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Abstract Innovation diffusion has been studied extensively in a variety of disci-

plines, including sociology, economics, marketing, ecology, and computer science.

Traditional literature on innovation diffusion has been dominated by models of ag-

gregate behavior and trends. However, the agent-based modeling (ABM) paradigm is

gaining popularity as it captures agent heterogeneity and enables fine-grained mod-

eling of interactions mediated by social and geographic networks. While most ABM

work on innovation diffusion is theoretical, empirically grounded models are increas-

ingly important, particularly in guiding policy decisions. We present a critical review

of empirically grounded agent-based models of innovation diffusion, developing a

categorization of this research based on types of agent models as well as applications.

By connecting the modeling methodologies in the fields of information and innova-

tion diffusion, we suggest that the maximum likelihood estimation framework widely

used in the former is a promising paradigm for calibration of agent-based models for

innovation diffusion. Although many advances have been made to standardize ABM

methodology, we identify four major issues in model calibration and validation, and

suggest potential solutions.

Keywords Literature review · innovation diffusion · agent-based modeling ·
empirical method · calibration · validation

1 Introduction

1.1 Innovation Diffusion: Theoretical Foundations

Diffusion refers to the process by which an innovation is adopted over time by mem-

bers of a social system (Rogers, 2010; Valente, 2005). Commonly, an innovation
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refers to a new technology, but the conceptual notion can be applied far more broadly

to consider the spread of ideas and practices. Rogers (2010) laid down the theo-

retical foundations of innovation diffusion in his book, Diffusion of Innovations, in

which he synthesizes studies in anthropology, sociology, and education, and proposes

a generic theory to explain the diffusion of innovations among individuals and or-

ganizations. He suggests five characteristics of innovation to determine the rate of

adoption: relative advantage, compatibility, complexity, trialability, and observabil-

ity. Rogers models human decision about adoption of innovation as a multi-stage

process, involving five stages: knowledge, persuasion, decision, implementation, and

confirmation. Furthermore, he classifies individuals into five adopter categories: in-

novators, early adopters, early majority, late majority, and laggards. In addition to

these high-level considerations, much attention has been on the significance of social

relationships and influence in innovation diffusion (in contrast with, or complemen-

tary to, economic considerations). Starting with early groundwork Ryan and Gross

(1943), there has now been extensive research on how social network structure, group

norm, opinion leadership, weak ties, and critical mass impact diffusion of innova-

tions (Valente, 1995; Valente and Rogers, 1995).

1.2 Mathematical Models of Innovation Diffusion

Traditional mathematical models of innovation diffusion aim to model aggregate

trends, rather than individual decisions. Numerous such models follow the frame-

work of Bass model, which is one of the most influential models in marketing (Bass,

1969; Hopp, 2004). The Bass model was originally designed for forecasting sales

of new consumer durables. The model assumes that the probability of adopting a

product, given the person has not yet adopted, is linearly related to the number of

past adopters. The Bass model can be calibrated with aggregate sales data, and Bass

showed that it can qualitatively capture the S-shaped pattern of aggregate adoption

over time (Peres et al, 2010).

The Bass model has a number of limitations. First, it does not capture individual

interactions. Indeed, the model explicitly assumes a fully connected and homoge-

neous network. For innovation diffusion, this is an important drawback, as individual

interdependence and communications are among the most significant aspects to un-

derstand innovation diffusion (Valente, 2005; Rogers, 2010). The second criticism of

the Bass model is that it does not include any decision variables that are of interest

from a managerial perspective. The issue has been addressed later by incorporating

the marketing mix variables, price, and advertising, into the diffusion model. For

an extensive review of research in this direction, we refer readers to Mahajan et al

(2000); Meade and Islam (2006). Nevertheless, these marketing mix variables are

mostly designated for the entire market without a consideration of individual het-

erogeneity. Lastly, the predictability of the Bass model is often questioned. For ex-

ample, Chandrasekaran and Tellis (2007) argue, that the model needs considerable

data around the critical point at which diffusion accelerates to be effective, but once

such data is available the value of the Bass model becomes limited.
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1.3 Agent-Based Modeling for Innovation Diffusion

Agent-based modeling (ABM) has emerged as another natural approach to study in-

novation diffusion. Agent-based models are typically simulation models that cap-

ture dynamic interactions among a (usually large) collection of individuals. They

were originally developed as a tool for complexity theory research (Lewin, 1999;

Holland, 1995), and have gained popularity in many scientific areas for the past

decade (Gilbert and Troitzsch, 2005; Macal and North, 2010; Garcia and Jager, 2011;

Macal, 2016). The ABM paradigm offers two advantages for the study of innova-

tion diffusion: first, it facilitates the modeling of agent heterogeneity, and second, it

enables fine-grained modeling of interactions mediated by social networks. Indeed,

agent-based modeling has been applied in study of innovation diffusion to aid intu-

ition, theoretical exploration, and to provide policy decision support (Kiesling et al,

2012).

Traditional agent-based models are largely conceptual (Axelrod, 1997; Epstein,

1999). This use of ABMs as primarily conceptual tools is partly because they are

commonly considered as ideal learning tools for scientists to understand a system

under a variety of conditions by simulating the interactions among agents. As a con-

sequence, the simplicity of agent rules is commonly a crucial consideration in the

design of agent-based models. Such simplicity, however, has given rise to criticism of

the ABM methodology as being “toy models” that do not reflect reality (Garcia and Jager,

2011). Moreover, an increasingly important criticism is that if ABMs are used in any

policy decision support, the predictive validity of the model becomes paramount, and

models that are primarily conceptual may be inadequate for such tasks.

It is this increasing use of agent-based modeling to obtain policy guidance that

has motivated increasing use of empirically grounded agent-based models. Empiri-

cal agent-based models have recently experienced significant growth (Kiesling et al,

2012). In these studies, empirical data are used to initialize simulation, parameterize

agent-based models, or to evaluate model validity. The explosion of high-resolution

data sets, coupled with advances in data analytics and machine learning have given

rise to increased opportunities for empirically grounding agent-based models, and

this trend is likely to continue. Our goal is to provide an overview of these empiri-

cally grounded agent-based models developed with the goal of studying innovation

diffusion. Through a careful examination of these studies, we also aim to identify

potential methodological issues that arise, and suggest ways to address these.

1.4 Contributions

The diffusion of new products has been an important topic for decades (Mahajan et al,

1990, 2000; Meade and Islam, 2006; Chandrasekaran and Tellis, 2007; Peres et al,

2010). The prevalence of ABM approach can be glimpsed from a number of review

papers from disciplines like sociology (Macy and Willer, 2002), ecology (Matthews et al,

2007), and marketing (Garcia, 2005; Hauser et al, 2006; Negahban and Yilmaz, 2014).

For example, Garcia (2005) describes potential uses of ABM in market research as-

sociated with innovations, exploring benefits and challenges of modeling complex
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dynamical systems in this fashion. Dawid (2006) surveys agent-based models of in-

novation diffusion within a computational economics context. Peres et al (2010) re-

view diffusion models in the context of a single market and cross-markets and brands.

To the best of our knowledge, the closest work to ours is a review of agent-based sim-

ulations of innovation diffusion by Kiesling et al (2012), who survey both theoretical

and empirical work. In comparison with these past reviews, we make the following

novel contributions:

1. We provide systematic review of the empirical agent-based models of innova-

tion diffusion. This is in contrast to the narrative review of the applied work as

provided in Kiesling et al (2012). In particular, we offer a novel classification

of agent adoption models as employed in the reviewed papers. By highlight-

ing the adoption models and their parameterization methods, we aim to bridge

methodological gaps among domains and applications. We identified the papers

to include in a rigorous and systematic manner. In terms of scope, any work pre-

senting an agent-based model using empirical data to simulate the diffusion of

innovations was included. Our selection process combined results from multiple

databases, including Google Scholar and ScienceDirect, with extensive search for

relevant keywords, and back-tracking and forward-tracking reference lists, while

carefully screening out non-candidates.

2. Our review is comprehensive and updated. The collection of reviewed papers

spans a superset of the applications as covered in Kiesling et al (2012) and, in-

deed, a number of significant efforts have emerged after 2012. Notably, we also

include a selection of papers from the literature on information diffusion, a fast-

growing area. These models rely on principled machine learning techniques for

model calibration based on empirical observations of diffusion traces. In addi-

tion, we exclude two (out of 15) papers from Kiesling et al (2012) which are not

empirically grounded. In the end, we reviewed 43 papers, of which 30 (23 from

years after 2011) were not included by Kiesling et al (2012).

3. We provide a critical review, assessing strength and weaknesses of the surveyed

research. Almost all surveyed papers followed standard modeling steps and pre-

sented their results systematically. However, we conclude that the current liter-

ature commonly exhibits several major shortcomings in model calibration and

validation1. Addressing these issues would significantly increase the credibility

of agent-based models. We, therefore, devote a section to an overview of existing

validation methods in the literature and an in-depth discussion of these issues and

potential solutions.

2 Categorization of Empirically Grounded ABMs of Innovation Diffusion

We review the burst of recent developments of empirically grounded agent-based

models, which are examined through two dimensions: models and applications. First,

to facilitate methodological comparison, we group the papers into six categories

1 The concepts of calibration and validation are explained in Section 5.1 below.
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which represent the specific approaches taken to model individual agent decision pro-

cesses: mathematical optimization based models, economic models, cognitive agent

models, heuristic models, statistics-based models and social influence models. Sec-

ond, as we observe that modeling efforts span several domains, the next section offers

an application-focused categorization.

The categorization in this section is aimed at qualitatively clustering the exist-

ing agent-based models with respect to their modeling methods, which can be further

characterized from several dimensions, such as behavioral assumption, data granu-

larity, internal structure, calibration and validation. The six categories we identified

present a comprehensive picture and structured patterns of the different methods used

to model individual agent decision processes seen in a variety of applications.

We review each paper in sequence and in some detail, providing sufficient depth

in the review for a reader to understand the nature of each surveyed work. In par-

ticular, we focus on how data was used in the modeling process, and in particular, in

initialization, calibration and validation steps. We attempt to draw connections among

the papers using our categorization structure (i.e., by grouping them into the six cat-

egories based on the methodology used to model individual agent behavior). Table 1

shows how these survey articles are distributed across the categories and publication

years2. Notice that this approach is different from the synthesis-based approach fol-

lowed by other review papers, such as, Windrum et al (2007), and Macal (2016),

which generally draws conclusion for a collection of papers but does not provide

sufficient detail to assess how data is used in these efforts.

Table 1 Distribution of surveyed papers over categories and years

Category by modeling methods Distribution in year Total Published

mathematical optimization based model 01,07(2),09,10,13 6

economic model 10, 11(2), 12, 13, 14(2), 15 8

cognitive agent model 02, 06, 09(2), 12, 13(2), 15(2), 16(2) 11

heuristic model 10, 11(2) 3

statistics-based model 07(2), 08, 09, 11, 12, 13, 14, 15, 16 10

social influence model 13(2), 14, 16, 17 5

Total 43

2.1 Mathematical Optimization (MO) Based Models

The MO-based models posit that agents (e.g., farmer households) are deliberate decision-

makers who use sophisticated mathematical planning tools to assess the possible

consequence of actions. While agents may encounter uncertainty, incomplete infor-

mation, and constraints, their final decisions to adopt innovations are determined by

concrete optimization objectives. The use of complex mathematical programs is com-

monly justified by the fact that farmer agents often consider their farming decisions

in terms of economic returns.

2 For simplicity, we omit “20” and use the last two digits to denote a year. For example, “07(2)” stands

for 2 publications in year 2007.
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In a seminal paper, Berger (2001) developed a spatial multi-agent mathematical

programming (MP) model of diffusion of farming innovations in Chile. Production,

consumption, investment, and marketing decisions of individual households are mod-

eled using linear programming with the goal of maximizing expected family income

subject to limited land and water assets. Moreover, in accordance with the literature

on innovation diffusion, the model incorporates effects of past experience, as well

as observed experience by peers. This is done by imposing a precondition for the

MP procedure that the net benefit is only calculated if peer adoption level reaches

the predefined threshold. In addition to such contagion effects, agent interactions are

also reflected by the feedback effects of land and water resources and return-flows of

irrigation water, implemented by coupling the economic agent decision model with

hydrological components. In simulation models, agents are cellular automata with

each cell associated with biophysical and economic attributes, such as soil quality,

water supply, land cover/land use, ownership, internal transport costs, and marginal

productivity. These agent properties are initialized using empirical data derived from

various data sources, including a survey that captures both agronomic and socio-

economic features, and a spatial data set with information about land and water use.

Parameters were calibrated in terms of closeness of simulation experiments and farm

data at both macro and micro levels. Validation was then performed by regressing

land use results based on the model on actual land use in the data. Although values of

the slope of this regression are reported for both macro and micro levels, validation

is incomplete. For instance, micro-validation is only conducted for the year when the

simulation starts due to data availability. Finally, the fact that validation was not con-

ducted on data independent from calibration is another important weakness. Later,

Berger et al (2007) applied his MP-based agent-based modeling approach to study

the complexity of water uses in Chile. Unfortunately, that work still had the same

issue on validation.

Schreinemachers et al (2007) adopted the MP-based approach to simulate soil

fertility and poverty dynamics in Uganda, and analyze the impact on these of ac-

cess to short-term credit and alternative technologies. At the heart of the model is

a simulation of a farmer’s decision process, crop yields, and soil fertility dynamics.

The decision model is comprised of three parts: 1) a set of possible decisions related

to agriculture, such as growing crops, raising livestock, and selling and purchasing

agricultural products; 2) a utility function that determines how much the decisions

contribute to the farmer’s objectives; and 3) links among decision variables repre-

sented by a set of equations. Following Berger (2001), a three-stage decision flow is

defined that separates agent decisions into investment, production, and consumption.

Moreover, the portion of the model capturing consumption includes econometrically-

specified allocation of farm and non-farm income to saving, food, and other expendi-

tures. Properties of the household agent, such as quantity and quality of land, labor,

livestock, permanent crops, and knowledge of innovation, are sampled from empir-

ical distributions based on limited samples. Additional features include models of

animal and tree growth, technology diffusion, demographics, and price changes. In

technology diffusion, peer influence is captured in the same manner as Berger (2001),

but notably, each agent is assigned a threshold based on household survey data. The

model was systematically validated in three steps: first, econometric models were
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validated for accuracy, then each component was validated independently, and finally

the system as a whole. Similar to Berger (2001), validation used the same data as

calibration.

Schreinemachers et al (2009) studied the diffusion of greenhouse agriculture, us-

ing bell pepper in a watershed in the northern uplands of Thailand as a case study.

The work largely follows the MP-MAS (mathematical programing-based multi-agent

systems) approach due to (Berger, 2001). Notably, the author proposes calibrating

the diffusion thresholds as described in (Berger, 2001) by using a binary adoption

model (e.g., logistic regression), which is estimated from farmer survey data. To ob-

tain threshold values for individuals, the author first computes adoption probability

for each agent based on a set of observable independent variables, and then ranks

these, dividing them into the five categories of innovators due to Rogers (1995). Val-

idation was carried by checking the value of R2 associated with a regression of ob-

served land use on its predicted value. The proposed validation method suffers from

the same limitation as other related research in using the same data for calibration

and validation.

Schreinemachers et al (2010) applied the MP-based approach to study the im-

pact of several agricultural innovations on increasing profitability of litchi orchards

in Northern Thailand. Unlike Schreinemachers et al (2009) that estimated a logistic

regression model to assign agents to threshold groups, they assigned thresholds ran-

domly due to the lack of relevant data. The model was validated using regression

method as described in Schreinemachers et al (2009), and validation suggests that

the model reasonably represents aggregate agent behavior, even while individual-

level behavior is not well captured. As in prior work, calibration and validation used

the same data.

Alexander et al (2013) developed an agent-based model of the UK perennial en-

ergy crop market to analyze spatial and temporal dynamics of energy crop adoption.

The model includes the interaction of supply and demand between two agent groups:

farmers and biomass power plant investors. The farmer agents have fixed spatial loca-

tions which determine the land quality and climate that in turn impact crop yields, and

decide on the selection of crops via a two-stage approach similar to Berger (2001),

with peer influence again modeled through a threshold function. A farmer agent con-

siders adoption only if the proportion of neighbors within a given radius with a pos-

itive adoption experience exceeds a threshold. When adoption is considered, a farm

scale mathematical program is used to determine the optimal selection of crops that

maximizes utility as described in Alexander et al (2014). Calibration of the farm scale

model is either informed by empirical data or in reference to previous studies. Valida-

tion involved checking model behaviors on simplified configurations, unit-testing of

model components, and comparing simulation results against empirical data. How-

ever, validation did not use independent data from calibration.
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2.2 Economic Models

Unlike the MO based models in Section 2.1, the economic models use simpler rules

with fewer constraints and decision variables. Particularly, agents commonly simply

minimize cost, maximize profit, or, more generally, maximize personal utility.

2.2.1 Cost Minimization

Faber et al (2010) develop an agent-based simulation model for energy technologies,

micro-CHP (combined heat and power) and incumbent condensing boilers, in compe-

tition for consumer demand. Consumer agents are classified by housing type, which

is viewed as the most important factor in determining natural gas requirements for

heating units. At each time step a consumer considers purchasing a new heating unit,

and follows a three-step decision algorithm: 1) assess if a new unit is needed, 2) scan

the market for “visible” heating units, where “technology awareness” is formulated

as a function of the level of advertising, market share, and bandwagon effect, and 3)

each consumer chooses the cheapest technology of those that are visible. The cost,

which depends on the consumer’s class, is comprised of purchase costs, subsidies,

and use costs over the expected life of the technology. Some of the parameters are

calibrated using empirical data, while others are set in an ad hoc fashion. Some val-

idation was performed through the use of a sensitivity analysis of the variables such

as market size, progress rate, and technology lifetime. However, no explicit model

validation using empirical data was undertaken.

2.2.2 Profit Maximization

Sorda et al (2013) develop an agent-based simulation model to investigate electricity

generation from combined heat and power (CHP) biogas plants in Germany. Instead

of simulating farmer’s individual decision whether to invest in a biogas plant, the

model solves a system-wide optimization problem from the perspective of a global

planner. The model includes two types of agents: information agents, including Fed-

eral Government, Bank, Electric Utility, and Plant Manufacturer, and agents making

investment decisions, including the Substrate Supplier, District, Decision-Maker, and

Heat Consumer. The core decision-making agent acts as a representative for investors

in each community. The agent chooses to invest in a biogas facility whenever suffi-

cient resources are available and the investment yields positive net present value.

This work used multiple data sources to construct the simulation model. For exam-

ple, plant operator guidelines and manufacturer specifications were used to obtain

data about the characteristics of biogas plants. Although the model is thus informed

by real data, it is not quantitatively validated.

2.2.3 Utility Maximization

Broekhuizen et al (2011) develop an agent-based model of movie goer behavior which

incorporates social influence in movie selection decisions. Their study investigates
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two types of social influence: the influence of past behavior by others, and influ-

ence stemming from preferences of an individual’s friends, such as group pressure

to join others in seeing a movie. The main purpose of this work is to determine the

degree to which different types of social influence impact inequality. In their model,

agent’s decision-making is probabilistic and utility-driven. An agent first observes

which movies are being shown in the marketplace with some probability. Next, with

a specified probability, an agent is selected to consider seeing a movie. If selected,

it goes to the movie that maximizes expected utility among all those it is aware of.

Otherwise, it does not see any movie. Utility in this setting is a weighted sum of in-

dividual utility, which represents the alignment between individual’s preferences and

movie characteristics, and social utility which is a combination of the two types of

social influence above. Some of the model parameters are either theoretically deter-

mined or empirically calibrated, while the variability of the rest is investigated by

sensitivity analysis. Validation involved a cross-national survey, using cross-cultural

differences due to Hofstede’s collectivism-individualism index to measure social in-

fluence. While the validation is based on an independent survey study, it is largely

qualitative.

Günther et al (2011) introduce an agent-based simulation approach to support

marketing activities. The proposed model was applied to the study of a new biomass-

based fuel that would likely be introduced in Austria. Consumer agents are embed-

ded in a social network, where nodes represent agents and edge weights determine

the probability with which the connected agents communicate. The authors tested

several network structures, including random (Erdos-Renyi) networks, small-world

networks, and so-called “preferences-based” networks, where connections between

agents are based on geographical and cognitive proximity as well as opinion lead-

ership. Each agent is characterized by preferences, geographical position, tanking

behavior, how informed they are about the product, and their level of social in-

fluence. Agents have preferences for several product attributes: price, quality, and

expected environmental friendliness, which are initialized differently based on con-

sumer type. Agents are geographically distributed in virtual space based on the spa-

tial distribution of Austrian population, and their tanking behavior is a function of

fuel tank capacity, travel behavior, and habits. Individual information level on the

innovation at hand captures the knowledge about a product, which increases as a

function of interpersonal communication and exposure to marketing activities. In-

fluence level, on the other hand, represents an agent’s expertise with the innova-

tion and determines the amount of information received through communication.

Upon interaction, an agent with lower information level learns from a more informed

agent. Most importantly, the utility function for agent i at time t is given by ui,t =
(1 − Pricet) × wi,1 + Pricet × wi,2 + ppqi,t × wi,3 + wi,4, where 0 ≤ wi,k ≤ 1

and
∑

4

k=1
wi,k = 1, and the first and second weights pertain to price, while the last

two represent how strongly agents prefer quality and how willing they are to seek

renewable energy sources for fuel, respectively. An agent is assumed to adopt if util-

ity exceeds a specified individual threshold drawn for each agent from the uniform

distribution. Moreover, the perceived product quality, ppqi is assumed to gradually

converge the true product quality for adopters. The author briefly mentions that model

parameters are set in reference to a prior case study. Apart from this, no detailed infor-
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mation is provided about how model parameters are actually calibrated in the setting.

Moreover, the model was only validated qualitatively with subjective expert knowl-

edge.

Holtz and Pahl-Wostl (2012) develop a utility-based agent-based model to study

how farmer characteristics affect land-use changes in a region of Spain. As relevant

data are scarce, their model cannot be quantitatively calibrated and validated. Empir-

ical data are used to initialize the model, deriving the initial crop distribution, and to

assess the validity of the model qualitatively. In this model, an agent’s utility is for-

mulated as a Cobb-Douglas function by multiplying four influences: gross margin,

risk, labor load, and regulatory constraints. Parameters associated with these influ-

ences differ with the types of farmers, for example, part-time, family, and business-

oriented farmers would have distinct utility parameters. In the decision process, an

agent chooses a land use pattern that maximizes its utility, where land use patterns

involve a combination of crop and irrigation technology, constrained by policies. The

diffusion of irrigation technology is simulated based on the concept that the more

widely used a technology is, the more likely it is to be considered by individual farm-

ers. Their experiments explore the importance of each influence variable in the utility

function, as well as of farmer types, by qualitatively comparing the simulation results

with empirical data.

Plötz et al (2014) propose a model for the diffusion of electric vehicles (EVs) to

evaluate EV-related policies based driving data in Germany. The model determines

the market shares of different technologies by simulating each driving profile as both

EV and conventional vehicle, choosing the option which maximizes the driver’s util-

ity, and then extrapolating these agent-level choices to aggregate market shares. In

modeling individual decisions, utility is defined as a function of total cost of owner-

ship (TCO), choice of EV brands, and individual willingness-to-pay-more (WTPM).

The authors combined survey results with driving profiles to derive four categories

of agents (adopters), and assigned each driving profiles to one of these categories.

Through simulating the plug-in hybrid electric vehicle (PHEV) share of the market

as a function of annual average vehicle kilometers traveled (VKT) for medium-sized

vehicles, the model was validated by comparing original group assignment with sim-

ulated outcomes and by examining simulated diesel market shares relative to actual

values within different branches of industry. While validation is quantitative and rig-

orous, it does not use independent data. Moreover, the model does not capture social

influence which is often a key aspect of innovation diffusion modeling.

McCoy and Lyons (2014) develop an agent-based model of diffusion of electric

vehicles among Irish households. Agents representing households are located at a

regular lattice space. They are heterogeneous as suggested by their characteristics.

Agents have two static attributes, Income Utility (IU) and Environmental Utility (EU),

drawn independently from empirical distributions derived from a survey. In particular,

IU is based on an agents social class, tenure type, and age, which are assumed to be

highly correlated with income, whereas EU is based on the agent’s past adoption of

energy efficiency technologies and their attitude toward the environment. Each agent

i has a unique threshold, θi, drawn from a distribution that is negatively correlated to

IU, and adopts if Ui(t) ≥ θi and t× crit ≥ rand(0, 1), where, crit is decimal value

that is used to account for inertia that exists in early stage of technology adoption,
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while utility Ui(t) is defined as Ui(t) = αiIUi + βiEUi + γiGi(t) + δiS(t), where,

IU represents individual’s preferences, G is social influence, and S is social norms,

and αi + βi + γi + δi = 1. To allow these parameters to vary by agent, the authors

specify four distinct consumer groups with different preferential weighting schemes.

Although the agents in the simulation are initialized using empirical distributions,

key parameters in the decision model are not derived empirically but are based on the

authors’ assumptions. Additionally, no rigorous validation is provided.

Palmer et al (2015) developed an agent-based model of diffusion of solar photo-

voltaic (PV) systems in the residential sector in Italy. The utility of agent j is de-

fined as the sum of four weighted partial utilities, i.e., U(j) = wpp(smj) · upp(j) +
wenv(smj)·uenv(j)+winc(smj)·uinc(j)+wcom(smj)·ucom(j), where

∑
k wk(smj)

= 1 for k ∈ K : {pp, env, inc, com} and wk(smj), U(j) ∈ [0, 1]. From left to right

the partial utilities are: (1) payback period of the investment, (2) environmental ben-

efits, (3) household income, and (4) social influence. An agent chooses to invest in

PV if its total utility exceeds an exogenously specified threshold. Thresholds above

vary by agent’s demographic and behavioral characteristics, smj . The four partial

utilities are derived from empirical data. Specifically, the payback period is estimated

based on investment costs, local irradiation levels, government subsidies, net earnings

from generating electricity from the system vs. buying it from the grid, administra-

tive fees, and maintenance costs. The environmental benefit is based on an estimate of

reduced CO2 emissions saved. Household income is estimated based on household

demographics, such as age, level of education, and household type. Finally, social

influence is captured by the number of neighbors of a household within its social net-

work who have previously adopted PV. The social network among agents is generated

according to the small-world model (Watts and Strogatz, 1998), modified to account

for socio-economic factors. The model parameters are calibrated by trying to match

simulated adoption with the actual aggregate residential PV adoption in Italy over the

2006-2011 period. The model is then applied to study solar PV diffusion in Italy over

the 2012-2026 period. However, no quantitative validation is offered.

2.3 Cognitive Agent Models

While both MO-based (Section 2.1) and economic (Section 2.2) models elaborate

economic aspects of the decision process and integrate simple threshold effects, cog-

nitive agent models aim to explicitly model how individuals affect one another in cog-

nitive and psychological terms, such as opinion, attitude, subjective norm, and emo-

tion. This category includes the Relative Agreement Model, the Theory of Planned

Behavior, the Theory of Emotional Coherence, and the Consumat Model.

2.3.1 Relative Agreement Model

The Relative Agreement Model belongs to a class of opinion dynamics models (Hegselmann et al,

2002) and addresses how opinion and uncertainty are affected by interpersonal in-

teractions. Seminal work is due to Deffuant et al (2000), who investigate how the

magnitude of thresholds, with respect to attitude difference, leads to group opinion
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convergence and extremeness. The relative agreement model is often known as “Def-

fuant model” in the literature.

Deffuant et al (2002b) design an agent-based model to simulate organic farming

conversion in France. To model impact of interactions on the individual decision, they

relied on the Deffuant model in which both opinion and uncertainty are continuous

variables. In the diffusion model, farmer agent has an “interest” state with three possi-

ble values: not-interested, uncertain, and interested. The actual value is based on the

agent’s opinion (represented as a mean value and confidence) and economic consid-

eration. The value of the interest state depends on the position of the global opinion

segment compared to a threshold value. Agent changes opinion after discussing with

peers using a variant of the Relative Agreement algorithm (Deffuant et al, 2002a). The

farmers send messages containing their opinions and information, following a two-

stage diffusion model of Valente (1995), mediated by a network generated according

to the Watts and Strogatz (1998) model. These impact opinions of the recipients as a

function of opinion similarity, as well as confidence of the sender, with more confi-

dent opinions having greater influence. In addition, if the farmer agent is “interested”

or “uncertain”, he performs an evaluation of the economic criterion, and if he remains

interested, he requests a visit from a technician. After this visit, the economic crite-

rion is evaluated again under reduced uncertainty. Finally, the adoption decision is

made when the farmer has been visited by a technician and remains “interested” for

a given duration.

Many model parameters governing the decision and communication process are

not informed by empirical data. The authors tested the sensitivity of the model by

varying these variables, including the main parameters of the dynamics, the param-

eters of the initial opinion distribution average number of neighborhood and profes-

sional links, and variations of the institutional scenario. Within this parametric space,

they aimed to identify parameter zones that are compatible with empirical data. For

each parameter configuration, the authors defined two error measures: the adoption

error and the error of proximity of adopters to the initial organic farmers. A decision

tree algorithm was then used to find the parameter zones where the simulated diffu-

sion has an acceptable performance. While this sensitivity analysis step can be viewed

as model calibration, it is distinct from classical calibration which aims at finding a

single best parameter configuration. The model was not validated using independent

data.

2.3.2 Theory of Planned Behavior

The Theory of Planned Behavior (TPB) postulates that an individual’s intention about

a behavior is an important predictor of whether they will engage in this behav-

ior (Ajzen, 1991). As a result, the theory identifies three attributes that jointly de-

termine intention: attitudes, subjective norms, and perceived behavioral control. The

relative contribution for each predictor is represented by a weight which is often de-

rived empirically using regression analysis based on survey data.

Kaufmann et al (2009) build an agent-based simulation model on TPB to study

the diffusion of organic farming practices in two New European Union Member
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States. Following the TPB methodology, each agent is characterized by three at-

tributes: the attitude ai, subjective norm si, and perceived behavioral control pi, each

ranging from -1 (extremely negative) to +1 (extremely positive). The intention Ii is

defined as Ii = wa
i ai + ws

i si + w
p
i pi, where wa

i , w
s
i , w

p
i are relative contribution

toward intention. The weights for non-adopters and adopters are derived separately

using linear regressions based on the survey data. If an agent’s intention exceeds a

threshold t it adopts, and does not adopt otherwise. The threshold is obtained from

survey data as the average intention of non-adopters who have expressed a desire

to adopt. In the simulation model, social influence is transmitted among network

neighbors in each time step in a random order. Specifically, when one node speaks

to another, the receiver shifts its subjective norm closer to the sender’s intention, fol-

lowing the relative agreement framework. Social networks are generated to reflect

small-world properties (Watts and Strogatz, 1998) and a left-skewed degree distribu-

tion Noble et al (2004), with specifics determined by a set of parameters, which are

set based on survey data (such as the average degree). While empirical data is thus

used to calibrate parameters of the model, no quantitative validation was provided.

Schwarz and Ernst (2009) propose an agent-based model of diffusion of water-

saving innovations, and applied the model to a geographic area in Germany. Agents

are households with certain lifestyles, represented by demographic and behavioral

characteristics. They use two different decision rules to determine adoption: a cog-

nitively demanding decision rule representing a deliberate decision and a simple de-

cision heuristic. The particular decision rule to use is selected based on the agent’s

type and technology category. The deliberate decision-making algorithm is based on

multi-attribute subjective utility maximization that integrates attitude, social norm,

and perceived behavioral control. The heuristic decision rule makes decisions in

greedy order of evaluation criteria based on innovation characteristics and social

norms. Finally, if no clear decision can be made, agents imitate their peers, who

are defined through a variation of a small-world network (Watts and Strogatz, 1998)

which captures spatial proximity and lifestyle affinity in determining links among

agents. The model was calibrated using data from a survey according to the frame-

work of the Theory of Planned Behavior (Ajzen, 1991), with the importance of dif-

ferent decision factors derived by structural equation models or linear regressions for

lifestyle groups. The model was validated using independent market research data at

the household level. In addition, due to the lack of independent aggregated diffusion

data, results of the empirical survey were used for validation.

Sopha et al (2013) present an agent-based model for simulating heating system

adoption in Norway. Their model extends TPB to consider several contributing fac-

tors, such as household groups, intention, attitudes, perceived behavioral control,

norms, and perceived heating system attributes. Households are grouped using clus-

ter analysis based on income level and basic values available in the survey data to

approximate the influence of lifestyle on attitudes towards a technology. Attribute

parameters are then estimated using regressions for each household cluster based on

the household survey. Moreover, motived by the meta-theory of consumer behav-

ior (Jager, 2000), the model assumes that a household agent randomly follows one of

four decision strategies: repetition, deliberation, imitation, and social comparison, in

accordance with empirical distribution based on survey data. Notably, this model is
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validated using independent data that is not used for calibration, examining how well

simulation reproduces actual system behavior at both macro and micro level.

Rai and Robinson (2015) develop an empirically grounded agent-based model of

residential solar photovoltaic (PV) diffusion to study the design of PV rebate pro-

grams. The model is motived by TPB and assumes that two key elements determine

adoption decision: attitude and (perceived) control. The authors calibrate population-

wide agent attitudes using survey data and spatial regression. Following the opinion

dynamics model in Deffuant et al (2002a), at each time-step, agents’ attitudes about

the technology and their uncertainties are adjusted through interactions with their so-

cial network neighbors following the relative agreement protocol. Social influence is

captured by households situated in small-world networks, with most connections gov-

erned by geographic and demographic proximity. In the “control” module, an agent

i compares its perceived behavioral control pbci with the observed payback at the

current time period PPit. Then, if the agent exceeds its attitude threshold, it adopts

when PPit < pbci. pbci for each agent i, is calculated as a linear sum of financial

resources, the amount of sunlight received, and the amount of roof that is shaded,

while PPit is calculated based on electricity expenses offset through the use of the

solar system, the price of the system, utility rebates, federal investment tax credit,

and annual system electricity generation. The six model parameters used to specify

the social network, opinion convergence, the distribution of the behavioral control

variable, and the global attitude threshold value were calibrated by an iterative fitting

procedure using historical adoption data. The model was first validated in terms of

predictive accuracy, comparing predicted adoption with empirical adoption level for

the time period starting after the last date for the calibration dataset. Moreover, tem-

poral, spatial, and demographic validation were conducted. However, validation was

focused on aggregate (macro), rather than individual (micro) behavior.

Jensen et al (2016) develop an agent-based model to assess energy-efficiency im-

pacts of an air-quality feedback device in a German city. A household agent makes

two decisions: whether to adopt a feedback device and whether to practice a spe-

cific energy-saving behavior. The model involves simulating both the adoption of the

feedback device and the heating behavior respectively. Two diffusion processes are

connected based on the observation that the feedback device changes an agent’s heat-

ing behavior, and eventually will form a habit. In the simulations, household agents

are generated based on marketing data on lifestyle, and initial adopters of the heating

behavior are selected based on a survey. The adoption of an energy-efficient heating

behavior is triggered by external events, whose rate is estimated by historical data

using Google search queries. Their survey reveals that both information and social

influence drive behavior adoption. This insight is integrated into a decision-making

model following the theory of planned behavior (TPB), in which information impacts

the agent’s attitude in each simulation step. On the other hand, the diffusion model

of the feedback device is an adaptation of an earlier model also based on TPB. An

adopter of the device is assumed to adopt the desired heating behavior with a fixed

probability, which is informed by an empirical study. The space of model parameters

is reduced by applying a strategy called “pattern-oriented modeling”, which refines

the model by matching simulation runs with multiple patterns observed from em-

pirical data (Grimm et al, 2005). In their experiments, the authors calibrated several
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different models using empirical data and aimed to quantify the effect of feedback de-

vices by comparing results generated by these models. However, no rigorous model

validation is presented.

2.3.3 Theory of Emotional Coherence

When it comes to explaining and predicting human decisions in a social context, some

computational psychology models also take emotional factors into account, which

are often neglected by TPB-based models. Wolf et al (2012) propose an agent-based

model of adoption of electric vehicles by consumers in Berlin, Germany, based on the

Theory of Emotional Coherence (TEC). The parameters of the model were derived

based on empirical data from focus groups and a representative survey of Berlin’s

population. In particular, the focus group provided a detailed picture of people’s needs

and goals regarding transportation; the survey was designed to generate quantitative

estimates of the beliefs and emotions people associate with specific means of trans-

portation. The attributes of the agents include age, gender, income, education, resi-

dential location, lifestyle, and a so-called social radius, and are obtained based on the

survey data. The social network structure is generated by similarities between these

characteristics following the theory of homophily McPherson et al (2001); specifi-

cally, the likelihood of two individuals communicating with one other is a function of

their similarity in terms of demographic factors. To validate the predictions made by

the model, the authors regressed empirical data related to actual transportation-related

decisions (e.g., weekly car usage) from the survey on the activation parameters result-

ing from simulations. However, validation did not use independent data.

2.3.4 Consumat Model

The Consumat Model is a social psychological framework, in which consumer agents

switch among several cognitive strategies—commonly, comparison, repetition, imi-

tation, and deliberation—as determined by need satisfaction and their degree of un-

certainty (Jager et al, 2000). Schwoon (2006) uses an agent-based model (ABM) to

simulate possible diffusion paths of fuel cell vehicles (FCVs), capturing complex dy-

namics among consumers, car producers, and filling station owners. In their model,

the producers offer heterogeneous but similar cars, deciding in each period whether to

change production to FCVs. Consumers have varying preferences for car attributes,

refueling needs, and social influence factors. Although in a typical consumat ap-

proach (Janssen and Jager, 2002), consumers follow one of four cognitive strategies

on the basis of their level of need satisfaction and uncertainty, the author rules out

repetition and imitation and argues that need satisfaction is rather low in their case.

The consumer agent is assumed to maximize total expected utility, which is expressed

as a function of car price, tax, the closeness between preferences and car character-

istics, social need, as determined by the fraction of neighbors adopting each product

type, and availability of hydrogen. In the model, individual preferences may evolve

with time to be more congruent with the “average car”, as determined by a weighted

average of attributes of cars sold in the previous period, where weights correspond

to market shares. The model is calibrated by trying to match main features of the
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German auto market. The network structure governing social influence is assumed to

form a torus. The model does not attempt quantitative validation.

2.3.5 The LARA Model

LARA is the short for Lightweight Architecture for boundedly Rational Agents, a sim-

plified cognitive agent architecture designed for large-scale policy simulations (Briegel et al,

2012). Comparing with existing complex psychological agent frameworks, LARA is

more generalizable and easier to implement. We review two recent efforts motivated

by the LARA architecture and grounded in empirical data.

Krebs et al (2013) develop an agent-based model to simulate individual’s provi-

sion of neighborhood support in climate change adaptation. In their model, agents are

assigned to lifestyle groups and initialized using spatial and societal data. Motivated

by LARA, an agent makes a decision in one of three modes: deliberation, habits, and

exploration. In deliberation, an agent compares and ranks available options in terms

of utility, which is the weighted sum of four goals: striving for effective neighbor-

hood support, being egoistic, being altruistic, and achieving social conformity. The

goal weights, which are different among lifestyle groups, are set based on expert rat-

ings and the authors’ prior work. A probability choice model is used to choose the

final option when multiple better options are available. An agent acts in deliberation

mode if no experience is available (habitual behavior is not possible) and shifts to

an exploratory mode with a predefined small probability. The network in which the

agents are embedded is generated using lifestyle information. Simulation runs for an

initial period from 2001 to 2010 provide plausible results on behavioral patterns in

cases of weather changes. From 2011 to 2020, the authors examine the effects of two

intervention strategies that mobilize individuals to provide neighborhood support.

Some model parameters remain uncalibrated, and the entire model is not validated

due to a lack of empirical data at the macro level.

Krebs and Ernst (2015) develop an agent-based spatial simulation of adoption

of green electricity in Germany. Each agent represents a household deciding to se-

lect between “green” and “gray” energy providers. Every agent is characterized by

its geographical location and lifestyle group. Agents are initialized and parameter-

ized by empirical data from surveys, psychological experiments, and other publicly

available data. Following LARA, agents are assumed to make decisions either in a

deliberative or habitual mode. Default agent behavior is habitual, and the agent tran-

sitions to a deliberative mode when triggered by internal and external events, such

as a price change, personal communication, cognitive dissonance, need for cogni-

tion, and media events. An agent chooses an action that maximizes utility, which is a

weighted sum of four goals: ecological orientation, economic orientation, social con-

formity, and reliability of provision. The goal weights depend on the lifestyle group

and are derived from a survey and expert rating (Ernst and Briegel, 2016). An arti-

ficial network that connects the agents is generated based on lifestyle and physical

distance (Ernst and Briegel, 2016). Once an agent decides to adopt green electricity,

it chooses a service brand that is already known. The diffusion of the awareness of the

brand is characterized by a simple word-of-mouth process. Validation focuses on two

state variables of agent behavior: selected electricity provider and awareness of the
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brand, which involves comparing simulation results with historical data both tem-

porally and spatially starting from aggregate to the individual level. Unfortunately,

validation was not conducted using independent data.

2.4 Heuristic Models

Heuristic adoption models are often used when modelers are not aware of any estab-

lished theories for agent decision-making in the studied application. These models

tend to give us an impression of being “ad-hoc”, since they are not built on any

grounded theories. More importantly, unlike the cognitive agent models such as the

theory of planned behavior, there is no established or principled means to estimate

model parameters. Therefore, model parameters are often selected in order to match

simulated output against a realistic adoption level. Although heuristic-based model

appears to be an inaccurate representation of agent decision-making, they are easy to

implement and interpret.

Van Vliet et al (2010) make use of a take-the-best heuristic to model a fuel trans-

portation system to investigate behavior of fuel producers and motorists in the context

of diffusion of alternative fuels. In the model, producers’ plant investment decision

is determined by simple rules, and the same plant can produce multiple fuel types.

Motorists are divided into several subgroups, each having distinct preferences. Each

motorist is assumed to choose a single fuel type in a given year. Each fuel is as-

signed four attributes: driving cost, environment, performance, and reputation. Mo-

torist preferences in the model are represented by two factors: 1) priorities, or the

order of perceived importance of fuel attributes, and 2) tolerance levels, which de-

termine how much worse a particular attribute of the corresponding fuel can be com-

pared to the best available alternative to maintain this fuel type under consideration.

The decision heuristic then successively removes the worst fuel one at a time in the

order of attribute priorities. Due to the difficulty of obtaining actual preferences of

motorists, the authors used the Dutch consumer value dispositions from another pub-

lished model in literature as a proxy to parameterize the model. However, the model

was not rigorously calibrated or validated using empirical data.

Zhao et al (2011) propose a two-level agent-based simulation modeling frame-

work to analyze the effectiveness of policies such as subsidies and regulation in pro-

moting solar photovoltaic (PV) adoption. The lower-level model calculates payback

period based on PV system electricity generation and household consumption, sub-

sidies, PV module price, and electricity price. The higher-level model determines

adoption choices as determined by attributes which include payback period, house-

hold income, social influence, and advertising. A pivotal aspect of the model is the

desire for the technology (PV), which is formulated as a linear function of these four

factors, and an agent adopts if the desire exceeds a specified threshold. Survey re-

sults from a prior study were used to derive a distribution for each factor, as well as

the membership function in a fuzzy set formulation. The agents in the model were

initialized using demographic data, along with realistic population growth dynam-

ics based on census data. Moreover, calibration of threshold value was conducted to
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match simulated annual rate of PV adoption with historical data. However, the model

was not quantitatively validated using independent data.

A more complex TOPSIS (Technique for Order Preference by Similarity to Ideal

Solution) model is a decision heuristic which selects an option from several alter-

natives that is the closest to the ideal option and the farthest from the worst possi-

ble option. Kim et al (2011) present agent-based automobile diffusion model using a

TOPSIS approach to simulate market dynamics upon introduction of a new car in the

market. The model integrates three determinants of purchasing behavior: (1) informa-

tion offered by mass media, (2) relative importance of attributes to consumers, and

(3) social influence. Individual agents rank products by considering multiple product

attributes and choosing a product closest to an ideal. A survey was conducted to es-

timate consumers’ weights on the car attributes and the impact of social influence.

In the simulations, diffusion begins with innovators who try out new products be-

fore others; once they adopt, their social network neighbors become aware of these

decisions, with some deciding to adopt, and so on. A small-world network structure

was assumed for this virtual market, and choices of rewiring and connectivity were

determined by the model calibration step through comparing simulated results with

historical monthly sales volumes of three car models. However, the model was not

validated using independent data.

2.5 Statistics-Based Models

Statistics-based models rely on statistical methods to infer relative contribution of

observable features towards one’s decision whether to adopt. The estimated model

is then integrated into an ABM. We review three subcategories of statistics-based

methods for agent-based models of innovation diffusion: conjoint analysis, discrete

choice models, and machine learning.

2.5.1 Conjoint Analysis

Conjoint analysis is a statistical technique used in market research to determine how

much each attribute of a product contributes to consumer’s overall preference. This

contribution is called the partworth of the attribute. Combining with feature values of

innovation obtained from field study, one can construct a utility function accordingly.

Garcia et al (2007) utilize conjoint analysis to instantiate and calibrate an agent-

based marketing model using a case study of diffusion of Stelvin wine bottle screw

caps in New Zealand. With a particular emphasis on validation, the overall work fol-

lows Carley (1996)’s four validation steps: grounding, calibration, verification, and

harmonizing (the latter not performed, but listed as future work) to properly evalu-

ate the model at both micro and macro levels. The model includes two agent types:

wineries and consumers. In each period the wineries set the price, production level,

and attributes of screw caps as a function of consumer demand. Consumers, in turn,

make purchase decisions following their preferences. The model is calibrated using

conjoint analysis, inferring partworths which determine consumer preferences in the

model. Aggregate stylized facts were then replicated in the verification step. The
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work emphasizes the value of calibration, but pays less attention to validation, which

is merely performed at a face level rather than quantitatively.

Vag (2007) presents a dynamic conjoint method that enables forecasts of future

product preferences. The consumer behavior model considers many factors, including

social influence, communication, and economic motivations. The author surveys be-

havior of individuals, such as their communication habits, and uses conjoint analysis

to initialize preferences in the ABM. Notably, in this model agent priorities depend

on one another, and the resulting social influence interactions may lead to large-scale

aggregate shifts in individual priorities. To demonstrate the usability of their model,

the study utilized empirical data on product preferences (in this case, preferences

for mobile phones), consumer habits, and communication characteristics in a city in

Hungary. Calibration of this model was only based on expert opinion and compara-

tive analysis, rather than quantitative comparison with real data, and no quantitative

validation was performed.

Zhang et al (2011) develop an agent-based model to study the diffusion of eco-

innovations, which in their context are alternative fuel vehicles (AFVs). The model

considers interdependence among the manufacturers, consumers, and governmental

agencies in the automotive industry. The agents representing manufacturers choose

engine type, fuel economy, vehicle type, and price, following a simulated annealing

algorithm, to maximize profit in a competitive environment until a Nash equilibrium

is reached (Michalek et al, 2004). The consumer agents choose which products to

purchase. The partworth information in the utility function was derived by choice-

based conjoint analysis using an empirical survey from Garcia et al (2007). In partic-

ular, the probability of a consumer choosing a vehicle is formulated as a logit function

of vehicle attributes, word-of-mouth, and domain-specific knowledge. The utility is

modeled as a weighted sum of attributes, and parameters/partworth are estimated us-

ing hierarchical Bayes methods. The agent acting as “government” chooses policies

aimed at influencing the behavior of both manufacturers and consumers. Model cali-

bration involved conjoint analysis. However, the authors found that the ABM tended

to overestimate the market shares of alternative fuel vehicles, which motivated them

to adjust model parameters and to linearize the price parthworth in order to ensure

that aggregate demand decreases with the price. Like Garcia et al (2007), the authors

follow the four steps of validation (Carley, 1996). However, validation does not use

data independent from calibration.

Lee et al (2014) introduce an agent-based model of energy consumption by in-

dividual homeowners to analyze energy policies in the U.K. The model utilizes his-

torical survey data and choice-based conjoint analysis to estimate the weight of a

hypothetical utility function, defined as the weighted sum of attributes. In the sim-

ulation, moving and boiler break-down events are assumed to trigger a decision by

the household agent. In this case, a particular alternative is selected if its utility is

higher than all other alternatives as well as the status quo option. The model was

populated with initial data based on a survey conducted in the U.K., and each agent

was matched to a household type which can be further mapped to energy demand us-

ing energy consumption estimates. The authors then combined energy demand with

fuel carbon intensity to determine annual household emissions. The model was cal-

ibrated by adjusting the weights in the decision model to match historic installation
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rates from 1996 to 2008 for loft insulation and cavity wall insulation. The model was

not validated using independent data.

Stummer et al (2015) devise an agent-based model to study the diffusion of mul-

tiple products. Each product is characterized by a number of attributes determined by

expert focus group discussion. True performance of each product attribute is unknown

to consumers, and each agent, therefore, keeps track of the distribution of attribute

values based on information previously received. This information is updated based

on interactions with peers, advertising, or direct experience. Consumer agent behav-

ior is governed by a set of parameters that capture heterogeneous preferences and

mobility behavior. Agents have additive multi-attribute utilities, the weights of which

were obtained from survey data using conjoint analysis. The authors adapt the prefer-

ential attachment algorithm introduced by (Barabási et al, 1999) to generate networks

in which the attachment probability depends on both node degree and geographic dis-

tance between nodes. Network parameters were determined by taking into account

additional information revealed in the consumer survey, such as the number of so-

cial contacts and communication frequency. An agent decides to purchase a product

which maximizes utility. The model defines each advertising event to communicate a

set of product attributes, which either increase product awareness or impact customer

preferences. The model was validated extensively following (Knepell and Arangno,

1993), including conceptual validity, internal validity, micro-level external validity,

macro-level external validity, and cross-model validity. The weakness of validation,

however, is that it is only performed as an in-sample exercise without using indepen-

dent data.

2.5.2 Discrete Choice Models

The discrete choice modeling framework, which originates in econometrics, is used

to describe, explain, and predict agent choices between two or more discrete alter-

natives (Train, 2009). The approach has a wide range of applications, and we review

several efforts targeted specifically at innovation diffusion.

Galán et al (2009) design an agent-based model to analyze water demand in a

metropolitan area. This model is an integration of several sub-models, including mod-

els of urban dynamics, water consumption, and technological and opinion diffusion.

The opinion diffusion model assumes that an agent’s attitude towards the environment

determines its water consumption, i.e., an non-environmentalist would use more wa-

ter than an environmentalist. Accordingly, it is assumed that each agent can be in

two states: environmentalist (E) or non-environmentalist (NE). The choice of a state

depends on the agent’s current state, the relative proportion of E and NE neighbors,

and an exogenous term measuring the pressure towards E behavior. Transition prob-

abilities between states E and NE are given in form of logistic functions. However,

rather than using empirical data to estimate parameters of these functions, the au-

thors parameterized the behavior diffusion model with reference to models in prior

literature for other European cities. To determine adoption of water-saving technol-

ogy, the opinion diffusion model is coupled with the technological diffusion model,

which is implemented by a simple agent-based adaptation of the Bass model fol-

lowing (Borshchev and Filippov, 2004). The model was validated qualitatively by
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domain experts, quantitatively calibrated based on the first quarter of 2006, and vali-

dated by comparing the model with actual adoption in the following two quarters. The

authors demonstrate that simulation results successfully replicate the consequence of

a water-saving campaign on domestic water consumption.

Dugundji and Gulyás (2008) propose a computational model that combines econo-

metric estimation with agent-based modeling to study the adoption of transportation

options for households in a city in Netherlands. The presented discrete choice model-

ing framework aims to address interactions within different social and spatial network

structures. Specifically, agent decision is captured using a nested logit model, which

enables one to capture observed and unobserved behavior heterogeneity. Feedback

effects among agents are introduced by adding a linear term (a so-called field vari-

able) that captures proportions of an agent’s neighbors making each decision to each

agent’s utility function. Because survey data on interactions between identifiable in-

dividuals was unavailable, this term only captured aggregate interactions among so-

cioeconomic peers. The authors investigated simulated transition dynamics for the

full model with two reference models: the first a nested logit model with a global

field variable only and a fully connected network, and the second a multinomial logit

model which is a special case to the full model. They found that simulated dynamics

differ dramatically between the models. Given this lack of modeling robustness, no

further validation was undertaken.

Tran (2012) develops an agent-based model to investigate energy innovation dif-

fusion. Agent behavior in this model is determined by the relative importance of tech-

nology attributes to the agents, and social influence. Social influence, in turn, takes

two forms: indirect influence coming from the general population, and direct influ-

ence of social network neighbors. The author drew on ABM studies in the marketing

literature, and formulated the adoption model as Prob(t) = 1−(1−Pij)(1−Qij)
Kij ,

where Pij captures individual choice using a discrete choice model of consumer

decision-making, in which an agent’s utility is defined as an inner product of co-

efficients and attributes. Coefficients are a random vector, with distribution different

for different agents, capturing preference heterogeneity. Qij and Kij is the indirect

and direct network influence, respectively, captured as a function of the number of

adopters at decision time. While the model was evaluated using simulation exper-

iments, and the nature of the model makes it well suited for empirically grounded

parameter calibration, it was not in actuality quantitatively calibrated or validated

using empirical data.

2.5.3 Machine Learning Models

Machine learning (ML) is a sub-area of computer science that aims to develop al-

gorithms that uncover relationships in data. Within a supervised learning paradigm

which is of greatest relevance here, the goal is further to develop models that ac-

curately predict the value of an outcome variable for unseen instances. To do so, a

computer program is expected to recognize patterns from a large set of observations,

referred to as a training process that is grounded in statistical principles and governed

by intelligent algorithms, and make predictions on new, unseen, instances. This cat-

egory of methods has recently drawn much attention in academia and industry due



22 Haifeng Zhang, Yevgeniy Vorobeychik

to tremendous advances in predictive efficacy on important problems, such as image

processing and autonomous driving. Combining machine learning with agent-based

modeling seems promising in the study of innovation diffusion since the two can

complement each other. The former is specialized in building a high-fidelity predic-

tive models, while the latter captures dynamics and complex interdependencies. Of

particular relevance to combining ML and ABM is the application of machine learn-

ing to model and predict human behavior. Interestingly, relatively few attempts have

been made to date to incorporate ML-based models of human behavior within ABM

simulations.

Sun and Müller (2013) develop an agent-based model that features Bayesian be-

lief networks (BBNs) and opinion dynamics models (ODMs) to model land-use dy-

namics as they relate to payments for ecosystem services (PES). The decision model

of each household is represented using a BBN, which were calibrated using survey

data and based on discussions with relevant stakeholders, and incorporate factors such

as income and land quality. Social interactions in decision-making are captured by

ODM. The modeling framework was applied to evaluate China’s Sloping Land Con-

version Program (SLCP), considered among the largest PES programs. SLCP was de-

signed to incentivize reforestation of land through monetary compensation. In their

model, farmers make land-use decisions whether or not to participate in the SLCP

program based on internal beliefs and external influences. External influences adjust

internal beliefs cumulatively using a modified Deffuant model (Deffuant et al, 2002a)

within a community-based small-world social network. Initial model structures were

obtained using a structural learning algorithm, with results augmented using qualita-

tive expert knowledge, resulting in a pseudo tree-augmented naive Bayesian (TAN)

network. The final BBN model was validated by using a sensitivity analysis, and

measuring prediction accuracy and area under the curve (AUC) of the receiver op-

erating characteristics (ROC) curve on a holdout test data set at both household and

plot level. A crucial limitation of this work is that only the BBN model was carefully

validated; the authors did not validate the full simulation model at either the micro or

macro levels.

Zhang et al (2016) propose a data-driven agent-based modeling (DDABM) frame-

work for modeling residential rooftop solar photovoltaic (PV) adoption in San Diego

county. In this framework, the first step is to use machine learning to calibrate individ-

ual agent behavior based on data comprised of individual household characteristics

and PV purchase decisions. These individual behavior models were validated using

cross-validation methods to ensure predictive efficacy on data not used for model cal-

ibration, and were then used to construct an agent-based simulation with the learned

model embedded in artificial agents. In order to ensure validation on independent

data, the entire time series data of individual adoptions was initially split along a time

dimension. Training and cross-validation for developing the individual-level models

were performed only on the first (early) portion of the dataset, and the aggregate

model was validated by comparing its performance with actual adoptions on the sec-

ond, independent time series, into the future relative to the calibration data set. The

authors thereby rigorously demonstrate that the resulting agent-based model is ef-

fective in forecasting solar adoption both at the micro and macro levels. To our best

knowledge, this work proposed the first generic principled framework that combines
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ML and ABM in study of innovation diffusion. Unlike most ABM studies we have

reviewed, DDABM has the following features: 1) it does not make any assumptions

on the structural features of social network, relying entirely on a data-driven process

to integrate most predictive spatial and social influence features into the individual

adoption model; 2) it does not rely on matching simulated dynamics with the empir-

ical observations to calibrate the model, but instead parameterizes the model through

a far more efficient statistical learning method at the level of individual agent be-

havior; and 3) validation is performed on independent data to evaluate the predictive

effectiveness of the model. Moreover, validation is not only done at the macro-level

by comparison with actual adoption traces, but also at the micro-level by means of

the simulated likelihood ratio relative to a baseline model. To further justify the use-

fulness of ML-base approach, Zhang et al (2016) actually implement and compare

their model with another agent-based model of rooftop solar adoption developed

by (Palmer et al, 2015), with parameters calibrated on the same dataset following

the general aggregate-level calibration approach used by them. The result is very re-

vealing, as it strongly suggests that aggregate-level calibration is prone to overfit the

model to data, an issue largely avoided by calibrating individual agent behavior.

2.6 Social Influence Models

Our last methodological category covers several models looking specifically at social

influence. These models are quite simple, abstract, but prevalent in the theoretical

study of innovation diffusion. Our purpose of discussing these is that there have been

several recent efforts to calibrate these models using empirical data.

After analyzing an adoption dataset of Skype, Karsai et al (2014) develop an

agent-based model to predict diffusion of new online technologies. Specifically, agents

in their model are characterized by three states: susceptible (S), adopter (A), and re-

moved (R). Susceptible refers to people who may adopt the product later. Adopter

agents have already adopted. Finally, removed are those who will not consider adopt-

ing the product in the future again. The transition from S to A is regulated by sponta-

neous adoption and peer-pressure, from A to S by temporary termination, and from

A to R by permanent termination, each of which is parametrized by a constant proba-

bility which is identical for all users. While some parameters, such as average degree

and temporary termination probability, are estimated directly from observations, the

remaining parameters are determined by simultaneously fitting the empirical rates us-

ing a bounded nonlinear least-squares method. The model is fit over a 5-year training

period, and validation uses predictions over the last six months of the observation pe-

riod. However, validation is somewhat informal, since the predictability of the model

is evaluated on a part of the training data and there is no validation of micro-behavior.

In a later work using the same Skype data, Karsai et al (2016) develop a threshold-

driven social contagion model with only two states: susceptible and adopted. In ad-

dition, the model assumes that some fraction of nodes never adopt. The authors cal-

ibrated the value of this fraction by matching the size of the largest component of

adopters given by the simulations with real data. In addition, the model assumes that

susceptible nodes adopt with a constant probability, which is informed by empiri-
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cal analysis. In their simulations, nodes have heterogeneous degrees and thresholds,

which follow empirical distributions. However, validation was not performed using

independent data.

Herrmann et al (2013) present two agent-based models of diffusion dynamics in

online social networks. The first ABM is motivated by the Bass model, but time is

discretized and each agent has two states: unaware and aware. At each time step,

an unaware agent changes state to aware as a function of two triggers: innovation

arising from exogenous sources, such as advertising, and imitation, which comes

from observing decisions by neighbors. The second model termed the independent

cascade model, originating from Goldenberg et al (2001), has a similar structure to

the agent-based Bass model, except that the imitation effect is formulated as a single

probability with which each aware neighbor can independently change the state of an

agent to aware. The author applied the two models in parallel to four diffusion data

sets from Twitter, and calibrated parameters using actual aggregate adoption paths.

Notably, validation is only performed at macro-level as an in-sample exercise, and

shows that the two models behave similarly.

Using historical diffusion data of Facebook apps, Trusov et al (2013) introduce

an approach that applies Bayesian inference to determine a mixture of multiple net-

work structures. Notice that most ABMs we reviewed so far either assume a single

underlying social network (with parameters determined in model calibration) or gen-

erate artificial networks based on empirical findings or social science theories. They

first choose a collection of feasible networks that represent the unobserved consumer

networks. Then, a simple SIR model (similar to the Bass ABM in Herrmann et al

(2013)) is used to simulate the diffusion of products. The simulated time series are

further transformed to multivariate stochastic functions, which provide priors to the

Bayesian inference model to obtain the posterior weights on the set of feasible con-

sumer networks. Like Herrmann et al (2013), the adoption model is calibrated from

the aggregate output, rather than from observations of individual decisions.

Chica and Rand (2017) propose an agent-based framework to build decision sup-

port system (DSS) for word-of-mouth programs. They developed a DSS to forecast

the purchase of a freemium app and evaluate marketing policies, such as targeting

and reward. The model captures seasonality of user activities by two probabilities for

weekday and weekend respectively. The initial social network is generated by match-

ing the degree distribution of the real network. Then, for each node, two weights are

assigned to in- and out-edges, respectively, turning the network into a weighted graph

that represents the heterogeneous social influence among social neighbors. Specifi-

cally, two models are used to model the information diffusion. One is the Bass-ABM

( Rand and Rust (2011)); the other is a contagion model (a threshold model but adding

external influence). The parameters of the model were calibrated by a genetic algo-

rithm (Stonedahl and Rand, 2014), in which the fitness is defined based on the dif-

ference of simulated adoption from the historical adoption trajectory. Notably, the

model was validated by a hold-out dataset, which is independent of the training data.

For example, the entire 3 month period spanned by the data was divided into two:

first 60 days for training, the last 30 days for validation.

The independent cascade model used by Herrmann et al (2013) and the threshold

model used by Chica and Rand (2017) are significant insofar as these connect to a
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substantial literature that has recently emerged within the Computer Science commu-

nity on information diffusion, whereby information (broadly defined) spreads over a

social network. We make this connection more precisely in Section 4 below.

3 Categorization of Innovation Diffusion Models by Application

Thus far, we followed a categorization of agent-based models of innovation diffusion

focused on methods by which agent behavior is modeled. First, we observe that meth-

ods range from sophisticated mathematical optimization models (Section 2.1), to eco-

nomic models (Section 2.2), to even simpler models based on heuristics for represent-

ing agent behavior (Section 2.4). While economic factors are dominant concerns in

some applications, others emphasize the cognitive aspects of human decision-making

(Section 2.3) and are frequently used to model influence over online social networks

(Section 2.6). Second, we note that the method chosen to capture agent behavior also

impacts the techniques used to calibrate model parameters from data. For example,

cognitive models are often constructed based on detailed behavior data collected from

field experiments and surveys, whereas models of agent behavior based on statistical

principles rely on established statistical inference techniques for model calibration

based on individual behavior data that is either observational or experimental. Other

modeling approaches within our six broad categories often do not use data to cali-

brate individual agent behavior, opting instead to tune model parameters in order to

match aggregate adoption data.

We now offer an alternative perspective to examine the literature on empirical

ABMs of innovation diffusion by considering applications—that is, what particu-

lar innovation is being modeled. A breakup of existing work using this dimension

is given in Table 2. As shown in the first column, we group applications by broad

categories: agricultural innovations and farming, sustainable energy and conserva-

tion technologies, consumer technologies and innovations, information technologies

and social goods. Interestingly, the first two categories account for more than half of

the publications in literature. This likely reflects the history of ABM as an interdisci-

plinary modeling framework for computational modeling of issues that are of great in-

terest in social science. A closely related factor could be the relatively high availabil-

ity of data in these applications generated by social scientists (e.g., through the use of

surveys). Another interesting observation that arises is methodological convergence

for given applications: relatively few applications have been modeled within differ-

ent methodological frameworks as categorized above. Future research may explore

the use of different methods for same application. Furthermore, comparison of differ-

ent modeling methods is rare within a single work (except in (Dugundji and Gulyás,

2008; Zhang et al, 2016)), although such a methodological cross-validation is of im-

portance as emphasized by some authors (Carley, 1996; Rand and Rust, 2011).

Category Application Method Citation

agricultural innovations

and farming

agricultural innovations mathematical programming Berger (2001);

Schreinemachers et al

(2007); Berger et al (2007);

Schreinemachers et al (2009,

2010); Alexander et al (2013)
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economic (utility) Holtz and Pahl-Wostl (2012)

organic farming cognitive model (Deffuant) Deffuant et al (2002b)

cognitive model (TPB, Deffuant) Kaufmann et al (2009)

biogas plant economic (profit) Sorda et al (2013)

payments for ecosystem services machine learning Sun and Müller (2013)

sustainable energy and

conservation technologies

water-saving technology cognitive model (TPB) Schwarz and Ernst (2009)

discrete choice model Galán et al (2009)

heating system cognitive model (TPB) Sopha et al (2013)

conjoint analysis Lee et al (2014)

economic (cost) Faber et al (2010)

solar photovoltaic heuristic Zhao et al (2011)

economic (utility) Palmer et al (2015)

cognitive model (TPB, Deffuant) Rai and Robinson (2015)

machine learning Zhang et al (2016)

fuel cell vehicles cognitive model (Consumat) Schwoon (2006)

energy innovation discrete choice model Tran (2012)

electric vehicles cognitive model (TEC) Wolf et al (2012)

economic (utility) Plötz et al (2014)

economic (utility) McCoy and Lyons (2014)

alternative fuel vehicles conjoint analysis Zhang et al (2011)

alternative fuels heuristic Van Vliet et al (2010)

economic (utility) Günther et al (2011)

conjoint analysis Stummer et al (2015)

green electricity cognitive model (LARA) Krebs and Ernst (2015);

Ernst and Briegel (2016)

air-quality feedback device cognitive model (TPB) Jensen et al (2016)

consumer technologies

and innovations

wine bottle closures conjoint analysis Garcia et al (2007)

mobile phones conjoint analysis Vag (2007)

transportation mode discrete choice model Dugundji and Gulyás (2008)

new cars Fuzzy TOPSIS (heuristic) Model Kim et al (2011)

movie economic (utility) Broekhuizen et al (2011)

information technologies Skype social contagion model Karsai et al (2014, 2016)

Twitter independent cascade model Herrmann et al (2013)

Facebook app social contagion model Trusov et al (2013)

freemium app social contagion model Chica and Rand (2017)

social goods neighborhood support cognitive model (LARA) Krebs et al (2013)

Table 2: Categorization of surveyed work by Applications

4 Information Diffusion Models

Online social networks have emerged as an crucial medium of communication. It

does not only allow users to produce, exchange, and consume information at an

unprecedented scale and speed, but also speeds the diffusion of novel and diverse

ideas (Guille et al, 2013; Bakshy et al, 2012). The emergence of online social net-

works and advances in data science and machine learning have nourished a new

field: information diffusion. The fundamental problem in information diffusion is to

model and predict how information is propagated through interpersonal connections

over social networks using large-scale diffusion data. In fact, several authors have re-

viewed the topic of information diffusion over online social networks (Bonchi, 2011;

Guille et al, 2013; Shakarian et al, 2015). Our aim is not to provide a comprehensive

review of this same topic. Instead, we are interested in building connections between

the agent-based modeling approach to innovation diffusion, and the modeling meth-

ods in the field of information diffusion. Indeed, researchers in the ABM community

have paid little attention to the existing methods for modeling information diffusion,
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and especially in the played by data science in this field, which has significant impli-

cations for ABM model calibration, as we discuss below.

4.1 Two Basic Models of Information Diffusion

Compared to agent adoption models in Section 2, the decision process in the in-

formation diffusion literature is typically very simple, following predominantly the

social influence models. The two most common models in information diffusion are

Independent Cascades (IC) (Goldenberg et al, 2001) and Linear Threshold (LT) mod-

els (Granovetter, 1978). These models are defined on directed graphs where activation

is assumed to be monotonic: once a node is active (e.g., adopted, received informa-

tion), it cannot become inactive. The diffusion process in both models starts with a

few active nodes and progresses iteratively in a discrete and synchronous manner un-

til no new nodes can be infected. Specifically, in each iteration, a new active node in

the IC model is given a single chance to activate its inactive neighbors independently

with an exogenously specified probability (usually represented by the weight of the

corresponding edge). In the LT model, in contrast, an inactive node will become ac-

tive only if the sum of weights of its activated neighbors exceeds a predefined node-

specific threshold, which is typically randomly assigned between 0 and 1 for each

network node. Note that in both models a newly activated node becomes active im-

mediately in the next iteration. From an agent-based perspective, both IC and LT are

generative models which define two diffusion mechanisms.

4.2 Learning Information Diffusion Models

Several efforts use empirical data to calibrate the parameters of the LT and IC models.

Saito et al (2011) propose an asynchronous IC (AsIC) model, which not only captures

temporal dynamics, but also node attributes. They show how the model parameters

can be estimated from observed diffusion data using maximum likelihood estimation

(MLE). The AsIC model closely follows the IC model, but additionally introduces a

time delay before a newly activated node becomes active. The time delay is assumed

to be exponentially distributed with a parameter that is defined as an exponential

function of a feature vector (a composition of attributes associated with both nodes

and edges). The transmission probability is then defined as a logit function of the

feature vector. The data is given in the format of “diffusion traces”, and each trace

is a sequence of tuples which specify activation time for a subset of nodes. To learn

the model using this data, the authors define the log-likelihood of the data given the

model. The authors then demonstrate how to solve the resulting optimization problem

using expectation-maximization (EM). While the proposed model is promising to be

used for prediction, the learning method was only tested using synthetic data.

Guille and Hacid (2012) show how to parameterize the AsIC model using ma-

chine learning methods based on Twitter data. In their model, the diffusion proba-

bility for information at any given time between two users is a function of attributes

from three dimensions: social, semantic, and time, which group features with respect
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to social network, content and temporal property respectively. Four different clas-

sifiers were trained and compared in terms of cross-validation error: C4.5 decision

tree, linear perceptron, multilayer perceptron, and Bayesian logistic regression. The

last model mentioned above was finally used for prediction. Notably, time-delay pa-

rameter was determined separately in this work by comparing simulation results with

actual diffusion dynamics, which is the same calibration method commonly used in

ABM of innovation diffusion. Unlike (Saito et al, 2011), where all model parameters

are inferred by MLE, here only a subset of model parameters are estimated through

established machine learning techniques, but the rest are calibrated by simulations.

Their evaluation shows that the model accurately predicts diffusion dynamics, but

fails to accurately predict the volume of tweets. In our ABM jargon, the model per-

forms well at macro-level, but poorly at micro-level validation (Carley, 1996). An-

other limitation of this work is that validation is only performed as an in-sample

exercise, rather than using out-of-sample data.

Galuba et al (2010) propose two diffusion models with temporal features that are

used to predict user re-tweeting behaviors on Twitter. Both models define the prob-

ability for a user to re-tweet a given URL to be a product of two terms: one is time-

independent, the other is time-dependent. Both have the same time-dependent part

which follows a log-normal distribution, but differ in the actual definitions of the

time-independent part. In their first model termed At-Least-One (ALO), the time-

independent component is defined as the likelihood of at least one of the causes:

either one is affected by the agent it follows, or by the user tweets a URL spontae-

nously. The second, Linear Threshold (LT), model, posits that a user re-tweets a URL

only if the cumulative influence from all the followees is greater than a threshold. The

time-independent component in this model is given by a sigmoid function. In order

to calibrate and validate the model, the data set was split along the time dimension

into two parts. The model was calibrated by choosing parameters that optimize the

estimated F-score using the gradient ascent method on the first (earlier) data set, and

used to predict URL mentions in the second (later) data set. Their results show that

the LT model achieves the highest F-score among all models and correctly predicts

approximately half of URL mentions with lower than 15% false positives.

While all research reviewed so far assumes known network structure, a number

of efforts deal with hidden network structures which must also be learned from data.

The so-called network inference problem is to infer the underlying network given a

complete activation sequence (Guille et al, 2013). Gomez Rodriguez et al (2010) in-

troduce a variant of the independent cascade model (Kempe et al, 2003) adding time

delay. Their problem is to find a directed graph with at most k edges that maxi-

mizes the likelihood of a set of cascades for a given transmission probability and

parameters of the incubation distribution, which is solved approximately using a

greedy algorithm. Myers and Leskovec (2010) propose a cascade model which is

similar to Gomez Rodriguez et al (2010) but allows distinct transmission probabil-

ities for different network edges. The goal is to infer the adjacency matrix (refer-

ring to the pairwise transmission probabilities) that maximizes the likelihood given

a set of cascades, which is accomplished by solving a convex optimization prob-

lem derived from the problem formulation. Gomez Rodriguez et al (2011) develop a

continuous-time diffusion model that unifies the two-step diffusion process involving
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both a transmission probability and time delay from Gomez Rodriguez et al (2010)

and Myers and Leskovec (2010). The pivotal value is the conditional probability for

a node i to be infected at time ti given that a neighboring node j was infected at time

tj , which is formulated as a function of the time interval (ti−tj) and parametrized by

a pairwise transmission rate αji. Survival analysis (Lawless, 2011) is used to derive

the maximum likelihood function given a set of cascades, and they aim to find a con-

figuration of all transmission rates that maximizes the likelihood. While most net-

work inference algorithms assume static diffusion networks, Gomez Rodriguez et al

(2013) address a network inference problem with a time-varying network. The re-

sulting inference problem is solved using an online algorithm upon formulating the

problem as a stochastic convex optimization.

4.3 Bridging Information Diffusion Models and Agent-Based Modeling of

Innovation Diffusion

The methodological framework of the information diffusion inference problems dis-

cussed above is a natural fit for principled data-driven agent-based modeling. The in-

formation diffusion models characterized by transmission probabilities and time de-

lay are essentially agent-based models. Given data of diffusion cascades, they can be

constructed either using only the temporal event (adoption) sequence, or using more

general node features, social network, content, and any other explanatory or predic-

tive factors. In fact, ABM researchers have started to apply similar statistical meth-

ods to develop empirical models (see Section 2.5). Notably, as shown by Zhang et al

(2016), parametric probabilistic models of agent behavior can be estimated from ob-

servation data using maximum likelihood estimation methods. In addition, the ap-

proaches for network inference appear particularly promising in estimating not only

behavior for a known, fixed social influence network, but for estimating the influence

network itself, as well as the potentially heterogeneous influence characteristics.

A crucial challenge in translating techniques from information diffusion domains

to innovation diffusion is that in the latter only observes a single, partial adoption

sequence, rather than a collection of complete adoption sequences over a specified

time interval. As a consequence, the fully heterogeneous agent models cannot be in-

ferred, although the likelihood maximization can still be effectively formulated by

limiting the extent of agent heterogeneity (with the limit of homogeneous agents

used by Zhang et al (2016)). In addition, the assumptions generally made in infor-

mation diffusion models can also pose serious challenges to the transferability of the

approach to agent-based modeling. Recall that the information cascade models of-

ten assume that an adopter has a single chance to affect its inactive neighbors and a

non-adopter is affected by its neighboring adopters independently. These assumptions

simplify the construction of the likelihood function, but further justification is needed

for them, especially when building empirical models that are expected to faithfully

represent realistic social systems and diffusion processes. Note that rules that govern

the interactions in agent-based models are quite flexible and can be very sophisti-

cated, which is also one of the major advantages of agent-based computing over ana-

lytical models. Although one may be able to explicitly derive a parametric likelihood
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function given diffusion traces in more complex settings than existing information

diffusion models do, this is sure to be technically challenging. Moreover, solving the

resulting MLE can be computationally intractable. Therefore, to take advantage of

MLE approach in information diffusion, ABM researchers must make appropriate

assumptions on agent interactions so that they can derive tractable likelihood func-

tions without significantly weakening the model’s explanatory and predictive power.

5 Discussion

5.1 Validation in Agent-Based Modeling

As agent-based modeling is increasingly called for in service of decision support

and prediction, it is natural to expect them to be empirically grounded. An overar-

ching consideration in empirically grounded agent-based modeling is how data can

be used in order to develop reliable models, where reliability is commonly identified

with their ability to accurately represent or predict the environment being modeled.

This property of reliability is commonly confirmed through model validation. In so-

cial science, a number of authors have contributed to the topic of validation, from

approaches for general computational models (Carley, 1996), to those focused on

agent-based simulations (Xiang et al, 2005; Fagiolo et al, 2006; Garcia et al, 2007;

Ormerod and Rosewell, 2009; Rand and Rust, 2011), to specific types of agent-based

models (Brown et al, 2005). Outside of social science, validation of simulation sys-

tems has an even longer history of investigation (Knepell and Arangno, 1993; Banks,

1998; Kleijen, 1999; Sanchez, 2001). We now briefly review these approaches.

As previously mentioned, Carley (1996) suggests four levels of validation: ground-

ing, calibration, verification, and harmonizing. Grounding establishes reasonableness

of a computational model, including face validity, parameter validity, and process va-

lidity; calibration establishes model’s feasibility by tuning a model to fit empirical

data; verification demonstrates how well a model’s predictions match data; and har-

monization examines the theoretical adequacy of a verified computational model.

More recently, drawing on formal model verification and validation techniques

from industrial and system engineering for discrete-event system simulations, Xiang et al

(2005) suggest the software implementation of agent-based model has to be verified

with respect to its conceptual model, and highlight a selection of validation tech-

niques from Banks (1998), such as face validation, internal validation, historical data

validation, parameter variability, predictive validation, and Turing tests. Moreover,

they suggest the use of other complementary techniques, such as model-to-model

comparison (Axtell et al, 1996) and statistical tests (Kleijen, 1999; Sanchez, 2001).

For agent-based models in economics, Fagiolo et al (2006) proposed three dif-

ferent types of calibration methods: the indirect calibration approach, the Werker-

Brenner empirical calibration approach, and the history-friendly approach. For ex-

ample, Garcia et al (2007) adopt the last approach to an innovation diffusion study

in New Zealand winery industry, using conjoint analysis to instantiate, calibrate, and

verify the agent-based model qualitatively using stylized facts.
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For agent-based models in marketing, Rand and Rust (2011) suggest verification

and validation as two key processes as guidelines for rigorous agent-based modeling.

The use of term “verification” follows common understanding in system engineer-

ing (Xiang et al, 2005). In particular, the authors identify four steps for validation:

micro-face validation, macro-face validation, empirical input validation, and empiri-

cal output validation using stylized facts, real-world data, and cross-validation. Note

that the proposed validation steps echo the framework by Carley (1996): the first two

steps correspond to grounding, the third to calibration, and the fourth roughly com-

bines verification and harmonization. However, the cross-validation method men-

tioned in Rand and Rust (2011) appears to suggest validation across models, whereas

Carley (1996) suggests validation across multiple data sets. The latter is consistent

with the use of cross-validation in statistical inference and machine learning (Friedman et al,

2001; Bishop, 2006).

Focusing specifically on empirically grounded ABMs, we suggest two pivotal

steps in ensuring model reliability in a statistical sense: calibration and validation.

By calibration, we mean the process of quantitatively fitting a set of model param-

eters to data, whereas validation means a quantitative assessment of the predictive

efficacy of the model using independent data, that is, using data which was not uti-

lized during the calibration step. Moreover, insofar as a model of innovation diffusion

is concerned with predicting future diffusion of an innovation, we propose to further

split the dataset along a temporal dimension, so that earlier data is used exclusively

for model calibration, while later data exclusively for validation. Starting with this

methodological grounding, we now proceed to identify common issues that arise in

prior research on empirically grounded agent-based models of innovation diffusion.

5.2 Issues in Model Calibration and Validation

Agent-based modeling research has often been criticized for lack of accepted method-

ological standard, hindering its acceptance in top journals by mainstream social sci-

entists. One notable protocol due to Richiardi et al (2006) highlight four potential

methodological pitfalls: link with the literature, structure of the models, analysis, and

replicability.

A careful examination of the empirical ABM work on innovation diffusion through

this protocol suggests that most of these issues have been addressed or significantly

mitigated. For example, nearly all of the reviewed papers present theoretical back-

ground, related work, sufficient description of model structure, sensitivity analysis of

parameter variability, a formal representation (e.g., UML3, OOD4), and public access

to source code. In spite of these improvements, however, there are residual concerns

about systematic quantitative calibration and validation using empirical data.

We observe that different agent adoption models are calibrated differently. In the

case of cognitive agent models (Section 2.3), such as the Theory of Planned Behav-

3 The short for the Unified Modeling Language, developed by the Object Management Group:

http://www.omg.org
4 A standard to describe agent-based models originally proposed by Grimm et al (2006) for ecological

modeling.
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ior and theory of emotional coherence, the individual model parameters are often

estimated using survey data. Similarly, statistics-based models (Section 2.5) can be

parametrized using either experimental or observational individual-level data. On the

other hand, for conceptual models, such as heuristic (Section 2.4) and economic mod-

els (Section 2.2), calibration is commonly done by iteratively adjusting parameters to

match simulated diffusion trajectory to aggregate-level empirical data. Formally, we

call the first kind of calibration “micro-calibration”, as it uses individual data during

calibration, whereas the second type “macro-calibration”, as it uses aggregate-level

data. Moreover, in many studies simulation parameters are determined using both

micro- and macro-calibration. For example, since network structure is often not fully

observed, and rules that govern agent interactions are assumed, parameters of these

are commonly macro-calibrated. Our first concern is about macro-calibration.

Issue I: Potential pitfalls in macro-calibration. When a model has many parame-

ters, over-fitting the model to data becomes a major concern Friedman et al (2001);

Bishop (2006). As Carley (1996) suggests, “any model with sufficient parameters

can always be adjusted so that some combination of parameters generates the ob-

served data, therefore, large multi-parameter models often run the risk of having so

many parameters that there is no guarantee that the model is doing anything more

than curve fitting.” Interestingly, the issue of over-fitting may even be a concern in

macro-calibration when only a few parameters need to be calibrated. The reason is

that agent-based models are highly non-linear, and even small changes in several

parameters can give rise to substantially different model dynamics. This issue is fur-

ther exacerbated by the fact that macro-calibration makes use of aggregate-level data,

which is often insufficient in scale for reliable calibration of any but the simplest

models, as many parameter variations can give rise to similar aggregate dynamics.

Addressing the issue requires greater care and rigor in applying macro-calibration.

One possibility is that instead of choosing only a single parameter configuration,

to select a parameter zone using a classifier such as decision trees (Kaufmann et al,

2009) or other machine learning algorithms. Subsequently, the variability of param-

eters within this zone can be further investigated using sensitive analysis. Another

potential remedy is that instead of using only a single target statistic (e.g., average

adoption rates) to use multiple indicators. A relevant strategy to build agent-based

models in the field of ecology is termed “pattern-oriented modeling”, which utilizes

multiple patterns at different scales and hierarchical levels observed from real sys-

tems to determine the model structure and parameters (Grimm et al, 2005).

In addition, there are more advanced and robust techniques that can improve the

rigor of macro-calibration. The modeling framework in (Zhang et al, 2016) and sta-

tistical inference methods introduced in Section 4 propose methods which integrate

micro and macro calibration into a single maximum likelihood estimation framework.

Through well-established methods in machine learning, such as cross-validation, one

can expect to parameterize a highly-predictive agent-based model and minimize the

risk of over-fitting. Indeed, a fundamental feature of any approach should be to let

validation ascertain the effectiveness of macro-calibration in generalizing beyond the

calibration dataset. This brings us to the second common issue revealed by our re-

view: lack of validation on independent data.
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Issue II: Rigorous quantitative validation on independent data is uncommon. A

common issue in the research we reviewed is that validation is often informal, incom-

plete, and even missing. The common reason for incomplete data-driven validation

is that relevant data is simply unavailable. However, so long as data is available for

calibrating the model, one can in principle use this data for both calibration and val-

idation steps, for example, following cross-validation methods commonly utilized in

machine learning. Several efforts seek to standardize the validation process for agent-

based models, and computational models in general. However, few papers discussed

explicitly follow any formalized validation approaches in this literature, although im-

portant exceptions exist (Garcia et al, 2007; Zhang et al, 2011; Stummer et al, 2015).

Issue III: Few conduct validation at both micro-level and macro-level. There has

been some debate about whether validation should be performed at both micro- and

macro-level (Carley, 1996). While arguments against the dual-verification often em-

phasize greater importance of model accuracy at the aggregate level, we argue that

robust predictions at the aggregate level can only emerge when individual behavior

is accurately modeled as well, particularly when policies that the ABM evaluates can

be implemented as modifying individual decisions.

Statistics-based models, such as machine learning, have well-established vali-

dation techniques which can be leveraged to validate individual-level models. One

widely-used technique in machine learning and data mining is cross-validation. A

common use of cross-validation is by partitioning the data into k parts, with train-

ing performed on k − 1 of these and testing (evaluation) on the kth. The results are

then averaged over k independent runs using each of the parts as test data. Observe

that such a cross-validation approach can be used for models of individual behavior

that are not themselves statistically-driven, such as models based on the theory of

planned behaviors. Unfortunately, few of the surveyed papers, with the exception of

statistics-based models, use cross-validation.

Issue IV: Few conduct validation of forecasting effectiveness on independent “fu-

ture” data. One limitation of cross-validation techniques as traditionally used is that

they provide an offline assessment of model effectiveness. To assess the predictive

power of dynamical systems, the entire model has to be validated in terms of its

ability to predict “future” data relative to what was used in calibration. We call this

notion “forward validation”. In particular, forward validation must assess simulated

behaviors against empirical observations at both individual and aggregate levels with

an independent set of empirical data. This can be attained, for example, by splitting a

time-stamped data set so that calibration is performed on data prior to a split date, and

forward validation is done on data after the split date (Galán et al, 2009; Zhang et al,

2016; Rai and Robinson, 2015; Chica and Rand, 2017). In this review, we do observe

several approaches that are validated on independent data, but these either are not

looking forward in time relative to the calibration data, or only focus on macro-level

validation. A common argument for the use of in-sample data for the forward valida-

tion is that new data is not available while the modeling task is undertaken. Notice,

however, that any data set that spans a sufficiently long period of time can be split

along the time dimension as above to effect rigorous forward validation.
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5.3 Recommended Techniques for Model Calibration and Validation

We have identified several issues in calibration and validation which commonly arise

in the prior development of empirical agent-based models for innovation diffusion,

and briefly discussed possible techniques that can help address these issues. We now

summarize our recommendations:

Multi-Indicator Calibration. When macro-calibration is needed, the use of mul-

tiple indicators can help address over-fitting, whereby a model which appears to

effectively match data in calibration performs poorly in prediction on unseen data.

We suggest that such indicators are developed at different scale and hierarchical

levels, so that models which cannot effectively generalize to unseen data can be

efficiently eliminated.

Maximum Likelihood Estimation. When individual-level data are available, we

recommend constructing probabilistic adoption models for agents, and estimating

parameters of these models by maximizing a global likelihood function (see, for

example, the modeling framework by Zhang et al (2016), and research discussed

in Section 4.2). Doing so offers a principled means of calibrating agent behavior

models from empirical data.

Cross Validation. This approach is widely used for model selection in the ma-

chine learning literature. Here, we recommend it for both micro-calibration and

micro-validation of ABMs. Note that it does not only apply to statistics-based

models, but can be used for any agent modeling paradigm where model parame-

ters are calibrated using empirical data. The use of cross-validation in calibration

can dramatically reduce the risk of over-fitting. Moreover, as it inherently uses

independent data, such validation leads to more rigorous ABM methodology.

Forward Validation. This method involves splitting data into two consecutive time

periods. The modeler calibrates an agent-based model using data from the first

period, and assesses the predictive efficacy of the model in the second period.

More rigorously, validation of the model should be evaluated at both individual

and aggregate levels.

6 Conclusions

We provided a systematic, comprehensive, and critical review of existing work on em-

pirically grounded agent-based models for innovation diffusion. We offered a unique

methodological survey of literature by categorizing agent adoption models along two

dimensions: methodology and application. We identified six methodological cate-

gories: mathematical optimization based models, economic models, cognitive agent

models, heuristic models, statistics-based models and social influence models. They

differ not only in terms of assumptions and elaborations of human decision-making

process, but also with respect to calibration and parameterization techniques. Our

critical assessment of each work focused on using data for calibration and validation,

and particularly performing validation with independent data. We briefly reviewed

the most important work in the closely related literature on information diffusion,

building connections between the innovation and information diffusion approaches.
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One particularly significant observation is that information diffusion methods rely

heavily on machine learning and maximum likelihood estimation approaches, and

the specific methodology used can be naturally ported to innovation diffusion ABMs.

Drawing on prior work in validation of computational models, we discussed four

main issues for existing empirically grounded ABM studies in innovation diffusion,

and provided corresponding solutions.

On balance, recent developments of empirical approaches in agent-based mod-

eling for innovation diffusion are encouraging. Although calibration and validation

issues remain in many studies, a number of natural solutions from data analytics offer

promising directions in this regard. The ultimate goal of empirically grounded ABMs

is to provide decision support for policy makers and stakeholders across a broad va-

riety of innovations, helping improve targeted marketing strategies, and reduce costs

of successful translation of high-impact innovative technologies to the marketplace.
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