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Abstract Laboratory tests are acommon and relatively cheap way to assess the general health
status of patients. Various publications showed the potential of laboratory measurements for
predicting inpatient mortality using statistical methodologies. However, these efforts are basi-
cally limited to the use of logistic regression models. In the present paper we use anonymized
data from about 40,000 inpatient admissions to the Inselspital in Bern (Switzerland) to evalu-
ate the potential of powerful pattern recognition algorithms employed for this particular risk
prediction. In addition to the age and sex of the inpatients, a set of 33 laboratory measure-
ments, frequently available at the Inselspital, are used as basic variables. In a large empirical
evaluation we demonstrate that recent pattern recognition algorithms (such as random forests,
gradient boosted trees or neural networks) outperform the more traditional approaches based
on logistic regression. Moreover, we show how the predictions of the pattern recognition
algorithms, which cannot be directly interpreted in general, can be calibrated to output a
meaningful probabilistic risk score.

Keywords Comparative study on pattern recognition algorithms - Laboratory measure-
ments - Predicting inpatient mortality risk
1 Introduction and related work

In the last decades healthcare costs have been constantly increased in many countries. In
particular, in developed countries various chronic diseases and the aging population can
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be seen as the origin of exploding costs in the health sector. In Switzerland, for instance,
the healthcare costs are known to contribute almost 12% of the gross domestic product
(Kothenbiirger and Sandqvist 2016).

While some expenses are actually necessary, with regard to an advanced healthcare system,
there is great potential for savings in different ways. The Minnesota Department of Health, for
instance, has shown that during the year 2012 about 1.2 million patient visits and 1.3 billion
in dollars were caused by preventable emergency department visits (Minnesota Department
of Health 2015).

With the rise of digitalization in the field of healthcare, huge amounts of data have become
readily available. This data stems from numerous sources, such as electronic health records
(EHR), personalized genome scans, or even live-data obtained by wearables. This develop-
ment could help to reduce costs by leveraging modern methods from big data analytics to
healthcare. Furthermore, it could also increase the accessibility to healthcare in less devel-
oped countries and ultimately improve the overall quality of care (Raghupathi and Raghupathi
2014).

A key component to leverage the accessibility to large amounts of complex data are pat-
tern recognition algorithms (Duda et al. 2001; Bishop 2008). Pattern recognition algorithms
basically allow machines to learn models from large amounts of data. In the scenario of
supervised learning the underlying training data is labeled with a specific class value (often
assessed by human experts). Eventually, the learned model can be used to predict the label
of unseen data (known as classification).

The main contribution of the present paper is the thorough evaluation of powerful methods
from pattern recognition in order to predict the risk of mortality of inpatients. The ultimate
goal of this prediction is to automatically identify patients at risk and in turn take proactive
measures (for instance, an intensified monitoring). Actually, pattern recognition methods
gained much attention in the field of medical predictions. In Churpek et al. (2016), for
instance, demographic variables, laboratory values, and vital signs are employed in a discrete-
time survival analysis framework to predict the combined outcome of cardiac arrest, intensive
care unit transfer, or death. In Goldstein et al. (2017) the use of elaborated methods for risk
prediction models in the context of acute myocardial infarction diagnosis is reviewed.

In our scenario the inpatients are formally described by various laboratory measurements
as well as their age and sex. Laboratory tests are usually samples of blood (or urine), which
a physician sends to a laboratory to assess their values. Laboratory tests are often ordered as
part of routine health-checks. Yet, they may also be used to check for certain conditions when
a patient exhibits specific symptoms (for instance, factors indicating heart failure). Compared
to other medical tests, like magnetic resonance imaging (MRI) or computerized tomography
(CT), laboratory tests are relatively cheap and fast and thus more commonly available.

There are several publications available that confirm the benefit of using statistical models
applied on laboratory tests. Most of these approaches are based on logistic regression. Pine
et al., for instance, developed an early model based on logistic regression which is restricted
to analyze inpatients with certain diagnoses (Pine et al. 1997). In Froom and Shimoni (2005)
a similar model is built that takes into account the age of the inpatient as well as twelve
chemistry and complete blood count variables. Recently, in Tabak et al. (2014) a scoring
model to quickly assess a patients risk is proposed [termed Acute Laboratory Risk of Mortality
Score (ALaRMS)]. ALaRMS employs a set of available laboratory tests to assess the overall
health status of a patient with a risk score. Although the proposed model is a scoring system,
its parameters originate from a logistic regression model.

In the present paper we aim at evaluating the performance of very recent pattern recognition
algorithms in conjunction with standard laboratory tests, age and sex as input variables. To
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this end, we train and evaluate four pattern recognition algorithms on a recent real world
data set. In particular, we make use of a Support Vector Machine (Chang and Lin 2001), a
Multilayer Perceptron (Al-Rfou et al. 2016), as well as two classifier ensembles based on
Decision Tree algorithms (Breiman 2001; Chen and Guestrin 2016) and compare these four
methods with a standard logistic regression model applied on the same data.

The remainder of this paper is organized as follows. Next, in Sect. 2 the data set is
thoroughly introduced. Moreover, as preliminary work has shown the high variance in the
availability of laboratory tests between patients (Nakas et al. 2016), we also review a strategy
for handling missing values in this section. Next, in Sect. 3 the different classification models
actually employed in this study are briefly reviewed. The experimental setup as well as the
test results are presented and discussed in Sect. 4. Finally, Sect. 5 concludes the paper and
provides suggestions for possible future research activities.

2 Data set
2.1 Variables

The Inselspital is the university hospital in the city of Bern (Switzerland).! The raw data
employed in the present study includes all hospital admissions to the Inselspital during the
year 2015.2 The initial data set consists of the age and sex as well as several laboratory
measurements of the patients.

First, we select patients where the personal and administrative as well as the laboratory
data are available resulting in 39,887 inpatients in total. For patients with multiple hospital
entries during the considered time span, only the first entry is considered. Multiple laboratory
measurements are processed in a similar way. That is, only the laboratory test closest to the
initial entry is considered. Additionally, only the most frequent laboratory measurements
with less than 80% missing cases are included in our final data set (reducing the available
laboratory data to 33 measurements?). Finally, non-numerical laboratory measurements as
for instance “< x”, “> x”, “positive”, or “negative” are transformed to the next lower or
greater discrete feature value, to the maximum value or to zero, respectively.

In summary, our final data set consists of N = 39,887 patients (45.37% female and
54.63% male) described with n = 35 features (age, sex and 33 laboratory measurements).
Additionally, the discharge status (dead or alive), which is actually the variable to be predicted
in the present study, is also known for every inpatient in the data set. The overall mortality
rate in our selection amounts to 2.26%. That is, we observe 905 death inpatients and 38,982
living inpatients (termed negative and positive) from now on.

Table 1 summarizes the 33 laboratory measurements employed in the present study includ-
ing the mean value (u), the standard deviation (o) as well as the minimum and maximum
value for each feature (the statistics of the variable Age are also given). Details on the medical
descriptions of the laboratory measurements can be obtained from AACC (2001), Smith et al.
(2005).

I The Inselspital Bern serves as University Hospital with 50,000 inpatients with quaternary care per year,
providing about 900 beds and 78 departments.

2 Due to ethical considerations and regulatory requirements all data has been completely anonymized before-
hand.

3 The threshold of 80% is somehow arbitrary and other thresholds could have been used, of course.
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Table 1 Laboratory measurements employed in the present study including the mean value (), the standard
deviation (o), the minimum and maximum value as well as the relative amount of patients where this particular
measurements is missing (Miss)

Variable " o Min Max Miss (%)
Age (years) 52.3 25.4 0 101 0.0
Lipaemic 16.3 24.6 0 2300 12.3
Potassium (plasma, pumol/L) 4.1 0.6 1.6 41.6 12.5
MCYV (fL) 90.3 6.3 45 140 15.5
MCHC (g/L) 335.1 19.9 252 3365 15.5
Erythrocytes (T/L) 4.2 0.7 0.7 8.5 15.5
RDW (%) 14.6 2.1 11.1 57.7 15.5
Thrombocytes (G/L) 239.5 101.9 1 3420 15.5
Leukocytes (G/L) 9.3 7.0 0.0 597.4 15.5
MPV (fL) 8.575 1.3 54 30.7 15.5
Hemoglobin (g/L) 127.1 49.9 22 8400 15.5
Sodium (pmol/L) 138.2 39 76 194 17.9
Creatinine (plasma, jumol/L) 92.4 80.4 5 1737 22.4
Glucose (plasma, pumol/L) 6.7 2.9 0.4 63.56 23.2
C-reactive protein (plasma, mg/L) 47.4 68.8 3 637 51.4
Urea (plasma, pumol/L) 7.9 6.2 0.6 113.1 54.0
Calcium total (plasma, pwmol/L) 2.2 0.2 0.6 6.4 62.3
Quick venous (plasma, %) 75.6 23.6 8 100 63.1
pH (urine) 59 0.8 5 9 65.1
pCO2 (blood, mmHg) 40.7 9.9 8 176 65.6
pO2 (blood, mmHg) 85.6 78.1 0 498 66.0
Monocytes (G/L) 0.6 1.3 0 97.68 66.6
Lymphocytes (G/L) 1.5 6.2 0 573.5 66.6
Neutrophils (G/L) 7.5 5.3 0 143.27 66.6
Lactate (blood, pmol/L) 2.0 2.1 0.3 29 70.1
Bicarbonate (blood, pumol/L) 23.0 4.2 1.1 57.1 70.3
Alkaline phosphatase (plasma, U/L) 112.0 142.8 12 5342 70.4
Phosphate (plasma, jumol/L) 1.1 0.4 0.1 5.67 72.0
Calcium ionized (whole blood, pumol/L) 1.2 0.1 0.23 1.99 78.1
Magnesium (plasma, pumol/L) 0.8 0.3 0.21 18.1 78.1
aPTT (plasma, s) 37.2 18.5 17.4 291.8 79.0
Base excess (whole blood, wmol/L) —1.8 4.5 —29.8 28.9 79.4

Due to financial constraints and/or a physicians prior knowledge, not every possible test
is carried out for every inpatient. Hence, our basic data set consists of a high amount of
inpatients that are not described by means of the full feature set. In the last column of Table 1
we indicate the relative amount of inpatients where this particular measurements is missing
(Miss).

We observe that laboratory features are missing in between 12.3 and 79.4% of all inpatients.
Regarding the availability of the laboratory data we note quite a large gap between the first

@ Springer



A comparative study of pattern recognition algorithms for...

13 features (Lipaemic to Glucose), which are missing in between 12.3 and 23.2% of all
inpatients, and the remaining laboratory data (missing in more than 51.4% up to almost 80%
of all inpatients). This observation is due to the available panels of tests that can be ordered
as sets by physicians.

2.2 Handling missing data

There are some classification algorithms (e.g. decision tree algorithms Breiman et al. 1984)
that can be applied to data sets with missing feature values. The way these methods deal
with missing values is usually based on probabilistic estimates such as maximum likelihood
and/or adding additional categories for missing variables (Schmitt et al. 2015).

Yet, several other statistical classifiers, such as for instance support vector machines
(Shawe-Taylor and Cristianini 2004), generally need data sets with complete feature sets.
Hence, for these algorithms the objects with missing values have to be processed before the
classification can be carried out. Generally one distinguishes three types of missing data,
viz. data that is missing completely at random, data that is missing at random, and data that
is missing not at random (Donders et al. 2006).*

For our data set it is clear that specific tests are dependent on their actual value and thus
fall in the third category of missing data. That is, the available distribution might be heavily
biased towards a small fraction of patients associated with an elevated probability of having
non-standard values and in turn elevated mortality risk.

This can actually be observed in Fig. 1. It is clearly visible that certain variables are
associated with significantly higher mortality risks than others.> For instance, the Creatinine
test is not associated with any increased risk. Yet, we observe that for inpatients where an
infrequent test (e.g. Base Excess) is carried out, the mortality risk is about three times higher
than the average. These tests are highly specific and are thus normally not carried out during
a routine health-check but rather when a physician has a certain suspicion.

In the most simple scenario one would discard all observations with missing values.
Obviously, this is not suitable in our particular use case (with large amounts of missing
values). Another idea is to substitute missing values of a feature f by the global mean u  of
this particular feature (or by any other statistical measurement). However, this has also major
drawbacks such as a significant decrease in the variance of the variable as well as a substantial
loss of information. Moreover, in preliminary experimental evaluations we observed that the
substitution of missing values by the global mean leads in general to worse results than the
more elaborated imputation algorithm actually used.®

In the present paper we make use of a classifier to predict a missing variable by means of the
available features. Assuming the missing value is not completely independent from all other
measurements, this allows a more elaborated guess of the true laboratory value. Formally,
we use the MissForest imputation algorithm proposed by Stekhoven and Biihimann (2012).”

4 Missing Completely at Random (MCAR) means that data is missing completely independent of the observed
and unobserved values, while Missing at Random (MAR) means that the observed data might explain the
missing data. Thus given the observed data, unobserved data are missing independently of their actual value.

5 The overall mortality risk in our data set is 905/39,887 ~ 2.27%. The values shown in Fig. 1 indicate the
relative increase of the probability of negative discharge status given the specific test has been carried out. In
the worst case a test is carried out on 20.6% of the patients. Hence, the relative increase of mortality risks are
computed on at least 8200 patients.

6 Using mean imputation leads to a reduction of the area under ROC-curves of a about 2-3% points when
compared to the imputation method employed.

7 We employ the available R implementation provided by the same authors.
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Fig. 1 The mortality risk is dependent on the laboratory tests carried out

This algorithm uses random forests to predict the value of missing variables. One of the
main advantages of this particular algorithm is that no parameters have to be defined by the
user. Moreover, in Waljee et al. (2013) it is shown that this imputation technique achieves
state-of-the-art accuracy.

2.3 Normalization

Several classification algorithms rely on distances computed on the feature vectors, and thus,
a normalization of the dynamic range of numerical features is necessary. We use a z-score
based on the mean 1 ¢ and the standard deviation o'y of feature f computed over all available
observations in the data set. Formally, we compute

fodztr M

for all features f. Hence, we scale all variables to have zero mean and unit variance. Without
this particular normalization variables with bigger magnitude would automatically have a
larger impact, leading to potentially undesirable effects.
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3 Pattern recognition algorithms actually applied

Regarding our basic data set, we note that the objects under consideration (i.e. the inpatients)
can be interpreted as points in a n-dimensional real space, i.e. X = (x1, ..., x,) € R". Thus,
any algorithm from the rich repository of algorithmic tools for statistical pattern recognition
can be employed for our prediction task (Duda et al. 2000; Shawe-Taylor and Cristianini 2004;
Bishop 2008). In the present paper we make use of both well-established and very recent
pattern classification algorithms. In the following subsections the five algorithms actually
used are briefly reviewed.

3.1 Logistic regression

Logistic Regression (LR) is still widely used for binary classification tasks. In particular, in
medical research it is often the method of choice due to its simplicity and easy interpretability.
With a regularization term (weighted by a regularization parameter 1) one can penalize too
complex parameters which in turn helps with collinearity and prevents overfitting (Minka
2003; Peng et al. 2002). The main limitation of LR is its linear nature. Thus, it often fails to
capture non-linear relationships or needs heavy feature-engineering to make the underlying
problem linear.

In the present work we make use of Pythons Scikit-learn module (Pedregosa et al. 2011)
for LR classification.

3.2 Support vector machine

Introduced in 1995 by Cortes and Vapnik (1995) the Support Vector Machine (SVM) has
become one of the most frequently used classifiers in pattern recognition (see Byun and Lee
2003 for an early survey on pattern recognition applications using SVMs).

In contrast with LR, which tries to calculate the posterior probability of the class, SVMs
aim at finding a hyperplane in the feature-space, which optimally divides the given classes.
Besides its solid theoretical foundation and the convex optimization setting (leading to a
guaranteed optimum) the major benefit of SVMs is the extension to non-linear decision
boundaries by means of the kernel trick. The kernel trick allows to map the inner-product of
two vectors into a higher dimensional (or even infinite) Hilbert space, where the data is more
likely to be linearly separable (Scholkopf and Smola 2002).

One of the most widely used kernels is the Radial Basis Function (RBF), which only
depends on one parameter o and often leads to very decent results with non-linearly separable
data (Shawe-Taylor and Cristianini 2004). The second important parameter for SVMs is the
weighting parameter C that controls the trade off between the requirements of a large margin
of the hyperplane and few misclassifications.

For SVM classification we use the Scikit-learn module (Pedregosa et al. 2011), which in
turn uses the libsvm implementation (Chang and Lin 2001).

3.3 Multilayer perceptron

The basic idea behind neural networks, also termed Multilayer Perceptrons (MLP), is actually
quite old (established in the 1940s McCulloch and Pitts 1943). With the introduction of the
Backpropagation algorithm, efficient training of MLPs has become possible in the mid of the
eighties of the last century (Werbos 1990; Bishop 1996). Currently, neural networks undergo
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a true renaissance (in particular due to the massive increase of computational power and the
resulting concept of deep learning LeCun et al. 2015).

The basic intuition behind MLPs is to use nodes that represent neurons with activa-
tion functions and edges with associated weights (representing the strength of connections
between the neurons). Using training data, one then adjusts the weights and usually a bias
term to approximate the expected output for given input data (the strength of the weight
adaptation is commonly controlled by a learning rate ). Multiple layers allow the network to
learn also abstract feature representations, thus compressing information with regard to the
target variable and capturing non-linear effects. Training is often done via stochastic gradient
descent using a certain number of random training instances per training step.

Our MLP models are built using the Theano and Lasagne frameworks (Al-Rfou et al.
2016; Dieleman 2016).

3.4 Decision tree

The intuition behind decision trees (Breiman et al. 1984) is to build a tree where internal nodes
represent decisions based on features, partitioning samples with respect to their individual
values. Leaf nodes are then associated with classes (or values). The formal basis for building
decision trees can be found in information theory, as one wants to maximize information gain
with every decision (this can be achieved by means of the Shannon Entropy, for instance).
Finding the best split at a specific node may be computed via a greedy search for the
best variable and respective cut-off point across that variable’s values (or categories). From
a theoretic point of view, one can repeat this until all leaf nodes are pure in a sense that they
only contain instances of a single class. However, this usually leads to a massive overfitting
to the training samples. In order to prevent this, one can define, for instance, the minimum
information gain required to carry out a split, set the maximal depth of the tree or the maximal
number of features employed, or apply a pruning of the tree (Mohamed et al. 2012).

3.4.1 Random forest

Random forests (RF) are ensembles of several decision trees. The basic idea is to create trees
with some randomness such that they do not highly correlate with each other. This may be
achieved, for instance, by bootstrapping, i.e. using a random subsample of the training set for
each tree. Sometimes randomization is extended to subsample a certain number of variables
per tree (Breiman 1996, 2001).

For RF based classification we use the Scikit-learn module (Pedregosa et al. 2011).

3.4.2 Tree boosting

Tree Boosting is part of a broader family of ensemble techniques called Gradient Boost-
ing (Friedman 2001; Schapire 2003). The basic idea behind tree boosting is similar to the RF
approach. However, instead of training each decision tree randomly, one tries to iteratively
add a tree which optimally improves prediction in combination with the already existing
ensemble.

XGBoost (XGB) is a recent implementation of a tree boosting algorithm which is able to
handle missing values out of the box. XGB needs a great variety of parameters. For instance,
the learning rate n broadly describes how big the step from one tree to the next is in terms
of minimizing the objective function. Moreover, we also have more classical tree parameters
such as the percentage of random variables the tree should use or the maximum allowed depth
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of a tree in the ensemble. Another more specific regularization parameter is the minimal sum
of instance weight, which stops tree growth if a partition would end up with a sum of instance
weights below a specified threshold.

The original XGB implementation is used for our experiments (Chen and Guestrin 2016).

4 Experimental evaluation
4.1 Experimental setup

Rather than directly predicting binary classes (Positive or Negative), we use the different
classification algorithms to predict the risk of mortality po € [0, 1]. The LR, MLP, and XGB
algorithms output the score of a sigmoid function. In case of the SVM classifier we make use
of the probabilistic SVM described in Wu et al. (2004) to output a probability value for each
inpatient. For RF we take the mean of all predicted probabilities from the tree ensemble.

Given the risk value po given by a specific classifier, we use a global threshold 6 € [0, 1]
for assignments of inpatients to one of the two classes. Formally, if the score pg output by a
certain classifier is greater than 6, a negative classification is returned, otherwise a positive
classification is returned. Obviously, threshold 6 has a crucial impact on our model. The
higher the threshold is defined, the lower is the relative amount of false negatives. Yet, with
higher threshold values we have to also accept higher amounts of false positives.

For each threshold value 6 we thus compute the false positive rate FPR as well as the the
true positive rate TPR.8

TP
=—— and TPR= — 2)
FP + TN TP + FN

As basic evaluation tool we then use ROC-curves that plot the TPR as a function of the
FPR. In order to condense the ROC-curves into one single metric, we compute the Area
Under the Curve. The AUC is not only independent from the actual decision threshold, but
also invariant to prior class probabilities (which is actually desired as we have highly skewed
class probabilities with only 2.26% negatives).

FPR

4.2 Validation of meta parameters

The full data set is randomly split into 30,000 patients for training as well as a 9,887 patients
for testing. In order to learn and optimize the meta parameters for the different classification
models we apply stratified five-fold cross-validation with random shuffling, where stratifying
refers to even patient-outcome distributions. Since the MissForest imputation is computation-
ally intensive, we use mean imputation during the optimization process (i.e. every missing
value of feature f is replaced by the global mean w r). MissForest is then applied for the
subsequent test. For XGB the internal imputation technique is applied in both cases.

For LR the regularization parameter A is the sole value to be optimized, while for the SVM
the weighting parameter C as well as the RBF parameter o are optimized by means of a grid
search.

The actual network architecture of our MLP consists of an input layer with 35 nodes, 3
hidden layers with 35 nodes each and one output unit. The Dropout is set to 30% for each
layer, including the input layer. For the nodes in the hidden layers, rectified linear units (ReLu)

8 TP, TN, FP, and FN refer to the number of true positives and true negatives as well as the number of false
positives and false negatives, respectively.
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Table 2 Validated parameters and optimal values for each algorithm

Classifier Parameter Validated values Optimal value
LR A (2710 2=9 . 219} r=2""7
SVM c (279,278, ..., 210y c=20

o (279,278, ... 210 6 =273
MLP n (2719, 2718 20y p=2"13
RF dmax {3,4,...,20} Uoco dmax = 00

fmax {3,4,...,20} fmax =3
XGB dmax {3,4,...,10} dmax =9

c {0.5,0.6,...,0.9} c=05

n {0.01,0.02,...,,0.1} n = 0.08

Wmin {0.5,1.0, 1.5,2.0} Wmin = 1.5

were used as activation functions. Weights are initialized using the method proposed in Glorot
and Bengio (2010) and the updates are calculated using Nesterov Momentum (Sutskever et al.
2013) with learning rate n. With regard to the output layer, we use a Logistic function to map
the hidden layer activation to a probability between 0 and 1. Finally, to quantify the offset
between target-labels and predictions we used binary cross-entropy (Bengio 2012).

For the RF classifier the parameters that control the maximum depth of the tree dax and the
maximum number of variables employed fiax are optimized. With respect to computational
resources available, the number of trees is fixed to 700 during optimization (for the final
prediction task we increase this value to 2000).

For XGB the parameters for the maximal depth dp,x and the subsample ratio of columns
c are tuned. Additionally the learning rate  and minimal sum of weights per instance wp;n
are subject to the grid search optimization. Early stopping is set to 20 rounds. During the
parameter optimization the maximum number of trees is set to 100 while in the final prediction
task the hard-limit is set to 2000.

In Table 2 the validated parameters as well as the optimal values per parameter are shown
for every algorithm.

4.3 Test results and discussion

The different classification algorithms are applied with optimized parameters on the inde-
pendent test set that consists of about 10,000 patients. In Fig. 2 the ROC-curves of three
algorithms are shown (for the sake of readability we omit two curves here), while Fig. 3
displays the AUC scores of all algorithms.

The boosted tree ensemble XGB achieves the highest AUC score of 94.19%. The Random
Forest classifier and the Multilayer Perceptron show similar performances resulting in AUC of
92.14 and 92.35%, respectively. The worst performing classifiers are the Logistic Regression
and Support Vector Machine with AUC scores of 90.51 and 90.59%, respectively.

Regarding the relatively high correlation between the laboratory tests carried out and
the mortality risk (as observed in Fig. 1), the question arises whether the pure presence of
a certain laboratory measurement is sufficient for a reliable prediction. In order to answer
this question, we evaluate the best performing classifier, viz. XGB, on binarized laboratory
measurements. Formally, if a laboratory measurement is available for a certain inpatient, we
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replace the value by 1. Likewise, absent measurements are encoded by 0. On this particular
data set, XGB achieves a relatively low AUC of 89.10%. Hence, we conclude that the actual
values of the laboratory measurement are crucial to make an accurate prediction (or vice
versa, the mere presence or absence of laboratory tests is not sufficient, in general).

We additionally applied a feature selection algorithm in conjunction with the best indi-
vidual classifier XGB. We employ a recursive feature elimination that starts with all features
and iteratively removes the least important one. In case of XGB the feature importance is
measured by means of the frequency of splits a variable has been used in. This actually
resulted in a subset of only six laboratory variables® plus age and sex with a resulting AUC
of 90.07%.

The AUC metric indicates the performance of the classification algorithms regardless the
threshold actually used. Yet, in order to further compare the different classification algorithms,
we compare the systems with a fixed threshold value. For each algorithm we choose the
lowest threshold that achieves a false positive rate of 10%. That is, such a system classifies

9 These six features are Lactate, Quick venous, C-reactive Protein, Creatinin, Leukocytes, and Glucose. Note
that three out of six selected features have low risk factors. Thus, a feature with high risk factor does not
necessarily mean that its predictive power for mortality is also high.
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Table 3 The classification

Classifi Al F- P R
accuracy (Acc), the Fp-score, the assiher e 1-score
precision (P), and the recall (R) 1 ogigtic regression 7550  85.70 99.68  75.16
of the five algorithms when the .
threshold value is fixed such that Support vector machine 61.83 81.39 99.76 61.06
the false positive rate is 10% Mulitlayer perceptron 75.48 88.40 99.71 75.11
Random forest 77.28 86.70 99.69 76.96
Tree boosting 81.67 89.67 99.71 81.47

90% of the negative inpatients correctly as negative, while 10% of the negative samples are
wrongly classified as positive.'® For these particular thresholds we compare the algorithms
with respect to their classification accuracy (ACC), the F score, the precision (P), as well
as the recall (R).

In Table 3 the corresponding results are shown. All algorithms achieve similar (and very
high) precision scores of about 99.7%. That is, only 3 out of 1000 positive predictions are
actually wrong. These high precision scores are due to the highly skewed data reinforced with
the low number of false positives evoked by the fixed threshold. Regarding the other three
metrics, however, we observe significant differences among the algorithms. In particular, we
observe that XGB outperforms all other methods with respect to all three metrics. For instance,
regarding the recall XGB outperforms the other classifiers by five or more percentage points.

4.3.1 Calibration of the probabilities

The risk outputs by the classification algorithms are actually not corresponding to the real
probability of the class membership. Therefore, it is necessary to adequately calibrate the
probability outputs. A possible approach is to use a logistic regression layer behind the
classifier, which calculates the posterior probability of the class (dead or alive in our case)
given the data.

This method is formally introduced in Platt (1999) in the context of SVMs. Yet, it can
be used with any other classifier as well. We actually use this method in conjunction with
the tree boosting method XGB (see Fig. 4). Obviously, the probability estimates of XGB
are initially too high. Yet, we observe that the actual mortality rate fits quite well with the
calibrated model.

5 Conclusions and future work

Inan effort to predict inpatient mortality risk from laboratory tests plus age and sex, we attempt
to compare different pattern recognition algorithms with each other. We employ a fully
anonymized electronic health records data of more than 39,000 patient admissions. While
similar approaches in literature are mostly limited to logistic regression based models, we
evaluate the predictive performance of Support Vector Machines, Random Forests, Gradient
Boosted Trees, and Multilayer Perceptrons. We use the area under ROC-curves as basic
performance evaluation metric. The best performance is achieved using a gradient boosting
tree algorithm in the form of XGBoost, which resulted in an AUC score of about 94%. Last but

10 Note that these thresholds are actually determined on the test data and thus the results have to be seen as
upper bounds.
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—&—  Uncalibrated Risk by Classifier (XGBoost)
—&— Calibrated Risk by Classifier (XGBoost)
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Fig. 4 Calibrating the output risk to the actual risk of mortality

not least, we calibrate the probability outputs to the real probability of the class membership
and observe that the actual mortality rate fits quite well with the calibrated model.

In summary, we show that despite the high amount of missing values in laboratory tests, the
use of appropriate imputation and pattern recognition algorithms allows for well calibrated
models with competitive predictive performance and the potential to be applied in a real-time
decision support system.

We see several rewarding avenues to be pursued in future work. First, we aim at evaluating
more feature selection algorithms in conjunction with the classification models in order to
further improve the classification performance (or reduce the number of necessary laboratory
tests). Additionally, our evaluation is based on laboratory measurements with less than 80%
missing cases and we will evaluate other threshold scenarios in our future work. Moreover,
one could try to predict other outcome variables such as the length of stay, the requirement of
intensive care, the destination after hospital stay, and others. Last but not least, one could use
multiple entries for one patient and investigate the changes among those entries and extract
features that make use of all the entries instead of using the initial one.

Acknowledgements We would like to thank Christos T. Nakas and Lars Clarfeld for their valuable help on
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