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Ultrasound Tissue Classification: A Review
Caifeng Shan, Tao Tan, Jungong Han, Di Huang

Abstract— Ultrasound (US) imaging is the most widespread
medical imaging modality for creating images of the human body
in clinical practice. Tissue classification in ultrasound has been
established as one of the most active research areas, driven by
many important clinical applications. In this paper, we present
a survey on ultrasound tissue classification, focusing on recent
advances in this area. We start with a brief review on the main
clinical applications. We then introduce the traditional approaches,
where the existing research on feature extraction and classifier de-
sign are reviewed. As deep learning approaches becoming popular
for medical image analysis, the recent deep learning methods for
tissue classification are also introduced. We briefly discuss the
FDA-cleared techniques being used clinically. We conclude with
the discussion on the challenges and research focus in future.

Index Terms— Tissue Classification, Tissue Characteri-
zation, Machine Learning, Deep Learning, Ultrasound Im-
age Analysis

I. INTRODUCTION

Different medical imaging modalities are available and widely used
nowadays in clinical practice to create images of the human body,
such as computed tomography (CT), magnetic resonance imaging
(MR), positron emission tomography (PET), and ultrasound (US).
Among those, US imaging is the most widespread modality for
visualizing human soft tissue, because of its advantages compared to
others: cheap, harmless (no ionizing radiations), allowing real-time
feedback, convenient to operate, well established technology present
in all places, and so on. On the other hand, because of the limited
field of view, shadows, speckle noise, and other artifacts in the US
images, the interpretation of US images is sometimes difficult.

One main target of US image (signal) analysis is tissue classifica-
tion. Ultrasound tissue classification is to analyze the characteristics
of the US data and their correlation to the pathological state of
tissue, and design a classifier to distinguish the US data into different
tissue types (or states). Tissue classification in ultrasound has many
important applications, such as cancer diagnosis (in prostate, breast,
liver, etc.) and cardiovascular disease diagnosis and intervention.
Driven by the unmet clinical needs to distinguish different tissue
types (e.g., healthy versus diseased) in US, tissue characterization
and classification have received much attention in recent years [1],
[2].

Traditionally the process of tissue classification can be divided
into two main steps: 1) feature extraction: in this step, ultrasound
modelling and signal analysis techniques are used to extract char-
acteristic features from US image (signal) that can describe and
hopefully differentiate different tissue types [1]. These characteristics
may not be visible to human eyes, and it is necessary to examine
the ultrasound image. If the features are discriminative, different
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tissue types will be represented as separate clusters in the feature
space. Unfortunately in practice most extracted features have low
discriminative power. Therefore, in order to discriminate different
tissue types, a proper classifier is needed. This is step 2): classifier
design, which aims to define the optimal decision boundary in the
feature space to separate different tissue types. The classifier can
be trained by applying machine learning and pattern recognition
techniques on the data with ground truth. Different techniques have
been exploited for ultrasound tissue classification.

Since 2012, deep learning algorithms such as convolutional neural
networks (CNNs) [3] have become a powerful tool for automatically
classifying pixels (patches) in the images. It usually contains several
pairs of a convolution layer and a pooling layer. These layers behave
as feature extractors. The intermediate outputs of these layers are
fully connected to a multi-layer perception neural network for the
classification task. New techniques including dropout [4], batch
normalization [5] and resnetblock [6] were proposed to improve
performance of neural networks. Deep learning approaches have been
extensively exploited for medical image analysis, including tissue
classification in ultrasound.

Ultrasound tissue classification is difficult, because the interaction
between biological tissue (an inhomogeneous medium) and acoustic
wave is very hard to model [1]. Although the quality of ultrasound
images, in terms of signal-to-noise and contrast-to-noise ratios, has
been improved substantially in recent years, it remains a challenging
task to classify different tissue types in US images. This paper
attempts to provide a review on ultrasound tissue classification,
particularly focusing on recent advances in this area. The work on
tissue characterization prior to 2009 was reviewed in the articles [1],
[2].

The paper is organized as follows. We start with a brief review
on the main clinical applications in Section II. We then introduce
the existing research on feature extraction and classifier design in
Section III and Section IV respectively. The recent deep learning
approaches for tissue classification are discussed in Section V.
Section VI introduces the FDA-cleared machine learning algorithms
being used clinically. Section VII discusses the challenges and
research directions in future, and finally Section VIII concludes the
paper.

II. CLINICAL APPLICATIONS

Medical ultrasound has a very broad range of clinical uses. Ultra-
sound tissue classification can be applied in many clinical fields, for
instance, tissue classification plays an important role in ultrasound-
based cancer diagnosis, e.g., by classifying the tissue regions as
benign or malignant. Here we briefly introduce the main clinical
applications that have received the most attention in the recent
literature.

A. Cardiology
The primary aim of non-invasive cardiac imaging is to provide

information on the diagnosis and severity of underlying cardiac
conditions [7]. Echocardiography (ultrasound imaging of the heart)
is the most common cardiac imaging procedure performed in clinical
practice, due to its portability, low cost, and patient acceptance.
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Echocardiography has also been one of the driving application areas
of medical ultrasound [8]. Cardiac imaging techniques characterise
the underlying tissue directly, by assessing a signal from the tissue
itself, or indirectly, by inferring tissue characteristics from global
or regional function [7]. Although Cardiac Magnetic Resonance
(CMR) imaging currently is the most investigated modality for tissue
characterisation, this technology is difficult to scale up for routine use.
On the other hand, echocardiography remains the primary imaging
tool for most patients, so it represents an attractive alternative for
cardiac tissue characterization.

Traditionally, integrated backscatter, which measures the ultrasonic
reflectivity of the region of interest, was a major focus of tissue
characterisation research [9]. However, backscatter has limited ability
to reflect fibrosis in those with lower levels of myocardial fibrosis,
such as coronary artery disease [10]. In [11], the frequency content
from echocardiography and spectral analysis techniques were inves-
tigated for differentiating three different cardiac tissue types (cardiac
adipose tissue, myocardium, and blood). Recently texture features
of myocardium have been extracted from still ultrasound images
for tissue characterization [12]. Speckle tracking echocardiography
(STE) is a technique used to assess myocardial deformation at both
segmental and global levels. Since distinct myocardial pathologies
affect deformation differently, information about the underlying tissue
can be inferred by STE. While other modalities such as CMR assess
tissue characteristics through changes in the acquired myocardial tis-
sue images, STE deformation parameters assess the impact of under-
lying pathology on tissue function. The available studies correlating
STE deformation parameters with underlying tissue characteristics are
reviewed in [7]. The most commonly used deformation measurements
are those of strain (the change in length compared to initial length),
strain rate (strain divided by time), and rotation (or twist). Machine
learning and deep learning methods have been explored with STE
features for tissue classification [13], [14].

In recent years ultrasound has been increasingly used for image-
guided cardiac interventions or therapy [16]–[18]. Cardiac ablation,
to create a set of transmural lesions in cardiac tissue, has been the
main therapy method for atrial fibrillation. In thermal ablation, the
target tissue is coagulated by transferring heat to the target area.
Radio-frequency (RF) ablation and the lesion created by RF ablation
are illustrated in Figure 1. One challenge for ablation therapy is the
monitoring of the temperature rise and the extend of the ablated
region in the tissue. US-based techniques for evaluating heat-induced
lesions have been studied recently [15], [19], [20]. In an earlier
work [21], both the textural and spectral features were considered
for analyzing the ablated regions in the tissue. Methods have also
been developed to estimate the temperature increase during the
ablation process by detecting the change of sound speed, attenuation
coefficient, and backscattering. In [19], US imaging is employed to
investigate the temporal evolution and spatial extent of the lesion
created by the HIFU (high intensity focused ultrasound) ablation. It
is shown that spectral analysis of RF signals, which is related to the
physical scatter properties, can potentially be used for monitoring the
evolution of HIFU lesions. Imani et al. [20], [22] proposed to classify
ablated tissue using RF time series features. The acoustical coefficient
of nonlinearity is estimated in [23] for discriminating tissues during
cardiac ablation therapy.

B. Vascular Disease

Cardiovascular diseases are responsible for a third of all deaths
in women worldwide and more than a half in men [24]. Ultrasound
imaging has become one of the most important modalities used in
the assessment of vascular diseases. Virtually all peripheral arterial

and venous structures can be visualized with the duplex ultrasound
(DU), which currently is the main diagnostic modality used in deep
venous thrombosis and carotid disease [25]. For carotid artery disease,
the carotid plaque is traditionally judged according to the degree
of stenosis and a 70% or greater diameter loss is an indication for
surgery. Later it was recognized that not only must the degree of
stenosis be evaluated, but also the carotid plaque instability, as it
is an important determinant of stroke risk [26]. The DU allows for
the study of plaque constituents; for instance, fibrotic tissue, which
renders the plaque more stable, has different brightness from lipids.
Traditionally the carotid plaque composition is determined based on
the pixel brightness, i.e., using a threshold-based method. In [26],
a multi-scale descriptor was used for pixel-level tissue classification
in DU images. Similarly, various image features were considered in
[27], [28] for plaque classification. A recent review on carotid artery
ultrasound image analysis can be found in [29].

In the era of atherosclerosis, intravascular ultrasound (IVUS), a
catheter-based imaging technique, has evolved as a valuable technique
for diagnosis and intervention for coronary disease, by providing
more precise measurement on intimal thickness and vulnerable
plaques. In contrast, angiography, the traditionally used gold-standard
in the imaging of vascular morphology, can only depict contrast
agent filled lumen and not the vessel wall [25]. IVUS provides
images of vascular structure by scanning inside the vessel, which
are acquired by a mechanically rotated transducer or a multi-element
transducer array. For the latter case, an array of transducers is
disposed around the probe, with the synchronized emission of US
waves. The imaging plane, perpendicular to the long axis of the
catheter, provides a 360 degree image of the vessel. An example
IVUS image is shown in Figure 2. By converting the A-lines from
polar to cartesian coordinates, the full circumference of the vessel
wall can be visualized. Therefore, all components of the vessel are
visualized: the cross sectional luminal size, shape and vessel wall, as
well as the various layers of the wall. IVUS has been used to guide
the intervention by analyzing the vessel condition, e.g., assessing
the atherosclerotic plaque amount and composition. IVUS can also
be used to check the vessel condition after the intervention, and to
monitor the status of disease over the time.

In IVUS images, calcifications are demonstrated as hyperechoic
areas, whereas hemorrage or fat deposition inside an atheromatic
plaque is hypoechoic. Subsequently, the plaque can be classified
as lipid, calcified and fibrous, according to its acoustic properties
[30] Tissue classification in IVUS images can automatically predict
vulnerable plaques as well as quantify the amount of the different
tissues; many approaches have been proposed in literature [31]–[36],
which will be discussed in detail in the following sections.

C. Breast Cancer

Breast cancer is the most common cancer in women globally,
and early detection is the key to reduce the death rate. Women
with dense breasts have a risk of breast cancer four to six times
higher than that of women with no or little dense tissue [37]. To
improve cancer detection in dense breasts, personalized breast cancer
screening with ultrasound has been proposed for women with dense
breasts and women with elevated risk factors for developing breast
cancer. Supplemental breast ultrasound (BUS) cancer screening can
detect small, early stage invasive cancers that appear to be occult
on mammograpms due to breast density [38]. Furthermore, BUS is
more convenient and safer for clinical use [39] and it can be used
as an alternative screening device to mammography for women with
harmful mutations in either BRCA1 (breast cancer gene type1) or
BRCA2 since no radiation is involved. Berg et al. [40] found that the
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Fig. 1. (Left) RF ablation catheter in the heart; (Right) An example of lesion created by RF ablation [15], where the red line indicates the change
in US image upon energy delivery.

Fig. 2. (Left) Standard cross-sectional IVUS image in cartesian coordinates, and (Right) its corresponding polar representation: ρ represents the
depth in the tissue and θ the position (angle) in the rotation of the probe [35].

supplemental yield of using ultrasound together with mammography
was 4.2 cancers per 1000 women screened. Kaplan et al. [41]
found 6 (0.36%) extra cancers from 1862 mammgraphic negative
patients with dense breasts. However handheld ultrasound breast
cancer screening is operator dependent, uneasy to reproduce, time
consuming and relatively expensive as a screening procedure when
performed by radiologists.

Tissue classification in BUS aims to distinguish benign masses
(cysts and fibroadenomas) and malignant cancerous masses. Various
approaches have been investigated to detect the suspicious masses in
B-mode BUS images [42]–[44], where the challenge is to characterize
the textured appearance and geometry of a tumor relative to normal
tissue. A survey on cancer detection and classification in BUS images
can be found in [39]. Recently, automated 3D breast ultrasound
system (ABUS) as a novel modality was proposed to overcome the
drawbacks of the traditional 2D ultrasound. Fig. 3 shows one example
of an ABUS image. It usually involves a heavy compression from
a membrane on the breast. With a swipe of a wide linear or curved
transducer, a number of transversal images are generated and recon-
structed to become a 3D volume. Different than 2D ultrasound, ABUS
provides the possibility of visualizing speculation patterns associated
with malignancy on coronal planes. Because of the standard imaging

procedure, it is possible to perform temporal analysis on prior and
current exams. Since the ABUS images are standardly defined, many
researcher paid lots of attention on tumor classification [45]–[49]
and cancer detection [50]–[57] using various techniques. Currently
GE invenia ABUS system is FDA-cleared for screening purpose [58]
while Siemens ABVS system is FDA-cleared for diagnosis purpose
[59].

Besides ABUS system which uses reflected echoes, transmission
ultrasound is employed for cancer detection and diagnosis as well by
FDA-cleared systems such as SoftVue System [60] from Delphinus
Medical Technologies and QTscan [61] from QT ultrasound. These
systems usually employ rotating ultrasound transducer, to capture
details of the tissue of the uncompressed breast for patients positioned
in the prone position. Images are generated using both reflection and
transmission modalities. The addition of tissue attributes of sound
speed and attenuation can enrich diagnostic information for tissue
classification.

D. Prostate Cancer

Prostate cancer is the second most common cancer worldwide and
the most common malignancy in men [62]. It is due to the abnormal
and uncontrolled cell mutation and replication in the prostate gland.
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Fig. 3. An example of a lesion in orthogonal planes of an automated
3D breast ultrasound volume [54].

As with any cancer, early detection and treatment is vital for good
survival rates of prostate cancer. Although multi-parametric MRI
has been increasingly used for prostate cancer diagnosis, transrectal
ultrasound (TRUS) is widely used for evaluation of the prostate,
because of its advantages of low costs, good availability, and ability
to visualize the prostate in real time [63]. TRUS has been used for the
early detection and active surveillance of prostatic cancer. Currently,
serum prostate-specific antigen (PSA) and Digital Rectal Examination
(DRE) are used for screening. If either study is abnormal, TRUS-
guided biopsy is performed for diagnostic confirmation [64].

By analyzing the characteristics of the tissue regions, tissue clas-
sification in TRUS provides a malignancy map to guide biopsy,
which can reduce the number of unnecessary biopsy. However,
the prostate regions in TRUS images are characterized by a weak
texture, speckle, short gray scale ranges, and shadow regions [8];
detection and delineation of prostate pathology in TRUS is difficult
due to the heterogeneous and multi-focal nature of prostatic lesions.
Tissue classification has been extensively studied for prostate can-
cer detection [65]. The earlier work on TRUS tissue classification
discriminated the rectangular regions around biopsy needle insertion
points with textural features [66]. Later different types of features
were considered together with more sophisticated classifiers [67]–
[69], for instance, textural features and spectral parameters extracted
from RF data were employed in [67]. Morphologic features and mul-
tiresolution textural features were also used for malignancy detection
[69]. Non-linear Higher Order Spectra (HOS) features and Discrete
Wavelet Transform (DWT) coefficients were considered in [70]. It
has been shown that combining features extracted from RF analysis
of ultrasound signals and texture would result in better classification
[65]. HistoScanning [71]–[73] is a commercially-available ultrasound
tissue characterisation technique that has shown encouraging results
in the detection of prostate cancer.

In addition to gray-scale ultrasound, color Doppler ultrasound
(CDUS) has also been used for the evaluation of prostate cancer
by detecting the increased perfusion compared with surrounding
prostate tissue [63]. It has been shown that the combination of
CDUS and gray-scale ultrasound can detect a greater number
of prostate cancers than gray-scale ultrasound alone [74]. New
ultrasound techniques such as contrast-enhanced ultrasound (CEUS)

and ultrasound elastography [74], [75], have been developed to
improve the detection of prostate cancer. MRI-ultrasound fusion is
another novel imaging technique that is being used to guide prostate
biopsy, where the target lesion is marked on the prebiopsy MRI and
fused to the real-time TRUS images [76].

The previous two subsections have discussed two main application
areas in cancer diagnosis, breast and prostate. Ultrasound tissue
classification has also been investigated for diagnosis of other cancer
types, for instance, early detection of liver tumour [77]–[80]. Focal
liver lesions such as cysts and tumours are concentrated over a quite
small area of the tissue and are difficult to identify. The classification
of lesions in ultrasound liver image usually depends heavily on the
characteristics of the lesions including internal echo, morphology,
edge, echogenicity, and posterior echo enhancement. In [77], texture
features are used to distinguish malignant and benign liver tumours.
Automatic classification of thyroid tissue into benign and malignant
types using US are investigated in [81]–[83]; a review on thyroid
cancer tissue characterization can be seen in [84].

III. FEATURE EXTRACTION

The traditional approaches to ultrasound tissue classification start
with extracting discriminative features from the ultrasound signal or
image. In the US image formation process [1], the radio-frequency
(RF) signal acquired by the US transducer undergoes filtering,
envelop detection, log compression, and post-processing to finally
give a grayscale representation (which is often called A-line). The
grayscale signal is then interpolated and rasterized to give a B-mode
or M-model image for display.

A large amount of features of different nature have been investi-
gated in the literature for tissue characterization and classification (as
summarized in Table I). Here we group them into three categories.
The first category relies on tissue appearance in US images, where
texture and morphology are usually analyzed. In the second category,
the RF signal or envelope-detected data is analyzed. Spectral analysis
is often performed to extract characteristics about the behavior
(property) of different tissue types in the frequency domain. The last
category is to fuse and combine different types of features.

A. Image-based approaches

Before extracting features from US images, image pre-processing
and image segmentation are usually performed. Pre-processing
consists of speckle reduction and image enhancement (see [39] for
some details), and image segmentation is to segment the image into
Regions of Interest (ROI) for further analysis [8].

Texture features — Feature extraction from US images aims at
describing the appearance of tissue. Most studies have focused on
textural properties of speckle which represent the macroscopic ap-
pearance of scattering generated by tissue micro-structures [121]. By
identifying spatial variations in pixel intensities and quantifying them
into numerical features, texture analysis has been widely adopted and
different kinds of texture features are available in the literature: Gabor
filter responses, derivatives of Gaussian filters, wavelet transform, co-
occurrence matrices, Local Binary Patterns, fractal spaces, Markov
random fields, and so on. Here we list the texture features that have
been widely used for US tissue classification

• Grey Level Co-occurrence Matrix (GLCM) [122]: GLCM is
a well-known statistical tool for extracting texture information
from images. It measures how often different combinations of
pixel intensities occur in an image. GLCM can also be defined
as an estimation of the joint probability density function of gray
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Feature Type Feature description References
Image-based features GLCM [67], [85], [86], [87], [32], [88], [89], [81], [90],

[77], [91], [92], [42], [93], [43], [94], [83], [95],
[47]

Gabor [87], [32], [96], [33], [34], [79], [35], [47]

LBP [87], [32], [96], [33], [34], [35], [95], [47], [26]

Wavelet transform [97], [86], [98], [78], [99], [79], [94], [83], [95],
[70]

Morphological features [69], [100], [101], [93], [80], [45], [46], [48],
[50], [102], [51], [52]

RF-signal-based features Spectrum-based features [103], [104], [105], [67], [21], [106], [107],
[31], [32], [108], [19], [88], [109], [96], [33],
[90], [92], [34], [35], [110], [111]

RF time series features [112], [113], [88], [114], [22], [115], [20],
[116], [117], [118]

Statistical distribution modeling [90], [100], [101], [34], [62], [42], [119]

Wavelet analysis [120], [90]

TABLE I
FEATURES FOR TISSUE CLASSIFICATION.

level pairs in an image. Given the co-occurrence matrix, a set
of second-order statistic measures can be computed, such as
Energy, Entropy, Shade, Promenance and Inertia. The features
are also called Haralick features.

• Gabor filters [123]: Gabor filters are obtained by modulating
a 2D sine wave with a Gaussian envelope. The characteristics
of Gabor filters (wavelets) are similar to those of the human
visual system. Representations based on the outputs of Gabor
filters at multiple spatial scales and orientations have proven to
be successful for texture analysis.

• Local Binary Patterns (LBP) [124]: LBP is an efficient non-
parametric method summarizing the local structure of an image.
It labels the pixels of an image by thresholding a neighborhood
of each pixel with the center value and considering the results
as a binary number. The neighborhood of different sizes can be
considered to capture dominant features at different scales.

Pujol et al. [85] used the GLCM and the cumulative moments
[125] to describe texture for tissue and blood classification in IVUS.
They have a 96-dimension space for co-occurrence matrices and a
81-dimension space for cumulative moments. After feature selection
of Adaboost, 85% feature selected are from the co-occurrence space.
In [87], four types of texture features, GLCM, LBP, Gabor filters
and the shading of the polar image, are extracted to form a feature
vector of 68 dimensions for IVUS tissue classification. In [126]
texture analysis and RF signal analysis are compared for IUVS tissue
classification. The comparison experiments show that the texture-
based approach performs slightly better than the RF signal based
approach. Similarly, Escalera et al. [32] show that texture features
(GLCM, LBP, Gabor, and shadow) outperform the RF features (full
spectrum, two global spectral features) and the slope-based features
[104]. In [26], different multiscale descriptors were extracted for
pixel-level tissue classification on the DU images. Acharya et al.
[27] extracted 36 types of features using LBP, Fuzzy GLCM, Higher
Order Spectra (HOS) features, and others for plaque classification.
Similarly, various texture features were considered in [28] for carotid
plaque classification.

The second-order co-occurrence features are often supplemented
by first order intensity distribution statistics, such as mean, variance,

skew and kurtosis. In [91], 23 features from B-mode images are
used with a multi-classifier approach for TRUS tissue classification.
In addition to GLCM, Maggio et al. [90] also extract Unser features
and Fractal features to describe image texture. Unser features [127]
are statistical attributes generated from the histogram of sum and
difference of gray level in US images; both Unser features and
GLCM are based on the gray levels distribution statistics. Fractal
features [97] is based on the computation of progressive binaried
versions of US images obtained through different binary thresholding
operations. Spectral features extracted from the RF signals have been
used widely for tissue classification. Considering the RF signals may
not be available for spectral analysis, the work [68] proposes to
extract spectral features from TRUS images, where each ROI is first
scanned to form 1-D signals and then spectral features are extracted.

In [86], GLCM and non-separable wavelet transform based features
were extracted from US images. In [98] two images are computed
from RF signals: (1) a despeckled image containing the anatomic
and echogenic information of the liver, and (2) a speckle only
image. Intensity features estimated from the despeckled image and
texture features (Haar wavelet decomposition) extracted from the
speckle only image are used for liver tissue classification. Wan
and Zhou [99] extracted features using wavelet package transform
from B-mode US liver images. Lee [79] performed multi-resolution
analysis by applying m-band wavelet transform and Gabor filters,
which decomposes the input US image into sub-images at various
resolutions. Then the first and second moments of energy & standard
deviation and the fractal dimension are extracted from the sub-images
to form the feature vector. Considering pixels in US images are very
randomly distributed, which cannot be fully described by second-
order measures, Acharya et al. [94] utilized the combination of
HOS and DWT-based texture features. A range of image texture
based features like entropy, LBP, GLCM, and run length matrix were
reviewed in [128] for detecting Fatty Liver Disease. Various texture
features have been extracted from the thyroid US images for thyroid
cancer detection [81], [83].

The image texture in US imaging is intrinsically a function of the
micro-structure of tissue and the imaging system [1], as both system
effects and tissue micro-structure affect the signal and the speckle
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noise [129]. Thus, for the same type of tissue, different system
parameters might lead to different texture patterns. This makes the
texture-based tissue classification difficult. In clinical practice, to
improve the visualization of certain tissue, the physicians often
change the US imaging parameters such as contrast, depth and gain.
Therefore, in order to extract comparable features belonging to
different tissue types, the US images should be normalized. For this
purpose, in [87], the raw RF signals were exploited to reproduce
ultrasound images with a unique and well controlled set of imaging
parameters. Other algorithms could also be designed to make the
signal less dependent on acquisition system settings. Texture-based
tissue characterization is also strongly dependent on the chosen
spatial scale of analysis, so the multi-resolution approaches should
be considered [1].

Morphological features — In addition to the above texture features,
the morphological features are also often considered for tissue
classification in ultrasound. As said above, the texture in US images
depends on the imaging system and the acquisition parameters. In
contrast, the morphological parameters are less dependent on sys-
tem parameters and acquisition characteristics, thus more consistent
compared to texture features.

The morphological features focus on local characteristics of the
tissue region, such as the shape and margin. Compared to texture
features, which are calculated from the entire US image or rough
ROIs, the morphological features are derived from the segmented
ROIs; therefore, the tissue region (such as a tumour) first needs to
be segmented. Different morphological features have been considered
for tissue classification, e.g., in breast cancer diagnosis [39].

One of the most often used morphological parameters is the depth-
to-width ratio (or width-to-depth ratio). Malignant lesions tend to
have the ratio bigger than 1 while benign lesions usually have the
ratio smaller than 1. This ratio is related to the compressibility of
tumour [45]. Due to aggressiveness of the growth, malignant tumours
tend to have an irregular shape while benign tumours tend to have a
spherical or oval shape. Therefore both sphericity and compactness
features [45] are proposed to characterize the irregularity of lesion
shapes. Another often used measure is the average orientation of the
gray-level gradients along the margin [39].

B. RF-signal-based approaches
The US image formation process, i.e. from raw RF signals to

US images, introduces a certain number of approximations (such
as envelope detection and log compression), thus a certain amount
of information is lost. It is believed that the information lost could
be essential in tissue characterization. The features extracted from
RF signals are not subject to machine dependent processing, sub-
sampling, interpolation, quantization and even operator-dependent
settings [35].

Many approaches have been proposed for feature extraction from
RF signals [35]. Noble listed in [1] a number of established acoustic
and tissue parameters, such as integrated backscatter (IB) coefficient
and attenuation coefficient. Below we describe some commonly
used features. The physical principles that underpin these features
are not our focus, which can be found in the literature.

Spectral features — Following the seminal work of Lizzi et al.
[103], [130], spectral parameters of local RF signals are the most
often used features, based on the hypothesis that different tissue types
behave differently in the frequency domain. Lizzi et al. studied the
relationship of spectral parameters of RF data to tissue microstructure,
and proposed to use a few features extracted from the local power
spectra for tissue characterization, such as the slope of the linear

regression line fitted to the mid-band portion of the spectrum and
the intercept of that line at zero frequency. They identified tumours
in the eye and liver by using the slope and intercept features [103].
Nair et al. [104] extended this approach for coronary atherosclerotic
plaque characterization with five additional features: mid-band-fit
(MBF, the value of the regression line at the center frequency),
maximum and minimum powers, and the corresponding frequencies.
Later the integrated backscatter (IBS) coefficient was added [105],
which is estimated as the sum of power spectral density over the
bandwidth. These methods are known as seven-feature or eight-
feature approach in the literature. It should be mentioned that there
is a linear dependence among the first three spectral features: slope,
intercept, and MBF, since one can be derived from the other two.
The same dependence can be derived for IBS and MBF, since
MBF is the first-order approximation of IBS [107]. Mean central
frequency has also been considered for tissue classification, which
is the first moment of the bandwidth of the power spectrum. It
captures the shifting of RF signal central frequency due to attenuation.
Spectral features are calculated based on the estimated local power
spectrum of RF signals, which can be computed by using the Fourier
transform or by the AutoRegressive (AR) model. It is shown that
the AR method can provide a more stable spectral approximation for
small signal window [87]; however, the accuracy of AR method is
influenced by the sampling frequency, order and window size [107].
Feleppa et al. [106] pioneered the usage of RF spectrum analysis for
prostate cancer detection. Liu et al. [131] extended the 1D spectrum
analysis to 2D power spectra analysis [109], where the approach
was shown to outperform 1D spectrum analysis. In [19], spectral
features including intercept, slope, and MBF were considered for the
HIFU lesion characterization. To differentiate different cardiac tissue
types, thirteen spectral parameters were computed from the power
spectrum of the RF data in three different bandwidth ranges [11].
Autoregressive models of order 4 were used as they provide effective
estimates of the power spectrum for short-time data.

Katouzian et al. [107] investigated the consistency and reliability
of the eight-feature approach for plaque tissue characterization.
Their study demonstrated that the spectral features are sensitive to
variations in the transducer parameters and other factors (such as
window size and the order of the AR model). They presented a
full-spectrum analysis to extract the spectral magnitudes at every
frequency bin within the functional range of bandwidth. In addition,
the energy norm of spectral signals and the radial position of
the tissue sample from the center of the transducer (in the IVUS
image) were considered as features. Their experiments show that
the full-spectrum analysis delivers superior performance for plaque
classification. Similarly, in [31], the plaque tissues are classified by
comparing the full spectrum of a tissue sample to the ones in the
training database. As illustrated in Figure 4, the local spectrum was
computed by averaging the magnitude of the windowed spectrum,
where the Enclidean distance is calculated as the measure of
similarity. In [110], the full spectrum of RF signals (averaged over
the ROI) were considered for prostate tissue classification. Instead
of using the entire length of the spectrum, Laplacian eigenmaps was
employed for reducing the dimensionality of the spectral feature
space.

RF time series — RF time series analysis has been proposed for
tissue typing [20], [88], [112], [113], [118], based on the assumption
that the time series of echo signals carry tissue type information.
“Time series” refers to RF signals collected over a certain time
interval at a fixed spot (pixel/voxel) of tissue [88], as shown in Figure
5. The signals are recorded while the imaging probe and tissue are
fixed. For a given ROI, to extract features from RF time series, the
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Fig. 4. Computing the local spectrum [31]. A specific ROI on an IVUS image is shown in (a). The raw RF signals along 5 adjacent A-lines
comprising this ROI are graphically represented in (b). The individual spectrum corresponding to these RF signals are shown in (c). The average of
these 5 spectra yields the spectrum shown in (d). This local spectrum encodes information about the tissue within the ROI.

mean of the time series from all spatial samples in the ROI is first
deducted to obtain the zero-mean time series, where the length of time
series is zero-padded to the closest power of 2. After calculating the
power spectrum of RF time series for each spatial sample in the ROI,
the spectrum is averaged over the ROI, so the ROI is represented by
a single “averaged” power spectrum, which is further normalized by
dividing by its maximum. Then various features can be extracted, for
instance, the sums of the power spectrum at four frequency bands, the
slope and intercept of the best-fit line to the entire power spectrum,
the fractal dimension, and so on (see [20] for details). Although
these features are also computed based on spectral analysis of RF
signals, they are fundamentally different from the spectral features
discussed above. The spectral features described earlier are computed
using power spectrums of segmented RF scan lines in one frame. In
contrast, the RF time series approach analyzes the local variability of
RF signals in time, and the features are computed based on spectral
analysis of temporal samples of RF signals originating from the same
spatial location.

Moradi et al. [88] presented quantitative comparisons on the
RF time series features, spectral features (intercept, slope, and
mid-band-fit), and texture features (GLCM and statistical moments
of pixel intensities) for ex-vivo prostate cancer detection. Their
experiments show that RF time series features outperform the
spectral features and texture features. In the absence of physiologic
motion in ex-vivo experiments, the tissue typing characteristics
of RF time series were potentially due to the minute temperature
changes caused by continuous sonification. The hypothesis was
investigated in [132], [133]. In [20], the RF time series signals
prior to, and at the end of the ablation process are analyzed for
lesion detection. RF time series features are exploited in [116] for
in-vivo prostate cancer detection. In [117], two features out of nine
(seven spectral features described above, one wavelet-based feature
and mean central frequency) were selected by a recursive feature
elimination process for prostate cancer detection.

Statistical distribution modeling — The backscattered signals
can be treated as random samples. Modeling their probability
density function with appropriate statistical distributions [134] can
reflect the backscattering properties, which are dependent on the
scatterers in tissue. The parameters of such a distribution can be
used as features for tissue classification. Different models have
been developed to simulate the backscattered echo. The Nakagami
distribution has been widely used as a general model for envelope
backscattered data under different scattering conditions and scatterer
densities [1]. The Nakagami parametric image [42], [100], [101]
based on the Nakagami model has been shown to be useful for
discriminating between benign and malignant breast tumours. In
[119], the echo signal is represented as a mixture of Nakagami
distribution, where the mixture model is learned using the random
forest algorithm. Maggio [62] proposed a sampled continuous-time
autoregressive moving average (CARMA), and utilized CARMA
parameter for tissue characterization. The Rayleigh distribution is
also widely used to describe homogeneous areas in US images.
For tissue with heterogeneous regions (e.g. plaque), more complex
distributions are needed. In [34], [135], Seabra et al. proposed to use
the Rayleigh mixture model (RMM) to model the plaques in IVUS.
Their experiments show that the mixture coefficients and Rayleigh
parameters can describe different plaque types.

Wavelet analysis — Multi-resolution analysis of RF signals by
wavelets has been studied, and the wavelet coefficients can be
used for tissue classification. This approach has been proved to be
appropriate for plaque characterization in IVUS [35]. The authors in
[120] utilized multi-scale products of wavelet transform sequences
of RF signals to estimate the scatter distribution in the tissue, which
is used for prostate cancer detection. In [90], the wavelet coefficients
of RF signal, their polynomial fitting and the coherent and diffuse
components obtained by signal decomposition were exploited for
TRUS tissue classification.
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Fig. 5. Samples of RF signals collected over time from a fixed spot of tissue under emission of sequential ultrasound form one RF time series [88].

Beyond the feature categories discussed above, other features such
as scatterer size and the speed of sound can also be considered.
Although the mean speed of sound in biological tissue is normally
assumed to be 1540m/s, it is known that the ultrasound wave
propagates with different speed in tissue with different density. The
estimation of speed of sound has been proposed as an indicator
of tissue abnormality [1]. Another related parameter is acoustic
impedance. Given the relationship between the acoustic impedance
and the tissue density, the relative acoustic impedance can be used
as a parameter for tissue characterization [35].

C. Feature Combination and Selection
Individual features usually have limited discriminative power.

Combining different features can potentially provide better tissue
discrimination, as the features of different nature might provide
complementary information. Therefore, feature combination has been
exploited in many studies [1]. Escalera et al. [32] considered texture
features (GLCM, LBP, Gabor, and shadow), RF-based features (full
spectrum, two global spectral features), and slope-based features
[104] for tissue classification in IVUS. In [33], [96], both texture
features (Gabor, LBP, and shadow) and spectral features from RF
signals are extracted for plaque characterization in IVUS. In another
study [34], the combination of texture and spectral features with the
RMM features achieves the superior performance in IVUS tissue clas-
sification. Multiple features including statistical parameters, spectral
features from RF signals, and texture features from B-mode images
are considered in [90] for TRUS. In [88], the texture and spectral
features in combination with the RF time series features result in
the best performance. It is concluded in [65] that combining features
extracted from RF signals and image textures provide better prostate
tissue classification. In [100], [101], the morphological features (e.g.
contour) are combined with the Nakagami parametric image to
characterize benign and malignant breast tumours. In another study
[42], the GLCM features are combined with the Nakagami parametric
image for breast tumour detection. Acharya et al. [83] extracted
GLCM texture features and discrete wavelet transformation (DWT)
features from the thyroid US images for thyroid cancer detection.

Feature combination inevitably increases the dimension of the
feature vector. In practice, the combined features could be redundant
for tissue characterization. Furthermore, high dimensionality requires
more complex classification models which tend to overfit the train-
ing data. So it is essential to select an optimal feature set with
low dimensionality containing only significant and non-redundant
features. Feature selection approaches can be categorized into two
classes: filter and wrapper. Filter methods select features according

to a score that measures the importance of a feature with respect
to the tissue type, and does not take into account the classification
algorithms. Typically the ranking criterion can measure distance,
information, dependency, or consistency between features and tissue
type. For example, mutual information was exploited in [90] for
feature selection. Unsupervised learning methods such as principal
component analysis (PCA) can also be used to reduce redundancy in
features [88]. In contrast to filter methods, wrapper methods select
features based on the performance of a classifier on the feature set,
thus they are classifier-dependent. Pujol et al. [85] adopted Adaboost
to select the most discriminative texture features for IVUS tissue-
blood classification. In [68], feature selection using particle swarm
optimization is adopted to select the optimal spectral feature subset.
In [117], two features were selected from nine RF time series features
by a recursive feature elimination process, based on their weight in
a linear SVM classifier. It is also possible to select features using a
hybrid method, to take advantages of both filter and wrapper methods.
For instance, a mutual information hybrid feature selection algorithm
is presented in [90] for TRUS tissue classification.

IV. CLASSIFIER DESIGN

After feature extraction, the next step is to design a classifier
to automatically label tissue types based on the features. Due to
the large variations in US images (signals), most features have low
discriminative power and it is often difficult to find a boundary sepa-
rating different tissue types in the feature space. Machine learning
approaches could be powerful for tissue classification, which can
handle variations in the US data by training a classifier from a large
database of examples. A new tissue sample is then be classified using
the learned classifier.

As summarized in Table II, different classifiers have been
exploited for tissue classification, for instance, various classification
approaches for liver tissue classification are reviewed in [128]. In
earlier studies [104], decision trees, neural networks, and fuzzy
systems were utilized. Later Support Vector Machines (SVM) have
become a popular classifier. In this section, we discuss a few
widely-used classifiers. It is worth mentioning that classification
performance should be compared with caution, because there is
significant variability in the training and evaluation data sets, as well
as evaluation settings and ground truth used, among these studies.

Discriminant Analysis — Linear discriminant analysis (LDA) and
logistic regression are frequently-used linear classifiers. Logistic
regression is a model for predicting the probability of an event
occurring as a function of other factors. LDA [140], also called Fisher



SHELL shan et al.: ULTRASOUND TISSUE CLASSIFICATION: A REVIEW 9

Classifier References
Linear classifier [107], [42], [136], [93]

Neural Network [106], [112], [108], [78], [91], [114], [79]

k-NN [107], [137], [78], [79]

Decision Trees [66], [104], [105], [94]

Bayes classifier [97], [113], [98], [78], [91]

SVM [86], [68], [69], [88], [120], [89], [77], [99], [91], [62], [79], [82], [22],
[115], [20], [133], [80], [116], [117], [111], [70], [26]

Adaboost [85], [87], [96], [33], [34], [35], [83]

Random Forest [31], [138], [119], [117], [139]

TABLE II
CLASSIFIERS FOR TISSUE CLASSIFICATION.

discriminant analysis, searches for the projection axes on which the
data points of different classes are far from each other while requiring
data points of the same class to be close to each other.

The linear classifiers are fast and easy to implement but cannot
capture the nonlinear separation of different classes. Especially
when features of different nature are used, a nonlinear classifier can
achieve better accuracy [65]. Katouzian et al. [107] exploited linear
Fisher classifier for IVUS plaque characterization, and showed that
the linear classifier cannot discriminate different tissue types because
of the overlap among different classes. Maggio et al. [90] exploit a
multi-feature nonlinear classifier based on generalized discriminant
analysis (GDA) with Gaussian kernels for prostate cancer detection,
which delivers superior classification performance.

Support Vector Machine — SVM [141] is a discriminant
method based on the Bayesian learning theory. SVM performs an
implicit mapping of data into a higher dimensional feature space,
and then finds a linear separating hyperplane with the maximal
margin to separate data. SVM has been widely used for tissue
classification [82], [86], [89], [99], [110], for example, SVM was
used to differentiate steatosis and non-steatosis liver specimens
[86]. Horng [89] adopted multi-class SVM to classify US images
of supraspinatus. Wan and Zhou [99] used a SVM classifier with
texture features extracted from B-mode US images for live tissue
classification, and their approach results in an accuracy of 85.79%
on classifying 702 normal and 200 cirrhosis liver images. Similarly,
SVM was used with the statistical and textural features extracted
from thyroid elastograms for thyroid cancer characterization [82].
In [110], after dimensionality reduction of full spectrum, SVM
classification was performed for separating cancer from normal
prostate tissue. SVM has also been used with RF time series features
for prostate cancer detection [88], [116], [117]. Also using RF time
series features, SVM is used to classify ablated and non-ablated
tissue [20], achieving the accuracy of 84.4% for the leave-one-out
cross-validation on the 12 ex vivo tissue samples.

Adaboost — Adaptive Boosting (Adaboost) [142] provides a
simple yet effective approach for stagewise learning of a nonlinear
classification function. It combines the feature selection and classifier
training steps in one process. Adaboost learns a small number of
weak classifiers whose performance is just better than random
guessing, and boosts them iteratively into a strong classifier of
higher accuracy. In [85], Adaboost with decision stumps was
possibly for the first time utilized for tissue classification, where

texture features were selected to build a strong classifier for IVUS
tissue characterization. Later it was used in [33]–[35], [87]. In [83],
with perceptron as weak learner, Adaboost was used with texture
features to distinguish benign and malignant thyroid nodules.

Random Forest — Random forests [143] are another ensemble learn-
ing method, which operate by constructing a multitude of decision
trees using the training data and then classifying a testing sample as
the majority prediction of the individual trees. Random forests can
handle a large amount of training data efficiently. In [138], random
forests were adopted to classify tissue in 3D echocardiography. Sheet
et al. [119] utilized random forest to identify different types of tissue
in IVUS using statistics features extracted from US signals. Random
forests were also exploited for prostate cancer diagnosis [117]. In
a recent work [11], thirteen spectral parameters derived from the
power spectrum of the RF data were used in generating random
forests for cardiac tissue classification. The random forest classifier
with 50 classification trees resulted in an overall accuracy of 92.4%,
sensitivity of 91.1%, specificity of 93.9%. The result demonstrates
the potential of echocardiography and spectral analysis techniques in
differentiating cardiac adipose tissue, myocardium, and blood.

In [31], the tissue classifier contains a bank of tissue detector
arrays, e.g., 10 for each tissue type. Each tissue detector array
consists of a number of (e.g. 5) basic tissue detectors tuned to
a particular tissue type, where the basic tissue detector performs
binary classification using a small database of the particular tissue
type and other types (e.g. necrotic vs. non-necrotic tissue). The
tissue detector in the same array contains similar (but not identical)
small database of spectra. Rather than designing a single tissue
detector array by utilizing all available training data, the authors
design several detector arrays by utilizing randomly selected subsets
of the training data. Finally, given an input spectrum, the classifier
makes the final decision based on the outputs of the detector arrays
using a Bayesian classifier. Having a large and diverse collection
of independently designed classifiers is known to produce a more
accurate classifier. In this respect their method share similarities
with the random forests algorithms. Their approach can classify four
types of IVUS tissue, namely necrotic, lipidic, fibrotic and calcified
tissues, with an accuracy of 97%, 98%, 95% and 98%, respectively.

Other Classifiers — The k-Nearest Neighbors (k-NN) classifier
is a widely-used non-parametric method for classification. Given a
sample, k-NN computes its distance with every data sample in the
training set, and assign it to the most frequently occurring class
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among the top k nearest neighbors. The k-NN classifier can capture
complex boundary among different classes but it is computationally
expensive. Katouzian et al. [107] exploited k-NN for IVUS plaque
characterization. In [78], the k-NN, neural network, and Bayes
classifier were utilized to classify liver tissues. An adaptive subspace
self-organizing map was used in [137] to extract features from IVUS
RF signals, and the classification is done by considering similarities
among the distributions of feature vectors using the Mahalanobis’s
generalized distance. In [32], Escalera et al. presented a sub-class
Error Correction Output Codes (ECOC) method [144] for multi-class
tissue classification, which splits the original set of classes into
sub-classes. A binary discriminative learning technique based on the
approximation of the nonlinear decision boundary by a piecewise
linear smooth additive model was proposed in [145] for IVUS tissue
classification. In [98], a Bayes classifier was adopted to classify fatty
live tissue, using image features extracted from a despeckled image
and a speckle only image. This approach achieves an accuracy of
95% on an image set of 20 images (10 normal liver and 10 fatty
liver samples). In [108], with spectrum analysis of RF signals, four
non-linear classifiers were trained for prostate tissue classification:
multi-layer-perceptron neural networks, logitboost algorithms, SVM,
and stacked restricted Boltzmann machines. By embedding ECOC
in the potential functions for Discriminative Random Fields (DRF),
Ciompi presented in [35] a multi-class classification technique called
ECOC-DRF for IVUS tissue classification. In [43], the segmented
ROI in breast US images is viewed as a bag, and sub-regions of the
ROI are considered as the instances of the bag. Multiple-instance
learning is then adopted for breast tumour classification. Acharya et
al. [94] adopted a decision tree classifier and US image features for
classifying normal and abnormal liver tissue.

Combination of Classifiers — Each individual classifier has inherent
limitations, e.g., uncertainty with respect to a particular class. One
classifier may provide a clearer conception of a class than other
classifiers do [79]. The samples misclassified by various classifiers do
not necessarily overlap. Therefore, different classifiers can potentially
offer complementary information, and the combination of various
classifiers could improve the performance. These observations have
motivated the interest in combined classifiers. In [79], an ensemble
of classifiers was adopted by combining the outputs of various
classifiers based on fuzzy integral. More specifically, the fuzzy
k-nearest neighbor classifier, the probabilistic neural network, the
back-propagation neural network, and SVM were combined. The
experiment results showed that the proposed ensemble of classifiers
achieves performance superior to that obtained with any single
classifier. Similarly, a multi-classifier system was adopted in [91]
to improve the prostate cancer diagnosis as compared to individual
classifiers. In [13], an ensemble machine-learning model with 3
algorithms (support vector machines, random forests, and artificial
neural networks) was investigated for tissue classification using STE
features in 2D echocardiography.

V. DEEP LEARNING APPROACHES

Nowadays deep learning has become popular as a self-taught
approach in which features are computed in an automatic manner
instead of combining manual designed features. These approaches
rapidly become state-of-the-arts that outperform other traditional
methods in ultrasound. The popular techniques include convolutional
neural networks (CNN), recurrent neural networks (RNN), and un-
supervised learning approaches. Although comprehensive surveys on
deep learning in medical image analysis or ultrasound image analysis
already exist [146], [147], in this section, we aim for introducing

notable research specifically on deep learning for tissue classification.

Convolutional Neural Networks (CNN) — Convolutional neural
network is the most popular and successful deep learning architecture.
In 2012, it was re-introduced by Alex Krizhevsky et al. [148] and
achieved huge success in the ImageNet competition [148]. A typical
CNN contains several pairs of a convolution layer and a pooling
layer. The intermediate outputs of these layers are fully connected
to a multi-layer perception neural network. Later, new tricks were
proposed including dropout [4], batch normalization [5] and resnet
block [6]. The purpose of dropout is to solve over-fitting caused by
co-adaptations during training. Dropout technique improves the per-
formance of neural networks. Batch normalization helps to accelerate
the training of deep networks by normalizing activations and achieve
the same accuracy with 14 times fewer training steps [5]. It also
improved the best published result on ImageNet classification with an
ensemble of batch-normalized networks. Resnet block was proposed
in [6], where they found out that identity shortcut connections
and identity after addition activation are important for smoothing
information propagation [149]. Huang et al. [150] proposed DenseNet
(Fig. 6) which is a network architecture where each layer is directly
connected to every other layer in a feed-forward fashion. For each
layer, the feature maps of all preceding layers are treated as separate
inputs whereas its own feature maps are passed on as inputs to all
subsequent layers. This connectivity pattern yields state-of-the-art
accuracies. DenseNet achieves similar accuracy as ResNet, but using
less than half the amount of parameters and roughly half the number
of FLOPs.

As an extension of CNN, fully connected convolutional networks
(FCN), such as U-net architecture [151], have gained propitiatory
for the segmentation tasks. The U-net can be recognized as two
parts, the descending part and the ascending part, with a number
of convolutional layers. It consists of a number of downsampling
steps followed by the same number of upsampling steps. Skip-layer
connections exist between each downsampled feature map and the
commensurate upsampled feature map. The activation function can
be rectified linear unit (ReLU). The FCN aims to construct a feature
map for each image, from which object-relevant information will be
extracted and object-irrelevant information will be discarded.

Both CNN and FCN have been applied extensively in ultrasound.
Quite often, the deep learning techniques are combined with post-
processing or other traditional techniques to boost the classification
performance. In ultrasound images, both patch-based approach [152],
[153] [154] [155] [156] [157] [158] [159]–[161] [162] [163] and
FCN [164] [165] [166]–[169] [170] [171] [172]–[177] [178], [179]
are applied in various applications. In [180] [181], the CNN was used
with shape modeling to achieve better performance.

A big advantage of CNN is that when the number of training
images increases, the performance of the network improves. On the
other hand, the training of a deep learning model would also require
a large amount of labeled data. In many medical image classification
cases, the number of labeled data are limited for training. Transfer
learning has been proposed [182] to effectively tackle the problem
of limited availability of the labeled data. Transfer learning literally
means that experience gained from one subject can be transferred
to other subjects. In neural networks, it means that the parameters
trained on one dataset can be reused for a new dataset. Usually, the
first n layers of a pre-trained networks are copied to the first n layers
of a new network. The remaining layers of the new network are
initialized randomly and trained according to the new task [183]. In
ultrasound, transfer learning is used in fetal ultrasound [184], [185],
pelvic ultrasound [186] including prostate cancer detection [187],
breast cancer classification [188], thyroid nodules classification
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Fig. 6. Demonstration of Densenet 121.

[189], [190], liver fibrosis classification [191], cardiac ultrasound
[192], bone detection [193] and abdominal classification [194].

Recurrent Neural Networks (RNN) — Recurrent neural networks
[195] are often used to process a sequence of data. It is a class of
neural networks where the connecting nodes are one way connected.
The node in its sequence receives inputs using the computation of
previous nodes. Therefore RNN is capable of having “memory”. Long
short-term memory (LSTM) is a type of RNN which avoids the
vanishing gradient problem [196]. It uses special units in addition
to standard units that can maintain information in memory for long
periods of time. Therefore it can learn longer-term dependencies.
Because of its ”memory” and the capabilities of processing data of
an arbitrary length. RNN is quite popular for speech recognition and
hand-writing recognition.

In ultrasound imaging, the image sequence can be acquired in
real time and therefore it is suitable to apply RNN for the learning
tasks such as tissue identification of different temperature during
HIFU ablation therapies, diseased tissue classification with Doppler
ultrasound [197], and cancer tissue detection in temporal enhanced
ultrasound [198]. For static ultrasound images, it is also quite often
that static images are serialized into dynamic sequences and then
processed with RNN and the results are often robust compared to
conventional CNN schemes [185], [199].

Unsupervised and Weakly Supervised Learning — In medical
imaging, due to scarce of the manual efforts, it is not always
applicable to create a large amount of labeled data to directly apply
deep learning based classification. Therefore unsupervised schemes
have been proposed. Restricted Boltzmann machine [200], [201]
and auto-encoders [202]–[206] are invented to learn the feature
representation of the data without labeling. Autoencoders learns a
representation of the inputs and is deterministic while Restricted
Boltzmann machine learn the statistical distribution and is generative
and it can also generate new data with given joined distribution.
An active area of unsupervised learning is to extract representative
features for cancer classification in prostate [207], [208], breast [208],
[209] and liver [210]. The unsupervised learning extracts the high-
level features representation from cancer regions. These features are
the inputs for classifiers such as support vector machine and K-nearest
neighbor. Weakly supervised method is a learning method which
makes the use of image-level labels in the situation where pixel-
level annotations are not available. van Sloun and Demi [211] applied
a weakly supervised method based on a fully convolutional neural
network for automatically detecting and localizing B-lines artefacts
in lung ultrasound.

Table III summarizes the latest deep learning techniques applied
in ultrasound.

VI. FDA-CLEARED MACHINE LEARNING ALGORITHMS

Outside the research regime, there are FDA cleared tissue classi-
fication algorithms or products are being accepted in the clinic to
benefit patients in real practice.

In breast imaging, lesion classification products by Koios Medical
[212] for AI-based clinical decision support in 2D ultrasound have
received clearance. This will aid radiologists to be more selective on
biopsies. The breast cancer detection product in automated 3D breast
ultrasound by Qview Medical [213] has been proven to be effective
in terms of diagnosis and efficient in terms of reading time.

In cardiac imaging, FDA recently approved the first AI-guided
medical imaging tool by Caption Health [214] for the use in cardiac
ultrasounds in which tissue-classification algorithms are behind. The
tool can automatically capture video clips, and saves the best video
clip acquired from a particular view for reviewing.

In spine imaging, Tissue Differentiation Intelligence [215] received
clearance for the company’s SonoVision ultrasound platform which
visually differentiates nerve, muscle, bone, and vessels in real-time
and facilitate the surgical operations.

In prostate imaging, Focal Healthcare provides a FDA-cleared
solution [216] for MR guided ultrasound biopsy for identifying cancer
tissues which help urologists perform fusion biopsy procedures more
efficiently and accurately.

VII. DISCUSSIONS

Compared to techniques in computed tomography (CT), magnetic
resonance (MR) and X-rays, the techniques of tissue classification
in ultrasound are less applied. The main reason might be the lack
of consistency across acquired ultrasound images which boils down
to the problem of user-dependency of applying ultrasound imaging.
Ultrasound quality is operator dependent and subjective to imaging
parameters, positioning of probes, compression of the probes on
tissues. These factors lead to different looks of ultrasound images
while the robustness of the tissue classification will depend on
the similarity of training data for developing the techniques and
the testing data in clinical practice. To alleviate this problem, the
best approach is to improve the standardization of the imaging via
technology or guideline to make the procedure less-user dependent
and image-looks consistent.

Combining different imaging modalities is a promising direction
for better tissue classification, for example, combining elastography
with contrast-enhanced ultrasound is studied in [217]. Compared
to using elastography alone, in an 86-patient study, this approach
decreases the false-positive rate from 35% to 10%, and improves the
positive predictive value from 65% to 90%. For prostate cancer, the
fusion of TRUS and MRI for biopsy guidance may offer improved re-
sults by combining the strengths of the two imaging modalities [218].
In [111], ovarian tissue features extracted from photoacoustic spectra
data, beam envelopes and co-registered ultrasound and photoacoustic
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Deep learning techniques Organ Ultrasound imaging References
CNN Fetal B-mode [184], [185] [157], [160] [170] [158]

CNN Pelvic B-mode [186]

CNN Carotid B-mode [155]

CNN Breast B-mode including ABUS [165] [172], [173], [175]–[177] [178]

CNN Musculoskeletal B-mode [162]

CNN Liver B-mode [163]

CNN Liver Contrast enhanced ultrasound [152]

CNN Prostate Contrast enhanced ultrasound [156]

CNN Heart B-mode [153], [168] [154], [161] [174], [179], [192]

CNN Prenatal B-mode [167]

CNN Lymph node B-mode [164]

CNN Breast B-mode [165]

CNN Brain B-mode [169]

CNN Thyroid B-mode [159] [181], [189], [190]

CNN Bone B-mode [193]

RNN Ophthalmic artery Doppler ultrasound [197]

RNN Prostate Contrast-enhanced ultrasound [198]

Unsupervised learning Prostate B-mode [207], [208]

Unsupervised learning Breast B-mode [208]

Unsupervised learning Breast Shear-wave elastography [209]

Weakly supervised learning Lung B-mode [211]

TABLE III
DEEP LEARNING TECHNIQUES FOR DIFFERENT ULTRASOUND APPLICATIONS.

images are used to characterize cancerous vs. normal tissue using a
SVM classifier.

One of the critical issues in tissue classification research is the
creation of a reliable data set with ground truth. Large databases
are necessary for training powerful classifiers and validating the
trained classifiers. To fairly evaluate different tissue classification
approaches, large benchmark databases should be used. However,
currently, large standard databases for public use are absent, also for
the very common and highly diagnosed diseases such as prostate
cancer or breast tumour. Most existing studies were performed by
using their own data sets, which usually have different sizes and
different tissue types, acquired using different sources and settings.
Therefore, more efforts should be put on collecting large databases
with ground truth and making them publicly available for research. In
[62] a database with ground truth for prostate cancer was collected.

Another challenge for some clinical applications (e.g. IVUS and
cardiac ablation) is how to obtain ground truth for the acquired
data. Currently, the ground truth is mainly obtained by expert
annotations or the histopathological analysis, which is a slow and
complex process, leading to limited data with annotation. For machine
learning, a semi-supervised learning scheme can be considered, to
use both labelled and unlabelled tissue samples for training. In [33],

[96], an approach was presented to enhance the in vitro training data
set by selectively including examples from in vivo data for plaque
characterization. The enhanced classifier performs well on both in
vitro and in vivo data.

In future work, a better understanding and modeling of tissue
characteristics in the presence of artefacts, and the design of more
powerful classification approaches that can handle uncertainty and
variations in the US data will be research focus. Deep learning [219]
applied to the huge amount of US data acquired in clinical practice
remains a topic to explore.

VIII. CONCLUSIONS

This paper has presented a survey on ultrasound tissue classi-
fication, particularly focusing on recent development in this area.
After introducing the main clinical applications, both the traditional
approaches, which consists of feature extraction and classifier design,
and the recent deep learning approaches are reviewed. Though much
progress has been made in the last years, there are remaining
challenges for automatic tissue classification in ultrasound.
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