Skip to main content
Log in

A novel type of soft rough covering and its application to multicriteria group decision making

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In this paper, we contribute to a recent and successful modelization of uncertainty, which the practitioner often encounters in the formulation of multicriteria group decision making problems. To be precise, in order to approach the uncertainty issue we introduce a novel type of soft rough covering by means of soft neighborhoods, and then we use it to improve decision making in a multicriteria group environment. Our research method is as follows. Firstly we introduce the soft covering upper and lower approximation operators of soft rough coverings. Then its relationships with well-established types of soft rough coverings are analyzed. Secondly, we define and investigate the measure degree of our novel soft rough covering. With this tool we produce a new class of soft rough sets. Finally, we propose an application of such soft rough covering model to multicriteria group decision making by means of an algorithmic solution. A fully developed example supports the implementability of this decision making method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcantud JCR (2002) Revealed indifference and models of choice behavior. J Math Psychol 46:418–430

    Article  MathSciNet  MATH  Google Scholar 

  • Alcantud JCR (2016a) A novel algorithm for fuzzy soft set based decision making from multiobserver input parameter data set. Inform Fusion 29:142–148

    Article  Google Scholar 

  • Alcantud JCR (2016b) Some formal relationships among soft sets, fuzzy sets and their extensions. Int J Approx Reason 68:45–53

    Article  MathSciNet  MATH  Google Scholar 

  • Alcantud JCR, Santos-García G (2017) A new criterion for soft set based decision making problems under incomplete information. Int J Comput Intell Syst 10:394–404

    Article  Google Scholar 

  • Alcantud JCR, Santos-García G, Hernández-Galilea E (2015) Glaucoma diagnosis: a soft set based decision making procedure. In: Puerta J et al (eds) Advances in artificial intelligence, lecture notes in computer science, vol 9422. Springer, Cham

    Google Scholar 

  • Alcantud JCR, Cruz-Rambaud S, Muñoz Torrecillas MJ (2017) Valuation fuzzy soft sets: a flexible fuzzy soft set based decision making procedure for the valuation of assets. Symmetry 9:253. https://doi.org/10.3390/sym9110253

    Article  Google Scholar 

  • Ali MI (2011) A note on soft sets, rough sets and fuzzy soft sets. Appl Soft Comput 11(4):3329–3332

    Article  Google Scholar 

  • Ali MI (2012) Another view on reduction of parameters in soft sets. Appl Soft Comput 12(6):1814–1821

    Article  Google Scholar 

  • Ali MI, Shabir M (2014) Logic connectives for soft sets and fuzzy soft sets. IEEE Trans Fuzzy Syst 22(6):1431–1442

    Article  Google Scholar 

  • Bonikowski Z, Bryniarski E, Wybraniec-Skardowska U (1998) Extensions and intentions in rough set theory. Inform Sci 107:149–167

    Article  MathSciNet  MATH  Google Scholar 

  • Chen D, Wang C, Hu Q (2007) A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets. Inform Sci 177:3500–3518

    Article  MathSciNet  MATH  Google Scholar 

  • Fatimah F, Rosadi D, Hakim RBF, Alcantud JCR (2017a) Probabilistic soft sets and dual probabilistic soft sets in decision-making. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3011-y

    Article  MATH  Google Scholar 

  • Fatimah F, Rosadi D, Hakim RBF, Alcantud JCR (2017b) N-soft sets and their decision making algorithms. Soft Comput. https://doi.org/10.1007/s00500-017-2838-6

    Article  MATH  Google Scholar 

  • Feng F (2011) Soft rough sets applied to multicriteria group decision making. Ann Fuzzy Math Inform 2:69–80

    MathSciNet  MATH  Google Scholar 

  • Feng F, Li C, Davvaz B, Ali MI (2010) Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Comput 14(9):899–911

    Article  MATH  Google Scholar 

  • Feng F, Liu XY, Leoreanu-Fotea V, Jun YB (2011) Soft sets and soft rough sets. Inform Sci 181(6):1125–1137

    Article  MathSciNet  MATH  Google Scholar 

  • Feng F, Li Y, Cagman N (2012) Generalized uni-int decision making schemes based on choice soft sets. Eur J Oper Res 220:162–170

    Article  MathSciNet  MATH  Google Scholar 

  • Gong K, Wang P, Xiao Z (2013) Bijective soft set decision system based parameters reduction under fuzzy environments. Appl Math Model 37:4474–4485

    Article  MathSciNet  MATH  Google Scholar 

  • Han B, Li Y, Liu J, Geng S, Li H (2014) Elicitation criterions for restricted intersection of two incomplete soft sets. Knowl-Based Syst 59:121–131

    Article  Google Scholar 

  • Herawan T, Deris MM (2011) A soft set approach for association rules mining. Knowl-Based Syst 24(1):186–195

    Article  Google Scholar 

  • Jiang Y, Tang Y, Chen Q (2011) An adjustable approach to intuitionistic fuzzy soft sets based decision making. Appl Math Model 35(2):824–836

    Article  MathSciNet  MATH  Google Scholar 

  • Kong Z, Jia W, Zhang G, Wang L (2015) Normal parameter reduction in soft set based on particle swarm optimization algorithm. Appl Math Model 39:4808–4820

    Article  MathSciNet  Google Scholar 

  • Li Z, Xie T (2014) The relationships among soft sets, soft rough sets and topologies. Soft Comput 18:717–728

    Article  MATH  Google Scholar 

  • Li TJ, Leung Y, Zhang WX (2008) Generalized fuzzy rough approximation operators based on fuzzy covering. Int J Approx Reason 48:836–856

    Article  MathSciNet  MATH  Google Scholar 

  • Li Z, Xie N, Wen G (2015) Soft coverings and their parameter reductions. Appl Soft Comput 31:48–60

    Article  Google Scholar 

  • Liu GL (2008) Axiomatic systems for rough sets and fuzzy rough sets. Int J Approx Reason 48:857–867

    Article  MathSciNet  MATH  Google Scholar 

  • Liu GL, Sai Y (2009) A comparison of two types of rough sets induced by coverings. Int J Approx Reason 50:521–528

    Article  MathSciNet  MATH  Google Scholar 

  • Luce RD (1956) Semiorders and a theory of utility discrimination. Econometrica 24:178–191

    Article  MathSciNet  MATH  Google Scholar 

  • Ma L (2012) On some types of neighborhood-related covering rough sets. Int J Approx Reason 53:901–911

    Article  MathSciNet  MATH  Google Scholar 

  • Ma L (2015) Some twin approximation operators on covering approximation spaces. Int J Approx Reason 56:59–70

    Article  MathSciNet  MATH  Google Scholar 

  • Ma L (2016) Two fuzzy coverings rough set models and their generalizations over fuzzy lattices. Fuzzy Sets Syst 294:1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Ma X, Liu Q, Zhan J (2017) A survey of decision making methods based on certain hybrid soft set models. Artif Intell Rev 47:507–530

    Article  Google Scholar 

  • Maji PK, Roy AR, Biswas R (2002) An application of soft sets in a decision making problem. Comput Math Appl 44(8):1077–1083

    Article  MathSciNet  MATH  Google Scholar 

  • Maji PK, Biswas R, Roy AR (2003) Soft set theory. Comput Math Appl 45(4):555–562

    Article  MathSciNet  MATH  Google Scholar 

  • Mardani A, Jusoh A, Zavadskas EK (2015) Fuzzy multiple criteria decision-making techniques and applications—two decades review from 1994 to 2014. Expert Syst Appl 42(8):4126–48

    Article  Google Scholar 

  • Mathew TJ, Sherly E, Alcantud JCR (2018) An adaptive soft set based diagnostic risk prediction system. In: Thampi S, Mitra S, Mukhopadhyay J, Li KC, James A, Berretti S (eds) Intelligent systems technologies and applications. ISTA 2017. Advances in intelligent systems and computing, vol 683. Springer, Berlin

    Google Scholar 

  • Molodtsov D (1999) Soft set theory-first results. Comput Math Appl 37(4):19–31

    Article  MathSciNet  MATH  Google Scholar 

  • Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11(5):341–356

    Article  MATH  Google Scholar 

  • Pomykala JA (1987) Approximation operations in approximation spaces. Bull Pol Acad Sci Math 35:653–662

    MathSciNet  MATH  Google Scholar 

  • Shabir M, Ali MI, Shaheen T (2013) Another approach to soft rough sets. Knowl-Based Syst 40(1):72–80

    Article  Google Scholar 

  • Sun B, Ma W (2014) Soft fuzzy rough sets and its application in decision making. Artif Intell Rev 41(1):67–80

    Article  Google Scholar 

  • Sun B, Ma W, Chen X (2015) Fuzzy rough set on probabilistic approximation space over two universes and its application to emergency decision making. Expert Syst 32:507–521

    Article  Google Scholar 

  • Sun B, Ma W, Xiao X (2017) Three-way group decision making based on multigranulation fuzzy decision-theoretic rough set over two universes. Int J Approx Reason 81:87–102

    Article  MathSciNet  MATH  Google Scholar 

  • Tsang ECC, Chen D, Yeung DS (2008) Approximations and reducts with covering generalized rough sets. Comput Appl Math 56:279–289

    Article  MathSciNet  MATH  Google Scholar 

  • Wang C, Chen D, Wu C, Hu Q (2011) Data compression with homomorphsim in covering information systems. Int J Approx Reason 52:519–525

    Article  MATH  Google Scholar 

  • Wu WZ, Zhang WX (2004) Neighborhood operator systems and approximation operators. Inform Sci 159:233–254

    Article  MathSciNet  Google Scholar 

  • Xiao Z, Gong K, Zou Y (2009) A combined forecasting approach based on fuzzy soft sets. J Comput Appl Math 228:326–333

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao Z, Chen W, Li L (2013) A method based on interval-valued fuzzy soft set for multi-attribute group decision-making problems under uncertain environment. Knowl Inf Syst 34:653–669

    Article  Google Scholar 

  • Xu WH, Zhang WX (2007) Measuring roughness of generalized rough sets induced a covering. Fuzzy Sets Syst 158:2443–2455

    Article  MathSciNet  MATH  Google Scholar 

  • Yang B, Hu BQ (2017) On some types of fuzzy covering-based on rough sets. Fuzzy Sets Syst 312:36–65

    Article  MathSciNet  MATH  Google Scholar 

  • Yao YY (1998) Relational interpretations of neighborhood operators and rough set approximation operators. Inform Sci 111:239–259

    Article  MathSciNet  MATH  Google Scholar 

  • Yao YY, Deng X (2014) Quantitative rough sets based on subsethood measures. Inform Sci 267:306–322

    Article  MathSciNet  MATH  Google Scholar 

  • Yao YY, Yao B (2012) Covering based rough set approximations. Inform Sci 200:91–107

    Article  MathSciNet  MATH  Google Scholar 

  • Yeung DS, Chen D, Lee J, Wang X (2015) On the generalization of fuzzy rough sets. IEEE Trans Fuzzy Syst 13:343–361

    Article  Google Scholar 

  • Yuksel S, Ergul ZG, Tozlu N (2014) Soft covering based rough sets and their application. Sci World J. Article 970893, 9 pages

  • Yuksel S, Tozlu N, Dizman TH (2015) An application of multicriteria group decision making by soft covering based rough sets. Filomat 29:209–219

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  MATH  Google Scholar 

  • Zhan J, Alcantud JCR (2017) A survey of parameter reduction of soft sets and corresponding algorithms. Artif Intell Rev. https://doi.org/10.1007/s10462-017-9592-0

    Article  Google Scholar 

  • Zhan J, Zhu K (2015) Reviews on decision making methods based on (fuzzy) soft sets and rough soft sets. J Intell Fuzzy Syst 29:1169–1176

    Article  MathSciNet  MATH  Google Scholar 

  • Zhan J, Zhu K (2017) A novel soft rough fuzzy set: \(Z\)-soft rough fuzzy ideals of hemirings and corresponding decision making. Soft Comput 21:1923–1936

    Article  MATH  Google Scholar 

  • Zhan J, Liu Q, Davvaz B (2015) A new rough set theory: rough soft hemirings. J Intell Fuzzy Syst 28:1687–1697

    MathSciNet  MATH  Google Scholar 

  • Zhan J, Ali MI, Mehmood N (2017a) On a novel uncertain soft set model: \(Z\)-soft fuzzy rough set model and corresponding decision making methods. Appl Soft Comput 56:446–457

    Article  Google Scholar 

  • Zhan J, Liu Q, Herawan T (2017b) A novel soft rough set: Soft rough hemirings and corresponding multicriteria group decision making. Appl Soft Comput 54:393–402

    Article  Google Scholar 

  • Zhang Z, Wang C, Tian D (2014) A novel approach to interval-valued intuitionistic fuzzy soft sets based decision making. Appl Math Model 38(4):1255–1270

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang XH, Miao D, Liu C, Le M (2016) Constructive methods of rough approximation operators and multigranuation rough sets. Knowl-Based Syst 91:114–125

    Article  Google Scholar 

  • Zhu W (2007) Topological approaches to covering rough sets. Inform Sci 177:1499–1508

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu W (2009a) Relationship between generalized rough sets based on binary relation and covering. Inform Sci 179(3):210–225

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu W (2009b) Relationships among basic concepts in covering-based rough sets. Inform Sci 179:2478–2486

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu W, Wang F (2003) Reduction and axiomization of covering generalized rough sets. Inform Sci 152:217–230

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu W, Wang F (2007) On three types of covering rough sets. IEEE Trans Knowl Data Eng 19:1131–1144

    Article  Google Scholar 

  • Zhu W, Wang F (2012) The fourth types of covering-based rough sets. Inform Sci 201:80–92

    Article  MathSciNet  MATH  Google Scholar 

  • Zou Y, Xiao Z (2008) Data analysis approaches of soft sets under incomplete information. Knowl-Based Syst 21(8):941–945

    Article  Google Scholar 

Download references

Acknowledgements

The authors are extremely grateful to the editor and two anonymous referees for their valuable comments and helpful suggestions which help to improve the presentation of this paper. This research was supported by NNSFC (11461025, 11561023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Zhan.

Appendices

Appendix I: Examples

Example I.1

Let \(S=(U,C_{{\mathbf {G}}})\) be a SCAS, where \(U=\{u_1, \ldots ,u_4\}, A=\{e_1,e_2,e_3\}\) and \({\mathbf {G}}=(F,A)\) is characterized by \(F(e_1)=\{u_1,u_2\}, F(e_2)=\{u_1,u_2,u_3\}\) and \(F(e_3)=U\).

  1. (1)

    Some simple calculations show \(N_S(u_1)=\{u_1,u_2\}=N_S(u_2), N_S(u_3)=\{u_1,u_2,u_3\}\) and \(N_S(u_4)=U\).

  2. (2)

    \(Md_S(u_1)=\{F(e_1)\}, Md_S(u_2)=\{F(e_1)\}, Md_S(u_3)=\{F(e_2)\}\) and \(Md_S(u_4)=\{F(e_3)\}\). Thus \({\mathbf {G}}\) is soft unary.

  3. (3)

    Clearly, \(u_1\in F(e_3), Md_S(u_1)=\{F(e_1)\},\) but \(F(e_3)\nsubseteq \bigcup Md_S(u_1)=F(e_1)\). Hence \({\mathbf {G}}\) is not SPC.

Example I.2

Let \(S=(U,C_{{\mathbf {G}}})\) be a SCAS, where \(A=\{e_1, \ldots , e_4\}\), \(U=\{u_1,u_2,u_3\}\) and \({\mathbf {G}}=(F,A)\) is characterized by \(F(e_1)=\{u_1,u_2\}, F(e_2)=\{u_1,u_3\}, F(e_3)=\{u_2,u_3\}\) and \(F(e_4)=U\). Now \({\mathbf {G}}\) is SPC because \(Md_S(u_1)=\{F(e_1), F(e_2)\}, Md_S(u_2)=\{F(e_1), F(e_3)\}\), \(Md_S(u_3)=\{F(e_2), F(e_3)\}\).

Example I.3

Define the SCAS \(S=(U,C_{{\mathbf {G}}})\), where \(U=\{u_1, \ldots ,u_5\}, A=\{e_1, \ldots ,e_4\}\) and \({\mathbf {G}}=(F,A)\) is characterized by the data in Table 1.

Table 1 Tabular representation of \({\mathbf {G}}=(F,A)\) in Example I.3

Let \(X_1=\{u_1,u_2,u_3\}\). Some simple calculations show \(ZS^*(X_1)=\{u_1,u_2,u_3,u_4\}\) and \(ZS_*(X_1)=\{u_1,u_2,u_3\}\). Thus, \(X_1\) is a Z-SRC.

Let \(X_1=\{u_5\}\). Some simple calculations show \(ZS^*(X_2)=ZS_*(X_2)=\{u_5\}\). Thus \(X_2\) is Z-SC-definable.

Example I.4

Let \(S=(U,C_{{\mathbf {G}}})\) be a SCAS, where \(U=\{u_1,\ldots ,u_6\}, A=\{e_1,\ldots ,e_4\}\) and \({\mathbf {G}}=(F,A)\) is characterized by the data in Table 2.

Table 2 The tabular representation of \({\mathbf {G}}=(F,A)\) in Example I.4

Some simple calculations ensure

$$\begin{aligned} N_S(u_1)= & {} F(e_1)\cap F(e_2)=\{u_1,u_2\},\\ N_S(u_2)= & {} F(e_1)\cap F(e_2)\cap F(e_3)=\{u_2\},\\ N_S(u_3)= & {} F(e_1)\cap F(e_3)\cap F(e_4)=\{u_3\},\\ N_S(u_4)= & {} F(e_2)\cap F(e_3)\cap F(e_4)=\{u_4, u_5\},\\ N_S(u_5)= & {} F(e_2)\cap F(e_3)\cap F(e_4)=\{u_4,u_5\} \end{aligned}$$

and \(N_S(u_6)=F(e_6)=\{u_3,u_4,u_5,u_6\}\).

Let \(X=\{u_1,u_4,u_5\}\) and \(Y=\{u_2,u_3,u_4,u_5\}\), and so, \(X\cup Y=\{u_1,u_2,u_3,u_4,u_5\}\).

By calculations, \(ZS_*(X)=\{u_4,u_5\}\) and \(ZS_*(Y)=\{u_2,u_3,u_4,u_5\}\), and so \(ZS_*(X)\cup ZS_*(Y)=\{u_2,u_3,u_4,u_5\}\). But, \(ZS_*(X\cup Y)=\{u_1,u_2,u_3,u_4,u_5\}\). In conclusion, \(ZS_*(X\cup Y)\supsetneq ZS_*(X)\cup ZS_*(Y).\)

Example I.5

Let \(S=(U,C_{{\mathbf {G}}})\) be a SCAS, where \(U=\{u_1, \ldots ,u_8\}, A=\{e_1,\ldots ,e_6\}\) and \({\mathbf {G}}=(F,A)\) is characterized by the data in Table 3.

Table 3 The tabular representation of \({\mathbf {G}}=(F,A)\) in Example I.5

Some simple calculations ensure

$$\begin{aligned} N_S(u_1)= & {} F(e_1)\cap F(e_4)=\{u_1,u_4\},\\ N_S(u_2)= & {} F(e_1)\cap F(e_2)\cap F(e_3)\cap F(e_5)=\{u_2,u_4\},\\ N_S(u_3)= & {} F(e_1)\cap F(e_2)\cap F(e_3)\cap F(e_6)=\{u_3,u_4\},\\ N_S(u_4)= & {} F(e_1)\cap \cdots \cap F(e_6)=\{u_4\},\\ N_S(u_5)= & {} F(e_2)\cap F(e_4)\cap F(e_5)\cap F(e_6)=\{u_4,u_5,u_6\},\\ N_S(u_6)= & {} F(e_2)\cap F(e_4)\cap F(e_5)\cap F(e_6)=\{u_4,u_5,u_6\},\\ N_S(u_7)= & {} F(e_3)\cap \cdots \cap F(e_6)=\{u_4,u_7,u_8\}, \end{aligned}$$

and \(N_S(u_8)=F(e_3)\cap \cdots \cap F(e_6)=\{u_4,u_7,u_8\}\).

Let \(X=\{u_1,u_5,u_7\}\) and \(Y=\{u_3,u_4,u_5,u_7,u_8\}\), hence \(X\cap Y=\{u_5,u_7\}\).

By direct calculation one obtains \(ZS^*(X)=\{u_1,u_5,u_6,u_7,u_8\}\) and \(ZS_*(Y)=U\), and so \(ZS_*(X)\cap ZS_*(Y)=\{u_1,u_5,u_6,u_7,u_8\}\). But \(ZS_*(X\cap Y)=\{u_5,u_6,u_7,u_8\}\). This means that \(ZS_*(X\cap Y)\subsetneq ZS_*(X)\cap ZS_*(Y).\)

Example I.6

Let \(S=(U,C_{{\mathbf {G}}})\) be a SCAS, where \({\mathbf {G}}=(F,A)\) is defined by Table 4 (\(A=\{e_1,e_2,e_3\}, U=\{u_1,u_2,u_3,u_4\}\)).

Table 4 Tabular representation of \({\mathbf {G}}=(F,A)\) in Example I.6

Let \(X=\{u_2\}\). By simple calculations one obtains \({ FS}_*(X)=\emptyset \) and \(ZS_*(X)=\{u_2\}\). This means that \({ FS}_*\subsetneq ZS_*\).

Example I.7

Consider \(S=(U,C_{{\mathbf {G}}})\) as in Example I.3.

Let \(X=\{u_3,u_4\}\). By calculations, \(FS^*(X)=U\), \(SS^*(X)=\{u_3,u_4\}\), \(TS^*(X)=\{u_1,u_2,u_3,u_4\}\) and \(ZS^*(X)=\{u_3,u_4\}\). This means that \(SS^*\subsetneq TS^*\), \(TS^*\subsetneq FS^*\) and \(ZS^*\subsetneq FS^*\).

Example I.8

  1. (1)

    Consider \(S=(U,C_{{\mathbf {G}}})\) as in Example I.6. Let \(X=\{u_2\}\). By calculations, then \(ZS^*(X)=\{u_1,u_2\}\) and \(TS^*(X)=\{u_1,u_2,u_3,u_4\}.\) This means that \(ZS^*\subsetneq TS^*\).

  2. (2)

    Let us define \(U=\{u_1,u_2,u_3,u_4\}\) and let \(S=(U,C_{{\mathbf {G}}})\) be a SCAS with \(A=\{e_1,e_2\}\), where \({\mathbf {G}}=(F,A)\) is defined by \(F(e_1)=\{u_1\}\) and \(F(e_2)=U\). Then \(ZS^*(X)=U\) and \(TS^*(X)=\{u_1\}\). This means that \(TS^*\subsetneq ZS^*\).

Example I.9

  1. (1)

    Consider \(S=(U,C_{{\mathbf {G}}})\) as in Example I.6. Let \(X=\{u_2\}\). By calculations, then \(ZS^*(X)=\{u_1,u_2\}\) and \(SS^*(X)=\{u_1,u_2,u_3,u_4\}.\) This means that \(ZS^*\subsetneq SS^*\).

  2. (2)

    Consider \(S=(U,C_{{\mathbf {G}}})\) as in Example I.8 (2).

Then \(ZS^*(X)=\{u_1,u_2,u_3,u_4\}\) and \(SS^*(X)=\{u_1\}\). This means that \(SS^*\subsetneq ZS^*\).

Example I.10

Let \(U=\{u_1, \ldots , u_6\}\) and let \(S=(U,C_{{\mathbf {G}}})\) be a SCAS with \(A=\{e_1, \ldots , e_5\}\). We define \({\mathbf {G}}=(F,A)\) according to Table 5 below.

Table 5 Tabular representation of the soft set \({\mathbf {G}}=(F,A)\) in Example I.10

By simple calculations we compute \(N_S(u_1)=\{u_1\}\), \(N_S(u_2)=\{u_2\}\), \(N_S(u_3)=\{u_1,u_2,u_3\}\), \(N_S(u_4)=\{u_4\}\), \(N_S(u_5)=\{u_5\}\) and \(N_S(u_6)=\{u_6\}\).

Let \(X=\{u_2,u_3,u_5\}\). Then by calculations, \(D_{{\mathbf {G}}}(u_1,X)=0\), \(D_{{\mathbf {G}}}(u_2,X)=1\), \(D_{{\mathbf {G}}}(u_3,X)=\frac{1}{3}\), \(D_{{\mathbf {G}}}(u_4,X)=0\), \(D_{{\mathbf {G}}}(u_5,X)=1\) and \(D_{{\mathbf {G}}}(u_6,X)=0\).

Example I.11

Let \(S=(U,C_{{\mathbf {G}}})\) be a SCAS, where \(U=\{u_1, \ldots ,u_8\}, A=\{e_1, \ldots ,e_6\}\) and \({\mathbf {G}}=(F,A)\) is defined by Table 6.

Table 6 The tabular representation of the soft set \({\mathbf {G}}=(F,A)\) in Example I.11

By direct calculations we have

\(N_S(u_1)=\{u_1,u_2\}\), \(N_S(u_2)=\{u_2\}\), \(N_S(u_3)=\{u_3\}\), \(N_S(u_4)=\{u_4\}\), \(N_S(u_5)=\{u_5\}\), \(N_S(u_6)=\{u_2,u_5,u_6\}\), \(N_S(u_7)=\{u_5,u_7\}\) and \(N_S(u_8)=\{u_5,u_7,u_8\}\).

  1. (1)

    Let \(X=\{u_1\}\) and \(Y=\{u_2\}\), and so, \(X\cup Y=\{u_1,u_2\}\). By calculations,

    \(D_{X}^{{\mathbf {G}}}(u_1)=\frac{1}{2}\) and \(D_{Y}^{{\mathbf {G}}}(u_1)=\frac{1}{2}\), and so, \((D_{X}^{{\mathbf {G}}}\cup D_{Y}^{{\mathbf {G}}}) (u_1)=\frac{1}{2}\), but \(D_{X\cup Y}^{{\mathbf {G}}}(u_1)=1\). This shows that \(D_{X\cup Y}^{{\mathbf {G}}}\supsetneq D_{X}^{{\mathbf {G}}}\cup D_{Y}^{{\mathbf {G}}}\).

  2. (2)

    \(X\cap Y=\emptyset \). By calculations, we have

    \((D_{X}^{{\mathbf {G}}}\cap D_{Y}^{{\mathbf {G}}}) (u_2)=\frac{1}{2}\), but \(D_{X\cap Y}^{{\mathbf {G}}}(u_2)=0\). This shows that \(D_{X\cap Y}^{{\mathbf {G}}}\subsetneq D_{X}^{{\mathbf {G}}}\cap D_{Y}^{{\mathbf {G}}}\).

Example I.12

Let \(S=(U,C_{{\mathbf {G}}})\) be a SCAS with \(U=\{u_1, \ldots ,u_5\}, A=\{e_1,\ldots , e_4\}\) and \({\mathbf {G}}=(F,A)\) is characterized in Table 7.

Table 7 The tabular representation of \({\mathbf {G}}=(F,A)\) in Example I.12

By calculations, \(N_S(u_1)=\{u_1\}\), \(N_S(u_2)=\{u_2,u_3\}\), \(N_S(u_3)=\{u_3\}\), \(N_S(u_4)=\{u_4\}\) and \(N_S(u_5)=\{u_4,u_5\}\).

Let \(X=\{u_1,u_2\}\). Then by calculations, \(D_{X}^{{\mathbf {G}}}(u_1)=1\), \(D_{X}^{{\mathbf {G}}}(u_2)=\frac{1}{2}\), \(D_{X}^{{\mathbf {G}}}(u_3)=0\), \(D_{X}^{{\mathbf {G}}}(u_4)=0\) and \(D_{X}^{{\mathbf {G}}}(u_5)=0\). Then \(S_*(X)=\{u_1\}\) and \(S^*(X)=\{u_1,u_2\}\).

Example I.13

Let \(S=(U,C_{{\mathbf {G}}})\) be a SCAS as in Example I.12. By calculations, \(N_S(u_1)=\{u_1\}\), \(N_S(u_2)=\{u_2,u_3\}\), \(N_S(u_3)=\{u_3\}\), \(N_S(u_4)=\{u_4\}\) and \(N_S(u_5)=\{u_4,u_5\}\).

Let \(X=\{u_1,u_2\}\) and \(Y=\{u_3\}\). Then by calculations, \(D_{X}^{{\mathbf {G}}}(u_1)=1\), \(D_{X}^{{\mathbf {G}}}(u_2)=\frac{1}{2}\), \(D_{X}^{{\mathbf {G}}}(u_3)=D_{X}^{{\mathbf {G}}}(u_4)=D_{X}^{{\mathbf {G}}}(u_5)=0\); \(D_{Y}^{{\mathbf {G}}}(u_1)=D_{Y}^{{\mathbf {G}}}(u_4)=D_{Y}^{{\mathbf {G}}}(u_5)=0\), \(D_{Y}^{{\mathbf {G}}}(u_2)=\frac{1}{2}\) and \(D_{X}^{{\mathbf {G}}}(u_3)=1\).

Hence, \(S_*(X)=\{u_1\}\), \(S^*(X)=\{u_1,u_2\}\), \(S_*(Y)=\{u_3\}\) and \(S^*(Y)=\{u_2,u_3\}\).

  1. (1)

    Since \(X\cup Y=\{u_1,u_2,u_3\}\). Then \(D_{X\cup Y}^{{\mathbf {G}}}(u_1)=D_{X\cup Y}^{{\mathbf {G}}}(u_2)=D_{X\cup Y}^{{\mathbf {G}}}(u_3)=1\) and \(D_{X\cup Y}^{{\mathbf {G}}}(u_4)=D_{X\cup Y}^{{\mathbf {G}}}(u_5)=0\). Hence \(S_*(X\cup Y)=\{u_1,u_2,u_3\}\). This means that \(S_*(X)\cup S_*(Y)\subsetneq S_*(X\cup Y)\).

  2. (2)

    \(S^*(X\cap Y)=\emptyset \) because X and Y are disjoint subsets. Hence, \(S^*(X\cap Y)\subsetneq S^*(X)\cap S^*(Y)\).

Appendix II: Proofs

In this section we prove the results that we have stated.

Proof of Theorem 4.3

It is clear that (1L), (1H), (2L) and (2H) hold true.

  1. (3LH)

    From the definition, it is immediate to deduce \({ FS}_*(X)\subseteq X\). Let \(y\in X\), then \(\exists a\in A\) with the property \(y\in F(a)\) since \({\mathbf {G}}\) is a SC over U, therefore \(X\cap F(a)\ne \emptyset \). This means that \(y\in FS^*(X)\) which proves \(X\subseteq FS^*(X)\).

  2. (4L)

    Let \(X\subseteq Y\). If \(x\in { FS}_*(X)\), there must be \( e\in A\) ensuring \(u\in F(e)\subseteq X\subseteq Y\) thus \(u\in { FS}_*(Y)\). This ensures \({ FS}_*(X)\subseteq FS^*(Y)\).

  3. (4H)

    This property is similar to (4L).

  4. (5L)

    (1) Since \(Y\cap X\subseteq X\), then by (4L), \({ FS}_*(X\cap Y)\subseteq { FS}_*(X)\). Similarly, \({ FS}_*(X\cap Y)\subseteq { FS}_*(Y)\). Hence \({ FS}_*(X\cap Y)\subseteq { FS}_*(X)\cap { FS}_*(Y)\).

  5. (2)

    Since \(X\subseteq X\cup Y\), then by (4L), \({ FS}_*(X)\subseteq { FS}_*(X\cup Y)\). Similarly, \({ FS}_*(Y)\subseteq { FS}_*(X\cup Y)\). Hence \({ FS}_*(X)\cup { FS}_*(Y)\subseteq { FS}_*(X\cup Y)\).

  6. (5H)

    (1) This property can be proven by arguments as in the proof of (5L)(1).

  7. (2)

    Let \(u\in FS^*(X\cup Y)\), there exists \(a\in A\) with the properties \(u\in F(a)\) and \(F(a)\cap (X\cup Y)\ne \emptyset \). The latter statement implies either \(F(a)\cap X\ne \emptyset \) or \(F(a)\cap Y\ne \emptyset \), that is, \(u\in FS^*(X)\) or \(u\in FS^*(Y)\). We deduce that \(FS^*(X\cup Y)\subseteq FS^*(X)\cup FS^*(Y)\).

    By application of (4H) to \(X\subseteq X\cup Y\), one obtains \(FS^*(X)\subseteq FS^*(X\cup Y)\), and similarly, \(FS^*(Y)\subseteq FS^*(X\cup Y)\). Hence \(FS^*(X)\cup FS^*(Y)\subseteq FS^*(X\cup Y)\).

    By coupling these conclusions we deduce \(FS^*(X)\cup FS^*(Y)=FS^*(X\cup Y)\).

  8. (6)

    (1) The case \(\thicksim { FS}_*(X)=\emptyset \) obviously entails \(\thicksim { FS}_*(X)\subseteq FS^*(\thicksim X)\). Otherwise, pick any \(x\in \thicksim { FS}_*(X)\). Since \({\mathbf {G}}\) is a SC over U, there exists \(e\in A\) for which \(x\in F(e)\). Note that \(\thicksim { FS}_*(X)=\{u\in U: \text{ for } \text{ each } a\in A, u\in F(a) \text{ implies } \thicksim X \cap F(a)\ne \emptyset \}.\) It follows that \(F(e)\cap (\thicksim X)\ne \emptyset \), therefore \(x\in FS^*(\thicksim X)\). Thus \(\thicksim { FS}_*(X)\subseteq FS^*(\thicksim X).\)

  9. (2)

    The case \(\thicksim FS^*(X)=\emptyset \) obviously entails \(\thicksim FS^*(X)\subseteq { FS}_*(\thicksim X)\). Otherwise, pick any \(x\in \thicksim FS^*(X)\). Since \({\mathbf {G}}\) is a SC over U, there exists \(e\in A\) for which \(x\in F(e)\). Note that \(\thicksim FS^*(X)=\{x\in U\vert \forall a\in A, x\in F(a) \text{ implies } F(a)\subseteq \thicksim X\}.\) We deduce that \(F(e)\subseteq \thicksim X\), therefore \(x\in FS^*(\thicksim X)\). Thus \(\thicksim FS^*(X)\subseteq { FS}_*(\thicksim X).\)

  10. (7L)

    We prove this claim by double inclusion.

    A routine application of (3LH) produces \( { FS}_*({ FS}_*(X))\subseteq { FS}_*(X)\).

    For each \(x\in { FS}_*(X)\) there exists \(e\in A\) with the property \(x\in F(e)\subseteq X\). It is clear that \(x\in F(e)\) and \(F(e)\subseteq { FS}_*(X)\), therefore \(x\in { FS}_*({ FS}_*(X))\). Hence \({ FS}_*(X)\subseteq { FS}_*({ FS}_*(X))\).

  11. (7H)

    Let \(x\in FS^*(X)\), there exists \(e\in A\) with the properties \(x\in F(e)\) and \(F(e)\cap X\ne \emptyset \). It is clear that \(x\in F(e)\) and \(F(e)\cap FS^*(X)\ne \emptyset \), therefore \(x\in FS^*(FS^*(X))\). Hence, \(FS^*(X)\subseteq FS^*(FS^*(X))\).

  12. (8L)

    For any \(a\in A\), from the definition of \({ FS}_*\) we can easily derive \({ FS}_*(F(a))=F(a)\).\(\square \)

Proof of Theorem 5.2

It is clear that (1L), (1H), (2L) and (2H) hold.

  1. (3LH)

    We prove the two inclusions separately.

    When \(x\in ZS_*(X)\), one necessarily has the inclusion \(N_S(x)\subseteq X\). Since \(x\in N_S(x)\), then \(x\in X\). Therefore we obtain the inclusion \(ZS_*(X)\subseteq X\).

    Furthermore, select an element x from X, then \(X\cap N_S(x)\ne \emptyset \) thus \(x\in ZS^*(X)\). This proves the inclusion \(X\subseteq ZS^*(X)\).

  2. (4L)

    Fix subsets XY such that \(X\subseteq Y\). If \(x\in ZS_*(X)\), then \(N_S(x)\subseteq X\subseteq Y\), and so, \(x\in ZS_*(Y)\). This means that the inclusion \(ZS_*(X)\subseteq ZS_*(Y)\) holds.

  3. (4H)

    It is similar to (4L).

  4. (5L)

    (1)

    $$\begin{aligned} ZS_*(X\cap Y)= & {} \left\{ y\in U\vert N_S(y)\subseteq X\cap Y\right\} \\= & {} \left\{ y\in U\vert N_S(y)\subseteq X\wedge N_S(y)\subseteq Y\right\} \\= & {} \left\{ y\in U\vert N_S(y)\subseteq X\right\} \cap \left\{ y\in U\vert N_S(y)\subseteq Y\right\} \\= & {} ZS_*(X)\cap ZS_*(Y). \end{aligned}$$
  5. (2)

    Since \(X\subseteq X\cup Y\), then by (4L), \(ZS_*(X)\subseteq ZS_*(X\cup Y)\). Similarly, one obtains the inclusion \(ZS_*(Y)\subseteq ZS_*(X\cup Y)\). Hence \(ZS_*(X)\cup ZS_*(Y)\subseteq ZS_*(X\cup Y)\).

  6. (5H)

    (1) It is analogous to the proof of (5L)(2).

  7. (2)

    We demonstrate this set equality by double inclusion.

    Fix \(x\in ZS^*(X\cup Y)\), then \(N_S(x)\cap (X\cup Y)\ne \emptyset \), which implies, \(N_S(x)\cap X\ne \emptyset \) or \(N_S(x)\cap Y\ne \emptyset \), that is, \(x\in ZS^*(X)\) or \(x\in ZS^*(Y)\). This means that \(ZS^*(X\cup Y)\subseteq ZS^*(X)\cup ZS^*(Y)\).

    Furthermore, by application of (4H) to \(X\subseteq X\cup Y\) we know \(ZS^*(X)\subseteq ZS^*(X\cup Y)\), and similarly \(ZS^*(Y)\subseteq ZS^*(X\cup Y)\). Hence \(ZS^*(X)\cup ZS^*(Y)\subseteq ZS^*(X\cup Y)\).

  8. (6)

    (1) Pick \(x\in ZS_*(X)\), then one has the chain of equivalences \(x\in ZS_*(X)\Leftrightarrow N_S(x)\subseteq X\Leftrightarrow N_S(\thicksim X)=\emptyset \Leftrightarrow x\notin ZS^*(\thicksim X)\Leftrightarrow \thicksim ZS_*(\thicksim X).\) This means that \( ZS_*(\thicksim X)=\thicksim ZS^*(X).\)

  9. (2)

    It is similar to case (1).

  10. (7L)

    We prove the two inclusions separately.

    Let \(x\in ZS_*(X)\), then \(N_S(x)\subseteq X\). By (4L), \(ZS_*(N_S(X))\subseteq ZS_*(X)\). Let \(y\in N_S(x)\), then \(N_S(y)\subseteq N_S(x)\), that is, \(y\in ZS_*(N_S(x))\). Thus, \(N_S(x)\subseteq ZS_*(N_S(x))\subseteq ZS_*(X)\), that is, \( x\in ZS_*(ZS_*(X))\). Hence, \(ZS_*(X)\subseteq ZS_*(ZS_*(X))\).

    Since \(ZS_*(X)\subseteq X\), by (3L), we have \(ZS_*(ZS_*(X))\subseteq ZS_*(X)\).

  11. (7H)

    It is similar to (7L).

  12. (8L)

    By (3L), \(ZS_*(F(a))\subseteq F(a)\), for all \(a\in A\). Furthermore, if \(y\in F(a)\) then \(y\in N_S(y)\subseteq F(a)\), we have \(y\in ZS_*(F(a))\) therefore \(F(a)\subseteq ZS_*(F(a)))\). Thus \(F(a)= ZS_*(F(a)))\). \(\square \)

Proof of Theorem 6.1

  1. (1)

    Let \(X\subseteq U\). For any \(x\in F(a)\) and \(x\in A\), \(N_S(x)\subseteq F(a)\).

    If \(x\in { FS}_*(X)\), then \(F(a)\subseteq X\), and so, \(N_S(x)\subseteq F(a)\subseteq X\). Thus, \(x\in ZS_*(X)\). This means that \({ FS}_*(X)\subseteq ZS_*(X)\).

  2. (2)

    Since \(SS^*(X)={ FS}_*(X)\bigcup \{Md_S(x)\vert x\in X-{ FS}_*(X)\}\) and \(TS^*(X)=\bigcup \{Md_S(x)\vert x\in X\}=\bigcup \{Md_S(x)\vert x\in { FS}_*(X)\}\bigcup \{Md_S(x)\vert x\in X-{ FS}_*(X)\}\), which implies, \(SS^*(X)\subseteq TS^*(X)\).

    Clearly, \(TS^*(X)\subseteq FS^*(X)\). This shows that (2) holds.

  3. (3)

    Pick \(x\in ZS^*(X)\). From \(N_S(x)\cap X\ne \emptyset \) we deduce that F(a) intersects X for all \(a\in A\). Thus, \(x\in FS^*(X)\), and so, \(ZS^*(X)\subseteq FS^*(X)\).\(\square \)

Proof of Theorem 6.4

\(\Rightarrow \)” An inspection of the definition of \({ FS}_*\) ensures this implication.

\(\Leftarrow \)” Assume \(X\subseteq U, ZS_*(X)\) is a union of F(a) for all \(a\in A\), we let \(ZS_*(X)=F(a_1)\cup F(a_2)\cup \cdots \cup F(a_k)\) for all \(a_i\in A, i=1,2, \ldots ,k\), and so, \(F(a_i)\subseteq X\) for all \(1\le i\le k\). The definition of \({ FS}_*\) yields \(F(a_j)\subseteq { FS}_*(X)\) for every \(1\le j\le k\). This implies that \(ZS_*(X)=\bigcup \{ F(a_i)\}\subseteq { FS}_*(X)\). By Theorem 6.1, \({ FS}_*(X)\subseteq ZS_*(X)\). Thus, \({ FS}_*(X)=ZS_*(X)\). \(\square \)

Proof of Theorem 6.5

\(\Leftarrow \)” For any \(X\subseteq U\), \(SS^*(X)={ FS}_*(X)\bigcup \{Md_S(x)\vert x\in X-{ FS}_*(X)\}\) and \(TS^*(X)=\bigcup \{Md_S(x)\vert x\in X\}=\bigcup \{Md_S(x)\in { FS}_*(X)\}\bigcup \{Md_S(x)\vert x\in X-{ FS}_*(X)\}\). This shows that it suffices to prove the claim \(\bigcup \{Md_S(x)\in { FS}_*(X)\}\subseteq { FS}_*(X)\).

In fact, \(\forall x\in { FS}_*(X)\), there exists \(a\in A\) with \(x\in F(a)\subseteq X\). Let F(b) be the only element of \(Md_S(x)\) for some \(b\in A\). Let us prove that \(F(b)\subseteq F(a)\). Assume by way of contradiction that \(F(b)\subseteq F(a)\) is false. Then there must be \(y\in F(b)\) for which \(y\notin F(a)\). The construction of \(Md_S(x)\) ensures the existence of \(c\in A\) for which \(F(c)\subseteq F(a)\) and \(F(c)\in Md_S(x)\). The facts \(y\notin F(a)\) and \(y\notin F(c)\) imply that \(Md_S(x)\) has at least two elements. This contradicts the assumption that \({\mathbf {G}}\) is soft unary.

Now \(x\in F(b)\subseteq X\), therefore \(F(b)\subseteq { FS}_*(X)\). This implies that our claim holds. Thus \(SS^*(X)=TS^*(X)\).

\(\Rightarrow \)” Suppose that \({\mathbf {G}}\) is not soft unary. Then there is \(x\in U\) for which \(Md_S(x)\) has at least two elements. In other words, there are \(a,b\in A\) with the property \(F(a) = F(b)\) is false.

Using the definition of \(SS^*\), by Theorem 4.6 (8H) we have \(SS^*(F(a))=F(a)\). Also \(TS^*(F(a))=\bigcup \{Md_S(x)\vert x\in F(a)\}\), therefore \(F(b)\subseteq TS^*(F(a))\). By hypothesis, \(SS^*(X)=TS^*(X)\) thus we have \(F(b)\subseteq F(a)\). We can proceed symmetrically with b in order to deduce \(F(a)\subseteq F(b)\). Both statements contradict the fact that \(F(a) \ne F(b)\). Hence \({\mathbf {G}}\) is soft unary. \(\square \)

Proof of Theorem 6.6

\(\Rightarrow \)” Let \(TS^*(X)=FS^*(X)\). For any \(a\in A\) and \(y\in U\) for which \(y\in F(a)\), it must be the case that \(y\in F(a)\subseteq FS^*(\{y\})=TS^*(\{y\})=\bigcup Md_S(y)\). This proves that \({\mathbf {G}}\) is SPC.

\(\Leftarrow \)” Assume that \({\mathbf {G}}\) is SPC. Let \(X\subseteq U\), \(FS^*(X)=\bigcup _{a\in A}\{F(a)\vert F(a)\cap X \ne \emptyset \}\). For any \(a\in A\), let \(x\in F(a)\cap X\), then \(x\in F(a)\) and \(x\in X\). By the definition of SPC one has \(F(a)\subseteq \bigcup Md_S(x)=TS^*(X)\), which proves that \(FS^*(X)\subseteq TS^*(X)\).

In addition, by Theorem 6.1 (2) we have \(TS^*(X)\subseteq FS^*(X)\).

The latter two statements prove \(TS^*(X)= FS^*(X)\). \(\square \)

Proof of Lemma 6.8

\(\Leftarrow \)” For any \(a,b\in A\). Since \({\mathbf {G}}\) is partition, then \(F(a)\cap F(b)=\emptyset \), and so, \({\mathbf {G}}\) is soft unary. Then by Proposition 6.7, we know that \(F(a)\subsetneq F(b)\) and \(F(b)\subsetneq F(a)\) do not hold. Let \(x\in F(a)\), then \(F(a)\subseteq \bigcup Md_S(x)\) holds. This means that \({\mathbf {G}}\) is SPC.

\(\Rightarrow \)” Assume that \({\mathbf {G}}\) is soft unary and SPC. Let us prove that \(F(a)\cap F(b)=\emptyset \) when \(a,b\in A\). Otherwise, by Proposition 6.7, \(F(a)\subsetneq F(b)\) or \(F(b)\subsetneq F(a)\) holds. No generality is lost if we only study the case \(x\in F(a)\subsetneq F(b)\). It is clear that \(Md_S(x)=F(a)\), but \(F(b)\nsubseteq Md_S(x)\), which contradicts the definition of SPC. Because \(F(a)\cap F(b)=\emptyset \) throughout, \({\mathbf {G}}\) is partition. \(\square \)

Proof of Theorem 6.9

\(\Leftarrow \)” If \({\mathbf {G}}\) is partition, then by Lemma 6.8, \({\mathbf {G}}\) is both soft unary and SPC. By Theorems 6.5 and 6.6, we have \(SS^*(X)=TS^*(X)\) and \(TS^*(X)=FS^*(X)\), and so, \(SS^*(X)=FS^*(X)\).

\(\Rightarrow \)” Let \(SS^*(X)=FS^*(X)\). By Theorem 6.1(2), \(SS^*\subseteq TS^*\subseteq FS^*\), we can obtain \(SS^*= TS^*=FS^*\). By Theorems 6.5 and 6.6, we know that \({\mathbf {G}}\) is both soft unary and SPC. It follows from Lemma 6.8 that \({\mathbf {G}}\) is partition. \(\square \)

Proof of Theorem 6.11

\(\Leftarrow \)” If \({\mathbf {G}}\) is partition, then for any \(a,b\in A\), \(F(a)\cap F(b)=\emptyset \). This means that for any \(x\in F(a)\), \(N_S(x)=F(a)\). Let \(X\subseteq U\), then \(ZS^*(X)=\{x\in U\vert N_S(X)\cap X\ne \emptyset \}=\bigcup _{a\in A}\{F(a)\vert F(a)\cap X\ne \emptyset \} =FS^*(X).\)

\(\Rightarrow \)” For any \(a,b\in A\) and \(F(a)\ne F(b)\). Assume that \(F(a)\cap F(b)\ne \emptyset \). From the definition of \({ RS}^*\), it is trivial \({ RS}^*(F(a))=F(a), \forall a\in A\). Since \(ZS^*(X)=FS^*(X)\), by Proposition 6.10, \({ RS}^*=FS^*\), and so, \(FS^*(F(a))=F(a)\). By the definition of \(FS^*\), \(F(b)\subseteq FS^*(F(a))\). By hypothesis, \(F(a)\ne F(b)\), then \(F(b)\subsetneq F(a)\). Again, \({ RS}^*(F(b))=F(b)\). By the definition of \(FS^*\), \(F(a)\subseteq FS^*(F(b))\).

Hence \({ RS}^*(F(b))=F(b)\subsetneq F(a)\subseteq FS^*(F(b))\), a contradiction. This shows that \(F(a)\cap F(b)=\emptyset \), which implies, \({\mathbf {G}}\) is partition. \(\square \)

Proof of Theorem 7.4

  1. (1)

    Let \(X\subseteq Y\) and \(u\in U\). Then \(|N_S(u)\cap X|\le |N_S(u)\cap Y|\), and so, \(\frac{|N_S(u)\cap X|}{|N_S(u)|}\le \frac{|N_S(u)\cap Y|}{|N_S(u)|}\), that is, \(D_{{\mathbf {G}}}(u,X)\le D_{{\mathbf {G}}}(u,Y).\)

  2. (2)

    Let \(X,Y\subseteq U\), we have

    $$\begin{aligned} D_{X\cup Y}^{{\mathbf {G}}}\left( u\right)= & {} \frac{|N_S\left( u\right) \cap \left( X\cup Y\right) |}{|N_S\left( u\right) |} \\= & {} \frac{|\left( N_S\left( u\right) \cap X\right) \cup \left( N_S\left( u\right) \cap Y\right) |}{|N_S\left( u\right) |} \\\ge & {} \frac{\max \left\{ |N_S\left( u\right) \cap X|, |N_S\left( u\right) \cap Y|\right\} }{|N_S\left( u\right) |} \\= & {} \max \left\{ \frac{|N_S\left( u\right) \cap X|}{|N_S\left( u\right) |}, \frac{|N_S\left( u\right) \cap Y|}{|N_S\left( u\right) |} \right\} \\= & {} \max \left\{ D_{X}^{{\mathbf {G}}}\left( u\right) , D_{Y}^{{\mathbf {G}}}\left( u\right) \right\} \\= & {} \left( D_{X}^{{\mathbf {G}}}\cup D_{X}^{{\mathbf {G}}}\right) \left( u\right) , \end{aligned}$$

    which implies, \(D_{X\cup Y}^{{\mathbf {G}}} \supseteq D_{X}^{{\mathbf {G}}}\cup D_{X}^{{\mathbf {G}}}\).

  3. (3)

    By (2), we can easily prove (3) holds.

  4. (4)

    It is similar to (2).

  5. (5)

    By (4), we can easily prove (5) holds.

  6. (6)

    \(D_{{\mathbf {G}}}(u,X)+D_{{\mathbf {G}}}(u,\thicksim X)=\frac{|N_S(u)\cap X|+|N_S(u)\cap (\thicksim X)|}{|N_S(u)|}= \frac{|N_S(u)|}{|N_S(u)|}=1\).\(\square \)

Proof of Theorem 7.6

  1. (1L)

    For any \(u\in U\), \(D_U^{{\mathbf {G}}}(u)=\frac{|N_S(u)\cap U|}{|N_S(u)|}=1\), which implies \(S_*(U)=U\).

  2. (1H)

    By (1L), for any \(u\in U\), \(D_U^{{\mathbf {G}}}(u)=1>0\), which implies \(S^*(U)=U\).

  3. (2L)

    For any \(u\in U\), \(D_{\emptyset }^{{\mathbf {G}}}(u)=\frac{|N_S(u)\cap \emptyset |}{|N_S(u)|}=0\), which implies \(S_*(\emptyset )=\emptyset \).

  4. (2H)

    By (2L), for any \(u\in U\), \(D_{\emptyset }^{{\mathbf {G}}}(u)=0\), which implies \(S^*(\emptyset )=\emptyset \).

  5. (3LH)

    We prove the two inclusions separately.

    For any \(u\in S_*(X)\), \(D_X^{{\mathbf {G}}}(u)=1\). By Theorem 7.2(1), \(u\in ZS_*(X)\), which implies, \(N_S(u)\subseteq X\). Since \(u\in N_S(u)\), then \(u\in X\), which implies \(S_*(X)\subseteq X\).

    Furthermore, let \(u\in X\). Now \(X\cap N_S(u)\ne \emptyset \) thus \(u\in ZS^*(X)\). By Theorem 7.2(2) and (3), \(D_X^{{\mathbf {G}}}(u)>0\), therefore \(u\in S^*(X)\), which implies \(X\subseteq S^*(X)\). This ensures \(X\subseteq S^*(X)\).

  6. (4L)

    Let \(X\subseteq Y\). If \(u\in S_*(X)\), then \(D_X^{{\mathbf {G}}}(u)=1\). By Theorem 7.4(1), \(D_X^{{\mathbf {G}}}(u)\le D_Y^{{\mathbf {G}}}(u)\) since \(X\subseteq Y\), and so, \(D_Y^{{\mathbf {G}}}(u)\ge 1\), that is, \(D_Y^{{\mathbf {G}}}(u)=1\), therefore \(u\in S_*(Y)\). This means that \(S_*(X)\subseteq S_*(Y)\).

  7. (4H)

    Let \(X\subseteq Y\). If \(u\in S^*(X)\), then \(D_X^{{\mathbf {G}}}(u)>0\). By Theorem 7.4(1), \(D_X^{{\mathbf {G}}}(u)\le D_Y^{{\mathbf {G}}}(u)\) since \(X\subseteq Y\), and so, \(D_Y^{{\mathbf {G}}}(u)\ge 0\), and so, \(u\in S^*(Y)\). This means \(S^*(X)\subseteq S^*(Y)\).

  8. (5L)

    (1) We prove this set-theoretic equality by double inclusion. By (4L), \(S_*(X\cap Y)\subseteq S_*(X)\) since \(X\cap Y\subseteq X\). Similarly, \(S_*(X\cap Y)\subseteq S_*(Y)\), and so, \(S_*(X\cap Y)\subseteq S_*(X)\cap S_*(Y)\).

Furthermore, let \(u\in S_*(X)\cap S_*(Y)\), then \(u\in S_*(X)\) and \(u\in S_*(Y)\), and so, \(D_X^{{\mathbf {G}}}(u)=1\) and \(D_Y^{{\mathbf {G}}}(u)=1\). By Theorem 7.2(1), \(u\in ZS_*(X)\) and \(u\in ZS_*(Y)\), therefore \(N_S(u)\subseteq X\) and \(N_S(u)\subseteq Y\). Hence, \(N_S(u)\subseteq X\cap Y\), that is, \(u\in ZS_*(X\cap Y)\). By Theorem 7.2(1), \(D_{X\cap Y}^{{\mathbf {G}}}(u)=1\), therefore \(u\in S_*(X\cap Y)\), which implies, \(S_*(X)\cap S_*(Y)\subseteq S_*(X\cap Y)\).

  1. (2)

    Since \(X\subseteq X\cup Y\), then by (4L), \(S_*(X)\subseteq S_*(X\cup Y)\). Similarly, \(S_*(Y)\subseteq S_*(X\cup Y)\). Hence \(S_*(X)\cup S_*(Y)\subseteq S_*(X\cup Y)\).

  2. (5H)

    (1) Since \(X\cap Y\subseteq X\), then by (4H), \(S^*(X\cap Y)\subseteq S^*(X)\). Similarly, \(S^*(X\cap Y)\subseteq S^*(Y)\). Hence \(S^*(X\cap Y)\subseteq S^*(X)\cap S^*(Y)\).

  3. (2)

    We prove this set-theoretic equality by double inclusion.

Let \(u\in S^*(X\cup Y)\), then \(D_{X\cup Y}^{{\mathbf {G}}}(u)>0\). By Theorem 7.2 (1) and (3), \(u\in ZS^*(X\cup Y)\), which implies, \(N_S(u)\cap (X\cup Y)\ne \emptyset \), and so, \(N_S(u)\cap X\ne \emptyset \) or \(N_S(u)\cap Y\ne \emptyset \), that is, \(u\in ZS^*(X)\) or \(u\in ZS^(Y)\). By Theorem 7.2 (3), \(D_{X}^{{\mathbf {G}}}(u)>0\) or \(D_{Y}^{{\mathbf {G}}}(u)>0\), that is, \(u\in S^*(X)\) or \(u\in S^*(Y)\), and so, \(u\in S^*(X)\cup S^*(Y)\). This means that \(S^*(X\cup Y)\subseteq S^*(X)\cup S^*(Y)\).

Furthermore, \(X\subseteq X\cup Y\), then by (4H), \(S^*(X)\subseteq S^*(X\cup Y)\). Similarly, \(S^*(Y)\subseteq S^*(X\cup Y)\). Hence \(S^*(X)\cup S^*(Y)\subseteq S^*(X\cup Y)\).

  1. (6)

    For any \(X\subseteq U\), we have

    $$\begin{aligned} \thicksim S_*\left( \thicksim X\right)= & {} \thicksim \left\{ u\in U\vert D_{\thicksim X}^{{\mathbf {G}}}\left( u\right) >0\right\} \\= & {} \thicksim \left\{ u\in U\vert D_{X}^{{\mathbf {G}}}\left( u\right) <1\right\} \left( \mathrm {By\ Theorem}\,7.4\left( 6\right) \right) \\= & {} \left\{ u\in U\vert D_{X}^{{\mathbf {G}}}\left( u\right) \ge 1\right\} \\= & {} \left\{ u\in U\vert D_{X}^{{\mathbf {G}}}\left( u\right) = 1\right\} \\= & {} S_*\left( X\right) . \end{aligned}$$

    Similarly, \(\thicksim S_*(\thicksim X)=\ \thicksim S^*(X).\)

  2. (7L)

    We prove this set-theoretic equality by double inclusion.

    Let \(u\in S_*(X)\), then \(D_{X}^{{\mathbf {G}}}(u)=1\). By Theorem 7.2(1), \(u\in ZS_*(X)\). By Theorem 5.2(7L), \(ZS_*(ZS_*(X))=ZS_*(X)\), that is, \(u\in ZS_*(ZS_*(X))\). Hence, by Theorem 7.2(1) again, \(D_{ZS_*(X)}^{{\mathbf {G}}}(u)=1\), that is, \(u\in S_*(S_*(X))\), which implies, \(S_*(X)\subseteq S_*(S_*(X))\).

    Since \(S_*(X)\subseteq X\), by (3L), we have \(S_*(S_*(X))\subseteq S_*(X)\).

  3. (7H)

    It is similar to (7L).

  4. (8L)

    We prove this set-theoretic equality by double inclusion. Whenever \(a\in A\), by (3L), \(S_*(F(a))\subseteq F(a)\). Furthermore, let \(u\in F(a)\), since \(N_S(u)\subseteq F(a)\), then \(D_{F(a)}^{{\mathbf {G}}}(u)=1\), and so, \(u\in S_*(F(a))\). Hence \(F(a)\subseteq S_*(F(a))\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, J., Alcantud, J.C.R. A novel type of soft rough covering and its application to multicriteria group decision making. Artif Intell Rev 52, 2381–2410 (2019). https://doi.org/10.1007/s10462-018-9617-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-018-9617-3

Keywords

Navigation