Skip to main content
Log in

Analytical review of clustering techniques and proximity measures

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

One of the most fundamental approaches to learn and understand from any type of data is by organizing it into meaningful groups (or clusters) and then analyzing them, which is a process known as cluster analysis. During this process of grouping, proximity measures play a significant role in deciding the similarity level of two objects. Moreover, before applying any learning algorithm on a dataset, different aspects related to preprocessing such as dealing with the sparsity of data, leveraging the correlation among features and normalizing the scales of different features are required to be considered. In this study, various proximity measures have been discussed and analyzed from the aforementioned aspects. In addition, a theoretical procedure for selecting a proximity measure for clustering purpose is proposed. This procedure can also be used in the process of designing a new proximity measure. Second, clustering algorithms of different categories have been overviewed and experimentally compared for various datasets of different domains. The datasets have been chosen in such a way that they range from a very low number of dimensions to a very high number of dimensions. Finally, the effect of using different proximity measures is analyzed in partitional and hierarchical clustering techniques based on experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://archive.ics.uci.edu/ml/datasets/iris, Accessed: 2019-05-12.

  2. https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/, Accessed: 2019-05-14.

  3. http://featureselection.asu.edu/datasets.php, Accessed: 2019-05-15.

  4. https://archive.ics.uci.edu/ml/datasets/Multiple+Features, Accessed: 2019-05-15.

  5. https://www.openml.org/d/41070, Accessed: 2019-05-16.

  6. https://cs.nyu.edu/~roweis/data.html, Accessed: 2019-05-16.

  7. https://archive.ics.uci.edu/ml/datasets/glass+identification, Accessed: 2019-05-16.

References

  • Agrawal R, Gehrke J, Gunopulos D, Raghavan P (2005) Automatic subspace clustering of high dimensional data. Data Min Knowl Discov 11(1):5–33

    MathSciNet  Google Scholar 

  • Altınçay H, Erenel Z (2010) Analytical evaluation of term weighting schemes for text categorization. Pattern Recognit Lett 31(11):1310–1323

    Google Scholar 

  • Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics: ordering points to identify the clustering structure. In: ACM Sigmod record, vol 28. ACM, pp 49–60

  • Basu T, Murthy C (2015) A similarity assessment technique for effective grouping of documents. Inf Sci 311:149–162

    Google Scholar 

  • Bezdek JC (1981) Objective function clustering. In: Pattern recognition with fuzzy objective function algorithms. Springer, pp 43–93

  • Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Google Scholar 

  • Bouchachia A, Pedrycz W (2006) Enhancement of fuzzy clustering by mechanisms of partial supervision. Fuzzy Sets Syst 157(13):1733–1759

    MathSciNet  MATH  Google Scholar 

  • Cambria E, Mazzocco T, Hussain A, Eckl C (2011) Sentic medoids: organizing affective common sense knowledge in a multi-dimensional vector space. In: International symposium on neural networks. Springer, pp 601–610

  • Cambria E, Fu J, Bisio F, Poria S (2015) Affective space 2: enabling affective intuition for concept-level sentiment analysis. In: Twenty-ninth AAAI conference on artificial intelligence, pp 508–514

  • Cetinkaya S, Basaraner M, Burghardt D (2015) Proximity-based grouping of buildings in urban blocks: a comparison of four algorithms. Geocarto Int 30(6):618–632

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39:1–38

    MathSciNet  MATH  Google Scholar 

  • Dunn JC (1973) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 3:32–57

    MathSciNet  MATH  Google Scholar 

  • Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96:226–231

    Google Scholar 

  • Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya AY, Foufou S, Bouras A (2014) A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans Emerg Top Comput 2(3):267–279

    Google Scholar 

  • Fisher DH (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn 2(2):139–172

    Google Scholar 

  • García-Pablos A, Cuadros M, Rigau G (2018) W2VLDA: almost unsupervised system for aspect based sentiment analysis. Expert Syst Appl 91:127–137

    Google Scholar 

  • Gennari JH, Langley P, Fisher D (1989) Models of incremental concept formation. Artif Intell 40(1–3):11–61

    Google Scholar 

  • Glen S. Bray curtis dissimilarity. http://www.statisticshowto.com/bray-curtis-dissimilarity/. Accessed 28 Apr 2018

  • Glen S. Kullback–leibler kl divergence. https://www.statisticshowto.datasciencecentral.com/kl-divergence. Accessed 28 Apr 2018

  • Guha S, Rastogi R, Shim K (1998) Cure: an efficient clustering algorithm for large databases. In: ACM sigmod record, vol 27. ACM, pp 73–84

  • Guha S, Rastogi R, Shim K (2000) Rock: a robust clustering algorithm for categorical attributes. Inf Syst 25(5):345–366

    Google Scholar 

  • Gustafson DE, Kessel WC (1979) Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE conference on decision and control including the 17th symposium on adaptive processes. IEEE, pp 761–766

  • Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Han X, Quan L, Xiong X, Almeter M, Xiang J, Lan Y (2017) A novel data clustering algorithm based on modified gravitational search algorithm. Eng Appl Artif Intell 61:1–7

    Google Scholar 

  • Hanna AR, Rao C, Athanasiou T (2010) Graphs in statistical analysis. In: Key topics in surgical research and methodology. Springer, pp 441–475

  • Hinneburg A, Keim DA (1999) Optimal grid-clustering: towards breaking the curse of dimensionality in high-dimensional clustering. In: Proceedings of the 25th international conference on very large databases, 1999, pp 506–517

  • Hinneburg A, Keim DA et al (1998) An efficient approach to clustering in large multimedia databases with noise. KDD 98:58–65

    Google Scholar 

  • Hong X, Yu Z, Tang M, Xian Y (2017) Cross-lingual event-centered news clustering based on elements semantic correlations of different news. Multimed Tools Appl 76(23):25129–25143

    Google Scholar 

  • Huang Z (1997) A fast clustering algorithm to cluster very large categorical data sets in data mining. DMKD 3(8):34–39

    Google Scholar 

  • Huang A (2008) Similarity measures for text document clustering. In: Proceedings of the sixth New Zealand computer science research student conference (NZCSRSC2008), Christchurch, New Zealand, pp 49–56

  • Jaccard index (2018). https://en.wikipedia.org/wiki/Jaccard_index. Accessed 28 Apr 2018

  • Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31(8):651–666

    Google Scholar 

  • Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv (CSUR) 31(3):264–323

    Google Scholar 

  • Jan TG (2020) Clustering of tweets: a novel approach to label the unlabelled tweets. In: Proceedings of ICRIC 2019. Springer, pp 671–685

  • Kameshwaran K, Malarvizhi K (2014) Survey on clustering techniques in data mining. Int J Comput Sci Inf Technol 5(2):2272–2276

    Google Scholar 

  • Kannan S, Ramathilagam S, Devi R, Hines E (2012) Strong fuzzy c-means in medical image data analysis. J Syst Softw 85(11):2425–2438

    Google Scholar 

  • Karypis G, Han EH, Kumar V (1999) Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8):68–75

    Google Scholar 

  • Kohonen T (1998) The self-organizing map. Neurocomputing 21(1–3):1–6

    MATH  Google Scholar 

  • Kruse R, Döring C, Lesot MJ (2007) Fundamentals of fuzzy clustering. In: de Oliveira JV, Pedrycz W (eds) Advances in Fuzzy Clustering and its Applications. Wiley, Chichester, pp 3–30

    Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    MathSciNet  MATH  Google Scholar 

  • Lai DTC, Garibaldi JM (2011) A comparison of distance-based semi-supervised fuzzy c-means clustering algorithms. In: 2011 IEEE international conference on fuzzy systems (FUZZ). IEEE, pp 1580–1586

  • Lan M, Sung SY, Low HB, Tan CL (2005) A comparative study on term weighting schemes for text categorization. In: Proceedings. 2005 IEEE international joint conference on neural networks, 2005., vol 1. IEEE, pp 546–551

  • Leoncini A, Sangiacomo F, Peretti C, Argentesi S, Zunino R, Cambria E (2011) Semantic models for style-based text clustering. In: 2011 IEEE fifth international conference on semantic computing. IEEE, pp 75–82

  • Li C, Liu L, Jiang W (2008) Objective function of semi-supervised fuzzy c-means clustering algorithm. In: 6th IEEE international conference on industrial informatics, 2008. INDIN 2008. IEEE, pp 737–742

  • Lin YS, Jiang JY, Lee SJ (2014) A similarity measure for text classification and clustering. IEEE Trans Knowl Data Eng 26(7):1575–1590

    Google Scholar 

  • MacQueen J et al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1. Oakland, CA, USA, pp 281–297

  • Manning CD, Manning CD, Schütze H (1999) Foundations of statistical natural language processing. MIT Press, Cambridge

    MATH  Google Scholar 

  • McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities, vol 28. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Montoyo A, MartíNez-Barco P, Balahur A (2012) Subjectivity and sentiment analysis: an overview of the current state of the area and envisaged developments. Decis Support Syst 53:675–689

    Google Scholar 

  • Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18

    Google Scholar 

  • Ng RT, Han J (1994) Efficient and effective clustering methods for spatial data mining. In: Proceedings of VLDB, pp 144–155

  • Ng RT, Han J (2002) Clarans: a method for clustering objects for spatial data mining. IEEE Trans Knowl Data Eng 14(5):1003–1016

    Google Scholar 

  • Park HS, Jun CH (2009) A simple and fast algorithm for k-medoids clustering. Expert Syst Appl 36(2):3336–3341

    Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  • Pedrycz W, Waletzky J (1997) Fuzzy clustering with partial supervision. IEEE Trans Syst Man Cybern Part B (Cybern) 27(5):787–795

    Google Scholar 

  • Ravi K, Ravi V (2015) A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl Based Syst 89:14–46

    Google Scholar 

  • Ross TJ (2005) Fuzzy logic with engineering applications. Wiley, Hoboken

    Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    MATH  Google Scholar 

  • Rudolf Kruse Christian Döring ML (2007) Fundamentals of fuzzy clustering. In: de Oliveira WP J Valente (ed) Advances in fuzzy clustering and its applications. Wiley, Oxford, pp 3–30 chap. 1

    Google Scholar 

  • Saraçoğlu R, Tütüncü K, Allahverdi N (2007) A fuzzy clustering approach for finding similar documents using a novel similarity measure. Expert Syst Appl 33(3):600–605

    Google Scholar 

  • Schoenharl TW, Madey G (2008) Evaluation of measurement techniques for the validation of agent-based simulations against streaming data. In: International conference on computational science. Springer, pp 6–15

  • Schubert E, Sander J, Ester M, Kriegel HP, Xu X (2017) DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans Database Syst (TODS) 42(3):1–21

    MathSciNet  Google Scholar 

  • Sedding J, Kazakov D (2004) Wordnet-based text document clustering. In: proceedings of the 3rd workshop on robust methods in analysis of natural language data. Association for Computational Linguistics, pp 104–113

  • Sehgal G, Garg DK (2014) Comparison of various clustering algorithms. Int J Comput Sci Inf Technol 5(3):3074–3076

    Google Scholar 

  • Selim SZ, Alsultan K (1991) A simulated annealing algorithm for the clustering problem. Pattern Recognit 24(10):1003–1008

    MathSciNet  Google Scholar 

  • Sheikholeslami G, Chatterjee S, Zhang A (1998) Wavecluster: a multi-resolution clustering approach for very large spatial databases. VLDB 98:428–439

    Google Scholar 

  • Shirkhorshidi AS, Aghabozorgi S, Wah TY, Herawan T (2014) Big data clustering: a review. In: International conference on computational science and its applications. Springer, pp 707–720

  • Shirkhorshidi AS, Aghabozorgi S, Wah TY (2015) A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS ONE 10(12):e0144059

    Google Scholar 

  • Strehl A, Ghosh J, Mooney R (2000) Impact of similarity measures on web-page clustering. In: Workshop on artificial intelligence for web search (AAAI 2000), vol 58, pp 58–64

  • Tang G, Xia Y, Cambria E, Jin P, Zheng TF (2015) Document representation with statistical word senses in cross-lingual document clustering. Int J Pattern Recognit Artif Intell 29(02):1559003

    MathSciNet  Google Scholar 

  • Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J Mach Learn Res 11:2837–2854

    MathSciNet  MATH  Google Scholar 

  • Vossen P (2002) Eurowordnet general document version 3. University of Amsterdam, Amsterdam

    Google Scholar 

  • Wang W, Yang J, Muntz R et al (1997) Sting: a statistical information grid approach to spatial data mining. VLDB 97:186–195

    Google Scholar 

  • Wei T, Lu Y, Chang H, Zhou Q, Bao X (2015) A semantic approach for text clustering using wordnet and lexical chains. Expert Syst Appl 42(4):2264–2275

    Google Scholar 

  • Wu Zd, Xie Wx, Yu Jp (2003) Fuzzy c-means clustering algorithm based on kernel method. In: Proceedings fifth international conference on computational intelligence and multimedia applications. ICCIMA 2003. IEEE, pp 49–54

  • Xia Y, Tang N, Hussain A, Cambria E (2015) Discriminative bi-term topic model for headline-based social news clustering. In: The twenty-eighth international flairs conference, pp 311–316

  • Xie J, Girshick R, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. In: International conference on machine learning, pp 478–487

  • Xu D, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data Sci 2(2):165–193

    MathSciNet  Google Scholar 

  • Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678

    Google Scholar 

  • Xu X, Ester M, Kriegel HP, Sander J (1998) A distribution-based clustering algorithm for mining in large spatial databases. In: 14th international conference on data engineering, 1998. Proceedings. IEEE, pp 324–331

  • Yan X, Guo J, Lan Y, Cheng X (2013) A biterm topic model for short texts. In: Proceedings of the 22nd international conference on World Wide Web. ACM, pp 1445–1456

  • Yasunori E, Yukihiro H, Makito Y, Sadaaki M (2009) On semi-supervised fuzzy c-means clustering. In: 2009 IEEE international conference on fuzzy systems. IEEE, pp 1119–1124

  • Zhang T, Ramakrishnan R, Livny M (1996) Birch: an efficient data clustering method for very large databases. In: ACM sigmod record, vol 25. ACM, pp 103–114

  • Zhang D, Tan K, Chen S (2004) Semi-supervised kernel-based fuzzy c-means. In: International conference on neural information processing. Springer, pp 1229–1234

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Mehta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, V., Bawa, S. & Singh, J. Analytical review of clustering techniques and proximity measures. Artif Intell Rev 53, 5995–6023 (2020). https://doi.org/10.1007/s10462-020-09840-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-020-09840-7

Keywords

Navigation