combinatorial optimization problem [124]. The numerical results indicated that the 

proposed model provides a more accurate update boundary in a real environment than that derived 

from a hexagonal cell configuration with a random walk movement pattern. The proposed model 

allows the network to maintain a better balance between the processing incurred due to location 

update and the radio bandwidth utilized for paging between call arrivals [124]. 

 

4.2.7. Four-bar linkage 

Bulatović et al. [125] presented two modifications for the KH algorithm, which are the 

initialization of food location and the replacement of the crossover operator with the combination 

of columns of fitness functions obtained in one iteration. The modified KH (MKH) was used to 

solve four benchmark examples from the synthesis of a four-bar linkage. 

 

4.2.8. Optimal capacitor allocation problem 

Sultana and Roy [74] used the basic KH and oppositional KH (OKH) to solve optimal capacitor 

allocation problem (33-bus and 69-bus) in reconfigured distribution network. They presented the 

KH algorithm to find optimal location of the capacitor and optimal reconfiguration in order to 

minimize real power loss of radial distribution systems. Moreover, the opposition based learning 

(OBL) concept is integrated with KH algorithm for improving the convergence speed and simulation 

results. The conventional KH and OKH algorithms are tested on 33-bus and 69-bus radial 

distribution networks. The solution results showed that OKH technique can generate better quality 
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solutions and better convergence characteristics than those obtained by conventional KH algorithm 

and other existing optimization techniques. 

 

4.2.9. Inverse geometry design 

Sun et al. [126] incorporated the discrete ordinate method and Akima cubic interpolation into 

five kinds of KH algorithms to solve the inverse geometry design of a two-dimensional radiative 

enclosure filling with participating media. The retrieval results showed that the KH algorithm can 

be applied successfully to inverse geometry design problems. KH is proved to be more efficient 

than the micro GA and PSO. The influences of radiative properties of the media and the number of 

control points on the retrieval geometry design results are also investigated by Sun et al. [126].  

 

4.3 Constrained Optimization 

 

4.3.1. Economic dispatch problem 

 

1) Economic dispatch problem 

Kavousi-Fard et al. [127] proposed a new modified KH (MKH) algorithm by using Lévy flights 

motion and crossover operator. This method is further applied to address the practical economic 

dispatch (ED) problem incorporating different types of constraints, such as valve-loading effects, 

prohibited operating zone, spinning reserve and multi-fuel option. The proposed MKH algorithm is 

examined on three test systems to validate its satisfying performance [127]. 

 

2) Dynamic economic dispatch 

Ashouri and Hosseini [128] used the KH algorithm and water cycle algorithm (WCA) [34] to 

solve Dynamic economic dispatch (DED) problem. Also, several comparative studies have been 

done based on two above methods. Two common case studies considering various constraints have 

been used to show the effectiveness of these methods. The results and convergence characteristics 

showed that the proposed methods are capable of giving high-quality results which are better than 

many other previously applied algorithms [127]. 

  

3) Combined heat and power economic dispatch problem 

Adhvaryyu et al. [129] used the KH algorithm to solve combined heat and power economic 

dispatch (CHPED) problem. The algorithm has been illustrated simulating on a test system and the 

result has been compared with those obtained from PSO [1] and DE [15]. The comparison showed 

that the solution obtained by this KH method is of better quality than other methods. 

 

4) Annual energy losses 

Sultana and Roy [73] proposed oppositional krill herd (OKH) to minimize annual energy losses 

when different renewable resources are used. In order to show the effectiveness of the OKH 

algorithm, it is implemented on 33-bus, 69-bus, and 118-bus radial distribution networks to find 
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optimal location and the optimal size of RDGs (renewable distributed generators) to optimize energy 

losses [73]. Moreover, the OKH algorithm is compared with the basic KH algorithm and a recently 

developed analytical approach. It is observed from the test results that the proposed OKH algorithm 

is more efficient in terms of simulation results of energy loss and convergence property than the 

other reported algorithms [73]. 

 

5) Distributed generator (DG) 

Sultana and Roy [130] used the KH algorithm to solve the optimal DG allocation problem of 

distribution networks. The algorithm is evaluated on standard 33-bus, 69-bus and 118-bus radial 

distribution networks. The simulation results indicated that installing DG in the optimal location 

can significantly reduce the power loss of distributed power system. Moreover, the numerical results, 

compared with other stochastic search algorithms, show that KH could find better quality solutions 

[130]. 

Davodi et al. [131] proposed an effective intelligent optimization method to solve the multi-

objective distribution feeder reconfiguration (DFR) problem considering generators (DGs). In this 

regard, they introduced a novel population-based algorithm based on KH algorithm to solve the 

multi-objective distribution feeder reconfiguration problem considering DG units. In order to 

improve the search ability of the algorithm, a new modification process is further proposed. This 

modification enhanced the overall outcome of the KH algorithm in both search and convergence 

area [131]. During the search process of the proposed modified KH (MKH) algorithm, the achieved 

non-dominated solutions are stored in an external repository. Owing to distinctive objective 

functions, a fuzzy clustering technique is applied to control the size of the repository within the 

restrictions. The objective functions considered in this paper are power losses, voltage deviation of 

buses and total cost of the active power produced by DG units and distribution companies. In order 

to evaluate the feasibility and effectiveness of the method, the proposed approach is tested on a 

distribution test system.  

Rostami et al. [132] proposed a novel optimal stochastic reconfiguration methodology to 

moderate the charging effect of PHEVs (plug-in hybrid electric vehicles) by changing the topology 

of the grid using some remote controlled switches. Uncertainties associated with network demand, 

energy price, and PHEV charging behavior in different charging frameworks are handled with 

Monte Carlo simulation and the proposed stochastic problem is solved with the KH optimization 

algorithm [132]. The numerical studies on Tai-power distribution system verify the efficacy of 

proposed reconfiguration to improve the system performance considering PHEV charging loads. 

 

6) Optimal reactive power dispatch 

Dutta et al. [133] presented an improved evolutionary algorithm based on the OKH algorithm 

for obtaining optimal steady-state performance of power systems. They also proposed the effect of 

UPFC location in steady-state analysis and to demonstrate the capabilities of UPFC in controlling 

active and reactive power flow within any electrical network. To verify the effectiveness of KH and 

OKH, two different single objective functions such as minimization of real power losses and 

improvement of voltage profile and a multi-objective function that simultaneously minimizes 

transmission loss and voltage deviation has been studied through standard IEEE 57-bus and 118-
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bus test systems. The study results showed that the proposed KH and OKH approaches are feasible 

and efficient. 

Mukherjee et al. [134] presented the chaotic krill herd (CKH) algorithm (CKHA), for the 

solution of the optimal reactive power dispatch (ORPD) problem of power system incorporating 

flexible AC transmission systems (FACTS) devices on standard IEEE 30-bus test power system. 

The considered power system models are equipped with two types of FACTS controllers (namely, 

thyristor controlled series capacitor and thyristor controlled phase shifter). Simulation results 

indicate that CKH yields superior solution over other popular methods. The obtained results indicate 

the effectiveness of the solution of ORPD problem of power system considering FACTS devices. 

Finally, simulation is extended to some large-scale power system models like IEEE 57-bus and 

IEEE 118-bus test power systems for the same objectives to emphasis on the scalability of the 

proposed CKHA technique.  

 

7) Optimal VAR dispatch problem 

Mukherjee et al. [135] used chaotic krill herd (CKH) algorithm is to solve the optimal VAR 

dispatch problem of power system considering either minimization of real power loss or that of 

absolute value of total voltage deviation or improvements of voltage profile as an objective while 

satisfying all the equality and the inequality constraints of the power system network. Detailed 

studies of different chaotic maps are illustrated. Among these, Logistic map is considered in the 

proposed technique to improve the performance of the basic KHA. The performance of the proposed 

CKH is implemented on standard IEEE 14- and IEEE 118-bus test power systems in which the 

control of bus voltages, tap position of transformers and reactive power sources are involved. The 

results offered by CKH are compared with other evolutionary optimization based techniques. 

 

8) Transient stability constrained optimal power flow  

Transient stability constrained optimal power flow (TSCOPF) is a nonlinear optimization 

problem with both algebraic and differential equations which is difficult to solve even for small 

power network. In order to solve the TSCOPF problem efficiently, Mukherjee et al. [136] used KH 

algorithm to solve it. To accelerate the convergence speed and to improve the simulation results, 

opposition based learning (OBL) is also incorporated in the basic KH method. The simulation results, 

obtained by the basic KH method and the oppositional KH algorithm, are compared to those 

obtained by using some other recently developed methods available in the literature. In this paper, 

case studies conducted on 10 generator New England 39-bus system and 17 generator 162-bus 

system indicate that OKH approach is much more, computationally, efficient than the other reported 

popular state-of-the-art algorithms and OKH is found to be a promising tool to solve the TSCOPF 

problem of power systems. 

 

4.4 Multi-objective optimization 

 

4.4.1. Electromagnetic optimization 

Ayala et al. [98] proposed a new multi-objective KH (MKH) algorithm and a modified MKH 
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approach to address the electromagnetic optimization problems. The numerical results on a 

multiobjective constrained brushless direct current motor design problem showed that the evaluated 

MKH algorithms provide a promising performance. 

 

4.5 Dynamic and noisy environment 

 

4.5.1. Graph-based network route optimization 

Sur and Shukla [94] described different kinds of the creature activities, and then proposed a 

discrete version of the KH, which is further used to solve graph network based search and 

optimization problems. KH is operated on a multi-parametric road graph for the search of the 

optimized path with respect to some parameters and evaluation function and the convergence rate 

is compared with Ant ACO [12] and IWD [25] algorithms. Due to the dynamicity of the road 

network with several dynamic parameters, the optimized path tends to change with intervals, the 

optimized path changes and will bring about a near fair distribution of vehicles in the road network 

and withdraw the excessive pressure on the busy roads and pave the way for proper exploitation of 

the underutilized. 

 

4.6 Civil engineering 

 

4.6.1. Optimum design of truss structures 

Gandomi et al. [137] used the KH algorithm to solve three truss design optimization problems. 

The performance of KH is further compared with various classical and advanced algorithms.  

 

4.6.2. Structural Optimization 

Gandomi and Alavi [138] introduced KH for solving engineering optimization problems. For 

more verification, KH is applied to six design problems. Further, the performance of the KH 

algorithm is compared with that of various algorithms representative of the state-of-the-art in the 

area. The comparisons show that the results obtained by KH are better than the best solutions 

obtained by the existing methods. 

Gandomi et al. [139] introduced the KH algorithm into structural optimization, and the KH 

was used to solve three design problems. The performance of the KH algorithm is further compared 

with various algorithms representative of the state of the art in the area. The comparisons showed 

that the results obtained by KH can be better than the best solutions obtained by the existing methods 

in these three case studies. 
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4.7 Fuzzy rule-based systems 

Shanghooshabad and Abadeh [140] used the KH algorithm to generate fuzzy rule based 

systems (FRBSs). In FRBSs, there are three objectives: accuracy, interpretability, and robustness. 

The proposed algorithm consists of two stages based on the KH algorithm; in the first stage the 

candidate rules are generated intelligently so in the second stage, the fuzzy rules will be selected 

that get closer to the objectives. Stage 2 of the proposed algorithm can be used as a post-processing 

algorithm on other algorithms and converts those to robust algorithms. The generated systems by 

KH have better performance than other strategies. 

 

Table 4. A summary of the KH applications in engineering optimization 

Category Problem/Application Author Ref. 

Continuous 

optimization 

Training artificial neural network Kowalski and Łukasik [99] 

Selecting structure and weights for neural 

networks 
Lari and Abadeh [100] 

Training the Feedforward neural network Faris et al. [101] 

Optimizing Support Vector Regression Stasinakis et al. [102] 

Optimizing Support vector machine Wang et al. [105] 

Clustering problem 
Li et al. [107] 

Jensi et al.  [109] 

Phase equilibrium calculations Moodley et al. [111] 

Sensorless control  Younesi and Tohidi [112] 

PID control Yaghoobi et al. [113] 

Inverse radiation problem Ren et al. [114] 

Channel equalization problem Pandey et al.  [115] 

Dual-cluster routing in UWSNs Jiang et al.  [117] 

Model turbine heat rate  Niu et al. [118] 

Combinatorial 

optimization 

Flexible job-shop scheduling problem 

(FJSSP) 
Wang et al. [93] 

Production scheduling problem  Puongyeam et al. [119] 

Short-term hydrothermal scheduling Roy et al. [120] 

QoS Routing 
Kalaiselvi and 

Radhakrishnan 
[121] 

Portfolio optimization Bacanin et al. [122] 

Portfolio selection problem  Tuba et al. [123] 
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Feature selection Rodrigues et al. [95] 

Optimal power flow problem 

Mukherjee et al. [69] 

Mukherjee et al. [75] 

Pulluri et al.  [84] 

Pulluri et al.  [85] 

Mobility tracking problem Vincylloyd and Anand [124] 

Four-bar linkage Bulatović et al. [125] 

Optimal capacitor allocation problem  Sultana and Roy [74] 

Inverse geometry design Sun et al. [126] 

Constrained 

Optimization 

Economic dispatch problem Kavousi-Fard et al. [127] 

Dynamic economic dispatch Ashouri and Hosseini [128] 

CHPED problem Adhvaryyu et al. [129] 

Annual energy losses  Sultana and Roy [73] 

Distributed generator (DG) Sultana and Roy [130] 

Distribution feeder reconfiguration (DFR) Davodi et al. [131] 

Optimal distribution feeder reconfiguration  Rostami et al. [132] 

Optimal reactive power dispatch (ORPD) 
Dutta et al. [133] 

Mukherjee et al.  [134] 

Optimal VAR dispatch problem  Mukherjee et al. [135] 

Transient stability constrained optimal 

power flow (TSCOPF) 
Mukherjee et al. [136] 

MOO1 Electromagnetic optimization Ayala et al. [98] 

DNE2 Graph-based network route optimization Sur and Shukla [94] 

Civil engineering 

Optimum design of truss structures Gandomi et al. [137] 

Structural optimization Gandomi and Alavi [138] 

Structural optimization Gandomi et al. [139] 

Fuzzy system Fuzzy rule-based systems Shanghooshabad & Abadeh [140] 

1MOO is short for Multi-objective optimization. 

2DNE is short for Dynamic and noisy environment. 

 

5. Theoretical Analysis 

  

5.1 Convergence 

Aiming to the failure of the balance of global search and local search, the reason was explained 
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by using a 2-D Ackley function in [79]. 

 

5.2 Parametric study 

Wang et al. [141] studied the five of the most important parameters used in the KH algorithm 

through benchmark evaluation on twenty-four benchmarks. For most benchmarks, KH performs the 

best when the coefficient of the krill individual, food coefficient, maximum diffusion speed, 

crossover probability and mutation probability parameters are set to 4.00, 4.25, 0.014, 0.225, and 

0.025, respectively.  

Kowalski and Lukasik [142] described numerous basic parameters impact upon the quality of 

selected solutions, by examining empirically the influence of two parameters of the KH Algorithm, 

i.e., maximum induced speed and inertia weight. 

 

5.2 Other studies 

Singh et al. [143] have conducted a series of experiments on KH, FA, and CS through 

benchmark evaluation. The performance of these algorithms on the basis of efficiency, convergence, 

time are fully explored. For both unimodal and multimodal optimization, CS via Lévy flight has 

outperformed others. While for multimodal optimization, the KH algorithm is superior to FA, FA 

is superior to KH for unimodal optimization. 

 

6. Conclusion and Future Direction  

The KH algorithm is a new, attractive, and promising swarm-based metaheuristic algorithm. It 

has drawn great attention from scholars to engineers since it was proposed in 2012. This study 

reviewed the recent research about the KH algorithm in the literature. The collected papers have 

been classified into three categories, which are improved, hybrid, and variants of KH, engineering 

optimization applications, and theoretical analysis. However, there are some issues that should be 

clarified for the future research in this domain. More research needs to be done on the theoretical 

analysis of KH for a more stable implementation and more reliable solutions. Also, new 

optimization strategies can be incorporated into the basic KH. The improved KH variants may be 

tested through benchmark evaluation and can be applied to solve other practical engineering 

optimization/application problems. In addition, selection of the KH parameters is still a challenging 

problem when dealing with new problems. Another issue is that most researchers studied the KH 

algorithm for single-objective problems. Accordingly, multi-objective and many-objective 

optimization with KH can be a good topic for future research.  
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