Skip to main content
Log in

A survey for the applications of content-based microscopic image analysis in microorganism classification domains

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Microorganisms such as protozoa and bacteria play very important roles in many practical domains, like agriculture, industry and medicine. To explore functions of different categories of microorganisms is a fundamental work in biological studies, which can assist biologists and related scientists to get to know more properties, habits and characteristics of these tiny but obbligato living beings. However, taxonomy of microorganisms (microorganism classification) is traditionally investigated through morphological, chemical or physical analysis, which is time and money consuming. In order to overcome this, since the 1970s innovative content-based microscopic image analysis (CBMIA) approaches are introduced to microbiological fields. CBMIA methods classify microorganisms into different categories using multiple artificial intelligence approaches, such as machine vision, pattern recognition and machine learning algorithms. Furthermore, because CBMIA approaches are semi- or full-automatic computer-based methods, they are very efficient and labour cost saving, supporting a technical feasibility for microorganism classification in our current big data age. In this article, we review the development history of microorganism classification using CBMIA approaches with two crossed pipelines. In the first pipeline, all related works are grouped by their corresponding microorganism application domains. By this pipeline, it is easy for microbiologists to have an insight into each special application domain and find their interested applied CBMIA techniques. In the second pipeline, the related works in each application domain are reviewed by time periods. Using this pipeline, computer scientists can see the dynamic of technological development clearly and keep up with the future development trend in this interdisciplinary field. In addition, the frequently-used CBMIA methods are further analysed to find technological common points and potential reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Aguzzi J, Costa C, Costa C, Robert K, Matabos M, Antonucci F, Juniper SK, Menesatti P (2011) Automated image analysis for the detection of benthic crustaceans and bacterial mat coverage using the VENUS undersea cabled network. Sensors 11(11):10,534–10,556

    Google Scholar 

  • Akiba T, Kahui Y (2000) Design and testing of an underwater microscope and image processing system for the study of zooplankton distribution. IEEE J Ocean Eng 25(1):97–104

    Google Scholar 

  • Albertano P (2000) Image analysis for qualitative and quantitative evaluation of planktic cyanobacteria. In: Workshop. Freshwater harmful algal blooms: health risk and control management. Istituto Superiore di Sanità. Rome, 17 October 2000. Proceedings edited by Serena elchiorre, Emanuela Viaggiu and Milena Bruno 2002, 103 p. Rapporti ISTISAN 02/9 (in Italian and English)

  • Almeida VED, Costa GBD, Fernandes DDDS, Diniz PHGD, Brandao D, Medeiros ACDD, Veras G (2014) Using color histograms and SPA-LDA to classify bacteria. Anal Bioanal Chem 406(24):5989–5995

    Google Scholar 

  • Alvarez E, Lopez-Urrutia A, Gurira E (2012) Improvement of plankton biovolume estimates derived from image-based automatic sampling devices: application to FlowCAM. J Plankton Res 34(6):454–469

    Google Scholar 

  • Alvarez-Borrego J, Mourino-Perez RR, Cristobal G, Pech-Pacheco JL (2000) Invariant optical colour correlation for recognition of vibrio cholerae 01. In: International conference on pattern recognition, pp 283–286

  • Amaral AL (2003) Image analysis in biotechnological processes: applications to wastewater treatment. PhD Dissertation in the University of Minho

  • Amaral AL, Baptiste C, Pons MN, Nicolau A, Lima N, Ferreira EC, Mota M, Vivier H (1999) Semi-automated recognition of protozoa by image analysis. Biotechnol Tech 13(2):111–118

    Google Scholar 

  • Amaral AL, Motta MD, Pons MN, Vivier H, Roche N, Mota M, Ferreira EC (2004) Survey of protozoa and metazoa populations in wastewater treatment plants by image analysis and discriminant analysis. Environmentrics 15(4):381–390

    Google Scholar 

  • Amaral AL, Ginoris YP, Nicolau A, Coelho MAZ, Ferreira EC (2008) Stalked protozoa identification by image analysis and multivariable statistical techniques. Anal Bioanal Chem 319(4):1321–1325

    Google Scholar 

  • Anikster Y, Eilam T, Bushnell WR, Kosman E (2005) Spore dimensions of Puccinia species of cereal hosts as determined by image analysis. Mycologia 97(2):474–484

    Google Scholar 

  • Ayas S, Ekinci M (2014) Random forest-based tuberculosis bacteria classification in images of ZN-stained sputum smear samples. SIViP 8(1):49–61

    Google Scholar 

  • Bachiller E, Fernandes JA (2011) Zooplankton image analysis manual: automated identification by means of scanner and digital camera as imaging devices. Rev Invest Mar 18(2):17–37

    Google Scholar 

  • Baek J, Cosman P, Feng Z, Silver J, Schafer WR (2002) Using machine vision to analyze and classify caenorhabditis elegans behavioral phenotypes quantitatively. J Neurosci Methods 118(1):9–21

    Google Scholar 

  • Balafar MA, Ramli AR, Mashohor S (2010a) A new method for MR grayscale inhomogeneity correction. Artif Intell Rev 34(2):195–204

    Google Scholar 

  • Balafar MA, Ramli AR, Sarlpan MI, Mashohor S (2010b) Review of brain MRI image segmentation methods. Artif Intell Rev 33(3):261–274

    Google Scholar 

  • Balfoort HW, Snoek J, Smits JRM, Breedveld LW, Hofstraat JW, Ringelberg J (1992) Automatic identification of algae: neural network analysis of flow cytometric data. J Plankton Res 14(4):575–589

    Google Scholar 

  • Beaufort L, Dollfus D (2004) Automatic recognition of coccoliths by dynamical neural networks. Mar Micropaleontol 51(1–2):57–73

    Google Scholar 

  • Bell JL, Hopgroft RR (2008) Assessment of ZooImage as a tool for the classification of zooplankton. J Plankton Res 30(12):1351–1367

    Google Scholar 

  • Bernhard D, Leipe DD, Sogin ML, Schlegel KM (1995) Phylogenetic relationships of the Nassulida within the phylum Ciliophora inferred from the complete small subunit RRNA gene sequences of Furgasonia blochmanni, Obertrumia georgiana, and Pseudomicrothorax dubius. J Eukaryot Microbiol 42(2):126–131

    Google Scholar 

  • Blackburn N, Hagstrom A, Wikner J, Cuadros-Hansson R, Bjornsen PK (1998) Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl Environ Microbiol 64(9):3246–3255

    Google Scholar 

  • Boelter M, Moeller R, Dzomla W (1993) Determination of bacterial biovolume with epifluorescence microscopy: comparison of size distributions from image analysis and size classifications. Micron 24(1):31–40

    Google Scholar 

  • Boucher A, Doisy A, Ronot X, Garbay C (1998) Cell migration analysis after in vitro wounding injury with a multi-agent approach. Artif Intell Rev 12(1–3):137–162

    Google Scholar 

  • Brenner M (2006) Engineering microorganisms for energy production. Report in the MITRE Corporation JASON Program Office

  • Castro-Longoria E, Alvarez-Borrego J, Pech-Pacheco JL (2001) Identification of species of calanoid copepods using a new invariant correlation algorithm. Crustaceana 74(10):1029–1039

    Google Scholar 

  • Chang C, Lin C (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 3(2):1–27

    Google Scholar 

  • Chang C, Ho P, Sastri AR, Lee Y, Gong G, Hsieh C (2012a) Methods of training set construction: towards improving performance for automated mesozooplankton image classification systems. Cont Shelf Res 36:19–28

    Google Scholar 

  • Chang J, Arbelaez P, Switz N, Reber C, Tapley A, Davis JL, Cattamanchi A, Fletcher D, Malik1 J (2012b) Automated tuberculosis diagnosis using fluorescence images from a mobile microscope. Med Image Comput Assist Interv 15(Pt 3):345–352

  • Chen C, Li X (2008) A new wastewater bacteria classification with microscopic image analysis. In: WSEAS international conference on computers, pp 915–921

  • Chen S, Feng X, Li Y, Zhou C, Xi P, Ren Q (2010) Software controlling algorithms for the system performance optimization of confocal laser scanning microscope. Biomed Signal Process Control 5(3):223–228

    Google Scholar 

  • Chin LK, Ayi TC, Yap PH, Liu AQ (2011) Protozoon classifications based on size, shape and refractive index using on-chip immersion refractometer. In: International solid-state sensors, actuators and microsystems conference, pp 771–774

  • Chwojnowski A, Przytulska M, Wierzbicka D, Kulikowski J, Wojciechowski C (2012) Membranes porosity evaluation by computer-aided analysis of sem images a preliminary study. Biocybern Biomed Eng 32(4):65–75

    Google Scholar 

  • Coltelli P, Barsanti L, Evangelista V, Frassanito AM, Passarelli V, Gualtieri P (2013) Automatic and real time recognition of microalgae by means of pigment signature and shape. Environ Sci Process Impacts 15:1397–1410

    Google Scholar 

  • Coltelli P, Barsanti L, Evangelista V, Frassanito AM, Gualtieri P (2014) Water monitoring: automated and real time identification and classification of algae using digital microscopy. Environ Sci Process Impacts 16(11):2656–2665

    Google Scholar 

  • Coltelli P, Barsanti L, Evangelista V, Frassanito AM, Gualtieri P (2016) Reconstruction of the absorption spectrum of an object spot from the colour values of the corresponding pixel(s) in its digital image: the challenge of algal colours. J Microsc 264(3):311–320

    Google Scholar 

  • Costa JC, Mesquita DP, Amaral AL, Alves MM, Ferreira EC (2013) Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment: a review. Environ Sci Pollut Res 20(9):5887–5912

    Google Scholar 

  • Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    MATH  Google Scholar 

  • Cox PW, Thomas CR (1992) Classification and measurement of fungal pellets by automated image analysis. Biotechnol Bioeng 39(9):945–952

    Google Scholar 

  • Culverhouse P, Herry V, Parisini T, Williams R, Reguera B, Gonzalez-Gil S, Fonda S, Cabrini M (2000) DiCANN: a machine vision solution to biological specimen categorisation. In: Proceedings of the EurOCEAN 2000 Conference, pp 239–240

  • Culverhouse PF, Ellis R, Simpson RG, Williams R, Pierce RW, Turner JT (1994) Automatic categorisation of five species of Cymatocylis (Protozoa, Tintinnida) by artificial neural network. Mar Ecol Prog Ser 107:273–280

    Google Scholar 

  • Culverhouse PF, Simpson RG, Ellis R, Lindley JA, Williams R, Parsini T, Reguera B, Bravo I, Zoppoli R, Earnshaw G, McCall H, Smith GC (1996) Automatic classification of field-collected dinoflagellates by artificial neural network. Mar Ecol Prog Ser 139(1–3):281–287

    Google Scholar 

  • Culverhouse PF, Williams R, Reguera B, Herryl V, Gonzalez-Gil S (2003) Expert and machine discrimination of marine flora: a comparison of recognition accuracy of field-collected phytoplankton. In: International Conference on Visual Information Engineering, pp 177–181

  • Culverhouse PF, Williams R, Benfield M, Flood PR, Sell AF, Mazzocchi MG, Buttino I, Sieracki M (2006a) Automatic image analysis of plankton: future perspectives. Mar Ecol Prog Ser 312:297–309

    Google Scholar 

  • Culverhouse PF, Williams R, Simpson B, Gallienne C, Reguera B, Cabrini M, Fonda-Umani S, Parisini T, Pellegrino FA, Pazos Y, Wang H, Escalera L, Morono A, Hensey M, Silke J, Pellegrini A, Thomas D, James D, Longa MA, Kennedy S, Punta GD (2006b) HAB Buoy: a new instrument for in situ monitoring and early warning of harmful algal bloom events. Afr J Mar Sci 28(2):245–250

    Google Scholar 

  • Daims H, Luecker S, Wagner M (2006) Daime, a novel image analysis program for microbial mcology and biofilm research. Environ Microbiol 8(2):200–213

    Google Scholar 

  • Das M, Butterworth F, Das R (1996) Statistical signal modeling techniques for automated recognition of water-borne microbial shapes. In: IEEE 39th midwest symposium on circuits and systems, pp 613–616

  • Dazzo FB (2010) CMEIAS digital microscopy and quantitative image analysis of microorganisms. Microsc Sci Technol Appl Educ 2(4):1083–1090

    Google Scholar 

  • Dazzo FB, Gross C (2013a) CMEIAS quadrat maker: a digital software tool to optimize grid dimensions and produce quadrat images for landscape ecology spatial analysis. Ecosyst Ecogr 3(4):1–4

    Google Scholar 

  • Dazzo FB, Gross C (2013b) In situ ecophysiology of microbial biofilm communities analyzed by CMEIAS computer-assisted microscopy at single-cell resolution. Diversity 5(3):426–460

    Google Scholar 

  • Dazzo FB, Niccum BC (2015) Use of CMEIAS image analysis software to accurately compute attributes of cell size, morphology, spatial aggregation and color segmentation that signify in situ ecophysiological adaptations in microbial biofilm communities. Computation 3(1):72–98

    Google Scholar 

  • Dieleman S (2015) Classifying plankton with deep neural networks. https://benanne.github.io/2015/03/17/plankton.html

  • Dietrich A, Uhlig G (1984) Stage specific classification of copepods with automatic image analysis. In: Proceedings of the First International Conference on Copepoda, pp 159–165

  • Ding K, Gunasekaran S (1998) Three dimensional image reconstruction procedure for food microstructure evaluation. Artif Intell Rev 12(1–3):245–262

    Google Scholar 

  • Dorado AP (2016) Automatic recognition of diatoms and its applications to the study of water quality. PhD Dissertation in the Universidad de Castilla-La Mancha

  • Dubuisson M, Jain AK, Jain MK (1994) Segmentation and classification of bacterial culture images. J Microbiol Methods 19(4):279–295

    Google Scholar 

  • Durant G, Cox PW, Formisyn P, Thomas CR (1994a) Improved Image analysis algorithm for the characterisation of mycelial aggregates after staining. Biotechnol Tech 8(11):759–764

    Google Scholar 

  • Durant G, Grawley G, Formisyn P (1994b) A simple straining procedure for the characterisation of basidiomycetes pellets by image analysis. Biotechnol Tech 8(6):395–400

    Google Scholar 

  • Elbischger PJ, Bischof H, Regitnig P, Holzapfei GA (2004) Automatic analysis of collagen fiber orientation in the outermost layer of human arteries. Pattern Anal Appl 7(3):269–284

    MathSciNet  Google Scholar 

  • Embleton KV, Gibson CE, Heaney SI (2003) Automated counting of phytoplankton by pattern recognition: a comparison with a manual counting method. J Plankton Res 25(6):669–681

    Google Scholar 

  • Estep KW, MacIntyre F (1989) Counting, sizing, and identification of algae using image analysis. Sarsia 74(4):261–268

    Google Scholar 

  • Fernandez-Canque H, Hintea S, Csipkes G, Pellow A, Smith H (2008) Machine vision application to the detection of micro-organism in drinking water. In: Goebel R, Siekmann J, Wahlster W (eds) Knowledge-based intelligent information and engineering systems. Springer, New York, pp 336–343

    Google Scholar 

  • Ferreira T, Rasband W (2012) Image user guide. https://imagej.nih.gov/ij/docs/guide/user-guide-USbooklet.pdf

  • Fields S, Johnston M (2005) Cell biology. Whither model organism research? Science 307(5717):1885–1886

    Google Scholar 

  • Filho CFFC, Levy PC, Xavier CDM, Fujimoto LBM, Costa MGF (2015) Automatic identifi cation of tuberculosis mycobacterium. Res Biomed Eng 31(1):33–43

    Google Scholar 

  • Forero MG, Cristbal G, Alvarez J (2003) Automatic identification techniques of tuberculosis bacteria. In: Proceeding of SPIE 5203, applications of digital image processing XXVI, pp 71–81

  • Forero MG, Cristobal G, Desco M (2006) Automatic identification of mycobacterium tuberculosis by gaussian mixture models. J Microsc 223(2):120–132

    MathSciNet  Google Scholar 

  • Forero-Vargas MG, Sroubek F, Alvarez-Borrego J, Malpica N, Cristobal G, Santos A, Alcala L, Desco M, Cohen L (2002) Segmentation, autofocusing, and signature extraction of tuberculosis sputum images. In: Processing of SPIE 4788, photonic devices and algorithms for computing IV, pp 1–12

  • Fukuda T, Hasegawa O (1989) Expert system driven image processing for recognition and identification of micro-organisms. In: International workshop on industrial applications of machine intelligence and vision, pp 33–38

  • Garcia-Comas, Picheral (2013) Short manual to scan and process samples using the ZOOSCAN. http://www.hydroptic.com/zooscan/literature/ZOOSCAN_ShortUserManual_2013.p

  • Geng W (2004) A machine vision and statistical learning system for studying C. elegans phenotypes. PhD Dissertation in University of California, San Diego

  • Geng W, Cosman P, Baek J, Berry CC, Schafer WR (2003) Quantitative classification and natural clustering of caenorhabditis elegans behavioral phenotypes. Genetics 165(3):1117–1126

    Google Scholar 

  • Geng W, Cosman P, Berry CC, Feng Z, Schafer WR (2004) Automatic tracking, feature extraction and classification of C. elegans phenotypes. IEEE Trans Biomed Eng 51(10):1811–1820

    Google Scholar 

  • Gerlach SR, Siedenberg D, Gerlach D, Schtigerl K, Giuseppin MLF, Hunik J (1998) Influence of reactor systems on the morphology of Aspergillus awamori. application of neural network and cluster analysis for characterization of fungal morphology. Process Biochem 33(6):601–615

    Google Scholar 

  • Gillespie SH, Bamford KB (2012) Medical microbiology and infection at a glance, 4th edn. Wiley-Blackwell, New York

    Google Scholar 

  • Ginoris YP, Amaral AL, Nicolau A, Ferreira EC, Coelho MAZ (2006) Recognition of protozoa and metazoa using image analysis tools, discriminant analysis and neural network. In: International conference on chemometrics in analytical chemistry, p 1

  • Ginoris YP, Amaral AL, Nicolau A, Coelho MAZ, Ferreira EC (2007a) Development of an image analysis procedure for identifying protozoa and metazoa typical of activated sludge system. Water Res 41(12):2581–2589

    Google Scholar 

  • Ginoris YP, Amaral AL, Nicolau A, Ferreira EC, Coelho MAZ (2007b) Recognition of protozoa and metazoa using image analysis tools, discriminant analysis, neural networks and decision trees. Anal Chim Acta 595(1–2):160–169

    Google Scholar 

  • Gonzalez P, Alvarez E, Barranquero J, Diez J, Gonzalez-Quiros R, Nogueira E, Lopez-Urrutia A, Coz JJD (2013) Multiclass support vector machines with example-dependent costs applied to plankton biomass estimation. IEEE Trans Neural Netw Learn Syst 24(11):1901–1905

    Google Scholar 

  • Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Pearson International Edition, New York

    Google Scholar 

  • Gorsky G, Ohman MD, Picheral M, Gasparini S, Stemmann L, Romagnan J, Cawood A, Pesant S, Garcia-Comas C, Prejger F (2010) Digital zooplankton image analysis using the ZOOSCAN integrated system. J Plankton Res 32(3):285–303

    Google Scholar 

  • Gray AJ, Young D, Martin NJ, Glasbey CA (2002) Cell identification and sizing using digital image analysis for estimation of cell biomass in high rate algal ponds. J Appl Phycol 14(3):193–204

    Google Scholar 

  • Greenwood SJ, Sogin ML, Lynn DH (1991) Phylogenetic relationships within the class Oligohymenophorea, Phylum Ciliophora, inferred from the complete small subunit rRNA gene sequences of Colpidium campylum, Glaucoma chattoni, and Opisthonecta henneguyi. J Mol Evol 33(2):163–174

    Google Scholar 

  • Griffiths EC (2010) What is a model? Archived March 12, 2012, at the Wayback Machine

  • Grosjean P, Picheral M, Warembourg C, Gorsky G (2004) Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system. ICES J Mar Sci 61(4):518–525

    Google Scholar 

  • Grzegorzek M (2010) A system for 3D texture-based probabilistic object recognition and its applications. Pattern Anal Appl 13(3):333–348

    MathSciNet  Google Scholar 

  • Grzegorzek M, Li C, Raskatow J, Paulus D, Vassilieva N (2013) Texture-based text detection in digital images with wavelet features and support vector machines. In: Burduk R, Jackowski K, Kurzynski M, Wozniak M, Zolnierek A (eds) Advances in intelligent systems and computing. Springer, New York, pp 857–866

    Google Scholar 

  • Guo G, Dyer CR (2005) Learning from examples in the small sample case: face expression recognition. Syst Man Cybern Part B Cybern 35(3):477–488

    Google Scholar 

  • Gutzeit E, Scheel C, Dolereit T, Rust M (2014) Contour based split and merge segmentation and pre-classification of zooplankton in very large images. In: International conference on computer vision theory and applications, pp 417–424

  • Hand DJ, Yu K (2001) Idiot’s bayes-not so stupid after All? Int Stat Rev 69(3):385–398

    MATH  Google Scholar 

  • Hiremath PS, Bannigidad P (2009) Automatic classification of bacterial cells in digital microscopic images. Int J Eng Technol 2(4):9–15

    Google Scholar 

  • Hiremath PS, Bannigidad P (2010a) Automatic identification and classification of bacilli bacterial cell growth phases. Int J Comput Appl Spec Issue RTIPPR 1:48–52

    Google Scholar 

  • Hiremath PS, Bannigidad P (2010b) Digital image analysis of cocci bacterial cells using active contour method. In: International conference on signal and image processing, pp 163–168

  • Hiremath PS, Bannigidad P (2011a) Digital microscopic image analysis of spiral bacterial cell groups. In: International conference on intelligent systems & data processing, pp 209–213

  • Hiremath PS, Bannigidad P (2011b) Identification and classification of cocci bacterial cells in digital microscopic images. Int J Comput Biol Drug Des 4(3):262–273

    Google Scholar 

  • Hiremath PS, Bannigidad P (2012) Spiral bacterial cell image analysis using active contour method. Int J Comput Appl 37(8):5–9

    Google Scholar 

  • Hoshi K, Shingai R (2006) Computer-driven automatic identification of locomotion states in Caenorhabditis elegans. J Neurosci Methods 157(2):355–363

    Google Scholar 

  • Hu Q (2006) Application of statistical learning theory to plankton image analysis. PhD Dissertation in the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution

  • Hu Q, Davis C (2005) Automatic plankton image recognition with co-occurrence matrices and support vector machine. Mar Ecol Prog Ser 295:21–31

    Google Scholar 

  • Hu Q, Davis C (2006) Accurate automatic quantification of taxa-specific plankton abundance using dual classification with correction. Mar Ecol Prog Ser 306:51–61

    Google Scholar 

  • Huang K, Cosman P, Schafer WR (2006) Machine vision based detection of omega bends and reversals in C. elegans. J Neurosci Methods 158(2):323–336

    Google Scholar 

  • Huang K, Cosman P, Schafer WR (2007) Automated tracking of multiple C. elegans with articulated models. In: IEEE international symposium on biomedical imaging: from nano to macro, pp 1240–1243

  • Huang X, Li C, Shen M, Shirahama K, Nyffeler J, Leist M, Grzegorzek M, Deussen O (2016) Stem cell microscopic image segmentation using supervised normalised cuts. In: IEEE international conference on image processing, pp 4140–4144

  • Ishii T, Adachi R, Omori M, Shimizu U, Irie H (1987) The identification, counting, and measurement of phytoplankton by an image-processing system. ICES J Mar Sci 43(3):253–260

    Google Scholar 

  • Jain AK, Hong L (1996) Automatic classification of bacteria culture images. Report in Michigan State University

  • Jalba AC, Roerdink MHFWJBTM, Bayer MM, Juggins S (2005) Automatic diatom identification using contour analysis by morphological curvature scale spaces. Mach Vis Appl 16(4):217–228

    Google Scholar 

  • Javidi B, Moon I, Yeom S, Carapezza E (2005) Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography. Opt Express 13(12):4492–4506

    Google Scholar 

  • Javidi B, Moon I, Daneshpanah M (2006a) 3D Imaging, visualization, and recognition of biological microorganisms. In: Proceedings of SPIE6392, three-dimensional TV, video, and display V, pp 639,202–1–639,202–10

  • Javidi B, Moon I, Yeom S (2006b) 3D Imaging and visualization of biological microorganisms. In: Annual meeting of the IEEE lasers and electro-optics society, pp 709–710

  • Javidi B, Moon I, Yeom S (2006c) Real-time automated 3D visualizing and recognition of biological microorganisms. In: Proceedings of SPIE 6311, optical information systems IV, pp 631,103–1–631,103–8

  • Javidi B, Moon I, Yeom S (2006d) Three-dimensional identification of biological microorganism using integral imaging. Opt Express 14(25):12,096–12,108

    Google Scholar 

  • Javidi B, Moon I, Yeom S, Carapezza E (2006e) 3D imaging and recognition of microorganism using single-exposure online (SEOL) digital holography. In: Javidi B, Carapezza E, Huignard J, Nasrabadi N, Tiziani H, Tschudi T, Watson EA, Yatagai T (eds) Advanced sciences and technologies for security applications. Springer, New York, pp 139–156

    Google Scholar 

  • Javidi B, Yeom S, Moon I, Carapezza E (2006f) Three-dimensional imaging and recognition of microorganisms using computational holography. In: Proceedings of SPIE 6234, automatic target recognition XVI, pp 623,405–1–623,405–8

  • Javidi B, Yeom S, Moon I, Daneshpanah M (2006g) Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events. Opt Express 14(9):3806–3829

    Google Scholar 

  • Javidi B, Daneshpanah M, Moon I (2010a) Three-dimensional holographic imaging for identification of biological micro/nanoorganisms. IEEE Photon J 2(2):256-259

    Google Scholar 

  • Javidi B, Moon I, Daneshpanah M (2010b) Detection, identification and tracking of biological micro/nano organisms by computational 3D optical imaging. In: Proceedings of SPIE 7759, Biosensing III, pp 77,590R–1–77,590R–6

  • Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology, 7th edn. Springer, New York

    Google Scholar 

  • Jeffries HP, Berman MS, Poularikas AD, Katsinis C, Melas I, Sherman K, Bivins L (1984) Automated sizing, counting and identification of zooplankton by pattern recognition. Mar Biol 78(3):329–334

    Google Scholar 

  • Jenne R, Cenens C, Impe JFV (2001) Towards on-line quantification of flocs and filaments by means of image analysis for optimization and control of activated sludge plants. Biotechnol Lett 66(3a):63–70

    Google Scholar 

  • Jenne R, Cenens C, Geeraerd AH, Impe JFV (2002) Towards on-line quantification of flocs and filaments by image analysis. Biotechnol Lett 24(11):931–935

    Google Scholar 

  • Jenne R, Banadda EN, Philips N, Impe JFV (2003) Image analysis as a monitoring tool for activated sludge properties in lab-scale installations. J Environ Sci Health A 38(10):2009–2018

    Google Scholar 

  • Ji Z, Card KJ, Dazzo FB (2015) CMEIAS JFrad: a digital computing tool to discriminate the fractal geometry of landscape architectures and spatial patterns of individual cells in microbial biofilms. Microb Ecol 69(3):710–720

    Google Scholar 

  • Jiang T (2016) Stereo vision for facet type cameras. Logos Verlag Berlin GmbH, Germany

    Google Scholar 

  • John J, Nair MS, Kumar PRA, Wilscy M (2016) A novel approach for detection and delineation of cell nuclei using feature similarity index measure. Biocybern Biomed Eng 36(1):76–88

    Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Jothi JAA, Rajam VMA (2017) A survey on automated cancer diagnosis from histopathology images. Artif Intell Rev 48:31–81

    Google Scholar 

  • Kato K (1996) Image analysis of bacterial cell size and diversity. In: Colwell RR, Simidu U, Ohwada K (eds) Microbial diversity in time and space. Plenum Press, New York, pp 141–147

    Google Scholar 

  • Kay JW, Shinn AP, Sommerville C (1999) Towards an automated system for the identification of notifiable pathogens: using gyrodactylus salaris as an example. Parasitol Today 15(5):201–206

    Google Scholar 

  • Khutlang R, Krishnan S, Whitelaw A, Douglas TS (2009) Detection of tuberculosis in sputum smear images using two one-class classifiers. In: IEEE international symposium on biomedical imaging, pp 1007–1010

  • Khutlang R, Krishnan S, Dendere R, Whitelaw A, Veropoulos K, Learmonth G, Douglas TS (2010a) Classification of Mycobacterium tuberculosis in images of ZN-stained sputum smears. IEEE Trans Inf Technol Biomed 14(4):949–957

    Google Scholar 

  • Khutlang R, Krishnan S, Whitelaw A, Douglas TS (2010b) Automated detection of tuberculosis in Ziehl–Neelsen-stained sputum smears using two one-class classifiers. J Microsc 237(1):96–102

    MathSciNet  Google Scholar 

  • Kiranyaz S, Ince T, Pulkkinen J, Gabbouj M, Arje J, Karkkainen S, Tirronen V, Juhola M, Turpeinen T, Meissner K (2011) Classification and retrieval on macroinvertebrate image databases. Comput Biol Med 41(7):463–472

    Google Scholar 

  • Kirkpatrick GJ, Millie DF, Moline MA, Schofield O (2000) Optical discrimination of a phytoplankton species in natural mixed populations. Assoc Sci Limnol Oceanogr 45(2):467–471

    Google Scholar 

  • Kishida K (2005) Property of average precision and its generalization: an examination of evaluation indicator for information retrieval experiments. NII technical report, NII-2005-014E, in National Institute of Informatics

  • Kocak DM, Lobo NDV, Widder EA (1999) Computer vision techniques for quantifying, tracking, and identifying bioluminescent plankton. IEEE J Ocean Eng 24(1):81–95

    Google Scholar 

  • Koren Y, Sznitman R, Arratia PE, Carls C, Krajacic P, Brown AEX, Sznitman J (2015) Model-independent phenotyping of C. elegans locomotion using scale-invariant feature transform. PLoS ONE 10(3):1–16

    Google Scholar 

  • Korzynska A, Strojny W, Hoppe A, Wertheim D, Hoser P (2007) Segmentation of microscope images of living cells. Pattern Anal Appl 10(4):301–319

    MathSciNet  Google Scholar 

  • Kramer KA (2005) identifying plankton from grayscale silhouette images. Master Thesis in University of South Florida

  • Kruk M, Kozera R, Osowski S, Trzcinski P, Paszt LS, Sumorok B, Borkowski B (2015) Computerized classification system for the identification of soil microorganisms. In: AIP conference proceedings 1648(660018):1–4

  • Kruk M, Kozera R, Osowski S, Trzcinski P, Sas-Paszt L, Sumorok B, Borkowski B (2016) Computerized classification systemfor the identification of soil microorganisms. Appl Math Inf Sci 10(1):21–31

    Google Scholar 

  • Kumar S, Mittal GS (2008) Geometric and optical characteristics of five microorganisms for rapid detection using image processing. Biosyst Eng 99(1):1–8

    Google Scholar 

  • Kumar S, Mittal GS (2009) Textural characteristics of five microorganisms for rapid detection using image processing. J Food Process Eng 32(1):126–143

    Google Scholar 

  • Kumar S, Mittal GS (2010) Rapid detection of microorganisms using image processing parameters and neural network. Food Bioprocess Technol 3(5):741–751

    Google Scholar 

  • Lakshmi S, Sankaranarayanan V (2010) A study of edge detection techniques for segmentation computing approaches. Int J Comput Appl Spec Issue Comput Aided Soft Comput Tech Imaging Biomed Appl 1:35–41

    Google Scholar 

  • Langford RE (2004) Introduction to weapons of mass destruction: radiological, chemical, and biological. Wiley-IEEE, New York

    Google Scholar 

  • Leal-Taixe L, Heydt M, Weisse S, Rosenhahn A, Rosenhahn B (2010) Classification of swimming microorganisms motion patterns in 4D digital in-line holography data. In: Goesele M, Roth S, Kuijper A, Schiele B, Schindler K (eds) Pattern Recognition. Springer, New York, pp 283–292

    Google Scholar 

  • Lecault V, Patel N, Thibault J (2007) Morphological characterization and viability assessment of trichoderma reesei by image analysis. Biotechnol Prog 22(3):734–740

    Google Scholar 

  • Lee MS, Lim JS, Kim CH, Oh KK, Yang DR, Kim SW (2001) Enhancement of cephalosporin C production by cultivation of cephalosporium acremonium M25 using a mixture of inocula. Lett Appl Microbiol 32(6):402–406

    Google Scholar 

  • Li C (2016) Content-based microscopic image analysis. Logos Verlag Berlin GmbH, Berlin

    Google Scholar 

  • Li C, Shirahama K, Czajkowska J, Grzegorzek M, Ma F, Zhou B (2013a) A multi-stage approach for automatic classification of environmental microorganisms. In: International conference on image processing, computer vision, and pattern recognition, pp 364–370

  • Li C, Shirahama K, Grzegorzek M, Ma F, Zhou B (2013b) Classification of environmental microorganisms in microscopic images using shape features and support vector machines. In: IEEE international conference on image processing, pp 2435–2439

  • Li C, Shirahama K, Grzegorzek M (2015a) Application of content-based image analysis to environmental microorganism classification. Biocybern Biomed Eng 35(1):10–21

    Google Scholar 

  • Li C, Shirahama K, Grzegorzek M (2015b) Environmental microbiology aided by content-based image analysis. Pattern Anal Appl 19(2):531–547

    MathSciNet  Google Scholar 

  • Li C, Shirahama K, Grzegorzek M (2015c) Environmental microorganism classification using sparse coding and weakly supervised learning. In: International workshop on environmental multimedia retrieval in conjunction with ACM international conference on multimedia retrieval, pp 9–14

  • Li C, Huang X, Jiang T, Xu N (2017) Full-automatic computer aided system for stem cell clustering using content based microscopic image analysis. Biocybern Biomed Eng (Online First)

  • Li X, Chen C (2007) A novel bacteria recognition method based on microscopic image analysis. N Z J Agric Res 50(5):697–703

    Google Scholar 

  • Li X, Chen C (2008) A novel wastewater bacteria recognition method based on microscopic image analysis. In: WSEAS international conference on circuits, systems, electronics, control and signal processing, pp 265–271

  • Li X, Chen C (2009) An improved BP neural network for wastewater bacteria recognition based on microscopic image analysis. WSEAS Trans Comput 8(2):237–247

    Google Scholar 

  • Li X, Chen C, Liang A, Shi Y (2007a) Local and global features extracting and fusion for microbial recognition. In: ACIS international conference on software engineering, artificial intelligence, networking, and parallel/distributed computing, pp 507–511

  • Li X, Chen C, Yv Z (2007b) A novel bacteria classification scheme based on microscopic image analysis. In: WSEAS international conference on applied computer science, pp 447–451

  • Li Z, Zhao F, Liu J, Qiao Y (2014) Pairwise nonparametric discriminant analysis for binary plankton image recognition. IEEE J Ocean Eng 39(4):695–701

    Google Scholar 

  • Liu J, Dazzo FB, Glagoleva O, Yu B, Jain AK (2001) CMEIAS: a computer-aided system for the image analysis of bacterial morphotypes in microbial communities. Microb Ecol 41(3):173–194

    Google Scholar 

  • Lomander A, Schreuders P, RussekCohen E, Ali L (2002) A method for rapid analysis of biofilm morphology and coverage on glass and polished and brushed stainless steel. Trans ASAE 45(2):479–487

    Google Scholar 

  • Luo T (2005) Scaling up support vector machines with application to plankton recognition. PhD Dissertation in University of South Florida

  • Luo T, Kramer K, Goldgof D, Hall LO, Samson S, Remsen A, Hopkins T (2003) Learning to recognize plankton. In: IEEE international conference on systems, man and cybernetics, pp 888–893

  • Luo T, Kramer K, Goldgof DB, Hall LO, Samson S, Remsen A, Hopkins T (2004) Recognizing plankton images from the shadow image particle profiling evaluation recorder. IEEE Trans Syst Man Cybern Part B Sybern 34(4):1753–1762

    Google Scholar 

  • Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

    Google Scholar 

  • Madigan M, Martinko J (2006) Brock Biology of Microorganisms, 13th edn. Pearson Education, Upper Saddle River

    Google Scholar 

  • Makkapati V, Agrawal R, Acharya R (2009) Segmentation and classification of tuberculosis bacilli from ZN-stained Sputum Smear Images. In: IEEE international conference on automation science and engineering, pp 217–220

  • Mallahi AE, Minetti C, Dubois F (2013) Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources. Appl Opt 52(1):68–80

    Google Scholar 

  • Mara D, Horan N (2003) Handbook of water and wastewater microbiology. Academic Press, San Diego

    Google Scholar 

  • Marimont RB, Shapiro MB (1979) Nearest neighbour searches and the curse of dimensionality. IMA J Appl Math 24(1):59–70

    MATH  Google Scholar 

  • Markiewicz T, Korzynska A, Kowalski A, Swiderska-Chadaj Z, Murawski P, Grala B, Lorent M, Wdowiak M, Zak J, Roszkowiak L, Kozlowski W, Pijanowska D (2016) MIAP-web-based platform for the computer analysis of microscopic images to support the pathological diagnosis. Biocybern Biomed Eng 36(4):597–609

    Google Scholar 

  • Mauro RD, Cepeda G, Capitanio F, Vinas MD (2011) Using ZooImage automated system for the estimation of biovolume of copepods from the northern Argentine sea. J Sea Res 66(2):69–75

    Google Scholar 

  • Mazzoni A, Garcia-Perez E, Zoccolan D, Graziosi S, Torre V (2004) Quantitative characterization and classification of leech behavior. J Neurophysiol 93(1):580–593

    Google Scholar 

  • Milferstedt K, Pons MN, Morgenroth E (2008) Textural fingerprints: a comprehensive descriptor for biofilm structure development. Biotechnol Bioeng 100(5):889–901

    Google Scholar 

  • Moon I, Javidi B (2005) Shape tolerant three-dimensional recognition of biological microorganisms using digital holography. Opt Express 13(23):9612–9622

    Google Scholar 

  • Moon I, Javidi B (2006) Volumetric three-dimensional recognition of biological microorganisms using multivariate statistical method and digital holography. J Biomed Opt 11(6):064,004–1–064,004–7

  • Moon I, Javidi B (2007) Real time automated three-dimensional recognition of micro/nano biological organisms. In: Proceedings of SPIE 6778, three-dimensional TV, video, and display VI, pp 677,809–1–677,809–9

  • Moon I, Javidi B (2008) 3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging. IEEE Trans Med Imaging 27(12):1782–1790

    Google Scholar 

  • Moon I, Daneshpanah M, Javidi B, Stern A (2009) Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy. Proc IEEE 97(6):990–1010

    Google Scholar 

  • Moon I, Yi F, Javidi B (2010) Automated three-dimensional microbial sensing and recognition using digital holography and statistical sampling. Sensors 10(9):8437–8451

    Google Scholar 

  • Mosleh MA, Manssor H, Malek S, Milow P, Salleh A (2012) A preliminary study on automated freshwater algae recognition and classification system. BMC Bioinfor 13(Suppl 17):1–13

    Google Scholar 

  • Motta MD, Pons MN, Vivier H, Amaral AL, Roche ECFN, Mota M (2001) The study of protozoa population in wastewater treatment plants by image analysis. Braz J Chem Eng 18(1) (Online)

  • Nah W, Baek J (2003) Classification of Caenorhabditis Elegans behavioural phenotypes using an improved binarization method. In: Wang G, Liu Q, Yao Y, Skowron A (eds) Rough sets, fuzzy sets, data mining, and granular computing. Springer, Germany, pp 557–564

    Google Scholar 

  • Nah W, Hong S, Baek J (2003) Feature extraction for classification of Caenorhabditis Elegans behavioural phenotypes. In: Chung PWH, Hinde C, Ali M (eds) Developments in applied artificial intelligence. Springer, New York, pp 287–295

    Google Scholar 

  • Neuman U, Korzynska A, Lopez C, Lejeune M, Roszkowiak L, Bosch R (2013) Equalisation of archival microscopic images from immunohistochemically stained tissue sections. Biocybern Biomed Eng 33(1):63–76

    Google Scholar 

  • Nie D, Shank EA, Jojic V (2015) A deep framework for bacterial image segmentation and classification. In: ACM conference on bioinformatics, computational biology and health informatics, pp 306–314

  • Nielsen MA (2015) Neural networks and deep learning. Determination Press (Online)

  • Nogueira PA, Teofilo LF (2014) A multi-layered segmentation method for nucleus detection in highly clustered microscopy imaging: a practical application and validation using human U2OS cytoplasmnucleus translocation images. Artif Intell Rev 42(3):331–346

    Google Scholar 

  • Nugent C, Cunningham P, Kirwan P (2006) Using active learning to annotate microscope images of parasite eggs. Artif Intell Rev 26(1):63–73

    Google Scholar 

  • Ochoa D, Gautama S, Vintimilla B (2007) Detection of individual specimens in populations using contour energies. In: Blanc-Talon J, Philips W, Popescu D, Scheunders P (eds) Advanced concepts for intelligent vision systems. Springer, New York, pp 575–586

    Google Scholar 

  • O’Cleirigh C, Walsh PK, O’Shea DG (2003) Morphological quantification of pellets in Streptomyces hygroscopicus var. geldanus fermentation broths using a flatbed scanner. Biotechnol Lett 25(19):1677–1683

    Google Scholar 

  • Oh B, Chen Y, Matsuoka H, Yamamoto A, Kurata H (1996) Morphological recognition of fungal spore germination by a computer-aided image analysis and its application to antifungal activity evaluation. J Biotechnol 45(12):71–79

    Google Scholar 

  • Okafor N (2007) Modern industrial microbiology and biotechnology. Science Publishers, Enfield

    Google Scholar 

  • Orlov N, Johnston J, Macura T, Shamir L, Goldberg I (2007) Computer vision for microscopy applications. In: Obinata G, Dutta A (eds) Vision systems: segmentation and pattern recognition. I-Tech, Austria, pp 222–242

    Google Scholar 

  • Osman MK, Mashor MY, Jaafar H (2011a) Hybrid multilayered perceptron network trained by modified recursive prediction error-extreme learning machine for tuberculosis bacilli detection. In: Kuala Lumpur international conference on biomedical engineering, pp 667–673

  • Osman MK, Mashor MY, Jaafar H (2011b) Tuberculosis bacilli detection in Ziehl–Neelsen-stained tissue using affine moment invariants and extreme learning machine. In: IEEE international colloquium on signal processing and its applications, pp 232–236

  • Osman MK, Mashor MY, Jaafar H (2012) Online sequential extreme learning machine for classification of Mycobacterium tuberculosis in Ziehl–Neelsen stained tissue. In: International conference on biomedical engineering, pp 139–143

  • Pamboukian CRD, Guimaraes LM, Facciotti MCR (2002) Applications of image analysis in the characterization of streptomyces olindensis in submerged culture. Braz J Microbiol 33(1):17–21

    Google Scholar 

  • Pangilinan C, Divekar A, Coetzee G, Clark DA, Fourie B, Lure FYM, Kennedy S (2011) Application of stepwise binary decision classification for reduction of false positives in tuberculosis detection from smeared slides. In: LASTED international symposia imaging and signal processing in healthcare and technology, pp 1–7

  • Park JP, Kim YM, Kim SW, Hwang HJ, Cho YJ, Lee YS, Song CH, Yun JW (2002) Effect of aeration rate on the mycelial morphology and exo-biopolymer production in Cordyceps militaris. Process Biochem 37(11):1257–1262

    Google Scholar 

  • Pasquale FD, Stander J (2009) A multi-scale template method for shape detection with bio-medical applications. Pattern Anal Appl 12(2):179–192

    MathSciNet  Google Scholar 

  • Pech-Pacheco JL, Alvarez-Borrego J (1998) Optical-digital system applied to the identification of five phytoplankton species. Mar Biol 132(3):357–365

    Google Scholar 

  • Pech-Pacheco JL, Alvarez-Borrego J, Cristobal G (2011) Identification of a red tide blooming species through an automatic optical-digital system. In: Proceedings of SPIE 4471, algorithms and systems for optical information processing V, pp 1–8

  • Pedraza A, Bueno G, Deniz O, Cristobal G, Blanco S, Borrego-Ramos M (2017a) Automated diatom classification (part a): handcrafted feature approaches. Applied Science (in press)

  • Pedraza A, Bueno G, Deniz O, Cristobal G, Blanco S, Borrego-Ramos M (2017b) Automated diatom classification (part b): a deep learning approach. Appl Sci 7(5):1–25

    Google Scholar 

  • Pepper IL, Gerba CP, Gentry TJ (2014) Environmental microbiology, 3rd edn. Academic Press, London

    Google Scholar 

  • Perner P (2006) Similarity-based object recognition of airborne fungi in digital images. In: Bucchianico AD, Mattheij RMM, Peletier MA (eds) Progress in industrial mathematics at ECMI 2004. Springer, New York, pp 325–329

    Google Scholar 

  • Perner P, Perner H, Jaenichen S, Buehring A (2004) Recognition of airborne fungi spores in digital microscopic images. In: International conference on pattern recognition, pp 566–569

  • Pichon D, Vivier H, Pons MN, Lounes A, Lebrihi A (1994) Characterization and growth monitoring of filamentous microorganisms by image analysis. ACTA Stereol 13(1):215–220

    Google Scholar 

  • Prabhu A, Wadekar M (2010) CMEIAS sampling statistics. Report in Michigan State University MTH 844

  • Priya E, Srinivasan S (2015a) Automated identification of tuberculosis objects in digital images using neural network and neuro fuzzy inference systems. J Med Imaging Health Inf 5(3):506–512

    Google Scholar 

  • Priya E, Srinivasan S (2015b) Separation of overlapping bacilli in microscopic digital TB images. Biocybern Biomed Eng 35(2):87–99

    Google Scholar 

  • Priya E, Srinivasan S (2016) Automated object and image level classification of TB images using support vector neural network classifier. Biocybern Biomed Eng 36(4):670–678

    Google Scholar 

  • Priya E, Srinivasan S, Ramakrishnan S (2012) Classification of tuberculosis digital images using hybrid evolutionary extreme learning machines. Technologies and applications. In: Nguyen N, Hoang K, Jedrzejowicz P (eds) Computational collective intelligence. Springer, Berlin, pp 268–277

    Google Scholar 

  • Promdaen S, Wattuya P, Sanevas N (2014) Automated microalgae image classification. Procedia Comput Sci 29:1982–1992

    Google Scholar 

  • Qi S, Meesters S, Nicolay K, Romeny BMTH, Ossenblok P (2015) The Influence of construction methodology on structural brain network measures: a review. J Neurosci Methods 253:170–182

    Google Scholar 

  • Qi S, Meesters S, Nicolay K, Romeny BMTH, Ossenblok P (2016) Structural brain network: what is the effect of life optimization of whole brain tractography? Front Comput Neurosci 10:1–12

    Google Scholar 

  • Rangaswami G, Bagyaraj DJ (2004) Agricultural microbiology. Prentice-Hall of India Pvt. Ltd., Englewood Cliffs

    Google Scholar 

  • Reichl U, King R, Gilles ED (1992) Characterization of pellet morphology during submerged growth of streptomyces tendae by image analysis. Biotechnol Bioeng 39:164–170

    Google Scholar 

  • Rodenacker K, Gais P, Jutting U, Hense BA (2001) (Semi-) automatic recognition of microorganisms in water. In: International conference on image processing, pp 30–33

  • Rodenacker K, Gais P, Juetting U, Hense BA (2002) Identification and quantification of phytoplankton by image analysis. GSF-Report 02/02, 16-24, ISSN 0721-1694. Neuherberg, Germany

  • Rodriguez A, Guil N, Shotton DM, Trelles O (2004) Automatic analysis of the content of cell biological videos and database organization of their metadata descriptors. IEEE Trans Multimed 6(1):119–128

    Google Scholar 

  • Ronen M, Guterman H, Shabtai Y (2002) Monitoring and control of pullulan production using vision sensor. J Biochem Biophys Methods 51(3):243–249

    Google Scholar 

  • Ruehl M, Kuees U (2009) Automated image analysis to observe pellet morphology in liquid cultures of filamentous fungi such as the basidiomycete Coprinopsis cinerea. Curr Trends Biotechnol Pharmacy 3(3):241–253

    Google Scholar 

  • Rulaningtyas R, Suksmono AB, Mengko TLR (2011) Automatic classification of tuberculosis bacteria using neural network. In: International conference on electrical engineering and informatics, pp 1–4

  • Ruusuvuori P, Seppala J, Erkkila T, Lehmussola A, Puhakka JA, Yli-Harja O (2008) Efficient automated method for image-based classification of microbial cells. In: International conference on pattern recognition, pp 1–4

  • Sadaphal P, Rao J, Comstock GW, Beg MF (2008) Image processing techniques for identifying mycobacterium tuberculosis in Ziehl–Neelsen stains. Int J Tuberc Lung Dis 12(5):579–582

    Google Scholar 

  • Santhi N, Pradeepa C, Subashini P, Kalaiselvi S (2013) Automatic identification of algal community from microscopic images. Bioinform Biol Insights 7:327–334

    Google Scholar 

  • Schaap A, Rohrlack T, Bellouard Y (2012) Optofluidic microdevice for algae classification: a comparison of results from discriminant analysis and neural network pattern recognition. In: Proceedings of SPIE 8251, microfluidics, BioMEMS, and medical microsystems X, pp 825,104–1–825,104–10

  • Schulze K, Tillich UM, Dandekar T, Frohme M (2013) PlanktoVision—an automated analysis system for the identification of phytoplankton. BMC Bioinform 14(115):1–10

    Google Scholar 

  • Schusterreiter C (2011) Computational analysis of drosophila courtship behaviour. PhD Dissertation in Universitaet Wien

  • Senthilkumaran N, Rajesh R (2009) Edge detection techniques for image segmentation—a survey of soft computing approaches. Int J Recent Trends Eng 1(2):250–254

    Google Scholar 

  • Shabtai Y, Ronen M, Muknenev I, Guterman H (1996) Monitoring micorbial morphogenetic changes in a fermentation process by a self-tuning vision system (STVS). Pergamon 20(1):321–326

    Google Scholar 

  • Shen M, Szyszkay P, Galiziay CG, Merhof D (2013) Automatic framework for tracking honeybee’s antennae and mouthparts from low framerate video. In: International conference on image processing, pp 4112–4116

  • Shen M, Huang W, Szyszkay P, Merhof D (2014) Interactive framework for insect tracking with active learning. In: International conference on pattern recognition, pp 2733–2738

  • Shen M, Li C, Huang W, Szyszka P, Shirahama K, Grzegorzek M, Merhof D, Duessen O (2015a) Interactive tracking of insect posture. Pattern Recogn 48(11):3560–3571

    Google Scholar 

  • Shen M, Szyszkay P, Deussen O, Galiziay CG, Merhof D (2015b) Automated tracking and analysis of behaviour in restrained insects. J Neurosci Methods 239:194–205

    Google Scholar 

  • Shirahama K, Li C, Grzegorzek M, Uehara K (2013) University of Siegen, Kobe University and Muroran Institute of Technology at TRECVID 2013 multimedia event detection. In: TRECVID 2013 multimedia event detection (Online)

  • Shotton DM, Rodriguez A, Guil N, Trelles O (2000) Object tracking and event recognition in biological microscopy videos. In: International conference on pattern recognition, pp 226–229

  • Sieracki ME, Webb LK (1991) The application of image analysed fluorescence microscopy for characterising planktonic bacteria and protists. In: Reid PC, Turley CM, Burkill PH (eds) Protozoa and their role in marine processes. Springer, New York, pp 77–100

    Google Scholar 

  • Sklarczyk C, Perner H, Rieder H, Arnold W, Perner P (2007) Image acquisition and analysis of hazardous biological material in air. In: Carbonell JG, Siekmann J (eds) Advances in mass data analysis of signals and images in medicine biotechnology and chemistry. Springer, New York, pp 1–14

    Google Scholar 

  • Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Google Scholar 

  • Snoek CGM, Worring M, Smeulders AWM (2005) Early versus late fusion in semantic video analysis. In: ACM international conference on multimedia, pp 399–402

  • Soda P, Iannello G, Vento M (2009) A multiple expert system for classifying fluorescent intensity in antinuclear autoantibodies analysis. Pattern Anal Appl 12(3):215–226

    MathSciNet  Google Scholar 

  • Solomon CJ, Breckon TP (2010) Fundamentals of digital image processing: a practical approach with examples in matlab. Wiley-Blackwell, Chichester

    Google Scholar 

  • Sosik HM, Olson RJ (2007) Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol Oceanogr Methods 5(6):204–216

    Google Scholar 

  • Suri JS, Singh S, Reden L (2002) Computer vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical segmentation (part I): a state-of-the-art review. Pattern Anal Appl 5(1):46–76

    MathSciNet  Google Scholar 

  • Suzuki CTN, Gomes JF, Falcao AX, Papa JP, Hoshino-Shimizu S (2013a) Automatic segmentation and classification of human intestinal parasites from microscopy images. IEEE Trans Biomed Eng 60(3):803–812

    Google Scholar 

  • Suzuki CTN, Gomes JF, Falcao AX, Shimizu SH, Papa JP (2013b) Automated diagnosis of human intestinal rarasites using optical microscopy images. In: IEEE international symposium on biomedical imaging, pp 460–463

  • Tamura S, Park Y, Toriyama M, Okabe M (1997) Change of mycelial morphology in tylosin production by batch culture of streptomyces fradiae under various shear conditions. J Ferment Bioeng 83(6):523–528

    Google Scholar 

  • Tang X, Stewart WK (1996) Plankton image classification using novel parallel-training learning vector quantization network. In: OCEANS’96. MTS/IEEE. Prospects for the 21st Century, pp 1227–1236

  • Tang X, Stewart WK, Vincent L, Huang H, Marra M, Gallager SM, Davis CS (1998) Automatic plankton image recognition. In: Panigrahi S, Ting KC (eds) Artificial intelligence for biology and agriculture. Kluwer Academic Publishers, Dordrecht, pp 177–199

    Google Scholar 

  • Tang X, Lin F, Samson S, Remsen A (2006) Binary plankton image classification. IEEE J Ocean Eng 31(3):728–735

    Google Scholar 

  • Tao J, Cheng W, Wang B, Xie J, Jiao N, Luo T (2008) Real-time red tide algae classification using Naive Bayes classifier and SVM. In: International conference on bioinformatics and biomedical engineering, pp 2888–2891

  • Tao J, Cheng W, Wang B, Xie J, Jiao N, Luo T (2010) Real-time red tide algae recognition using SVM and SVDD. In: IEEE international conference on intelligent computing and intelligent systems, pp 602–606

  • Tasoulis SK, Maglogiannis I, Plagianakos VP (2014) Fractal analysis and fuzzy C-means clustering for quantification of fibrotic microscopy images. Artif Intell Rev 42(3):313–329

    Google Scholar 

  • Tautenhahn R, Ihlow A, Seiffert U (2006) Adaptive feature selection for classification of microscope images. In: Bloch I, Petrosino A, Tettamanzi AGB (eds) Fuzzy logic and applications. Springer, New York, pp 215–222

    Google Scholar 

  • Tdth LG, Kato K (1997) Size-selective grazing of bacteria by bosmina longirostris-an image-analysis study. J Plankton Res 19(10):1477–1493

    Google Scholar 

  • Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Elsevier, New York

    MATH  Google Scholar 

  • Thiel S, Davies RJWLJ (1995) Automated object recognition of blue–green algae for measuring water quality—a preliminary study. Water Res 29(10):2398–2404

    Google Scholar 

  • Thiel S, Wiltshire RJ (1995) The automated detection of cyanobacteria using ddigital image processing techniques. Environ Int 21(2):233–236

    Google Scholar 

  • Thonnat M, Gandelin MH (1988) An expert system for the automatic classification and description of zooplanktons from monocular images. In: IEEE international conference on pattern recognition, pp 114–118

  • Trujillo O, Griffis C, Li Y, Slavik M (2001) A machine vision system using immuno-fluorescence microscopy for rapid recognition of salmonella typhimurium. J Rapid Methods Autom Microbiol 9(2):115–134

    Google Scholar 

  • Truquet P, Lassiis P, Honsell G, Dean LL (1996) Application of a digital pattern recognition system to Dinophysis acuminata and D-sacculus complexes. Aquat Living Resour 9(3):273–279

    Google Scholar 

  • Tsnji T, Nishikawa T (1984) Automated identification of red tide phytoplankton prorocentrum triestinum in coastal areas by image analysis. J Oceanogr Soc Jpn 40(6):425–431

    Google Scholar 

  • Tuzel O, Yang L, Meer P, Foran DJ (2007) Classification of hematologic malignancies using texton signatures. Pattern Anal Appl 10(4):277–290

    MathSciNet  Google Scholar 

  • Uhlmann D, Schlimpeet O, Uhlmann W (1978) Automated phytoplankton analysis by a pattern recognition method. Int Rev Hydrobiol 63(4):575–583

    Google Scholar 

  • Vantaram SR, Saber E (2012) Survey of contemporary trends in colour image segmentation. J Electron Imaging 21(4):040,901-1–040,901-28

    Google Scholar 

  • Vapnik VN (1998) Statistical learning theory. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Vater SM, Weisse S, Maleschlijski S, Lotz C, Koschitzki F, Schwartz T, Obst U, Rosenhahn A (2014) Swimming behavior of pseudomonas aeruginosa studied by holographic 3D tracking. PLoS ONE 9(1):1–11

    Google Scholar 

  • Verikas A, Gelzinis A, Bacauskiene M, Olenina I, Vaiciukynas E (2015) An integrated approach to analysis of phytoplankton images. IEEE J Ocean Eng 40(2):315–326

    Google Scholar 

  • Veropoulos K, Campbell C, Learmonth G (1998) Image processing and neural computing used in the diagnosis of tuberculosis. In: IEE colloquium on intelligent methods in healthcare and medical applications, pp 8/1–8/4

  • Walker RF, Kumagai M (2000) Image analysis as a tool for quantitative phycology: a computational approach to cyanobacterial taxa identification. Limnology 1(2):107–115

    Google Scholar 

  • Wang D, Wang B, Yan Y (2013) The Identification of powdery mildew spores image based on the integration of intelligent spore image sequence capture device. In: International conference on intelligent information hiding and multimedia signal processing, pp 177–180

  • Wang G, Kalra M, Orton CG (2017) Machine learning will transform radiology significantly within the next 5 years. Med Phys 44(6):2041–2044

  • Wang J, Trubuil A, Graffigne C (2001) 3D Biological object detection and labeling in multidimensional microscopy imaging. In: International conference on image analysis and processing, pp 215–220

  • Wang J, Trubuil A, Graffigne C, Kaeffer B (2003) 3-D aggregated object detection and labeling from multivariate confocal microscopy images: a model validation approach. IEEE Trans Syst Man Cybern Part B Cybern 33(4):572–581

    Google Scholar 

  • Wang L, Yang B, Abraham A, Qi L, Zhao X, Chen Z (2014) Construction of dynamic three-dimensional microstructure for the hydration of cement using 3D image registration. Pattern Anal Appl 17(3):655–665

    MathSciNet  Google Scholar 

  • Watson J (2000) Subsea holography and its application in marine science. In: Proceedings of the EurOCEAN 2000 conference, pp 271–272

  • Weller AF, Harris AJ, Ware JA (2007) Two supervised neural networks for classification of sedimentary organic matter images from palynological preparations. Math Geol 39(7):657–671

    Google Scholar 

  • Widmer KW, Srikumar D, Pillai SD (2005) Use of artificial neural networks to accurately identify cryptosporidium oocyst and giardia cyst images. Appl Environ Microbiol 71(1):80–84

    Google Scholar 

  • Wit P, Busscher HJ (1998) Application of an artificial neural network in the enumeration of yeasts and bacteria adhering to solid substrata. J Microbiol Methods 32(3):281–290

    Google Scholar 

  • Witkowski L (2013) A computer system for a human semen quality assessment. Biocybern Biomed Eng 33(3):179–186

    MathSciNet  Google Scholar 

  • Wu S, Jiang T, Zhang G, Schoenemann B, Nert F, Zhu M, Bu C, Han J, Kuhnert K (2016) Artificial compound eye: a survey of the state-of-the-art. Artif Intell Rev pp 1–31. http://xueshu.baidu.com/s?wd=paperuri%3A%28f635bb2538197366d5fa4a2984750f92%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Flink.springer.com%2F10.1007%2Fs10462-016-9513-7&ie=utf-8&sc_us=7579096442081541173

  • Xu N (2016) A comparative study of female-themed art films from China and Germany. Logos Verlag Berlin GmbH, Berlin

    Google Scholar 

  • Yamaguchi N, Ichijo T, Ogawa M, Tanji K, Nasu M (2004) Multicolor excitation direct counting of bacteria by fluorescence microscopy with the automated digital image analysis software BACS II. Bioimages 12(1):1–7

    Google Scholar 

  • Yang C, Li C, Tiebe O, Shirahama K, Grzegorzek M (2014) Shape-based classification of environmental microorganisms. In: International conference on pattern recognition, pp 3374–3379

  • Yang K, Wang J, Li X, Feng X, Duan S (2001) Strain selection of metarrhizium anisopliae by image analysis of colony morphology for consistency of steroid biotransformation. Biotechnol Bioeng 75(1):53–62

    Google Scholar 

  • Yang M, Kpalma K, Ronsin J (2008) A Survey of shape feature extraction techniques. In: Yin P (ed) Pattern recognition. IN-TECH, pp 43–90

  • Yang X, Beyenal H, Harkin G, Lewandowski Z (2000) Quantifying biofilm structure using image analysis. J Microbiol Methods 39(2):109–119

    Google Scholar 

  • Yang YK, Morikawa M, Shimizu H, Shioya S, Suga K, Nihira T, Yamada Y (1996) Image analysis of mycelial morphology in virginiamycin production by batch culture of Streptomyces virginiae. J Ferment Bioeng 81(1):7–12

    Google Scholar 

  • Yao J, Kharma N, Grogono P (2005) A multi-population genetic algorithm for robust and fast ellipse detection. Pattern Anal Appl 8(1–2):149–162

    MathSciNet  Google Scholar 

  • Ye L, Chang C, Hsieh C (2011) Bayesian model for semi-automated zooplankton classification with predictive confidence and rapid category aggregation. Mar Ecol Prog Ser 441(15):185–196

    Google Scholar 

  • Yeom S, Javidi B (2006) Automatic identification of biological microorganisms using three-dimensional complex morphology. J Biomed Opt 11(2):024017-1–024017-8

    Google Scholar 

  • Yeom S, Moon I, Javidi B (2006) Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms. Proc IEEE 94(3):550–566

    Google Scholar 

  • Yeom S, Moon I, Javidi B (2007) Two approaches to 3D microorganism recognition using single exposure online (SEOL) digital holography. In: Sadjadi F, Javidi B (eds) Physics of automatic target recognition. Springer, New York, pp 175–194

    Google Scholar 

  • Yu B, Elbuken C, Ren CL, Huissoon JP (2011) Image processing and classification algorithm for yeast cell morphology in a microfluidic chip. J Biomed Opt 16(6):1–9

    Google Scholar 

  • Zalewski K, Buchholz R (1996) Morphological analysis of yeast cells using an automated image processing system. J Biotechnol 48(1–2):43–49

    Google Scholar 

  • Zalewski K, Gotz P, Buchholz R (1994) On-line estimation of yeast growth rate using morphological data from image analysis. In: Galindo E, Ramirez OT (eds) Advances in bioprocess engineering. Springer, New York, pp 191–195

    Google Scholar 

  • Zeder M, Kohler E, Pernthaler J (2010) Automated quality assessment of autonomously acquired microscopic images of fluorescently stained bacteria. Cytom Part A 77(A):76–85

    Google Scholar 

  • Zetsche E, Mallahi AE, Dubois F, Yourassowsky C, Kromkamp JC, Meysman FJR (2014) Imaging-in-flow: digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms. Limnol Oceanogr Methods 12:757–775

    Google Scholar 

  • Zhang D, Lu G (2004) Review of Shape representation and description techniques. Pattern Recogn 37(1):1–19

    Google Scholar 

  • Zhang J, Chen Y, Bekkers E, Wang M, ter Haar Romeny BM, Dashtbozorg B (2017) Retinal vessel delineation using a brain-inspired wavelet transform and random forest. Pattern Recogn 69:107–123

    Google Scholar 

  • Zhang T, Jia W, Zhu Y, Yang J (2016) Automatic tracking of neural stem cells in sequential digital images. Biocybern Biomed Eng 36(1):66–75

    Google Scholar 

  • Zhao F, Tang X, Lin F, Samson S, Remsen A (2005) Binary plankton image classification using random subspace. In: IEEE international conference on image processing, pp 357–360

  • Zhao F, Lin F, Seah HS (2010) Binary SIPPER plankton image classification using random subspace. Neurocomputing 73(10–12):1853–1860

    Google Scholar 

  • Zhao X, Xing D, Fu N, Liu B, Ren N (2011) Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. Bioresour Technol 102(18):8432–8436

    Google Scholar 

  • Zhao X, Xing D, Liu B, Lua L, Zhao J, Ren N (2012) The effects of metal ions and L-cysteine on HydA gene expression and hydrogen production by Clostridium beijerinckii RZF-1108. Int J Hydrog Energy 37(18):13,711–13,717

    Google Scholar 

  • Zhao X, Li D, Xu S, Guo Z, Zhang Y, Man L, Jiang B, Hu X (2017) Clostridium guangxiense sp. nov. and Clostridium neuense sp. nov., two phylogenetically closely related hydrogen-producing species isolated from lake sediment. Int J Syst Evol Microbiol 67(7):710–715

    Google Scholar 

  • Zhou B, Baek J (2006) An automatic nematode identification method based on locomotion patterns. In: Huang D, Li K, Irwin GW (eds) Computational intelligence and bioinformatics. Springer, New York, pp 372–380

    Google Scholar 

  • Zhou B, Hah W, Lee K, Baek J (2005) A general image based nematode identification system design. In: Hao Y, Liu J, Wang Y, Cheung Y, Yin H, Jiao L, Ma J, Jiao Y (eds) Computational intelligence and security. Springer, New York, pp 899–904

    Google Scholar 

  • Zhou H, Wang C, Wang R (2008) Biologically-inspired identification of plankton based on hierarchical shape semantics modeling. In: International conference on bioinformatics and biomedical engineering, pp 2000–2003

  • Zou Y, Li C, Boukhers Z, Jiang T, Shirahama K, Grzegorzek M (2015) Environmental microbiological content-based image retrieval system using internal structure histogram. In: International conference on computer recognition systems, pp 543–552

  • Zou Y, Li C, Shirahama K, Jiang T, Grzegorzek M (2016a) Content-based microscopic image retrieval of environmental microorganisms using multiple colour channels fusion. In: Lee R (ed) Computer and information science. Springer, New York, pp 119–130

    Google Scholar 

  • Zou Y, Li C, Shirahama K, Jiang T, Grzegorzek M (2016b) Environmental microorganism image retrieval using multiple colour channels fusion and particle swarm optimisation. In: IEEE International conference on image processing, pp 2475–2479

  • Zou Y, Chen LC, Shirahama K, Tao JC, Grzegorzek M (2017) Content-based image retrieval of environmental microorganisms using double-stage optimisation-based fusion. Inf Eng Express (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, K. & Xu, N. A survey for the applications of content-based microscopic image analysis in microorganism classification domains. Artif Intell Rev 51, 577–646 (2019). https://doi.org/10.1007/s10462-017-9572-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-017-9572-4

Keywords

Navigation