Skip to main content
Log in

Picture fuzzy interactional partitioned Heronian mean aggregation operators: an application to MADM process

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

The picture fuzzy sets (PFSs) state or model the voting information accurately without information loss. However, their existing operational laws usually generate unreasonable computing results, especially when the agreement degree (AD) or neutrality degree (ND) or opposition degree (OD) is zero. To tackle this issue, we propose the interactional operational laws (IOLs) to compute picture fuzzy numbers (PFNs), which can capture the interaction between the ADs and NDs in two PFNs, as well as the interaction between the ADs and ODs in two PFNs. Based on the proposed novel IOLs, partitioned Heronian mean (PHM) operator, and partitioned geometric Heronian mean (PGHM) operator, some picture fuzzy interactional PHM (PFIPHM), weighted PFIPHM (PFIWPHM), geometric PFIPHM (PFIPGHM), and weighted PFIPGHM (PFIWPGHM) operators are proposed in this paper. Afterwards, we investigate the properties of these operators. Using the PFIWPHM and PFIWPGHM operators, a novel multiple attribute decision-making (MADM) method with PFNs is elaborated. Finally, a study example that involves the service quality ranking of nursing facilities is provided to show the decision procedure of the proposed MADM method and we also give the comparative analysis between the proposed operators and the existing aggregation operators developed for PFNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    MATH  Google Scholar 

  • Beliakov G, Bustince H, James S, Calvo T, Fernandez J (2012) Aggregation for Atanassov’s intuitionistic and interval valued fuzzy sets: the median operator. IEEE Trans Fuzzy Syst 20(3):487–498

    Google Scholar 

  • Can GF, Demirok S (2019) Universal usability evaluation by using an integrated fuzzy multi criteria decision making approach. Int J Intell Comput Cybern 12(2):194–223

    Google Scholar 

  • Cuong BC (2014) Picture fuzzy sets. J Comput Sci Cybern 30(4):409–420

    Google Scholar 

  • Cuong BC, Hai PV (2015) Some fuzzy logic operators for picture fuzzy sets. In: Seventh international conference on knowledge and systems engineering, pp 132–137

  • Cuong BC, Kreinovich V (2013) Picture fuzzy sets—a new concept for computational intelligence problems. In: 2013 Third world congress on information and communication technologies 2016, pp 1-6

  • Cuong BC, Kreinovich V, Ngan RT (2016) A classification of representable t-norm operators for picture fuzzy sets. Departmental Tech Rep, p 1047

  • Garg H (2018a) Some methods for strategic decision-making problems with immediate probabilities in Pythagorean fuzzy environment. Int J Intell Syst 33(4):687–712

    Google Scholar 

  • Garg H (2018b) New exponential operational laws and their aggregation operators for interval-valued Pythagorean fuzzy multicriteria decision-making. Int J Intell Syst 33(3):653–683

    Google Scholar 

  • Garg H (2019a) Hesitant Pythagorean fuzzy Maclaurin symmetric mean operators and its applications to multiattribute decision-making process. Int J Intell Syst 34(4):601–626

    Google Scholar 

  • Garg H (2019b) Novel neutrality operation–based Pythagorean fuzzy geometric aggregation operators for multiple attribute group decision analysis. Int J Intell Syst 34(10):2459–2489

    Google Scholar 

  • Garg H, Kumar K (2020) A novel exponential distance and its based TOPSIS method for interval-valued intuitionistic fuzzy sets using connection number of SPA theory. Artificial Intell Rev 53:595–624

    Google Scholar 

  • Jana C, Senapati T, Pal M, Yager RR (2019) Picture fuzzy Dombi aggregation operators: application to MADM process. Appl Soft Comput 74:99–109

    Google Scholar 

  • Kakati P, Borkotokey S, Rahman S, Davvaz B (2020) Interval neutrosophic hesitant fuzzy Einstein Choquet integral operator for multicriteria decision making. Artificial Intell Rev 53:2171–2206

    Google Scholar 

  • Khan MJ, Kumam P (2021) Distance and similarity measures of generalized intuitionistic fuzzy soft set and its applications in decision support system. Adv Intell Syst Comput 1197:355–362

    Google Scholar 

  • Khan MJ, Kumam P, Ashraf S, Kumam W (2019a) Generalized picture fuzzy soft sets and their application in decision support systems. Symmetry 11(3):415

    MATH  Google Scholar 

  • Khan MJ, Kumam P, Liu PD, Kumam W, Ashraf S (2019b) A novel approach to generalized intuitionistic fuzzy soft sets and its application in decision support system. Mathematics 7(8):742

    Google Scholar 

  • Khan MJ, Kumam P, Liu PD, Kumam W, ur Rehman H (2020a) An adjustable weighted soft discernibility matrix based on generalized picture fuzzy soft set and its applications in decision making. J Intell Fuzzy Syst 38(2):2103–2118

    Google Scholar 

  • Khan MJ, Kumam P, Deebani W, Kumam W, Shah Z (2020b) Bi-parametric distance and similarity measures of picture fuzzy sets and their applications in medical diagnosis. Egypt Inf J. https://doi.org/10.1016/j.eij.2020.08.002

    Article  Google Scholar 

  • Khan MJ, Kumam P, Liu PD, Kumam W (2020c) Another view on generalized interval valued intuitionistic fuzzy soft set and its applications in decision support system. J Intell Fuzzy Syst 38(4):4327–4341

    Google Scholar 

  • Khan MJ, Phiangsungnoen S, ur Rehman H, Kumam W (2020d) Applications of generalized picture fuzzy soft set in concept selection. Thai J Math 18(1):296–314

    MathSciNet  MATH  Google Scholar 

  • Khan MJ, Kumam P, Deebani W, Kumam W, Shah Z (2020e) Distance and similarity measures for spherical fuzzy sets and their applications in selecting mega projects. Mathematics 8(4):519

    Google Scholar 

  • Khan MJ, Kumam P, Alreshidi NA, Shaheen N, Kumam W, Shah Z, Thounthong P (2020f) The renewable energy source selection b remoteness index-based VIKOR method for generalized intuitionistic fuzzy soft sets. Symmetry 12(6):977

    Google Scholar 

  • Lei Q, Xu ZS, Bustince H, Fernandez J (2016) Intuitionistic fuzzy integrals based on Archimedean t-conorms and t-norms. Inf Sci 327:57–70

    MathSciNet  MATH  Google Scholar 

  • Li H, Lv L, Li F, Wang L, Xia Q (2020) A novel approach to emergency risk assessment using FMEA with extended MULTIMOORA method under interval-valued Pythagorean fuzzy environment. Int J Intell Comput Cybern 13(1):41–65

    Google Scholar 

  • Liao HC, Xu ZS (2014) Intuitionistic fuzzy hybrid weighted aggregation operators. Int J Intell Syst 29(11):971–993

    Google Scholar 

  • Lin MW, Wei JH, Xu ZS, Chen RQ (2018a) Multiattribute group decision-making based on linguistic Pythagorean fuzzy interaction partitioned Bonferroni mean aggregation operators. Complexity, p 24

  • Lin MW, Xu ZS, Zhai YL, Yao ZQ (2018b) Multi-attribute group decision-making under probabilistic uncertain linguistic environment. J Oper Res Soc 69(2):157–170

    Google Scholar 

  • Lin MW, Chen ZY, Liao HC, Xu ZS (2019) ELECTRE II method to deal with probabilistic linguistic term sets and its application to edge computing. Nonlinear Dyn 96(3):2125–2143

    MATH  Google Scholar 

  • Lin MW, Huang C, Xu ZS (2020a) MULTIMOORA based MCDM model for site selection of car sharing station under picture fuzzy environment. Sustain Cities Soc 53:101873

    Google Scholar 

  • Lin MW, Huang C, Xu ZS, Chen RQ (2020b) Evaluating IoT platforms using integrated probabilistic linguistic MCDM method. IEEE Int Things J 7(11):11195–11208

    Google Scholar 

  • Lin MW, Wang HB, Xu ZS (2020c) TODIM-based multi-criteria decision-making method with hesitant fuzzy linguistic term sets. Artificial Intell Rev 53:3647–3671

    Google Scholar 

  • Lin MW, Li XM, Chen LF (2020d) Linguistic q-rung orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation operators. Int J Intell Syst 35(2):217–249

    Google Scholar 

  • Lin MW, Xu WS, Lin ZP, Chen RQ (2020e) Determine OWA operator weights using kernel density estimation. Econ Res Ekonomska Istraživanja 33(1):1441–1464

    Google Scholar 

  • Liu PD, You XL (2020) Linguistic neutrosophic partitioned Maclaurin symmetric mean operators based on clustering algorithm and their application to multi-criteria group decision-making. Artificial Intell Rev 53:2131–2170

    Google Scholar 

  • Liu P, Liu Z, Zhang X (2014) Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making. Appl Math Comput 230:570–586

    MathSciNet  MATH  Google Scholar 

  • Liu PD, Chen SM, Liu JL (2017) Multiple attribute group decision making based on intuitionistic fuzzy interaction partitioned Bonferroni mean operators. Inform Sci 411:98–121

    MathSciNet  MATH  Google Scholar 

  • Liu P, Liu J, Merigo JM (2018) Partitioned Heronian means based on linguistic intuitionistic fuzzy numbers for dealing with multi-attribute group decision making. Appl Soft Comput 62:395–422

    Google Scholar 

  • Özkan B, Özceylan E, Kabak M, Dağdeviren M (2020) Evaluating the websites of academic departments through SEO criteria: a hesitant fuzzy linguistic MCDM approach. Artificial Intell Rev 53:875–905

    Google Scholar 

  • Pena J, Nápoles G, Salgueiro Y (2020) Explicit methods for attribute weighting in multi-attribute decision- making: a review study. Artificial Intell Rev 53:3127–3152

    Google Scholar 

  • Peng XD, Dai J (2020) A bibliometric analysis of neutrosophic set: two decades review from 1998 to 2017. Artificial Intell Rev 53:199–255

    Google Scholar 

  • Peng XD, Selvachandran G (2019) Pythagorean fuzzy set: state of the art and future directions. Artificial Intell Rev 52:1873–1927

    Google Scholar 

  • Qin JD, Liu XW, Pedrycz W (2016) Frank aggregation operators and their application to hesitant fuzzy multiple attribute decision making. Appl Soft Comput J 41:428–452

    Google Scholar 

  • Qiyas M, Khan MA, Khan S, Abdullah S (2020) Concept of Yager operators with the picture fuzzy set environment and its application to emergency program selection. Int J Intell Comput Cybern 13(4):455–483

    Google Scholar 

  • Rong Y, Liu Y, Pei Z (2020) Complex q-rung orthopair fuzzy 2-tuple linguistic Maclaurin symmetric mean operators and its application to emergence program selection. Int J Intell Syst 35(11):1749–1790

    Google Scholar 

  • Tan CQ, Yi WT, Chen XH (2015) Hesitant fuzzy Hamacher aggregation operators for multicriteria decision making. Appl Soft Comput J 26:325–349

    Google Scholar 

  • Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529–539

    MATH  Google Scholar 

  • Wei GW (2017) Picture fuzzy aggregation operators and their application to multiple attribute decision making. J Intell Fuzzy Syst 33:713–724

    MATH  Google Scholar 

  • Wei GW (2018) Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Fundamenta Inf 157:271–320

    MathSciNet  MATH  Google Scholar 

  • Wei GW, Lu M, Gao H (2018a) Picture fuzzy heronian mean aggregation operators in multiple attribute decision making. Int J Knowl Based Intell Eng Syst 22:167–175

    Google Scholar 

  • Wei GW, Gao H, Wei Y (2018b) Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. Int J Intell Syst 33(7):1426–1458

    Google Scholar 

  • Yu DJ (2013) Intuitionistic fuzzy geometric Heronian mean aggregation operators. Appl Soft Comput 13(2):1235–1246

    Google Scholar 

  • Yu Q, Hou FJ, Zhai YB, Du YQ (2016) Some hesitant fuzzy Einstein aggregation operators and their application to multiple attribute group decision making. Int J Intell Syst 31(7):722–746

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform. Control 8(3):338–353

    MathSciNet  MATH  Google Scholar 

  • Zhan JM, Sun BZ (2020) Covering-based intuitionistic fuzzy rough sets and applications in multi-attribute decision-making. Artificial Intell Rev 53:671–701

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61872086, 61972093 and U1805263, and Digital Fujian Institute of Big Data for Agriculture and Forestry under Grant No. KJG18019A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingwei Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Theorems

Appendix A. Proof of Theorems

Theorem 1

Given any two PFNs \(p_{1} = \left( {\mu_{1} ,\eta_{1} ,\nu_{1} } \right)\) and \(p_{2} = \left( {\mu_{2} ,\eta_{2} ,\nu_{2} } \right)\), then the computing result from \(p_{1} \oplus p_{2}\) is also an PFN.

Proof

Since \(0 \le \mu_{l} \le 1\), then we can derive \(1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 0} \right)} \le 1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} \le 1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1} \right)} \Rightarrow 0 \le 1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} \le 1\).

Let \(g = \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} - \eta_{l} } \right)}\), then the derivative of the mathematical function \(g\) with regard to the variables \(\mu_{1}\), \(\mu_{2}\), \(\eta_{1}\), \(\eta_{2}\) can be computed and we obtain the following equations:\(g^{\prime}\left( {\mu_{1} } \right) = - \eta_{2} \le 0\), \(g^{\prime}\left( {\mu_{2} } \right) = - \eta_{1} \le 0\), \(g^{\prime}\left( {\eta_{1} } \right) = 1 - \mu_{2} - \eta_{2} \ge 0\), \(g^{\prime}\left( {\eta_{2} } \right) = 1 - \mu_{1} - \eta_{1} \ge 0\).

Hence, it can be noted that the function value of \(g\) becomes smaller as the value of variables \(\mu_{1}\) or \(\mu_{2}\) become bigger, and it becomes bigger as the value of variables \(\eta_{1}\) or \(\eta_{ 2}\) becomes bigger.

Since \(0 \le \eta_{l} \le 1\), then we can derive that\(\prod\nolimits_{l = 1}^{2} {\left( {1 - 1} \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1 - 0} \right)} \le g \le \prod\nolimits_{l = 1}^{2} {\left( {1 - 0} \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - 0 - 1} \right)} \Rightarrow 0 \le g = \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} - \eta_{l} } \right)} \le 1\).

Similarly, the OD \(\prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)}\) can also be proved to be bounded between 0 and 1.

The sum of AD, ND, and OD is

$$\begin{aligned} 1 - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} + \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \eta_{l} } \right)} + \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} \hfill \\ = 1 + \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \eta_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} \hfill \\ \end{aligned}$$

Let \(g = \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} - \eta_{l} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)}\), then the derivative of the function \(g\) with regard to the different variables \(\mu_{l}\), \(\eta_{l}\), \(\nu_{l}\) can be computed and we obtain the following equations:

$$g^{\prime}\left( {\mu_{1} } \right) = 1 - \mu_{2} - \eta_{2} - \nu_{2} \ge 0,g^{\prime}\left( {\mu_{2} } \right) = {\kern 1pt} 1 - \mu_{1} - \eta_{1} - \nu_{1} \ge 0$$
$$g^{\prime}\left( {\eta_{1} } \right) = 1 - \mu_{2} - \eta_{2} \ge 0,g^{\prime}\left( {\eta_{2} } \right) = 1 - \mu_{1} - \eta_{1} \ge 0,g^{\prime}\left( {\nu_{1} } \right) = 1 - \mu_{2} - \nu_{2} \ge 0,g^{\prime}\left( {\nu_{2} } \right) = 1 - \mu_{1} - \nu_{1} \ge 0$$

Hence, it can be noted that the function value of \(g\) becomes bigger as the value of variables \(\mu_{l}\), \(\eta_{l}\), or \(\nu_{l}\) becomes bigger.

When \(\mu_{l} = 1\), \(\eta_{l} = 0\), \(\nu_{l} = 0\), then we can derive that

$$g \le \left( {\prod\limits_{l = 1}^{2} {\left( {1 - 1} \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - 1 - 0} \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - 1 - 0} \right)} } \right) = 0 \Rightarrow 1 + \left( {\prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \eta_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} } \right) \le 1$$

When \(\eta_{l} = 1\), \(\mu_{l} = 0\), \(\nu_{l} = 0\), then we can derive that

$$g \le \left( {\prod\limits_{l = 1}^{2} {\left( {1 - 0} \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - 0 - 1} \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - 0 - 0} \right)} } \right) = 0 \Rightarrow 1 + \left( {\prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \eta_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} } \right) \le 1$$

When \(\nu_{l} = 1\), \(\mu_{l} = 0\), \(\eta_{l} = 0\), then we can derive that

$$g \le \left( {\prod\limits_{l = 1}^{2} {\left( {1 - 0} \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - 0 - 0} \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - 0 - 1} \right)} } \right) = 0 \Rightarrow 1 + \left( {\prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \eta_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} } \right) \le 1$$

Then, it can be observed that the sum of AD, ND, and OD

$$1 - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} + \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \eta_{l} } \right)} + \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} \le 1$$

The above inference process can prove Theorem 1.

Theorem 2

Given any two PFNs \(p_{1} = \left( {\mu_{1} ,\eta_{1} ,\nu_{1} } \right)\) and \(p_{2} = \left( {\mu_{2} ,\eta_{2} ,\nu_{2} } \right)\), then the computing result from \(p_{1} \otimes p_{2}\) is also an PFN.

Proof

Let \(g = \prod\limits_{l = 1}^{2} {\left( {1 - \nu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)}\), then the derivative of the function \(g\) with regard to the variables \(\mu_{1}\), \(\mu_{2}\), \(\nu_{1}\), \(\nu_{2}\) can be computed and we can get the following formulas: \(g^{\prime}\left( {\mu_{1} } \right) = 1 - \mu_{2} - \nu_{2} \ge 0\), \(g^{\prime}\left( {\mu_{2} } \right) = 1 - \mu_{1} - \nu_{1} \ge 0\), \(g^{\prime}\left( {\nu_{1} } \right) = - \mu_{2} \le 0\), \(g^{\prime}\left( {\nu_{2} } \right) = - \mu_{1} \le 0\).

Hence, the function value of \(g\) becomes bigger as the value of variables \(\mu_{1}\) or \(\mu_{2}\) becomes bigger, and it becomes smaller as the value of variables \(\nu_{1}\) or \(\nu_{ 2}\) becomes bigger.

Since \(0 \le \mu_{l} \le 1\), \(0 \le \nu_{l} \le 1\), then we can derive that

$$\prod\limits_{l = 1}^{2} {\left( {1 - 1} \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - 0 - 1} \right)} \le g \le \prod\limits_{l = 1}^{2} {\left( {1 - 0} \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - 1 - 0} \right)} \Rightarrow 0 \le g = \prod\limits_{l = 1}^{2} {\left( {1 - \nu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} \le 1$$

Since \(0 \le \eta_{l} \le 1\), then we can derive that \(1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 0} \right)} \le 1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - \eta_{l} } \right)} \le 1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1} \right)} \Rightarrow 0 \le 1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - \eta_{l} } \right)} \le 1\).

Similarly, the ND \(1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - \eta_{l} } \right)}\) and OD \(1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - \nu_{l} } \right)}\) can also be proved to be between 0 and 1.

The sum of AD, ND, and OD is

$$\prod\limits_{l = 1}^{2} {\left( {1 - \nu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} + 1 - \prod\limits_{l = 1}^{2} {\left( {1 - \eta_{l} } \right)} + 1 - \prod\limits_{l = 1}^{2} {\left( {1 - \nu_{l} } \right)} = 2 - \prod\limits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} - \prod\limits_{l = 1}^{2} {\left( {1 - \eta_{l} } \right)}$$

Let \(g = 2 - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - \eta_{l} } \right)}\), then the derivative of the function \(g\) with regard to some variables \(\mu_{l}\), \(\eta_{l}\), \(\nu_{l}\) can be computed and we can get the following formulas:\(g^{\prime}\left( {\mu_{1} } \right) = 1 - \mu_{2} - \nu_{2} \ge 0\), \(g^{\prime}\left( {\mu_{2} } \right) = 1 - \mu_{1} - \nu_{1} \ge 0\), \(g^{\prime}\left( {\nu_{1} } \right) = 1 - \mu_{2} - \nu_{2} \ge 0\), \(g^{\prime}\left( {\nu_{2} } \right) = 1 - \mu_{1} - \nu_{1} \ge 0\), \(g^{\prime}\left( {\eta_{1} } \right) = 1 - \eta_{2} \ge 0\), \(g^{\prime}\left( {\eta_{2} } \right) = 1 - \eta_{1} \ge 0\).

Hence, it can be noted that the value of \(g\) increases as the value of \(\mu_{l}\), \(\eta_{l}\), or \(\nu_{l}\) increases.

When \(\mu_{l} = 1\), \(\eta_{l} = 0\), \(\nu_{l} = 0\), then \(g \le 2 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1 - 0} \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - 0} \right)} = 1\).

When \(\eta_{l} = 1\), \(\mu_{l} = 0\), \(\nu_{l} = 0\), then \(g \le 2 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 0 - 0} \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1} \right)} = 1\).

When \(\nu_{l} = 1\), \(\mu_{l} = 0\), \(\eta_{l} = 0\), then \(g \le 2 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 0 - 1} \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - 0} \right)} = 1\).

Hence, it can be observed that the sum of AD, ND, and OD is less than or equal to 1. The inference process can prove Theorem 2.

Theorem 3

Given three PFNs \(p = \left( {\mu ,\eta ,\nu } \right)\), \(p_{1} = \left( {\mu_{1} ,\eta_{1} ,\nu_{1} } \right)\) and \(p_{2} = \left( {\mu_{2} ,\eta_{2} ,\nu_{2} } \right)\), then we have

  1. 1.

    \(p_{1} \oplus p_{2} = p_{2} \oplus p_{1}\);

  2. 2.

    \(\lambda \left( {p_{1} \oplus p_{2} } \right) = \lambda p_{1} \oplus \lambda p_{2}\);

  3. 3.

    \(\left( {\lambda_{1} + \lambda_{2} } \right)p = \lambda_{1} p \oplus \lambda_{2} p\);

  4. 4.

    \(p_{1} \otimes p_{2} = p_{2} \otimes p_{1}\);

  5. 5.

    \(\left( {p_{1} \otimes p_{2} } \right)^{\lambda } = p_{1}^{\lambda } \otimes p_{2}^{\lambda }\);

  6. 6.

    \(p^{{\lambda_{1} + \lambda_{2} }} = p^{{\lambda_{1} }} \otimes p^{{\lambda_{2} }}\).

Proof

Let us define \(\delta_{1} { = }1 - \mu_{1}\), \(\delta_{2} { = }1 - \mu_{2}\), \(\varepsilon_{1} { = }1 - \mu_{1} - \eta_{1}\), \(\varepsilon_{2} { = }1 - \mu_{2} - \eta_{2}\), \(\gamma_{1} = 1 - \mu_{1} - \nu_{1}\), \(\gamma_{2} = 1 - \mu_{2} - \nu_{2}\), \(\kappa_{1} = 1 - \nu_{1}\), \(\kappa_{2} = 1 - \nu_{2}\), \(\chi_{1} = 1 - \eta_{1}\), \(\chi_{2} = 1 - \eta_{2}\).

  1. (1)

    \(\begin{aligned} p_{1} \oplus p_{2} = \left( {1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} ,\prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} - \eta_{l} } \right)} ,\prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} } \right) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = \left( {1 - \delta_{1} \delta_{2} ,\delta_{1} \delta_{2} - \varepsilon_{1} \varepsilon_{2} ,\delta_{1} \delta_{2} - \gamma_{1} \gamma_{2} } \right) = p_{2} \oplus p_{1} \hfill \\ \end{aligned}\);

  2. (2)

    \(\lambda \left( {p_{1} \oplus p_{2} } \right) = \lambda \left( {1 - \delta_{1} \delta_{2} ,\delta_{1} \delta_{2} - \varepsilon_{1} \varepsilon_{2} ,\delta_{1} \delta_{2} - \gamma_{1} \gamma_{2} } \right) = \left( {1 - \left( {\delta_{1} \delta_{2} } \right)^{\lambda } ,\left( {\delta_{1} \delta_{2} } \right)^{\lambda } - \left( {\varepsilon_{1} \varepsilon_{2} } \right)^{\lambda } ,\left( {\delta_{1} \delta_{2} } \right)^{\lambda } - \left( {\gamma_{1} \gamma_{2} } \right)^{\lambda } } \right)\).According to Definition 10, we have \(\lambda p_{1} = \left( {1 - \delta_{1}^{\lambda } ,\delta_{1}^{\lambda } - \varepsilon_{1}^{\lambda } ,\delta_{1}^{\lambda } - \gamma_{1}^{\lambda } } \right)\) and \(\lambda p_{2} = \left( {1 - \delta_{2}^{\lambda } ,\delta_{2}^{\lambda } - \varepsilon_{2}^{\lambda } ,\delta_{2}^{\lambda } - \gamma_{2}^{\lambda } } \right)\), then \(\lambda p_{1} \oplus \lambda p_{2} = \left( {1 - \left( {\delta_{1} \delta_{2} } \right)^{\lambda } ,\left( {\delta_{1} \delta_{2} } \right)^{\lambda } - \left( {\varepsilon_{1} \varepsilon_{2} } \right)^{\lambda } ,\left( {\delta_{1} \delta_{2} } \right)^{\lambda } - \left( {\gamma_{1} \gamma_{2} } \right)^{\lambda } } \right) = \lambda \left( {p_{1} \oplus p_{2} } \right)\).

  3. (3)

    According to Definition 10, it can be derived that \(\left( {\lambda_{1} + \lambda_{2} } \right)p = \left( {1 - \delta^{{\lambda_{1} + \lambda_{2} }} ,\delta^{{\lambda_{1} + \lambda_{2} }} - \varepsilon^{{\lambda_{1} + \lambda_{2} }} ,\delta^{{\lambda_{1} + \lambda_{2} }} - \gamma^{{\lambda_{1} + \lambda_{2} }} } \right)\), \(\lambda_{1} p = \left( {1 - \delta^{{\lambda_{1} }} ,\delta^{{\lambda_{1} }} - \varepsilon^{{\lambda_{1} }} ,\delta^{{\lambda_{1} }} - \gamma^{{\lambda_{1} }} } \right)\), and \(\lambda_{2} p = \left( {1 - \delta^{{\lambda_{2} }} ,\delta^{{\lambda_{2} }} - \varepsilon^{{\lambda_{2} }} ,\delta^{{\lambda_{2} }} - \gamma^{{\lambda_{2} }} } \right)\). Then we can get \(\begin{aligned} \lambda_{1} p \oplus \lambda_{2} p \hfill \\ = \left( {1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1 + \delta^{{\lambda_{l} }} } \right)} ,\prod\nolimits_{l = 1}^{2} {\left( {1 - 1 + \delta^{{\lambda_{l} }} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1 + \delta^{{\lambda_{l} }} - \delta^{{\lambda_{l} }} + \varepsilon^{{\lambda_{l} }} } \right)} ,\prod\nolimits_{l = 1}^{2} {\left( {1 - 1 + \delta^{{\lambda_{l} }} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1 + \delta^{{\lambda_{l} }} - \delta^{{\lambda_{l} }} + \gamma^{{\lambda_{l} }} } \right)} } \right) \hfill \\ {\kern 1pt} = \left( {1 - \delta^{{\lambda_{1} + \lambda_{2} }} ,\delta^{{\lambda_{1} + \lambda_{2} }} - \varepsilon^{{\lambda_{1} + \lambda_{2} }} ,\delta^{{\lambda_{1} + \lambda_{2} }} - \gamma^{{\lambda_{1} + \lambda_{2} }} } \right) = \left( {\lambda_{1} + \lambda_{2} } \right)p \hfill \\ \end{aligned}\).

  4. (4)

    \(p_{1} \otimes p_{2} = \left( {\prod\nolimits_{l = 1}^{2} {\left( {1 - \nu_{l} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - \mu_{l} - \nu_{l} } \right)} ,1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - \eta_{l} } \right)} ,1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - \nu_{l} } \right)} } \right){\kern 1pt} = p_{2} \otimes p_{2}\).

  5. (5)

    According to Definition 10, we can have \(\left( {p_{1} \otimes p_{2} } \right)^{\lambda } = \left( {\kappa_{1} \kappa_{2} - \gamma_{1} \gamma_{2} ,1 - \chi_{1} \chi_{2} ,1 - \kappa_{1} \kappa_{2} } \right)^{\lambda } {\kern 1pt} {\kern 1pt} = \left( {\left( {\kappa_{1} \kappa_{2} } \right)^{\lambda } - \left( {\gamma_{1} \gamma_{2} } \right)^{\lambda } ,1 - \left( {\chi_{1} \chi_{2} } \right)^{\lambda } ,1 - \left( {\kappa_{1} \kappa_{2} } \right)^{\lambda } } \right)\). Since \(p_{1}^{\lambda } = \left( {\kappa_{1}^{\lambda } - \gamma_{1}^{\lambda } ,1 - \chi_{1}^{\lambda } ,1 - \kappa_{1}^{\lambda } } \right)\) and \(p_{2}^{\lambda } = \left( {\kappa_{2}^{\lambda } - \gamma_{2}^{\lambda } ,1 - \chi_{2}^{\lambda } ,1 - \kappa_{2}^{\lambda } } \right)\), then it can be derived that \(\begin{aligned} p_{1}^{\lambda } \otimes p_{2}^{\lambda } = \left( {\prod\nolimits_{l = 1}^{2} {\left( {1 - 1 + \kappa_{l}^{\lambda } } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - \kappa_{l}^{\lambda } + \gamma_{l}^{\lambda } - 1 + \kappa_{l}^{\lambda } } \right)} ,1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1 + \chi_{l}^{\lambda } } \right)} ,1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1 + \kappa_{l}^{\lambda } } \right)} } \right) \hfill \\ {\kern 1pt} = \left( {\left( {\kappa_{1} \kappa_{2} } \right)^{\lambda } - \left( {\gamma_{1} \gamma_{2} } \right)^{\lambda } ,1 - \left( {\chi_{1} \chi_{2} } \right)^{\lambda } ,1 - \left( {\kappa_{1} \kappa_{2} } \right)^{\lambda } } \right) = \left( {p_{1} \otimes p_{2} } \right)^{\lambda } \hfill \\ \end{aligned}\).

  6. (6)

    According to Definition 10, then we can have \(p^{{\lambda_{1} + \lambda_{2} }} = \left( {\kappa^{{\lambda_{1} + \lambda_{2} }} - \gamma^{{\lambda_{1} + \lambda_{2} }} ,1 - \chi^{{\lambda_{1} + \lambda_{2} }} ,1 - \kappa^{{\lambda_{1} + \lambda_{2} }} } \right)\). Since \(p^{{\lambda_{1} }} = \left( {\kappa^{{\lambda_{1} }} - \gamma^{{\lambda_{1} }} ,1 - \chi^{{\lambda_{1} }} ,1 - \kappa^{{\lambda_{1} }} } \right)\) and \(p^{{\lambda_{2} }} = \left( {\kappa^{{\lambda_{2} }} - \gamma^{{\lambda_{2} }} ,1 - \chi^{{\lambda_{2} }} ,1 - \kappa^{{\lambda_{2} }} } \right)\), then it can be derived that \(\begin{aligned} p^{{\lambda_{1} }} \otimes p^{{\lambda_{2} }} = \left( {\prod\nolimits_{l = 1}^{2} {\left( {1 - 1 + \kappa^{{\lambda_{l} }} } \right)} - \prod\nolimits_{l = 1}^{2} {\left( {1 - \kappa^{{\lambda_{l} }} + \gamma^{{\lambda_{l} }} - 1 + \kappa^{{\lambda_{l} }} } \right)} ,1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1 + \chi^{{\lambda_{l} }} } \right)} ,1 - \prod\nolimits_{l = 1}^{2} {\left( {1 - 1 + \kappa^{{\lambda_{l} }} } \right)} } \right) \hfill \\ {\kern 1pt} {\kern 1pt} = \left( {\kappa^{{\lambda_{1} + \lambda_{2} }} - \gamma^{{\lambda_{1} + \lambda_{2} }} ,1 - \chi^{{\lambda_{1} + \lambda_{2} }} ,1 - \kappa^{{\lambda_{1} + \lambda_{2} }} } \right) = p^{{\lambda_{1} + \lambda_{2} }} \hfill \\ \end{aligned}\).

Theorem 4

Given a collection of PFNs \(P = \left\{ {p_{1} ,p_{2} , \cdots ,p_{n} } \right\}\) with \(p_{l} = \left( {\mu_{l} ,\eta_{l} ,\nu_{l} } \right)\), which are grouped into \(s\) clusters \(P_{1} ,P_{2} , \cdots ,P_{s}\) in which \(P_{\ell } = \left\{ {p_{\ell 1} ,p_{\ell 2} , \cdots ,p_{{\ell \left| {P_{\ell } } \right|}} } \right\}\left( {\ell = 1,2, \cdots ,s} \right)\) and \(\bigcup\nolimits_{\ell = 1}^{s} {P_{\ell } } = P\), then the fused result from the PFIPHM operator is still an PFN as follows:

$$\begin{aligned} PFIPHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) \hfill \\ = \left( \begin{aligned} 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned}$$

where \(1 - \nu_{\rho } = a_{\rho }\), \(1 - \nu_{\tau } = a_{\tau }\), \(1 - \mu_{\rho } - \nu_{\rho } = b_{\rho }\), \(1 - \mu_{\tau } - \nu_{\tau } = b_{\tau }\), \(1 - \eta_{\rho } = c_{\rho }\), \(1 - \eta_{\tau } = c_{\tau }\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \chi\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( { - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \varsigma\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \psi\).

Proof

According to IOLs defined in Definition 10, it can be derived that

$$p_{\rho }^{\alpha } { = }\left( {\left( {1 - \nu_{\rho } } \right)^{\alpha } - \left( {1 - \mu_{\rho } - \nu_{\rho } } \right)^{\alpha } ,1 - \left( {1 - \eta_{\rho } } \right)^{\alpha } ,1 - \left( {1 - \nu_{\rho } } \right)^{\alpha } } \right)$$

and \(p_{\tau }^{\beta } { = }\left( {\left( {1 - \nu_{\tau } } \right)^{\beta } - \left( {1 - \mu_{\tau } - \nu_{\tau } } \right)^{\beta } ,1 - \left( {1 - \eta_{\tau } } \right)^{\beta } ,1 - \left( {1 - \nu_{\tau } } \right)^{\beta } } \right)\).

Let \(1 - \nu_{\rho } = a_{\rho }\), \(1 - \nu_{\tau } = a_{\tau }\), \(1 - \mu_{\rho } - \nu_{\rho } = b_{\rho }\), \(1 - \mu_{\tau } - \nu_{\tau } = b_{\tau }\), \(1 - \eta_{\rho } = c_{\rho }\), and \(1 - \eta_{\tau } = c_{\tau }\), then

$$p_{\rho }^{\alpha } { = }\left( {a_{\rho }^{\alpha } - b_{\rho }^{\alpha } ,1 - c_{\rho }^{\alpha } ,1 - a_{\rho }^{\alpha } } \right),p_{\tau }^{\beta } { = }\left( {a_{\tau }^{\beta } - b_{\tau }^{\beta } ,1 - c_{\tau }^{\beta } ,1 - a_{\tau }^{\beta } } \right)$$

Hence, we can get \(p_{\rho }^{\alpha } \otimes p_{\tau }^{\beta } = \left( {a_{\rho }^{\alpha } a_{\tau }^{\beta } - b_{\rho }^{\alpha } b_{\tau }^{\beta } ,1 - c_{\rho }^{\alpha } c_{\tau }^{\beta } ,1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } } \right)\).

Then

$$\mathop \oplus \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {p_{\rho }^{\alpha } \otimes p_{\tau }^{\beta } } \right) = \left( \begin{aligned} 1 - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} , \hfill \\ \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( { - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} , \hfill \\ \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} \hfill \\ \end{aligned} \right)$$
$$\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}\mathop \oplus \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {p_{\rho }^{\alpha } \otimes p_{\tau }^{\beta } } \right) = \left( \begin{aligned} 1 - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} , \hfill \\ \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( { - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} , \hfill \\ \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} \hfill \\ \end{aligned} \right)$$

Let us define that \(\left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \chi\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( { - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \varsigma\), and \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \psi\), then we have \(\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}\mathop \oplus \nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {p_{\rho }^{\alpha } \otimes p_{\tau }^{\beta } } \right) = \left( {1 - \chi ,\chi - \varsigma ,\chi - \psi } \right)\) and \(\left( {\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}\mathop \oplus \nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {p_{\rho }^{\alpha } \otimes p_{\tau }^{\beta } } \right)} \right)^{{\frac{1}{\alpha + \beta }}} = \left( {\left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} - \psi^{{\frac{1}{\alpha + \beta }}} ,1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} ,1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)\).

Then we can continue to obtain that

$$\mathop \oplus \limits_{\ell = 1}^{s} \left( {\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}\mathop \oplus \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {p_{\rho }^{\alpha } \otimes p_{\tau }^{\beta } } \right)} \right)^{{\frac{1}{\alpha + \beta }}} = \left( \begin{aligned} 1 - \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} , \hfill \\ \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} - \prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} , \hfill \\ \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} - \prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} \hfill \\ \end{aligned} \right)$$

Thus,

$$\frac{1}{s}\left( {\mathop \oplus \limits_{\ell = 1}^{s} \left( {\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}\mathop \oplus \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {p_{\rho }^{\alpha } \otimes p_{\tau }^{\beta } } \right)} \right)^{{\frac{1}{\alpha + \beta }}} } \right) = \left( \begin{aligned} 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right)$$

The sum of the AD, ND, and OD of the aggregation result of the PFIPHM operator is

$$\begin{aligned} 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} { + }\left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ - \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} { + }\left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ = 1 + \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} { + }1} \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned}$$

Since \(\left( {\prod\nolimits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} { + }1} \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\nolimits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \ge 0\) and \(\left( {\prod\nolimits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \le 1\), thus, \(1 + \left( {\prod\nolimits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} { + }1} \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\nolimits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\nolimits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \ge 0\).

Since \(- \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} \le 0\), \(\left( {\prod\nolimits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} { + }1} \right)} } \right)^{{\frac{1}{s}}} \le 1\), then,

$$\begin{aligned} 1 + \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} { + }1} \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \le 1 + 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \le 2 - \left( {\prod\limits_{\ell = 1}^{s} {\left( 1 \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \le 1 \hfill \\ \end{aligned}$$

The above inference process can prove Theorem 4.

Theorem 5

(Idempotency Property). Given a collection of PFNs \(P = \left\{ {p_{1} ,p_{2} , \cdots ,p_{n} } \right\}\) with \(p_{l} = \left( {\mu_{l} ,\eta_{l} ,\nu_{l} } \right)\), which are grouped into \(s\) clusters \(P_{1} ,P_{2} , \cdots ,P_{s}\) in which \(P_{\ell } = \left\{ {p_{\ell 1} ,p_{\ell 2} , \cdots ,p_{{\ell \left| {P_{\ell } } \right|}} } \right\}\left( {\ell = 1,2, \cdots ,s} \right)\) and \(\bigcup\nolimits_{\ell = 1}^{s} {P_{\ell } } = P\), if \(p_{l} = p = \left( {\mu ,\eta ,\nu } \right)\) for each \(l\), then we have \(PFIPHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) = p = \left( {\mu ,\eta ,\nu } \right)\), where \(\alpha\) and \(\beta\) are two parameters, which satisfy that \(\alpha ,\beta \ge 0\).

Proof

Since \(\mu_{\rho } { = }\mu_{\tau } { = }\mu\), \(\nu_{\rho } { = }\nu_{\tau } { = }\nu\), \(\eta_{\rho } { = }\eta_{\tau } { = }\eta\), then we have \(1 - \nu_{\rho } = 1 - \nu_{\tau } = a_{\rho } = a_{\tau } = a\), \(1 - \mu_{\rho } - \nu_{\rho } = 1 - \mu_{\tau } - \nu_{\tau } = b_{\rho } = b_{\tau } = b\), \(1 - \eta_{\rho } = 1 - \eta_{\tau } = c_{\rho } = c_{\tau } = c\).

Thus,

$$\chi = \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = 1 - a^{\alpha + \beta } + b^{\alpha + \beta }$$
$$\varsigma = \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( { - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = - a^{\alpha + \beta } + b^{\alpha + \beta } + c^{\alpha + \beta }$$
$$\psi = \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = b^{\alpha + \beta }$$

Bring the above equation into (2), then \(PFIPHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right){\kern 1pt} = {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {a - b,1 - c,1 - a} \right) = \left( {\mu ,\eta ,\nu } \right) = p\). Hence, the proof of Theorem 5 is finished.

Theorem 6

(Commutativity Property). Given a collection of PFNs \(P = \left\{ {p_{1} ,p_{2} , \cdots ,p_{n} } \right\}\) with \(p_{l} = \left( {\mu_{l} ,\eta_{l} ,\nu_{l} } \right)\), which are grouped into \(s\) clusters \(P_{1} ,P_{2} , \cdots ,P_{s}\) in which \(P_{\ell } = \left\{ {p_{\ell 1} ,p_{\ell 2} , \cdots ,p_{{\ell \left| {P_{\ell } } \right|}} } \right\}\left( {\ell = 1,2, \cdots ,s} \right)\) and \(\bigcup\nolimits_{\ell = 1}^{s} {P_{\ell } } = P\), if there is a permutation of \(P_{\ell } = \left\{ {p_{\ell 1} ,p_{\ell 2} , \cdots ,p_{{\ell \left| {P_{\ell } } \right|}} } \right\}\left( {\ell = 1,2, \cdots ,s} \right)\), denoted by \(P^{\prime}_{\ell } = \left\{ {p^{\prime}_{\ell 1} ,p^{\prime}_{\ell 2} , \cdots ,p^{\prime}_{{\ell \left| {P_{\ell } } \right|}} } \right\}\), then we have \(PFIPHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) = PFIPHM^{\alpha ,\beta } \left( {p^{\prime}_{1} ,p^{\prime}_{2} , \cdots ,p^{\prime}_{n} } \right)\), where \(\alpha\) and \(\beta\) are two parameters, which satisfy that \(\alpha ,\beta \ge 0\), \(\left| {P_{\ell } } \right|\) means the quantity of PFNs belonging to the cluster \(P_{\ell }\).

Proof

According to Eq. (2), we have

$$PFIPHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) = \left( \begin{aligned} 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right)$$
$$PFIPHM^{\alpha ,\beta } \left( {p^{\prime}_{1} ,p^{\prime}_{2} , \cdots ,p^{\prime}_{n} } \right) = \left( \begin{aligned} 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi^{\prime} + \psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( {\psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi^{\prime} + \psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( {\psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi^{\prime} + \psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( {\psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi^{\prime} + \varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi^{\prime} + \psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( {\psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\left( {\psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right)$$

For each \(\ell\), we have

$$\left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi^{\prime} + \psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( {\psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} = \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}}$$
$$\left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi^{\prime} + \psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( {\psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi^{\prime} + \varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} = \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}}$$
$$\left( {\prod\limits_{\ell = 1}^{s} {\left( {\left( {\psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} = \left( {\prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}}$$

Thus, \(PFIPHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) = PFIPHM^{\alpha ,\beta } \left( {p^{\prime}_{1} ,p^{\prime}_{2} , \cdots ,p^{\prime}_{n} } \right)\). Hence, the proof Theorem 6 is finished.

Theorem 7

Given a collection of PFNs \(P = \left\{ {p_{1} ,p_{2} , \cdots ,p_{n} } \right\}\) with \(p_{l} = \left( {\mu_{l} ,\eta_{l} ,\nu_{l} } \right)\), which are grouped into \(s\) clusters \(P_{1} ,P_{2} , \cdots ,P_{s}\) in which \(P_{\ell } = \left\{ {p_{\ell 1} ,p_{\ell 2} , \cdots ,p_{{\ell \left| {P_{\ell } } \right|}} } \right\}\left( {\ell = 1,2, \cdots ,s} \right)\) and \(\bigcup\nolimits_{\ell = 1}^{s} {P_{\ell } } = P\), then the fused result of the PFIWPHM operator is still an PFN and

$$\begin{aligned} PFIWPHM^{\alpha ,\beta } \hfill \\ = \left( \begin{aligned} 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned}$$

where \(1 - \mu_{\rho } = a_{\rho }\), \(1 - \mu_{\tau } = a_{\tau }\), \(1 - \mu_{\rho } - \eta_{\rho } = b_{\rho }\), \(1 - \mu_{\tau } - \eta_{\tau } = b_{\tau }\), \(1 - \mu_{\rho } - \nu_{\rho } = c_{\rho }\), \(1 - \mu_{\tau } - \nu_{\tau } = c_{\tau }\), \(\left( {1 - a_{\rho }^{{\omega_{\rho } }} + c_{\rho }^{{\omega_{\rho } }} } \right) = d_{\rho }\), \(\left( {1 - a_{\tau }^{{\omega_{\tau } }} + c_{\tau }^{{\omega_{\tau } }} } \right) = d_{\tau }\), \(c_{\rho }^{{\omega_{\rho } }} = e_{\rho }\), \(c_{\tau }^{{\omega_{\tau } }} = e_{\tau }\), \(\left( {1 - a_{\rho }^{{\omega_{\rho } }} + b_{\rho }^{{\omega_{\rho } }} } \right) = f_{\rho }\), \(\left( {1 - a_{\tau }^{{\omega_{\tau } }} + b_{\tau }^{{\omega_{\tau } }} } \right) = f_{\tau }\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \chi\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( { - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } + f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \varsigma\), and \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \psi\).

Proof

According to IOLs defined in Definition 10, it can be derived that

$$\omega_{\rho } p_{\rho } = \left( {1 - \left( {1 - \mu_{\rho } } \right)^{{\omega_{\rho } }} ,\left( {1 - \mu_{\rho } } \right)^{{\omega_{\rho } }} - \left( {1 - \mu_{\rho } - \eta_{\rho } } \right)^{{\omega_{\rho } }} ,\left( {1 - \mu_{\rho } } \right)^{{\omega_{\rho } }} - \left( {1 - \mu_{\rho } - \nu_{\rho } } \right)^{{\omega_{\rho } }} } \right)$$

and \(\omega_{\tau } p_{\tau } = \left( {1 - \left( {1 - \mu_{\tau } } \right)^{{\omega_{\tau } }} ,\left( {1 - \mu_{\tau } } \right)^{{\omega_{\tau } }} - \left( {1 - \mu_{\tau } - \eta_{\tau } } \right)^{{\omega_{\tau } }} ,\left( {1 - \mu_{\tau } } \right)^{{\omega_{\tau } }} - \left( {1 - \mu_{\tau } - \nu_{\tau } } \right)^{{\omega_{\tau } }} } \right)\).

Let \(1 - \mu_{\rho } = a_{\rho }\), \(1 - \mu_{\tau } = a_{\tau }\), \(1 - \mu_{\rho } - \eta_{\rho } = b_{\rho }\), \(1 - \mu_{\tau } - \eta_{\tau } = b_{\tau }\), \(1 - \mu_{\rho } - \nu_{\rho } = c_{\rho }\), and \(1 - \mu_{\tau } - \nu_{\tau } = c_{\tau }\), then we have \(\omega_{\rho } p_{\rho } = \left( {1 - a_{\rho }^{{\omega_{\rho } }} ,a_{\rho }^{{\omega_{\rho } }} - b_{\rho }^{{\omega_{\rho } }} ,a_{\rho }^{{\omega_{\rho } }} - c_{\rho }^{{\omega_{\rho } }} } \right)\) and \(\omega_{\tau } p_{\tau } = \left( {1 - a_{\tau }^{{\omega_{\tau } }} ,a_{\tau }^{{\omega_{\tau } }} - b_{\tau }^{{\omega_{\tau } }} ,a_{\tau }^{{\omega_{\tau } }} - c_{\tau }^{{\omega_{\tau } }} } \right)\).

Hence, the exponential operation is

$$\left( {\omega_{\rho } p_{\rho } } \right)^{\alpha } = \left( {\left( {1 - a_{\rho }^{{\omega_{\rho } }} + c_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } - \left( {c_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } ,1 - \left( {1 - a_{\rho }^{{\omega_{\rho } }} + b_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } ,1 - \left( {1 - a_{\rho }^{{\omega_{\rho } }} + c_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } } \right)$$
$$\left( {\omega_{\tau } p_{\tau } } \right)^{\beta } = \left( {\left( {1 - a_{\tau }^{{\omega_{\tau } }} + c_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } - \left( {c_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } ,1 - \left( {1 - a_{\tau }^{{\omega_{\tau } }} + b_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } ,1 - \left( {1 - a_{\tau }^{{\omega_{\tau } }} + c_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } } \right)$$
$$\left( {\omega_{\rho } p_{\rho } } \right)^{\alpha } \otimes \left( {\omega_{\tau } p_{\tau } } \right)^{\beta } = \left( \begin{aligned} \left( {1 - a_{\rho }^{{\omega_{\rho } }} + c_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } \left( {1 - a_{\tau }^{{\omega_{\tau } }} + c_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } - \left( {c_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } \left( {c_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } , \hfill \\ 1 - \left( {1 - a_{\rho }^{{\omega_{\rho } }} + b_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } \left( {1 - a_{\tau }^{{\omega_{\tau } }} + b_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } , \hfill \\ 1 - \left( {1 - a_{\rho }^{{\omega_{\rho } }} + c_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } \left( {1 - a_{\tau }^{{\omega_{\tau } }} + c_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } \hfill \\ \end{aligned} \right)$$

Let \(\left( {1 - a_{\rho }^{{\omega_{\rho } }} + c_{\rho }^{{\omega_{\rho } }} } \right) = d_{\rho }\), \(\left( {1 - a_{\tau }^{{\omega_{\tau } }} + c_{\tau }^{{\omega_{\tau } }} } \right) = d_{\tau }\), \(c_{\rho }^{{\omega_{\rho } }} = e_{\rho }\), \(c_{\tau }^{{\omega_{\tau } }} = e_{\tau }\), \(\left( {1 - a_{\rho }^{{\omega_{\rho } }} + b_{\rho }^{{\omega_{\rho } }} } \right) = f_{\rho }\), \(\left( {1 - a_{\tau }^{{\omega_{\tau } }} + b_{\tau }^{{\omega_{\tau } }} } \right) = f_{\tau }\), then it can be derived that \(\left( {\omega_{\rho } p_{\rho } } \right)^{\alpha } \otimes \left( {\omega_{\tau } p_{\tau } } \right)^{\beta } = \left( {d_{\rho }^{\alpha } d_{\tau }^{\beta } - e_{\rho }^{\alpha } e_{\tau }^{\beta } ,1 - f_{\rho }^{\alpha } f_{\tau }^{\beta } ,1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } } \right)\).

$$\mathop \oplus \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\left( {\omega_{\rho } p_{\rho } } \right)^{\alpha } \otimes \left( {\omega_{\tau } p_{\tau } } \right)^{\beta } } \right) = \left( \begin{aligned} 1 - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} , \hfill \\ \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( { - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } + f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} , \hfill \\ \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} \hfill \\ \end{aligned} \right)$$
$$\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}\mathop \oplus \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\left( {\omega_{\rho } p_{\rho } } \right)^{\alpha } \otimes \left( {\omega_{\tau } p_{\tau } } \right)^{\beta } } \right) = \left( \begin{aligned} 1 - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} , \hfill \\ \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( { - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } + f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} , \hfill \\ \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} \hfill \\ \end{aligned} \right)$$

Let \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \chi\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( { - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } + f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \varsigma\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \psi\), then it can be derived that

$$\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}\mathop \oplus \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\left( {\omega_{\rho } p_{\rho } } \right)^{\alpha } \otimes \left( {\omega_{\tau } p_{\tau } } \right)^{\beta } } \right) = \left( {1 - \chi ,\chi - \varsigma ,\chi - \psi } \right)$$
$$\left( {\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}\mathop \oplus \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\left( {\omega_{\rho } p_{\rho } } \right)^{\alpha } \otimes \left( {\omega_{\tau } p_{\tau } } \right)^{\beta } } \right)} \right)^{{\frac{1}{\alpha + \beta }}} = \left( {\left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} - \psi^{{\frac{1}{\alpha + \beta }}} ,1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} ,1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)$$

Thus, we have

$$\begin{aligned} \mathop \oplus \limits_{\ell = 1}^{s} \left( {\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}\mathop \oplus \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\left( {\omega_{\rho } p_{\rho } } \right)^{\alpha } \otimes \left( {\omega_{\tau } p_{\tau } } \right)^{\beta } } \right)} \right)^{{\frac{1}{\alpha + \beta }}} \hfill \\ = \left( \begin{aligned} 1 - \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} , \hfill \\ \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} - \prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} , \hfill \\ \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} - \prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned}$$

Finally, we obtain that

$$\begin{aligned} \frac{1}{s}\left( {\mathop \oplus \limits_{\ell = 1}^{s} \left( {\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}\mathop \oplus \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\left( {\omega_{\rho } p_{\rho } } \right)^{\alpha } \otimes \left( {\omega_{\tau } p_{\tau } } \right)^{\beta } } \right)} \right)^{{\frac{1}{\alpha + \beta }}} } \right) \hfill \\ = \left( \begin{aligned} 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( { - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} + \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \psi } \right)^{{\frac{1}{\alpha + \beta }}} + \psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\psi^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right) \hfill \\ \end{aligned}$$

Theorem 8

Given a collection of PFNs \(P = \left\{ {p_{1} ,p_{2} , \cdots ,p_{n} } \right\}\) with \(p_{l} = \left( {\mu_{l} ,\eta_{l} ,\nu_{l} } \right)\), which are grouped into \(s\) clusters \(P_{1} ,P_{2} , \cdots ,P_{s}\) in which \(P_{\ell } = \left\{ {p_{\ell 1} ,p_{\ell 2} , \cdots ,p_{{\ell \left| {P_{\ell } } \right|}} } \right\}\left( {\ell = 1,2, \cdots ,s} \right)\) and \(\bigcup\nolimits_{\ell = 1}^{s} {P_{\ell } } = P\), then the aggregated result of the PFIPGHM operator is still an PFN, and

$$PFIPGHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) = \left( \begin{aligned} \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right)$$

where \(1 - \mu_{\rho } = a_{\rho }\), \(1 - \mu_{\tau } = a_{\tau }\), \(1 - \mu_{\rho } - \eta_{\rho } = b_{\rho }\), \(1 - \mu_{\tau } - \eta_{\tau } = b_{\tau }\), \(1 - \mu_{\rho } - \nu_{\rho } = c_{\rho }\), \(1 - \mu_{\tau } - \nu_{\tau } = c_{\tau }\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} { = }\chi\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \varsigma\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \psi\).

Proof

According to the IOLs presented in Definition 10, it can be derived that \(\alpha p_{\rho } = \left( {1 - \left( {1 - \mu_{\rho } } \right)^{\alpha } ,\left( {1 - \mu_{\rho } } \right)^{\alpha } - \left( {1 - \mu_{\rho } - \eta_{\rho } } \right)^{\alpha } ,\left( {1 - \mu_{\rho } } \right)^{\alpha } - \left( {1 - \mu_{\rho } - \nu_{\rho } } \right)^{\alpha } } \right)\), and \(\beta p_{\tau } = \left( {1 - \left( {1 - \mu_{\tau } } \right)^{\beta } ,\left( {1 - \mu_{\tau } } \right)^{\beta } - \left( {1 - \mu_{\tau } - \eta_{\tau } } \right)^{\beta } ,\left( {1 - \mu_{\tau } } \right)^{\beta } - \left( {1 - \mu_{\tau } - \nu_{\tau } } \right)^{\beta } } \right)\).

Let \(1 - \mu_{\rho } = a_{\rho }\), \(1 - \mu_{\tau } = a_{\tau }\), \(1 - \mu_{\rho } - \eta_{\rho } = b_{\rho }\), \(1 - \mu_{\tau } - \eta_{\tau } = b_{\tau }\), \(1 - \mu_{\rho } - \nu_{\rho } = c_{\rho }\), \(1 - \mu_{\tau } - \nu_{\tau } = c_{\tau }\), then\(\alpha p_{\rho } = \left( {1 - a_{\rho }^{\alpha } ,a_{\rho }^{\alpha } - b_{\rho }^{\alpha } ,a_{\rho }^{\alpha } - c_{\rho }^{\alpha } } \right)\), \(\beta p_{\tau } = \left( {1 - a_{\tau }^{\beta } ,a_{\tau }^{\beta } - b_{\tau }^{\beta } ,a_{\tau }^{\beta } - c_{\tau }^{\beta } } \right)\), \(\alpha p_{\rho } \oplus \beta p_{\tau } { = }\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } ,a_{\rho }^{\alpha } a_{\tau }^{\beta } - b_{\rho }^{\alpha } b_{\tau }^{\beta } ,a_{\rho }^{\alpha } a_{\tau }^{\beta } - c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)\).

Thus,

$$\mathop \otimes \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha p_{\rho } \oplus \beta p_{\tau } } \right) = \left( \begin{aligned} \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} , \hfill \\ 1 - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} , \hfill \\ 1 - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} \hfill \\ \end{aligned} \right)$$
$$\left( {\mathop \otimes \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha p_{\rho } \oplus \beta p_{\tau } } \right)} \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \left( \begin{aligned} \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} , \hfill \\ 1 - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} , \hfill \\ 1 - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} \hfill \\ \end{aligned} \right)$$

Let \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} { = }\chi\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \varsigma\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \psi\), then \(\left( {\mathop \otimes \nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha p_{\rho } \oplus \beta p_{\tau } } \right)} \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \left( {\chi - \varsigma ,1 - \psi ,1 - \chi } \right)\).

Thus, \(\frac{1}{\alpha + \beta }\left( {\mathop \otimes \nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha p_{\rho } \oplus \beta p_{\tau } } \right)} \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} ,\left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} - \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} ,\left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} - \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)\)and

$$\mathop \otimes \limits_{\ell = 1}^{s} \left( {\frac{1}{\alpha + \beta }\left( {\mathop \otimes \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha p_{\rho } \oplus \beta p_{\tau } } \right)} \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} } \right) = \left( \begin{aligned} \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} - \prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} , \hfill \\ 1 - \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} , \hfill \\ 1 - \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} \hfill \\ \end{aligned} \right)$$

Finally,

$$\left( {\mathop \otimes \limits_{\ell = 1}^{s} \left( {\frac{1}{\alpha + \beta }\left( {\mathop \otimes \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha p_{\rho } \oplus \beta p_{\tau } } \right)} \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} } \right)} \right)^{{\frac{1}{s}}} = \left( \begin{aligned} \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right)$$

The sum of the AD, ND, and OD of the aggregation result of the PFIPGHM operator is

$$\begin{aligned} \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} { + }1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} { + } \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} { = }2 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \ge 0 \hfill \\ \end{aligned}$$

and

$$2 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \le 2 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( 1 \right)} } \right)^{{\frac{1}{c}}} = 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \le 1$$

Hence, the proof of Theorem 8 is finished.

Theorem 9

(Idempotency Property). Given a collection of PFNs \(P = \left\{ {p_{1} ,p_{2} , \cdots ,p_{n} } \right\}\) with \(p_{l} = \left( {\mu_{l} ,\eta_{l} ,\nu_{l} } \right)\), which are grouped into \(s\) clusters \(P_{1} ,P_{2} , \cdots ,P_{s}\) in which \(P_{\ell } = \left\{ {p_{\ell 1} ,p_{\ell 2} , \cdots ,p_{{\ell \left| {P_{\ell } } \right|}} } \right\}\left( {\ell = 1,2, \cdots ,s} \right)\) and \(\bigcup\nolimits_{\ell = 1}^{s} {P_{\ell } } = P\), if \(p_{l} = p = \left( {\mu ,\eta ,\nu } \right)\) for each \(l\), then we have \(PFIPGHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) = p = \left( {\mu ,\eta ,\nu } \right)\), where \(\alpha\) and \(\beta\) are two parameters, which satisfy that \(\alpha ,\beta \ge 0\).

Proof

Since \(\mu_{\rho } { = }\mu_{\tau } { = }\mu\), \(\nu_{\rho } { = }\nu_{\tau } { = }\nu\), \(\eta_{\rho } { = }\eta_{\tau } { = }\eta\), then we have \(1 - \mu_{\rho } = 1 - \mu_{\tau } = a_{\rho } = a_{\tau } = a\), \(1 - \mu_{\rho } - \eta_{\rho } = 1 - \mu_{\tau } - \eta_{\tau } = b_{\rho } = b_{\tau } = b\), \(1 - \mu_{\rho } - \nu_{\rho } = 1 - \mu_{\tau } - \nu_{\tau } = c_{\rho } = c_{\tau } = c\).

Thus,

$$\chi = \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = 1 - a^{\alpha + \beta } + c^{\alpha + \beta }$$
$$\varsigma = \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {c_{\rho }^{\alpha } c_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = c^{\alpha + \beta }$$
$$\psi = \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - a_{\rho }^{\alpha } a_{\tau }^{\beta } + b_{\rho }^{\alpha } b_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = 1 - a^{\alpha + \beta } + b^{\alpha + \beta }$$

Bring the above equation into (6), then we have

$$PFIPGHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) = \left( \begin{aligned} \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right) = \left( {1 - a,a - b,a - c} \right) = \left( {\mu ,\eta ,\nu } \right)$$

Hence, the proof of Theorem 9 is finished.

Theorem 10

(Commutativity Property). Given a series of PFNs \(P = \left\{ {p_{1} ,p_{2} , \cdots ,p_{n} } \right\}\) with \(p_{l} = \left( {\mu_{l} ,\eta_{l} ,\nu_{l} } \right)\), which are grouped into \(s\) groups \(P_{1} ,P_{2} , \cdots ,P_{s}\) in which \(P_{\ell } = \left\{ {p_{\ell 1} ,p_{\ell 2} , \cdots ,p_{{\ell \left| {P_{\ell } } \right|}} } \right\}\left( {\ell = 1,2, \cdots ,s} \right)\) and \(\bigcup\nolimits_{\ell = 1}^{s} {P_{\ell } } = P\), if there is a permutation of \(P_{\ell } = \left\{ {p_{\ell 1} ,p_{\ell 2} , \cdots ,p_{{\ell \left| {P_{\ell } } \right|}} } \right\}\left( {\ell = 1,2, \cdots ,s} \right)\), denoted by \(P^{\prime}_{\ell } = \left\{ {p^{\prime}_{\ell 1} ,p^{\prime}_{\ell 2} , \cdots ,p^{\prime}_{{\ell \left| {P_{\ell } } \right|}} } \right\}\), then we have \(PFIPGHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) = PFIPGHM^{\alpha ,\beta } \left( {p^{\prime}_{1} ,p^{\prime}_{2} , \cdots ,p^{\prime}_{n} } \right)\), where \(\alpha\) and \(\beta\) are two parameters, which satisfy that \(\alpha ,\beta \ge 0\), \(\left| {P_{\ell } } \right|\) means the quantity of PFNs belonging to the group \(P_{\ell }\).

Proof

According to Eq. (6), we have

$$PFIPGHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) = \left( \begin{aligned} \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right)$$
$$PFIPGHM^{\alpha ,\beta } \left( {p_{ 1}^{\prime } ,p_{ 2}^{\prime } , \cdots ,p_{n}^{\prime } } \right) = \left( \begin{aligned} \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi^{\prime} + \varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( {\varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\left( {\varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi^{\prime} + \varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi^{\prime} + \varsigma^{\prime} + \psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi^{\prime} + \varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( {\varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right)$$

For each \(\ell\), \(\prod\nolimits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} = \prod\nolimits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi^{\prime} + \varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( {\varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)}\), \(\prod\nolimits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} = \prod\nolimits_{\ell = 1}^{s} {\left( {\left( {\varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)}\), and \(\prod\nolimits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} = \prod\nolimits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi^{\prime} + \varsigma^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi^{\prime} + \varsigma^{\prime} + \psi^{\prime}} \right)^{{\frac{1}{\alpha + \beta }}} } \right)}\).

Thus, \(PFIPGHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) = PFIPGHM^{\alpha ,\beta } \left( {p_{ 1}^{\prime } ,p_{ 2}^{\prime } , \cdots ,p_{n}^{\prime } } \right)\), which completes the proof.

Theorem 11

Given a series of PFNs \(P = \left\{ {p_{1} ,p_{2} , \cdots ,p_{n} } \right\}\) with \(p_{l} = \left( {\mu_{l} ,\eta_{l} ,\nu_{l} } \right)\), which are grouped into \(s\) clusters \(P_{1} ,P_{2} , \cdots ,P_{s}\) in which \(P_{\ell } = \left\{ {p_{\ell 1} ,p_{\ell 2} , \cdots ,p_{{\ell \left| {P_{\ell } } \right|}} } \right\}\left( {\ell = 1,2, \cdots ,s} \right)\) and \(\bigcup\nolimits_{\ell = 1}^{s} {P_{\ell } } = P\), then the aggregated result of the PFIWPGHM operator is still an PFN and

$$PFIWPGHM^{\alpha ,\beta } \left( {p_{1} ,p_{2} , \cdots ,p_{n} } \right) = \left( \begin{aligned} \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right)$$

where \(1 - \nu_{\rho } = a_{\rho }\), \(1 - \nu_{\tau } = a_{\tau }\), \(1 - \mu_{\rho } - \nu_{\rho } = b_{\rho }\), \(1 - \mu_{\tau } - \nu_{\tau } = b_{\tau }\), \(1 - \eta_{\rho } = c_{\rho }\), \(1 - \eta_{\tau } = c_{\tau }\), \(1 - a_{\rho }^{{\omega_{\rho } }} + b_{\rho }^{{\omega_{\rho } }} = d_{\rho }\), \(1 - a_{\tau }^{{\omega_{\tau } }} + b_{\tau }^{{\omega_{\tau } }} = d_{\tau }\), \(- a_{\rho }^{{\omega_{\rho } }} { + }b_{\rho }^{{\omega_{\rho } }} { + }c_{\rho }^{{\omega_{\rho } }} = e_{\rho }\), \(- a_{\tau }^{{\omega_{\tau } }} { + }b_{\tau }^{{\omega_{\tau } }} { + }c_{\tau }^{{\omega_{\tau } }} = e_{\tau }\), \(b_{\rho }^{{\omega_{\rho } }} = f_{\rho }\), \(b_{\tau }^{{\omega_{\tau } }} = f_{\tau }\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \chi\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \varsigma\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \psi\).

Proof

According to the IOLs presented in Definition 10, it can be derived that \(\left( {p_{\rho } } \right)^{{\omega_{\rho } }} = \left( {\left( {1 - \nu_{\rho } } \right)^{{\omega_{\rho } }} - \left( {1 - \mu_{\rho } - \nu_{\rho } } \right)^{{\omega_{\rho } }} ,1 - \left( {1 - \eta_{\rho } } \right)^{{\omega_{\rho } }} ,1 - \left( {1 - \nu_{\rho } } \right)^{{\omega_{\rho } }} } \right)\), and \(\left( {p_{\tau } } \right)^{{\omega_{\tau } }} = \left( {\left( {1 - \nu_{\tau } } \right)^{{\omega_{\tau } }} - \left( {1 - \mu_{\tau } - \nu_{\tau } } \right)^{{\omega_{\tau } }} ,1 - \left( {1 - \eta_{\tau } } \right)^{{\omega_{\tau } }} ,1 - \left( {1 - \nu_{\tau } } \right)^{{\omega_{\tau } }} } \right)\).

Let \(1 - \nu_{\rho } = a_{\rho }\), \(1 - \nu_{\tau } = a_{\tau }\), \(1 - \mu_{\rho } - \nu_{\rho } = b_{\rho }\), \(1 - \mu_{\tau } - \nu_{\tau } = b_{\tau }\), \(1 - \eta_{\rho } = c_{\rho }\), and \(1 - \eta_{\tau } = c_{\tau }\), then

$$\left( {p_{\rho } } \right)^{{\omega_{\rho } }} = \left( {a_{\rho }^{{\omega_{\rho } }} - b_{\rho }^{{\omega_{\rho } }} ,1 - c_{\rho }^{{\omega_{\rho } }} ,1 - a_{\rho }^{{\omega_{\rho } }} } \right),\left( {p_{\tau } } \right)^{{\omega_{\tau } }} = \left( {a_{\tau }^{{\omega_{\tau } }} - b_{\tau }^{{\omega_{\tau } }} ,1 - c_{\tau }^{{\omega_{\tau } }} ,1 - a_{\tau }^{{\omega_{\tau } }} } \right)$$

Then, we can have \(\alpha \left( {p_{\rho } } \right)^{{\omega_{\rho } }} = \left( {1 - \left( {1 - a_{\rho }^{{\omega_{\rho } }} + b_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } ,\left( {1 - a_{\rho }^{{\omega_{\rho } }} { + }b_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } - \left( { - a_{\rho }^{{\omega_{\rho } }} { + }b_{\rho }^{{\omega_{\rho } }} { + }c_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } ,\left( {1 - a_{\rho }^{{\omega_{\rho } }} { + }b_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } - \left( {b_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } } \right)\) and \(\beta \left( {p_{\tau } } \right)^{{\omega_{\tau } }} { = }\left( {1 - \left( {1 - a_{\tau }^{{\omega_{\tau } }} + b_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } ,\left( {1 - a_{\tau }^{{\omega_{\tau } }} { + }b_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } - \left( { - a_{\tau }^{{\omega_{\tau } }} { + }b_{\tau }^{{\omega_{\tau } }} { + }c_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } ,\left( {1 - a_{\tau }^{{\omega_{\tau } }} { + }b_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } - \left( {b_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } } \right)\).

Thus,

$$\alpha \left( {p_{\rho } } \right)^{{\omega_{\rho } }} \oplus \beta \left( {p_{\tau } } \right)^{{\omega_{\tau } }} { = }\left( \begin{aligned} 1 - \left( {1 - a_{\rho }^{{\omega_{\rho } }} + b_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } \left( {1 - a_{\tau }^{{\omega_{\tau } }} + b_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } , \hfill \\ \left( {1 - a_{\rho }^{{\omega_{\rho } }} + b_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } \left( {1 - a_{\tau }^{{\omega_{\tau } }} + b_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } - \left( { - a_{\rho }^{{\omega_{\rho } }} { + }b_{\rho }^{{\omega_{\rho } }} { + }c_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } \left( { - a_{\tau }^{{\omega_{\tau } }} { + }b_{\tau }^{{\omega_{\tau } }} { + }c_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } , \hfill \\ \left( {1 - a_{\rho }^{{\omega_{\rho } }} + b_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } \left( {1 - a_{\tau }^{{\omega_{\tau } }} + b_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } - \left( {b_{\rho }^{{\omega_{\rho } }} } \right)^{\alpha } \left( {b_{\tau }^{{\omega_{\tau } }} } \right)^{\beta } \hfill \\ \end{aligned} \right)$$

Let \(1 - a_{\rho }^{{\omega_{\rho } }} + b_{\rho }^{{\omega_{\rho } }} = d_{\rho }\), \(1 - a_{\tau }^{{\omega_{\tau } }} + b_{\tau }^{{\omega_{\tau } }} = d_{\tau }\), \(- a_{\rho }^{{\omega_{\rho } }} { + }b_{\rho }^{{\omega_{\rho } }} { + }c_{\rho }^{{\omega_{\rho } }} = e_{\rho }\), \(- a_{\tau }^{{\omega_{\tau } }} { + }b_{\tau }^{{\omega_{\tau } }} { + }c_{\tau }^{{\omega_{\tau } }} = e_{\tau }\), \(b_{\rho }^{{\omega_{\rho } }} = f_{\rho }\), \(b_{\tau }^{{\omega_{\tau } }} = f_{\tau }\), then \(\alpha \left( {p_{\rho } } \right)^{{\omega_{\rho } }} \oplus \beta \left( {p_{\tau } } \right)^{{\omega_{\tau } }} { = }\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } ,d_{\rho }^{\alpha } d_{\tau }^{\beta } - e_{\rho }^{\alpha } e_{\tau }^{\beta } ,d_{\sigma i}^{\alpha } d_{\sigma j}^{\beta } - f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)\).

Thus,

$$\mathop \otimes \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha \left( {p_{\rho } } \right)^{{\omega_{\rho } }} \oplus \beta \left( {p_{\tau } } \right)^{{\omega_{\tau } }} } \right) = \left( \begin{aligned} \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} , \hfill \\ 1 - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} , \hfill \\ 1 - \prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} \hfill \\ \end{aligned} \right)$$
$$\left( {\mathop \otimes \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha \left( {p_{\rho } } \right)^{{\omega_{\rho } }} \oplus \beta \left( {p_{\tau } } \right)^{{\omega_{\tau } }} } \right)} \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \left( \begin{aligned} \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} , \hfill \\ 1 - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} , \hfill \\ 1 - \left( {\prod\limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} \hfill \\ \end{aligned} \right)$$

Let \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \chi\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {f_{\rho }^{\alpha } f_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \varsigma\), \(\left( {\prod\nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} {\left( {1 - d_{\rho }^{\alpha } d_{\tau }^{\beta } + e_{\rho }^{\alpha } e_{\tau }^{\beta } } \right)} } \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \psi\), then we have \(\left( {\mathop \otimes \nolimits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha \left( {p_{\rho } } \right)^{{\omega_{\rho } }} \oplus \beta \left( {p_{\tau } } \right)^{{\omega_{\tau } }} } \right)} \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} = \left( {\chi - \varsigma ,1 - \psi ,1 - \chi } \right)\) and

$$\begin{aligned} \frac{1}{\alpha + \beta }\left( {\mathop \otimes \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha \left( {p_{\rho } } \right)^{{\omega_{\rho } }} \oplus \beta \left( {p_{\tau } } \right)^{{\omega_{\tau } }} } \right)} \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} \hfill \\ = \left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} ,\left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} - \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} ,\left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} - \varsigma^{{\frac{1}{\alpha + \beta }}} } \right) \hfill \\ \end{aligned}$$

Thus,

$$\mathop \otimes \limits_{\ell = 1}^{s} \left( {\frac{1}{\alpha + \beta }\left( {\mathop \otimes \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha \left( {p_{\rho } } \right)^{{\omega_{\rho } }} \oplus \beta \left( {p_{\tau } } \right)^{{\omega_{\tau } }} } \right)} \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} } \right) = \left( \begin{aligned} \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} - \prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} , \hfill \\ 1 - \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} , \hfill \\ 1 - \prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} \hfill \\ \end{aligned} \right)$$

Finally,

$$\left( {\mathop \otimes \limits_{\ell = 1}^{s} \left( {\frac{1}{\alpha + \beta }\left( {\mathop \otimes \limits_{{p_{\rho } ,p_{\tau } \in P_{\ell } }} \left( {\alpha \left( {p_{\rho } } \right)^{{\omega_{\rho } }} \oplus \beta \left( {p_{\tau } } \right)^{{\omega_{\tau } }} } \right)} \right)^{{\frac{2}{{\left| {P_{\ell } } \right|\left( {\left| {P_{\ell } } \right| + 1} \right)}}}} } \right)} \right)^{{\frac{1}{s}}} = \left( \begin{aligned} \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} - \left( {\prod\limits_{\ell = 1}^{s} {\left( {\varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \left( { - \chi + \varsigma + \psi } \right)^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} , \hfill \\ 1 - \left( {\prod\limits_{\ell = 1}^{s} {\left( {1 - \left( {1 - \chi + \varsigma } \right)^{{\frac{1}{\alpha + \beta }}} + \varsigma^{{\frac{1}{\alpha + \beta }}} } \right)} } \right)^{{\frac{1}{s}}} \hfill \\ \end{aligned} \right)$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Li, X., Chen, R. et al. Picture fuzzy interactional partitioned Heronian mean aggregation operators: an application to MADM process. Artif Intell Rev 55, 1171–1208 (2022). https://doi.org/10.1007/s10462-021-09953-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-021-09953-7

Keywords

Navigation