Skip to main content
Log in

A comprehensive investigation into the performance, robustness, scalability and convergence of chaos-enhanced evolutionary algorithms with boundary constraints

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The purpose of this research is to investigate the effects of different chaotic maps on the exploration/exploitation capabilities of evolutionary algorithms (EAs). To do so, some well-known chaotic maps are embedded into a self-organizing version of EAs. This combination is implemented through using chaotic sequences instead of random parameters of optimization algorithm. However, using a chaos system may result in exceeding of the optimization variables beyond their practical boundaries. In order to cope with such a deficiency, the evolutionary method is equipped with a recent spotlighted technique, known as the boundary constraint handling method, which controls the movements of chromosomes within the feasible solution domain. Such a technique aids the heuristic agents towards the feasible solutions, and thus, abates the undesired effects of the chaotic diversification. In this study, 9 different variants of chaotic maps are considered to precisely investigate different aspects of coupling the chaos phenomenon with the baseline EA, i.e. the convergence, scalability, robustness, performance and complexity. The simulation results reveal that some of the maps (chaotic number generators) are more successful than the others, and thus, can be used to enhance the performance of the standard EA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdechiri M, Meybodi MR, Bahrami H (2013) Gases Brownian motion optimization: an algorithm for optimization (GBMO). Appl Soft Comput 5:2932–2946

    Article  Google Scholar 

  • Abdechiri M, Faez K, Amindavar H, Bilotta E (2017a) Chaotic target representation for robust object tracking. Signal Process Image Commun 54:23–35

    Article  Google Scholar 

  • Abdechiri M, Faez K, Amindavar H (2017b) Visual object tracking with online weighted chaotic multiple instance learning. Neurocomputing 247:16–30

    Article  Google Scholar 

  • Abdechiri M, Faez K, Amindavar H, Bilotta E (2017c) The chaotic dynamics of high-dimensional systems. Nonlinear Dyn 87:2597–2610

    Article  MathSciNet  Google Scholar 

  • Alatas B (2010a) Chaotic harmony search algorithms. Appl Math Comput 216:2687–2699

    MATH  Google Scholar 

  • Alatas B (2010b) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687

    Article  Google Scholar 

  • Alatas B (2011) Uniform big bang–chaotic big crunch optimization. Commun Nonlinear Sci Numer Optim 16:3696–3703

    Article  MATH  Google Scholar 

  • Alatas B, Akin E (2009) Chaotically encoded particle swarm optimization algorithm and its applications. Chaos Solitones Fractals 41:939–950

    Article  Google Scholar 

  • Alatas B, Akin E, Bedri Ozer A (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40:1715–1734

    Article  MathSciNet  MATH  Google Scholar 

  • Alikhani KJ, Hosseini SMM (2015) A new hybrid algorithm based on chaotic maps for solving systems of nonlinear equations. Chaos Solitons Fractals 81:233–245

    Article  MathSciNet  MATH  Google Scholar 

  • Alikhani KJ, Hosseini SMM, Ghaini FMM (2016) A new optimization algorithm based on chaotic maps and golden section search method. Eng Appl Artif Intell 50:201–214

    Article  Google Scholar 

  • Arena P, Caponetto R, Fortuna L, Rizzo A, La Rosa M (2000) Self organization in non-recurrent complex systems. Int J Bifurc Chaos 10(5):1115–1125

    Article  Google Scholar 

  • Askarzadeh A, Coelho LDS (2014) A backtracking search algorithm combined with Burger’s chaotic map for parameter estimation of PEMFC electrochemical model. Int J Hydrog Energy 39(21):11165–11174

    Article  Google Scholar 

  • Beyer HG, Schwefel HP (2002) Evolution strategies: a comprehensive introduction. Nat Comput 1(1):3–52

    Article  MathSciNet  MATH  Google Scholar 

  • Bingol H, Alatas B (2016) Chaotic league championship algorithms. Arab J Sci Eng 41(12):5123–5147

    Article  MathSciNet  MATH  Google Scholar 

  • Brameier M, Banzhaf W (2007) Linear genetic programming. Springer, New York

    MATH  Google Scholar 

  • Caponetto R, Fortuna L, Fazzino S, Xibilia MG (2003) Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evol Comput 7(3):289–304

    Article  Google Scholar 

  • Chelliah TR, Thangaraj R, Allamsetty S, Pant M (2014) Coordination of directional overcurrent relays using opposition based chaotic differential evolution algorithm. Int J Electr Power Energy Syst 55:341–350

    Article  Google Scholar 

  • Chen LN, Aihara K (1995) Chaotic simulated annealing by a neural network model with transient chaos. Neural Netw 8:915–930

    Article  Google Scholar 

  • Chen F, Tang B, Song T, Li L (2014) Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization. Measurement 47:576–590

    Article  Google Scholar 

  • Cheng MY, Tran DH, Wu YW (2014) Using a fuzzy clustering chaotic-based differential evolution with serial method to solve resource-constrained project scheduling problems. Autom Constr 37:88–97

    Article  Google Scholar 

  • Civicioglu P, Besdok E (2013) A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39(4):315–346

    Article  Google Scholar 

  • Coelho LDS, Mariani VC, Guerra FA, da Luz MVF, Leite JV (2014) Multiobjective optimization of transformer design using a chaotic evolutionary approach. IEEE Trans Magn 50(2), Article ID: 7016504

  • Davendra D, Senkerik R, Zelinka I, Pluhacek M, Bialik-Davendra M (2014) Utilising the chaos-induced discrete self organising migrating algorithm to solve the lot-streaming flowshop scheduling problem with setup time. Soft Comput 18(4):669–681

    Article  MATH  Google Scholar 

  • Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9:115–148

    MathSciNet  MATH  Google Scholar 

  • Deep K, Thakur M (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188(1):895–911

    MathSciNet  MATH  Google Scholar 

  • Devaney RL (1987) An introduction to chaotic dynamical systems. Addison-Wesley, Boston

    Google Scholar 

  • El-Shorbagi MA, Mousa AA, Nasr SM (2016) A chaos-based evolutionary algorithm for general nonlinear programming problems. Chaos Solitons Fractals 85:8–21

    Article  MathSciNet  MATH  Google Scholar 

  • Emami M, Mozaffari A, Azad NL, Rezaie B (2016) An empirical investigation into the effects of chaos on different types of evolutionary crossover operators for efficient global search in complicated landscapes. Int J Comput Math 93:3–26

    Article  MathSciNet  Google Scholar 

  • Fathi A, Mozaffari A (2013) Modeling a shape memory alloy actuator using an evolvable recursive black-box and hybrid heuristic algorithms inspired based on the annual migration of salmons in nature. Appl Soft Comput 14:224–251

    Google Scholar 

  • Fathi A, Mozaffari A (2014) Vector optimization of laser solid freeform fabrication system using a hierarchical mutable smart bee-fuzzy inference system and hybrid NSGA-II/self-organizing map. J Intell Manuf 25(4):775–795

    Article  Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York

    MATH  Google Scholar 

  • Fourcade B, Tramblay AMS (1990) Universal multifractal properties of circle maps from the point of view of critical phenomena. J Stat Phys 61:639–665

    Article  MathSciNet  Google Scholar 

  • Gandomi AH, Yang XS (2012) Evolutionary boundary constraint handling scheme. Neural Comput Appl 21:1449–1462

    Article  Google Scholar 

  • Gandomi AH, Yang XS (2013) Chaotic bat algorithm. J Comput Sci 5(2):224–232

    Article  MathSciNet  Google Scholar 

  • Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013a) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18:89–98

    Article  MathSciNet  MATH  Google Scholar 

  • Gandomi AH, Yun GJ, Yang XS, Talatahari S (2013b) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18:327–340

    Article  MathSciNet  MATH  Google Scholar 

  • Gao H, Zhang Y, Liang S, Li DA (2006) New chaotic algorithm for image encryption. Chaos Solitons Fractals 29:393–399

    Article  MATH  Google Scholar 

  • Gao J, Xiao M, Zhang W (2010) A rapid chaos genetic algorithm. Lect Notes Comput Sci 6145:425–431

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search optimization and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  • Gong W, Wang S (2009) Chaos ant colony optimization and applications. In: \(4{\text{th}}\) international conference on internet computing for science and engineering, pp 301–303

  • He Y, Xu Q, Yang S, Han A, Yang L (2014) A novel chaotic differential evolution algorithm for short-term cascaded hydroelectric system scheduling. Int J Electr Power Energy Syst 61:455–462

    Article  Google Scholar 

  • Heidari AA, Abbaspour RA, Jordehi AR (2017) An efficient chaotic water cycle algorithm for optimization tasks. Neural Comput Appl 28(1):57–85

    Article  Google Scholar 

  • Holland JH (1975) Adaption in natural and artificial systems. University of Michigan Press, Ann Arbor

    MATH  Google Scholar 

  • Huaguang Z, Yongbing Q (2001) Modeling, identification and control of a class of nonlinear systems. IEEE Trans Fuzzy Syst 9:349–354

    Article  MATH  Google Scholar 

  • Huang X (2012) Image encryption algorithm using Chebyshev generator. Nonlinear Dyn 67:2411–2417

    Article  MathSciNet  Google Scholar 

  • Jiang C, Bompard E (2005) A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization. Math Comput Simul 68:57–65

    Article  MATH  Google Scholar 

  • Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31:61–85

    Article  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Kaveh A, Sheikholeslami R, Talatahari S, Keshvari-Ikhihci M (2014) Chaotic swarming of particles: a new method for size optimization of truss structures. Adv Eng Softw 67:136–147

    Article  Google Scholar 

  • Kuang F, Zhang S, Jin Z, Xu W (2015) A novel SVM by combining kernel principal component analysis and improved chaotic particle swarm optimization for intrusion detection. Soft Comput 19:1187–1199

    Article  MATH  Google Scholar 

  • Kuru L, Ozturk A, Kuru E, Kandara O et al (2015) Determination of voltage stability boundary values in electrical power systems by using the chaotic particle swarm optimization algorithm. Int J Electr Power Energy Syst 64:873–879

    Article  Google Scholar 

  • Li MW, Hong WC, Geng J, Wang J (2017) Berth and quay crane coordinated scheduling using multi-objective chaos cloud particle swarm optimization algorithm. Neural Comput Appl 28(11):3163–3182

    Article  Google Scholar 

  • Liu B, Wang L, Jin Y, Tang F, Huang D (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25:1261–1271

    Article  MATH  Google Scholar 

  • Lu P, Zhou J, Zhang H, Zhang R, Wang C (2014) Chaotic differential bee colony optimization algorithm for dynamic economic dispatch problem with valve-point effects. Int J Electr Power Energy Syst 62:130–143

    Article  Google Scholar 

  • Manganaro G, Pine dade Gyvez J (1997) DNA computing based on chaos. In: IEEE international conference on evolutionary computation, Piscataway, pp 255–260

  • Michalewicz Z (1995) Genetic algorithms numerical optimization and constraints. In: Eshelmen LJ (ed) Proceedings of the 6th international conference on genetic algorithms, Morgan Kaufmann, San Mateo, CA, pp 151–158

  • Mingjun J, Huanwen T (2004) Application of chaos in simulated annealing. Chaos Solitons Fractals 21:933–941

    Article  MATH  Google Scholar 

  • Mirjalili S, Gandomi AH (2017) Chaotic gravitational constants for the gravitational search algorithm. Appl Soft Comput 53:407–419

    Article  Google Scholar 

  • Mozaffari A, Gorji-Bandpy M, Gorji TB (2012a) Optimal design of constraint engineering systems: application of mutable smart bee algorithm. Int J Bio Inspir Comput 4:167–180

    Article  Google Scholar 

  • Mozaffari A, Gorji-Bandpy M, Samadian P, Mohammadrezaei Noudeh S (2012b) Analyzing, controlling and optimizing Damavand power plant operating parameters using a synchronous parallel shuffling self-organized Pareto strategy and neural network: a survey. Proc IMECHE A J Power Energy 226:848–866

    Article  Google Scholar 

  • Mozaffari A, Fathi A, Behzadipour S (2012c) The great salmon run: a novel bio-inspired algorithm for artificial system design and optimization. Int J Bio Inspir Comput 4(5):286–301

    Article  Google Scholar 

  • Mozaffari A, Azimi M, Gorji-Bandpy M (2013a) Ensemble mutable smart bee algorithm and a robust neural identifier for optimal design of a large scale power system. J Comput Sci 5(2):206–223

    Article  Google Scholar 

  • Mozaffari A, Ramiar A, Fathi A (2013b) Optimal design of classical Atkinson engine with dynamic specific heat using adaptive neuro-fuzzy inference system and mutable smart bee algorithm. Swarm Evolut Comput 12:74–91

    Article  Google Scholar 

  • Mozaffari A, Emami M, Azad NL, Fathi A (2015) On the efficacy of chaos-enhanced heuristic walks with nature-based controllers for robust and accurate intelligent search, part A: an experimental analysis. J Exp Theor Artif Intell 27:389–422

    Article  Google Scholar 

  • Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196–1199

    Article  MathSciNet  MATH  Google Scholar 

  • Pecora L, Carroll T (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824

    Article  MathSciNet  MATH  Google Scholar 

  • Schuster HG (1988) Deterministic chaos: an introduction, 2 revised edn. Federal Republic of Germany: Physick-Verlag GmnH, Weinheim

    MATH  Google Scholar 

  • Senkerik R, Pluhacek M, Zelinka I, Davendra D, Oplatkova ZK (2014) Comparison of chaos driven PSO and differential evolution on the selected PID tuning problem. Lect Notes Comput Sci 8838:67–76

    Article  Google Scholar 

  • Singh H, Srivastava L (2014) Modified differential evolution algorithm for multi-objective VAR management. Int J Electr Power Energy Syst 55:731–740

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous space. J Glob Optim 11(4):341–341

    Article  MathSciNet  MATH  Google Scholar 

  • Talatahari S, Azar BF, Sheikholeslami R, Gandomi AH (2012) Imperialist competitive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer Simul 17:1312–1319

    Article  MathSciNet  MATH  Google Scholar 

  • Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl Math Comput 187:1076–1085

    MathSciNet  MATH  Google Scholar 

  • Tessema B (2006) A self-adaptive genetic algorithm for constrained optimization. M.Sc. Thesis, Oklahoma State University

  • Thakur M (2013) A new genetic algorithm for global optimization of multimodal continuous functions. J Comput Sci 5(2):298–311

    Article  MathSciNet  Google Scholar 

  • Tian H, Yuan X, Ji B, Chen Z (2014) Multi-objective optimization of short-term hydrothermal scheduling using non-dominated sorting gravitational search algorithm with chaotic mutation. Energy Convers Manag 81:504–519

    Article  Google Scholar 

  • Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1:67–82

    Article  Google Scholar 

  • Wong K, Man KP, Li S, Liao X (2005) More secure chaotic cryptographic scheme based on dynamic look-up table circuits. Circuit Syst Signal Process 24(5):571–584

    Article  MATH  Google Scholar 

  • Wright AH (1991) Genetic algorithms for real parameter optimization. In: Rawlins GJE (ed) Foundations of genetic algorithms I. Morgan Kaufmann, San Mateo, pp 205–218

    Google Scholar 

  • Xiang T, Liao X, Wong K (2007) An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Appl Math Comput 190:1637–1645

    MathSciNet  MATH  Google Scholar 

  • Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, Beckington

    Google Scholar 

  • Yang L, Chen T (2002) Application of chaos in genetic algorithms. Commun Theor Phys 38:168–172

    Article  Google Scholar 

  • Yuan XH, Yuan YB, Zhang YC (2002) A hybrid chaotic genetic algorithm for short-term hydro system scheduling. Math Comput Model 59:319–327

    MathSciNet  MATH  Google Scholar 

  • Yuan X, Dai X, Wu L (2015) A mutative-scale pseudo-parallel chaos optimization algorithm. Soft Comput 19:1215–1227

    Article  Google Scholar 

  • Zelinka I, Jasek R (2010) Evolutionary decryption of chaotically encrypted information. Studi Comput Intell Evolut Algorithms Chaotic Syst 267:329–343

    Article  MATH  Google Scholar 

  • Zelinka I, Celikovsky S, Richter H, Chen G (2010) Evolutionary algorithms and chaotic systems. Studies in computational intelligence, vol 267. Springer, Berlin

    Book  Google Scholar 

  • Zhang H, Ma T, Huang GB, Wang Z (2010) Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans Syst Man Cybern B (Cybern) 40:831–844

    Article  Google Scholar 

  • Zhang H, Wang Z, Liu D (2014) A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans Neural Netw Learn Syst 25:1229–1262

    Article  Google Scholar 

  • Zhang H, Yan Q, Zhang G, Jiang Z (2016) A chaotic differential evolution algorithm for flexible job shop scheduling. In: Asian simulation conference: theory, methodology, tools and applications for modeling and simulation of complex systems, pp 79–88

  • Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut Comput 1(1):32–49

    Article  Google Scholar 

  • Zhu W, Duan H (2014) Chaotic predator–prey biogeography-based optimization approach for UCAV path planning. Aerosp Sci Technol 32(1):153–161

    Article  Google Scholar 

  • Zuo XQ, Fan YSA (2006) Chaos search immune algorithm with its application to neuro-fuzzy controller design. Chaos, Solitons Fractals 30:94–109

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mozaffari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file

The detailed mathematical implementation of the objective function of Damavand power plant is given in the supplementary file which is available online. (docx. 176 KB)

Appendix A: Benchmark problems

Appendix A: Benchmark problems

See Table 20.

Table 20 Characteristics of the benchmark problems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozaffari, A., Emami, M. & Fathi, A. A comprehensive investigation into the performance, robustness, scalability and convergence of chaos-enhanced evolutionary algorithms with boundary constraints. Artif Intell Rev 52, 2319–2380 (2019). https://doi.org/10.1007/s10462-018-9616-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-018-9616-4

Keywords

Navigation