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Abstract
Longitudinal datasets of human ageing studies usually have a high volume of missing data, 
and one way to handle missing values in a dataset is to replace them with estimations. 
However, there are many methods to estimate missing values, and no single method is 
the best for all datasets. In this article, we propose a data-driven missing value imputa-
tion approach that performs a feature-wise selection of the best imputation method, using 
known information in the dataset to rank the five methods we selected, based on their 
estimation error rates. We evaluated the proposed approach in two sets of experiments: 
a classifier-independent scenario, where we compared the applicabilities and error rates 
of each imputation method; and a classifier-dependent scenario, where we compared the 
predictive accuracy of Random Forest classifiers generated with datasets prepared using 
each imputation method and a baseline approach of doing no imputation (letting the clas-
sification algorithm handle the missing values internally). Based on our results from both 
sets of experiments, we concluded that the proposed data-driven missing value imputation 
approach generally resulted in models with more accurate estimations for missing data and 
better performing classifiers, in longitudinal datasets of human ageing. We also observed 
that imputation methods devised specifically for longitudinal data had very accurate esti-
mations. This reinforces the idea that using the temporal information intrinsic to longitu-
dinal data is a worthwhile endeavour for machine learning applications, and that can be 
achieved through the proposed data-driven approach.
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1 Introduction

Longitudinal studies take repeated measures of a set variables, from the same group of 
subjects, over time several points. The longitudinal datasets derived from these studies are 
prone to high amounts of missing data, mainly due to attrition (for example, subjects drop-
ping out) (Engels and Diehr 2003), which can have a significant effect on the analysis of 
the data.

When a longitudinal dataset with missing data is used in a machine learning (ML) 
application, the missing values can be handled in different ways. Instances or features 
with missing values can be removed from the dataset (with the drawback of losing data), 
ignored (i.e., the ML algorithm has to handle them during its execution), or replaced by an 
estimated value (missing value imputation). Naturally, when replacing a missing value for 
an imputed one, it is desirable to make estimations close to what the real value would be.

There are several methods to estimate the value to impute in place of a missing value 
in the dataset, usually based on information from its known values, and different methods 
may perform better (achieve estimations closer to the real value) for different situations 
(Diggle 2002; Hu et al. 2017; Mallinckrodt 2013). The performance (i.e., error rate) of a 
missing value imputation (MVI) method depends on several factors, such as: a) the data 
distribution (Santos et al. 2017); (b) how the missing data appears in the dataset (missing 
completely at random, missing at random, or missing not at random) (Diggle 2002; Mall-
inckrodt 2013); (c) the proportion of instances with missing values; (d) the availability of 
information that can be used to make better imputation.

Typically, statisticians decide how to handle missing data based on assumptions about 
how the missing values were introduced into the dataset, and based on data distribution 
and characteristics. However, these assumptions cannot be proven if we do not have all 
the information about the data collection process, which is the case for most classification 
problems. That challenge is even greater for longitudinal data, where there are additional 
ways we can extract information from the dataset to make the estimations.

Instead of making a decision directly, we can choose the best approach based on the 
data itself. A data-driven approach would avoid additional human bias. Thus, letting the 
data dictate what is the best approach to estimate its missing values is a viable choice, for 
ML applications. In this article, we expand on that notion by having this data-driven choice 
be made separately for each feature in the dataset, as the characteristics of different vari-
ables might lead to different MVI strategy choices.

As the main contribution of this work, we propose a novel data-driven approach to 
select the best method for imputing the missing values in a longitudinal dataset, out of five 
selected candidate MVI methods. Our aim is to ensure that the MVI method that best fits 
the characteristics of each feature the dataset is used for that feature. In our approach, the 
MVI methods are ranked for each feature (variable) in the dataset, and used from best to 
worst ranked until no missing values remain or no methods can be used.

Our proposed data-driven MVI approach was evaluated using 10 longitudinal datasets 
created for the ML task of classification. Such datasets are composed of instances (the sub-
jects to be classified) and features, which are variables describing each subject, usually 
with repeated measures for each time point (called wave) in the dataset. Classification algo-
rithms aim to predict the value of a nominal class variable for an instance, based on the 
values of its features. These algorithms use training data (a set of instances with known 
class values) to create a model for predicting the class of previously unseen instances (test 
data).
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The longitudinal datasets were created using data from the English Longitudinal 
Study of Ageing (ELSA) (Banks et  al. 2019). The ELSA study interviews its core par-
ticipants (who are at least 50 years old) repeatedly, over the years prior to their retirement 
and beyond, collecting data on health, social, wellbeing and economic circumstances. In 
our datasets, which focus on biomedical data, the overall proportion of missing values is 
38.5%. This is a strong motivation to investigate the effectiveness of several missing value 
imputation methods.

To evaluate the performance of our proposed data-driven MVI approach, we performed 
experiments using our ELSA datasets as a benchmark to compare its effectiveness against 
five missing value imputation methods. These six methods were compared in two scenar-
ios: a scenario independent from any classifier (expanded from the experiments reported in 
(Ribeiro and Freitas 2019)), and another scenario where a Random Forest (RF) classifier 
was trained with datasets with estimated missing values.

In the classifier-independent comparison, the six MVI methods are compared based on 
their applicability (ratio of missing values for which the method can be used) and estimated 
average error rate. To calculate this error rate, we use each method to estimate known-
data in the dataset and compare the estimated and real values. As expected, the proposed 
data-driven MVI approach performed overall the best in this comparison, with small error 
rates and 100% applicability (i.e., all missing values replaced). We also observed that the 
MVI methods devised specifically for longitudinal data yielded very precise estimations, 
although they had low applicability.

In the classifier-dependent scenario, we evaluate the impact that the strategy to han-
dle missing values had on the predictive accuracy of a RF classifier. We compared the six 
methods from the scenario above, adding a baseline approach of doing no imputation, and 
letting the classifier handle the missing values during its execution. We report on the Sen-
sitivity, Specificity and Accuracy of the models generated for each of the 10 datasets, and 
apply a non-parametric statistical test to determine whether the classifiers’ performances 
significantly changed. The proposed Data-Driven approach and the K-Nearest-Neighbour 
approach had the best results in these experiments.

Overall, the contributions of this article can be summarised as follows. We propose the 
aforementioned data-driven approach that automatically selects the best MVI method (out 
of a set of predefined candidate methods) for each feature in the dataset. In this paper the 
data-driven approach was used to select the best out of 5 MVI methods, but the basic idea 
of the data-driven approach can be used with any set of MVI methods chosen by the user. 
We concluded that the proposed data-driven MVI approach was the best performing MVI 
method in our experiments, based on two evaluation scenarios (depending on whether or 
not a classifier is used to evaluate the results) and several performance criteria: applicabil-
ity and error rates, when not using a classifier; and a classifier’s predictive performance, 
when a classifier is applied to the data whose missing values were imputed by the MVI 
methods.

In addition, our experiments reinforced the notion that no MVI method outperforms all 
others in all occasions, and showed that it is worthwhile to use information in the known 
data to select the best MVI method for each feature. Furthermore, our results with the MVI 
methods devised for longitudinal data highlight a need for developing techniques that han-
dle the unique characteristics of this type of data, which is prominent in long-term health 
studies.

This article is organised as follows. In Section 2 we describe the dataset creation process 
for our ELSA datasets. Section 3 describes background and related works on missing value 
imputation, as well as the missing value imputation methods used in our experiments. 
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Section 4 presents our proposed data-driven MVI approach. Section 5 describes our meth-
odology for evaluating the proposed approach, and the experimental results are presented 
in Sects. 6 and 7, for the classifier-independent and classifier-dependent scenarios, respec-
tively. Finally, Sect. 8 presents our conclusions and future work suggestions.

2  Longitudinal dataset creation for the classification task

The English Longitudinal Study of Ageing (ELSA) is currently one of the most prominent 
populational studies of ageing (Banks et  al. 2019). The study has, in each of its waves, 
thousands of respondents from inhabitants of United Kingdom households, which are vis-
ited and interviewed every two years (the time interval between two consecutive waves). 
The study is intended for 50 years of age or older respondents, because it aims to follow the 
participants for years prior to their retirement and beyond (Banks et al. 2016).

A series of questionnaires are used to collect biomedical data every 2 waves (i.e., 
roughly every 4 years) in ELSA, when a professional nurse visits the respondents in their 
home and performs a face-to-face interview and a series of tests. The results of these nurse 
visits are recorded in separate files in the ELSA database. Currently, the datasets from the 
nurse-data questionnaires for waves 2 (2004), 4 (2008), 6 (2012) and 8 (2016) are pub-
lished, so we used data from these files to create the features for our datasets. However, 
the ELSA data was not collected for machine learning purposes, and so we had to cre-
ate features and class variables suitable for the classification task of machine learning, as 
described in the following subsections.

A total of 10 datasets were created with the raw data files from the ELSA nurse-data 
questionnaires, one for each of the 10 age-related diseases we are interested in predicting. 
The class variable in each dataset refers to the presence or absence of a positive diagnose 
for an age-related disease for each instance (ELSA respondent) in wave 8. Although the 10 
datasets have different class variables (representing different age-related diseases), all 10 
datasets have the same set of features, as explained in more detail later.

2.1  Preparing a base dataset

First of all, we discuss the creation of a base dataset – which has been used for creating the 
10 nurse-data datasets used in our experiments – and the steps we took to convert the raw 
ELSA data into datasets suitable for machine learning. These steps included filtering the 
features and instances of the datasets, representing the different types of missing values (as 
discussed in Secti. 2.2) as a single missing value symbol (’?’), and creating the class vari-
ables using data from wave 8. This data preparation process is similar to the one applied by 
Pomsuwan and Freitas (2017), with a few differences in the feature selection process.

In order to have class values for all instances, we only utilised data from respondents 
that participated in the ELSA’s 8th wave (the wave of the class variables). In cases where 
a respondent did not participate in any of the other waves with nurse data (waves 2, 4 or 6) 
in the dataset, the values for that wave’s features were set as missing for that respondent. 
For instance, if a respondent was added to the study in wave 6, and participated in wave 8, 
we kept their record, filling in the values for waves 2 and 4 features with the missing value 
symbol “?”.

After fusing all nurse-data datasets (waves 2, 4, 6 and 8), and removing the participants 
who did not take part in wave 8, each dataset has 7097 instances.
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2.2  Feature selection and creation

After the previously described base dataset creation, the next step was to filter out fea-
tures that were irrelevant to our classification task, from the initial set of 1041 features 
(from the 4 nurse-data datasets in ELSA’s waves 2, 4, 6 and 8). Most of these features 
refer to metadata about the tests performed by the nurse when visiting the ELSA respond-
ent in their household. For example, there are features recording reasons for unreliable or 
missing measurements, features recording the specific time of the nurse visit, and multiple 
measurements of the same variable in the same wave. The latter type of features (e.g., mul-
tiple recordings of blood pressure per wave) were merged into a single averaged measure-
ment per wave, to reduce the dimensionality of the dataset. The large number of metadata 
features is also due to many variables with multiple answers, e.g.: there are four different 
features used to store reasons for not obtaining a height measurement of a patient, as up 
to four different reasons could apply simultaneously to a patient. Such metadata features 
clearly have no relevance for the classification task of machine learning, and so they were 
all removed.

After this feature selection and creation process, each created dataset has a unique iden-
tifier for each instance, as well as 140 features (including the gender and age of the partici-
pant in wave 8) and the target (class) variable. The 140 features are divided into 44 “con-
ceptual features”, where a conceptual feature may have several measurements of the same 
basic variable taken over the 4 waves in the dataset. The features in our datasets are briefly 
described in Appendix A. For each feature, we indicate the waves in the study it appears in, 
and the data type of its values.

The ELSA nurse-data database has multiple representations for the participant’s 
responses that are not one of the expected values, including, e.g., a code for “not applica-
ble” and another code for “refusal to answer”. All such codes were unified and coded as 
“?”, which is the standard missing value symbol for the Weka tool – the machine learning 
tool used in our experiments.

2.3  Creating class labels

For each dataset that we created from the ELSA nurse-data dataset, the binary class vari-
able represents the presence or absence of a positive diagnose for each ELSA respondent 
in wave 8, for one of 10 age-related diseases or conditions. This information is not rep-
resented directly by any of the variables in the ELSA files, so we combined information 
about the diagnosis of each of these diseases or conditions, present in several variables of 
the ELSA core data questionnaire, to create our class labels.

The class labels represent diagnoses for Angina, Arthritis, Cataract, Dementia, Diabe-
tes, High blood pressure, Heart attack, Osteoporosis, Parkinson’s Disease, and Stroke. In 
wave 8 of the ELSA study, each respondent was asked questions regarding the diagnosis 
of these diseases and conditions, and using the answers for these questions we infer a class 
label for that respondent, in that wave. All of these questions have binary answers (yes or 
no), and we label an instance as “0”, meaning no diagnosis or “1”, meaning the disease was 
diagnosed for that respondent, on wave 8, based on whether any of the questions regarding 
the diagnosis of that class was answered with a “yes” by the individual.

As an example, for the class Heart Attack, two questions are asked in the ELSA core 
questionnaire regarding its diagnosis, represented by two variables: Hedacmi (Whether the 
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respondent confirms a heart attack diagnosis from a previous wave) and Hediami (Whether 
the respondent newly reported a heart attack diagnosis). Thus, the rule for creating the 
class label Heart Attack for each instance I in wave 8 is as follows:

IF Hedacmi, for instance I, in wave 8 = “Yes” (1)
OR Hediami, for instance I, in wave 8 = “Yes”(1)
THEN HeartAttack_8 for instance I = “Yes” (1)
OTHERWISE HeartAttack_8 for instance I = “No” (0)
Recall that all instances included in the dataset represent subjects who participated 

in the latest wave 8, which means that no instance in the created datasets has a missing 
class label. The nurse-data datasets were then created by distributing the 10 class vari-
ables across the 10 datasets, so that each dataset has a different class variable (age-related 
disease or condition) to be predicted. However, as mentioned earlier, all 10 datasets have 
the same instances and the same predictive features. This approach for dataset creation was 
also used by Pomsuwan and Freitas (2017).

3  Background and related works

3.1  Missing value imputation

One of the challenges of analysing longitudinal data is that studies that follow a set of indi-
viduals for a long period can encounter several issues with obtaining data across all waves. 
A participant may not be reached for one or more waves of a study for several reasons, or 
the data collection process might not be completely executed (for example, only part of an 
interview is done) in a given wave. Therefore, it is common that longitudinal studies face a 
high number of missing values in their datasets, and there are several strategies that can be 
used to address this issue, some of them taking advantage of the longitudinal nature of the 
data. For the ELSA datasets used in this article, 38.5% of the values across all features and 
waves are missing, which makes the approach to simply drop instances (or features) with 
missing values inadvisable. Hence, we follow the alternative approach of replacing every 
missing value with some estimated value.

There are many ways to estimate missing values (some particular to longitudinal data-
sets), and selecting the best imputation method is challenging. That is because, both in 
theory and in practice, no method for calculating imputation values is the optimal choice 
for all types of features and datasets (Diggle 2002; Hu et  al. 2017; Mallinckrodt 2013). 
The relative performance of a method depends on several factors, such as: (a) the data 
distribution (Santos et al. 2017); (b) how the missing values occur in the dataset (missing 
completely at random, missing at random, or missing not at random) (Diggle 2002; Mall-
inckrodt 2013); (c) the proportion of instances (records) with missing values; (d) the avail-
ability of information that can be used to make better imputation.

3.2  The chosen missing value imputation methods

Our experiments use five missing value imputation methods (Gad and Abdelkhalek 2017; 
Mallinckrodt 2013; Albridge et al. 1988), described in Subsect.s 3.2.1 to 3.2.5; as well as a 
proposed Data-Driven approach combining these five methods, to be described in Sect. 4. 



6283A data‑driven missing value imputation approach for longitudinal…

1 3

Most missing value replacement methods, including the proposed Data-Driven approach, 
were implemented by extending the program code from the Weka1 toolkit, an open-source 
machine learning toolkit. The methods devised specifically for longitudinal data, Prev and 
PrevNext, were completely implemented by us, as currently the Weka toolkit does not han-
dle longitudinal data directly.

In the following, Fi,t denotes the value of feature Fi at wave t, and I denotes the instance 
where the missing value is being imputed. Furthermore, we specify how each method 
copes with training and testing datasets. This distinction is important in the aforementioned 
classifier-dependent scenario, although it is irrelevant for the classifier-independent sce-
nario (see the Introduction for a discussion of these scenarios).

3.2.1  Global mean/mode

One standard statistical approach is to replace the missing values in feature Fi,t by the 
mean or mode (for numeric or nominal features, respectively) of Fi,t over all instances with 
known values for it in the training set. For this method, the estimated mean/modes are 
calculated from training instances and used to replace the missing values of Fi,t in each 
instance I, in both the training and test sets.

This method has the advantage of simplicity, but it has important limitations. Uncondi-
tional mean/mode imputation frequently underestimates the variability represented in the 
real data, skewing the values towards a more even distribution, which can lead to false 
interpretations (Little and Rubin 2019, Chapter 4). The more variability a feature’s values 
have in reality, the more bias this method adds to the data.

3.2.2  Age‑based mean/mode

As an extension of the global mean/mode method, the age-based method uses the age fea-
ture to group instances in a way they are intuitively more likely to be similar. Naturally, the 
age of an individual impacts their overall health, so it is expected that, in general, ELSA 
participants with the same age would have more similar feature values than ELSA par-
ticipants with different ages. As mentioned earlier, unconditional mean/mode imputation 
often misrepresents the variability of the feature’s values, thus adding the age value of the 
respondent as a condition for guiding the imputation process is likely to be a more effective 
approach, as long as the features’ values are correlated with age.

The method works as follows. For each instance I with a missing value on a feature Fi,t , 
the method defines a set A of measurements of Fi , taken from instances with the same age 
value that I had on wave t, in any wave. Thus, the Fi values in A all correspond to measure-
ments of the same feature with the missing values, from individuals who, at the time of 
that measurement, had the same age as the current instance I at the time t. Then, the miss-
ing value is replaced by the mean/mode (for numeric or nominal features, respectively) of 
the values in A. Note that this method assumes that the age value of an instance is always 
known, in every wave. This is the case in our datasets, where there are no missing values 
for the age variable.

For example, if a respondent was 60 years old on wave 4, and their corresponding 
instance had a missing value for feature Fi,4 , this method would replace that missing value 

1 Available at: https ://www.cs.waika to.ac.nz/ml/weka/.

https://www.cs.waikato.ac.nz/ml/weka/
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by the mean/mode of all values of Fi related to respondents who were 60 years old, at 
any time of measurement (at any wave), regardless of the wave where that measurement 
was obtained. For instances in the test set, as their age value is still known, the method 
is applied normally, using only values from training instances to create the set A. A simi-
lar approach has been used in Zhao et al. (2018), which replaced missing values with the 
median from individuals with the same age and sex.

3.2.3  Previous observation carried forward (Prev)

In a longitudinal dataset, a feature typically has repeated measurements throughout differ-
ent waves, and it is common to replace a missing value in a certain wave by its most recent 
known value from previous waves. This method is known as Last Observation Carried For-
ward, and is often used on studies using longitudinal datasets (Engels and Diehr 2003; 
Zhu 2014; Minhas et al. 2015; Gad and Abdelkhalek 2017). We chose to include methods 
devised specifically for longitudinal data, such as this, in our study to investigate the impact 
of using temporal information in estimating missing data. However, as in our ELSA nurse 
datasets there is a gap of 4 years between each pair of adjacent waves, we decided to con-
sider only values from the previous wave as viable for imputation.

Therefore, for the Prev (Previous Observation Carried Forward) method, if the value of 
feature Fi,t is missing for instance I, the method inputs the value of Fi,t for I in the previous 
wave, Fi,t−1 , if known. If Fi,t−1 is unknown for I, the Prev method is not applicable. Because 
it uses information from the current instance with a missing value, it is unavoidable to use 
information from the feature values of test set instances when applying the Prev method 
to them. Note, however, that the class values of test set instances are never used in this 
method. Note also that, because this method requires a feature to have been measured in 
the previous wave of the dataset, it is inapplicable for the first measurement of a feature Fi , 
which includes all features in the first wave of the created datasets (wave 2 of the ELSA 
nurse data).

3.2.4  Previous and next observations combined (PrevNext)

As an extension of the Prev method, we also included a method that combines information 
from both the previous measurement of a feature and its next measurement, increasing the 
amount of information used in the estimation of the missing values.

In the PrevNext (Previous and Next Observations Combined) method, when the value 
of feature Fi,t is missing for instance I, if both the values of Fi,t+1 and Fi,t−1 are known for 
instance I, the missing value is replaced by: (a) for numeric features, the mean of Fi,t+1 and 
Fi,t−1 for instance I; (b) for nominal features, the method only replaces the missing value if 
both values of Fi,t+1 and Fi,t−1 are the same (in this case, repeat that value for Fi,t).

As with the Prev method, because of the 4-year time gap between waves in the nurse-
data datasets, only values from the nearest waves are considered viable for imputation. This 
avoids imputations based on values too far into the future or the past, which are likely 
inaccurate. For test set instances, the PrevNext method works the same way, as it uses only 
information about features of the current instance I – without using any class information. 
This method requires known values for Fi for the current instance I, in both the previous 
and the next waves of the dataset (for nominal features, these values also need to be the 
same). Because of these restrictions, the PrevNext method is inapplicable in many cases, 
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including all features in the first and last waves of the created datasets (waves 2 and 8 in the 
ELSA nurse data).

3.2.5  K‑nearest neighbours (KNN)

This method uses the K-Nearest Neighbours (KNN) algorithm, which is a well-known 
supervised machine learning algorithm to estimate missing values in a more sophisticated 
way than previously described imputation methods. The KNN algorithm determines the 
K training instances most similar to the one with a missing value to be replaced (instance 
I), and calculates the mean/mode of Fi,t in that set of nearest neighbours, using that mean/
mode as an estimation of the missing value. K, the number of neighbours, is a user-defined 
parameter. Note that the previously described age-based method can be seen as a particular 
case of the KNN method where the similarity between instances is measured using only 
the age feature; whereas in the general KNN method any set of features can be used to 
define the similarity (or distance) measure between instances.

Importantly, any distance-based algorithm such as KNN can be affected by the so-called 
’curse of dimensionality’ (Kouiroukidis and Evangelidis 2011), where instances appear to 
be more similar as the number of features (dimensions) used for the distance calculation 
increases, making the task of determining an instance’s neighbours considerably harder. 
To avoid this issue, we made the KNN algorithm only consider as features (for distance 
calculations) the subject’s age, gender, and the values of Fi in every wave other than t (the 
wave with the missing value to be replaced) where the Fi value is not missing. Even though 
the age and gender values are available for all instances in the dataset, if a feature has been 
measured in only one wave, or the value of Fi was missing in all of the waves other than t 
for the current instance, we considered this method could not be applied.

Our initial experiments with the KNN algorithm used only the values of Fi at waves 
other than t to calculate distances, but it was common to have several instances with the 
same distance to the current instance, especially for nominal features. This is an issue as 
the furthest neighbour within the set of K nearest neighbours could be randomly chosen 
out of several instances with the same distance to the current instance I. This would lead to 
an undesirable stochastic effect in the choice of K nearest neighbours. To reduce this issue, 
we added the age and gender features into all the distance calculations, which reduced the 
occurrence of this issue to under 1% of the instances, for K = 7.

The KNN algorithm is used as an imputation method as follows: replace the missing 
value of a feature Fi,t , by the prediction of the KNN algorithm with K = 7 (this method 
will be referred to as 7NN from here on). The prediction is given by the mean or the mode 
value of Fi,t of instance I’s K nearest neighbours, for numeric and nominal features respec-
tively. For nominal features, if two or more values are tied with the highest frequency 
among the K nearest neighbours, one of those values is randomly chosen as the mode. We 
evaluated different K values (1,3,5,7,9) in preliminary experiments, and observed little dif-
ference in the average error values, with K = 7 producing the best results overall. Naturally, 
7NN chooses the nearest neighbours exclusively from training instances, as it cannot have 
access to test set instances for that choice.

3.2.6  A conceptual comparison between the five imputation methods

When selecting which methods to compare in our experiments (reported later in Sects. 6 
and 7), we aimed to have representations of different types of methods for missing value 
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imputation. We started with one of the most simplistic approaches, the Global mean/
mode method, representing methods from basic statistics that are often used as a baseline 
method. However, the assumption that the mean/mode value over all known values can 
accurately replace every missing value is over optimistic, and it may mask characteristics 
of the data by adding noise (i.e., making the data seem more evenly distributed than it is 
in reality). Then, we chose to adapt this method to make it somewhat more sophisticated 
and related to our specific problem, adding to our experiments the Age-based mean/mode 
method, which we hoped would provide more accurate estimates for the ELSA dataset.

In addition, we also selected for our experiments two methods devised specifically for 
longitudinal data, the Prev and PrevNext methods. These methods use longitudinal infor-
mation from known values of feature Fi at other time points (waves) in the current instance 
I to make their estimations, so each estimated value is arguably more related to the current 
instance, in comparison to the Global and Age-based mean/mode methods. One important 
disadvantage of the Prev and PrevNext methods is that they require a known value of Fi in 
the previous or both the previous and next waves to t (wave with the current missing value 
to be replaced), which may not be available.

Finally, there are approaches for estimating missing values that are more sophisticated 
and more computationally demanding. To represent those, we selected the 7NN method, 
which is a supervised machine-learning algorithm that outputs estimated values com-
puted from instances considered most similar to the current instance with a missing value, 
which are intuitively likely to have a similar value for the current feature. The 7NN method 
requires O(n2) distance calculations to compute its distance matrix (where n is the number 
of instances in the dataset) when performing cross-validation, and has the added challenge 
of the curse of dimensionality, where using too many features to calculate the distance 
between neighbours hinders the effectiveness of the method (Beyer et al. 1999). Our imple-
mentation of 7NN greatly reduces the number of features used in the distance calculation, 
by only considering measurements of the current feature Fi at waves other than the current 
wave t, as well as the age and gender features, to calculate the distance. Thus, it can be 
considered a longitudinal missing value imputation method (akin to the Prev and PrevNext 
methods), as it uses time-related information to find the nearest neighbours.

3.3  Related works

Several studies have compared multiple missing value imputation methods. However, these 
studies are usually more focused on specific aspects of handling missing data, usually work-
ing with only one type of feature (categorical, numeric or binary), having fewer features in 
the dataset, and using artificial datasets or datasets with artificially included missing data. 
There are two main approaches to evaluate the performance of missing value imputation 
methods. The first is to evaluate how missing value imputation changes the accuracy of a 
classification/regression model (Minhas et al. 2015; Hu et al. 2017). The results of such 
evaluations are dependent on the algorithm used to create the model. The second approach 
is to replace known values in a synthetic (Zhu 2014; Gad and Abdelkhalek 2017) or real 
(Engels and Diehr 2003; Belger et al. 2016) dataset, and compare the estimated values to 
the ground-truth, calculating the error rate. We use both approaches: firstly, we use real 
data from the ELSA and estimate every known value in the dataset using the six imputation 
methods, then we employed the Random Forests (RF) classification algorithm to evaluate 
the models generated by datasets prepared with each method. To the best of our knowledge, 
our study is the first one that combines the classifier-dependent and classifier-independent 
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evaluation of MVI methods, making for a more complete analysis of the performance of 
our proposed data-driven approach.

Table  1 contains characteristics that describe the cited related works, for comparison 
with our own study (described in the last row of this table). Regarding the proportion 
(%) of missing values in the datasets, as mentioned earlier, it is common for longitudi-
nal datasets to have a high proportion of missing values, and that is observed in all stud-
ies that mentioned the ratio of missing values. One important characteristic that sets our 
approach apart from the related works is the number of features in our datasets. The cited 
studies performed experiments using datasets with very few (Belger et al. 2016; Gad and 
Abdelkhalek 2017; Zhu 2014) or between 16 and 48 features (Engels and Diehr 2003). The 
ELSA dataset used in our experiments has 45 longitudinal features, with their repeated 
measures across time totalling 138 features with missing values, for each dataset.

The missing value imputation methods compared in each of the aforementioned stud-
ies are shown in Table 22, for comparison with our work. As shown in this table, the mean 
imputation and previous observation (usually LOCF) methods are the most common 
approaches for estimating missing values; and among the more sophisticated methods, the 
Linear Regression and KNN algorithms are often used.

As discussed in Sect. 3.2, our study contains methods representing different strategies 
for estimating missing values. These include statistics-based methods (Global mean/mode, 
Feature-based input using Age as the feature), methods devised for longitudinal data (Prev, 
PrevNext), and more sophisticated methods, based on machine learning (KNN) and our 
proposed Data-Driven approach, combining these 5 imputation methods. This selection of 
methods was made to include representative methods from very different approaches to 
missing value estimation in our experiments. In addition, among the studies mentioned in 
Table 2, this current study is the only one to include the proposed Data-Driven approach, 
which automatically selects the best imputation method for each feature specifically, among 
a set of candidate methods.

Table 1  Number of waves (time points), features and percentage of missing values in the related works 
about comparing missing value imputation methods for longitudinal datasets. The names in the rows refer 
to the first authors in the references used in the comparison, respectively: (Engels and Diehr 2003; Minhas 
et al. 2015; Belger et al. 2016; Gad and Abdelkhalek 2017; Zhu 2014; Hu et al. 2017)

Reference Waves Number of Features Missing Values Type of Datasets

Numeric Nominal Total

Engels 10 40 0 40 21.8% Real
Minhas 6 16 0 16 30% Real
Belger 4 1 0 1 10-40% Artificial
Gad 6 1 1 2 45.6% Artificial and Real
Zhu 5 2 0 2 4-22% Artificial
Hu 2 ? ? 48 ? Real
This study 4 99 39 138 38.5% Real

2 In Table 2, the studies were categorised by the types of methods employed to handle the missing values, 
so similar methods, such as our Prev (previous observation carried forward) and the LOCF, were consid-
ered part of the same category.
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Among the cited related works, (Engels and Diehr 2003) has the most similar approach 
for evaluating imputation methods. However, in (Engels and Diehr 2003) the imputation 
methods were evaluated on just 4 longitudinal features, whereas in this work the methods 
are evaluated in 45 longitudinal features, representing a wider diversity of feature types and 
distributions. In addition, our work includes 39 nominal features, which are treated differ-
ently from the numeric features by our imputation methods. In their conclusion, Engels and 
Diehr mention that a method able to select the best-fitting imputation method for each fea-
ture in a dataset would likely provide better estimations. We have proposed such a method 
in our Data-Driven approach, discussed in Sect. 4.

To summarise, most of the related works discussed in this section have used relatively 
small number of features to evaluate Missing Value Imputation (MVI) methods, and most 
works evaluated MVI methods on numerical features only. By contrast, in this current work 
we use a larger number of features, including both numerical and nominal features. In addi-
tion, each study evaluated several MVI methods, but each method was separately applied 
to the data. That is, no related work has proposed to apply multiple MVI methods to each 
feature and automatically select the best method for each feature in a data-driven fashion, 
as proposed in this work.

4  The proposed data‑driven missing value imputation approach

In addition to the five selected missing value imputation methods discussed in Sect. 3.2, 
we propose an approach that selects these methods dynamically, on a feature-wise basis, 
ranking the methods based on information contained in the dataset itself. This approach, 
referred to as the Data-Driven approach from here on, can be implemented with any set of 
missing value imputation methods, in principle. This approach works as follows.

Table 2  Missing value imputation methods used in the related works. The names in the columns refer to the 
first authors in the references used in the comparison, respectively: (Engels and Diehr 2003; Minhas et al. 
2015; Belger et al. 2016; Gad and Abdelkhalek 2017; Zhu 2014; Hu et al. 2017)

Method/Reference Engels Minhas Belger Gad Zhu Hu This study

Case deletion X X X X
Random value X X
Mean input X X X X X X X
Class-based input X
Feature-based input X
Previous observations X X X X X
Posterior observations X
Previous and posterior observations X X
Multiple imputation X X X
Monte Carlo Markov Chains X
Expectation maximisation X
Linear Regression X X
K-nearest neighbours X X X
Data-driven method selection X
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Consider a set of n missing value imputation methods S = {M1, ...,Mn} , and a data-
set with a set of d features {F1, ...,Fd} . For each feature Fi at wave t ( Fi,t ) in a dataset, 
the Data-Driven approach creates a subset of the original dataset, composed of all the 
instances with known values for Fi,t (removing instances where Fi,t ’s value is missing). 
This subset is hereafter called the known data subset for Fi,t . Then, each method from 
S has its average estimation error rate measured in a 5-fold cross-validation performed 
in that known data subset. That is, the known data subset for the current feature Fi,t is 
randomly partitioned into 5 folds of about the same size, and each imputation method is 
executed 5 times, each time using a different fold as a held-out “validation” subset, and 
the other four folds as the “estimation” subset. This process is summarised in Figure 1.

In the validation subset, the known values of Fi,t are temporarily hidden from the 
imputation method being evaluated, and the method uses all instances in the estima-
tion subset to determine the best value to be imputed for each instance in the validation 
subset. The estimated values are then compared with the true, known values of Fi,t in the 
validation set, and an error measure is computed. If Fi,t is nominal, the error value, for 
each instance is 0 or 1, depending on whether or not the estimated value matched the 
known value. If Fi,t is numeric, the error is the absolute value of the difference between 
the estimated and known values of Fi,t . The estimation error associated with each impu-
tation method is the average of its errors over the instances for which the method could 
be applied. If a method cannot be applied to any given instance in the validation set, we 
assigned the maximum average error value of 1 for that instance. Note that informa-
tion in the validation sets is not used to calculate estimated values, except for the Prev, 
PrevNext and 7NN methods, which use information about the feature values in the cur-
rent instance I, but not its known Fi,t value, of course.

Fig. 1  Cross-validation approach to evaluate missing value imputation methods
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The imputation methods are then ranked based on their average error, where the small-
est-error method is assigned rank 1 and the largest-error method is assigned the worst rank 
(5). If two methods have the same average error, they share a rank (e.g., if two methods tie 
for the first place, both get a rank of 1.5).

For each feature Fi,t , the Data-Driven approach performs the imputation of missing val-
ues (in the data subset where the Fi,t value is really unknown) using the imputation meth-
ods’ rankings obtained for Fi,t . First, it tries to use the first-ranked method to estimate the 
missing value. If that method cannot be applied to the current instance, it then tries the 
second-ranked method, and so on, until it either finds a method that can estimate a value 
for the current instance or runs out of imputation methods to try. In our experiments, the 
latter case is not an issue as the Global mean/mode method can be applied to any instance. 
However, with a different set of imputation methods, the Data-Driven approach may fail to 
replace a missing value, if none of the methods can be used to replace it.

In summary, the Data-Driven approach uses the data to calculate an approximation of 
how accurate each of the available methods will be to estimate the missing values of a fea-
ture, then ranks these methods and applies the best-suited method (for that feature) to make 
its estimation. Naturally, this process is costly, especially if one or more of the imputation 
methods is computationally expensive (such as the 7NN algorithm in our experiments). 
However, intuitively the Data-Driven approach’s estimations are more flexible and sophis-
ticated, and make use of the different advantages provided by each method. As there is 
no “one-size-fits-all” approach when imputing missing data (i.e., no imputation method 
is the best for all features), a method that is able to make feature-wise decisions is intui-
tively more effective. However, this effectiveness depends on the reliability of its computed 
ranking of missing value imputation methods, and for features with few known values, the 
Data-Driven approach might be misled into selecting a poor imputation method.

5  Methodology for evaluating the proposed data‑driven imputation 
method

There are two main approaches to evaluate the performance of missing value imputation 
methods, in the area of supervised machine learning (classification or regression tasks). 
The first is to use an imputation method to estimate the missing values in a data preproc-
essing phase, and then evaluate how that imputation changes the performance of the clas-
sification/regression model trained with the imputed values. The results of such evalua-
tions, referred to as classifier-dependent evaluations from now on, are dependent on the 
algorithm used to create the model, but provide a direct measure of the impact of a missing 
value handling method on the predictive accuracy of a particular classification model.

The second approach, classifier-independent evaluation, is to use an imputation method 
to replace known values in a synthetic or real dataset, and comparing the estimated values 
to the ground-truth, calculating estimation quality metrics such as the error rate. This type 
of evaluation provides a comparison that is unrelated to how the chosen machine learning 
algorithm handles missing values, but it has the advantage of providing a more generic 
measure of how accurate the imputation methods are at estimating ’artificial’ missing val-
ues (as it is not possible to compare estimations of real missing values to a ground-truth).

In our study, we use both approaches: firstly, we use data from our ELSA dataset and 
estimate every known value in the dataset using six imputation methods, and rank them for 
each feature in the dataset, based on their average estimation error (classifier-independent 
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evaluation). Then, to implement the classifier-dependent scenario, we employed the Ran-
dom Forest (RF) classification algorithm (Breiman 2001) to evaluate models generated 
by datasets prepared with each imputation method. We also compared the results of this 
approach against the baseline approach of performing no imputation in a preprocessing 
step (letting the RF algorithm use its own internal method for handling missing values).

The RF algorithm was chosen for these experiments because it has been shown to be 
among the best classification algorithms in general in terms of predictive performance 
(Fernández-Delgado et al. 2014; Zhang et al. 2017), and it is also relatively fast – being 
much faster in general than other algorithms with high predictive performance, like support 
vector machines and neural networks.

6  Experiments comparing MVI methods on a classifier‑independent 
scenario

We performed a series of experiments to evaluate the estimation accuracy of the six Miss-
ing Value Imputation (MVI) methods (the five methods described in Sect. 3.2 and the pro-
posed Data-Driven missing value imputation approach described in Sect.4) in the classifier-
independent scenario. The setup used in these experiments can be replicated for comparing 
any number of missing value imputation methods, even outside of the area of classification. 
The experiments presented in this Section are an expansion of results discussed in our pre-
vious work (Ribeiro and Freitas 2019), with the addition of the Data-Driven approach we 
propose in this study as one of the methods being compared.

For each imputation method we compute: (a) its applicability, i.e., for which proportion 
of the missing values in the dataset the method can be applied; and (b) its normalised aver-
age error rate, for nominal and numeric features separately, and over all features. The error 
values reported in Table 3 were computed by running a nested cross-validation procedure, 
with an external 10-fold cross-validation and an internal 5-fold cross-validation procedure, 
as follows.

For the external cross-validation, the instances with known values of each feature are 
divided into 10 data subsets (folds), and each fold is used as a validation fold in turn, 
by hiding the values of the feature in that fold, whilst the other 9 folds are combined 
into estimation sets, which are used to estimate these hidden values using each of the 
MVI methods. The estimated values are then compared against the known (previously 

Table 3  Error rates (in [0..1]) of the imputation methods, computed by 5-fold cross-validation, considering 
only instances where the methods were applicable. For nominal features each value represents the mean 
error rate (over 39 features) and for numeric features each value is the mean absolute error (over 99 fea-
tures). The last two rows show the applicability (%) and run time (minutes) of each method. The best result 
for each row is shown in boldface font

Feature type (number) 7NN Age-based Global mean Prev PrevNext Data-Driven

Nominal (39) 0.049 0.078 0.068 0.055 0.048 0.048
Numeric (99) 0.083 0.083 0.082 0.078 0.075 0.077
All features (138) 0.077 0.082 0.078 0.07 0.068 0.068
Applicability 81.79% 97.08% 100.00% 35.57% 2.95% 100.00%
Run Time (mins) 9.77 0.3 0.1 0.02 0.02 57.5
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hidden) values values in the validation sets, in order to compute the estimation error. 
This external 10-fold cross-validation is enough to measure the error of the individual 
MVI methods, but a further internal 5-fold cross-validation procedure (applied to each 
of the 10 estimation sets) is needed to implement and measure the error of the data-
driven approach.

For the internal cross-validation, the instances in the current estimation set are divided 
into 5 folds, and each fold is used as an inner-validation fold in turn, by hiding the values 
of the feature in that fold, whilst the other 4 folds are used to estimate these hidden values 
using each of the 5 MVI methods. The estimated values are then compared against the 
known (previously hidden) values values in the inner-validation sets, in order to compute 
estimation errors used to rank the MVI methods, as required by the data-driven approach. 
Note that the ranking of MVI methods is produced from the estimation set only, without 
accessing the (external) validation set. This was done to avoid providing the data-driven 
approach with more information than what is used by the other MVI methods. The rank-
ing is then used to select the best applicable MVI method for the current feature, when 
imputing values in the validation set; and again the estimated values are compared against 
the known (previously hidden) values values in the validation sets, in order to compute the 
estimation error. The final error for the data-driven approach is computed by averaging 
over the errors on the 10 validation sets.

Regarding the applicability of each method, the 7NN method could not be applied to 
features that did not have repeated measurements in other waves (2 out of the 138 features 
with missing values), or to instances where all of the other measurements for the current 
feature (whose missing value is being replaced) had missing values. The Global mean/
mode method can be applied to every missing value in the dataset. The Age-based method 
was not applicable in relatively rare cases where there were no known values of the current 
feature for any subjects with the same age of the current instance’s subject.

The PrevNext and Prev methods, however, could not be applied in many cases, since 
the Prev method requires the current feature to have a known value in the previous wave, 
and the PrevNext method requires the current feature to have a known value in both the 
previous and the next waves in the dataset, which is even less common. By definition, Prev 
is inapplicable for features in the first wave, and PrevNext is inapplicable for both the first 
and last wave features (note that, in the datasets used in our experiments, there are only 
four waves). In addition, in many other cases these two methods are potentially applicable 
for a feature, but cannot be applied in practice because the current instance does not have 
the required known values.

The applicability percentage (over all missing values in the dataset, how many could 
be replaced using the method) of each method is shown in the last but one row of Table 3. 
This Table also presents the mean error rate over the nominal features, the mean absolute 
error over the numeric features and over all features, for each imputation method. The mean 
error of a method is calculated considering only the instances where it could be applied, so 
for features where only some of the missing values could be replaced, the average error was 
calculated only over those values.

Note that every numerical feature in the dataset has had its values normalised before the 
missing value imputation methods were applied. The normalisation method used was min-
max, where each feature value is divided by the difference between the minimal and maxi-
mum values observed for that feature in the entire dataset, producing values in the [0..1] 
range. Therefore, the average error values were also in this range, as nominal features had 0 
or 1 error values (for a match and non-match, respectively), and numerical features had the 
difference between the estimated and real value as the error.
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As shown in Table 3, when considering only numeric features, the PrevNext method 
has the smallest mean average error, very closely followed by the Data-Driven and Prev 
methods. When considering either only numeric features or all features together, the 
PrevNext and Data-Driven method are tied for the smallest mean error. However, these 
values need to be interpreted together with the applicability of each method.

The Prev method had low error values, but low applicability, meaning it was only 
able to estimate feature values for 35.57% of the missing values in the dataset. This 
was even worse for the PrevNext method, which was able to estimate only 2.95% of the 
missing values. As mentioned earlier, this is due to the fact that these methods require 
a known value of the current feature in the previous (Prev) or in both the previous and 
next (PrevNext) measurements (waves) of that feature, and those values may not exist (if 
there is no previous or next wave) or also be missing for some instances in the dataset.

It is worthwhile to mention that, although it did not obtain the best results, the 7NN 
method also performed well. The 7NN method has longitudinal characteristics in our 
specification, as it calculates the distance between instances using measurements of the 
current feature in different waves. This shows that the more complex strategy adopted 
by 7NN paid off in its results, when compared to simpler approaches such as the Age-
based mean/mode and Global mean/mode methods, and also when compared to the Prev 
and PrevNext methods, which achieved smaller mean error rates but had greatly reduced 
applicabilities (35.6% and 2.95%, respectively). Note that, by contrast, 7NN achieved an 
applicability of 81.78%.

The Data-Driven approach has an applicability of 100%, because it ranks every 
method and, if the first-ranked method is unable to estimate the current missing value, 
it tries the next method in the ranking, and so on, until an applicable method is found 
or all methods have been tried. Hence, the fact that the Global mean/mode method has 
applicability of 100% guarantees that the Data-Driven approach also has an applicabil-
ity of 100%. That, allied to the Data-Driven approach’s low error values, clearly sets it 
as the best approach in the classifier-independent comparison. In summary, the Data-
Driven approach makes use of the advantages presented by different methods, and is 
able to reliably choose, in a feature-wise manner, which out of a set of missing value 
imputation methods is the most effective.

Finally, we measured the time required to run the classifier-independent experiment 
with each of the methods. The run times reported in the last row of Table 3 are the time 
taken by the 10-fold cross-validation to be run for the entire dataset, for each method. 
These run times were measured on a computer with an AMD Ryzen 5 3600x 6-Code 
Processor, with 3.80GHz and 8GB of RAM memory, running Java 8 on Windows 10. 
As can be seen in Table  3, as expected, 7NN is more time consuming than the other 
individual missing value replacement methods, with the former taking about 10 min, 
whilst each of the other individual methods took less than a minute. The time taken 
by the data-driven approach was as expected much larger, about 57 min. This can be 
explained by the fact that, in order to select the best individual missing value replace-
ment method, in each fold of the external cross-validation procedure (i.e. for each pair 
of estimation and validation sets), the data-driven approach performs an internal 5-five 
cross-validation procedure on the estimation set where each individual method is run 
5 times. So, the total run time of the data-driven approach is intuitively approximately 
5 times larger than the sum of the run times taken by the individual methods, which is 
roughly dominated by the 10 min taken by KNN (since all the other individual methods 
together take just about 0.5 min).
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7  Experiments comparing MVI methods on a classifier‑dependent 
scenario

In this Section, we evaluate the effect of using each of the missing value handling methods, 
discussed in Sects. 3.2 and 4, on the predictive accuracy of Random Forest (RF) classifiers, 
using 10-fold cross-validation.

For all experiments in this Section, each Missing Value Imputation (MVI) method was 
used in a data preprocessing phase, before training the classifier, using only training set 
instances to compute replacement values for every missing value in the training and test 
datasets. The Prev, PrevNext and 7NN methods are exceptions, in the sense that they use 
feature values (but not class labels) of the current instance in the test set, as mentioned 
earlier. In addition to the MVI methods compared in the classifier-independent scenario 
(Sect. 6), for the experiments in this current Section with the Random Forest (RF) classi-
fier we added a baseline approach of not using any of the MVI methods. Thus, the baseline 
consists of not changing the missing values in a preprocessing step, and instead let the RF 
algorithm handle them during its execution.

We used the RF implementation in Weka, which uses the C4.5 algorithm’s (Quinlan 
1993) technique to cope with missing values when building its decision trees, as follows. 
Initially, each instance is assigned an instance weight of 1. When an instance has a miss-
ing value for a feature which is a candidate to be selected for the current tree node, for the 
purpose of computing that feature’s information gain (or other feature evaluation measure, 
depending on the RF implementation), the weight of that instance is distributed across the 
child nodes, based on the distribution of the known values of that feature in the local train-
ing set associated with the current node. To clarify, suppose that a binary feature fj,t has 
70% of its known local samples valued as 0 and the remaining 30% valued as 1. The 0 and 
1 child nodes of fj,t would receive, for each instance with a missing value of that feature, a 
fractional instance with weights 0.7 and 0.3, respectively. The same fractional distribution 
of the instance is performed during the testing phase, when the built tree is used to classify 
previously unseen test instances.

As mentioned earlier, the other MVI methods compared in this Section are each of the 
five methods described in Sect.  3.2 and our Data-Driven approach (Sect.  4), where the 
methods are ranked for each feature based on their mean errors, calculated using an inter-
nal cross-validation on the training set (i.e., without using the test set). We emphasise that 
the Data-Driven approach, in this scenario, ranks the methods for the current feature based 
on an internal cross-validation, iteratively dividing the training set instances into its estima-
tion and validation sets, to avoid using test set instances in its decision-making process.

7.1  Class imbalance handling

Our created datasets exhibit the problem of class imbalance, where for each class vari-
able (disease), the number of instances of the positive class (meaning the subject was 
healthy in the sense of not having a disease) is substantially greater than the number of 
instances of the negative class (meaning the subject had a disease). Because of this class 
imbalance problem, before comparing the MVI methods we needed to decide on a strat-
egy to reduce the bias towards the majority class in our datasets. Thus, we performed 
experiments with two random undersampling methods that bring the ratio of positive 
to negative instances in the training set down to a 1:1 ratio – i.e., for each instance of 
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the minority class in the training set, only one instance of the majority class is kept. 
This 1:1 ratio is a default approach adopted by several studies (López et al. 2013; Weiss 
and Provost 2003), including a study that used similar datasets to the ones used in our 
experiments (Pomsuwan and Freitas 2017).

There are two intuitive ways of applying undersampling to Random Forest classifiers: 
(a) removing instances from the majority class in a preprocessing step, then performing 
the bootstrapping for every tree in the forest with the same pool of training instances, or 
(b) undersampling the majority class when creating each bootstrap sample of instances 
to be used to learn each tree of the RF, so that undersampling is performed within the 
RF algorithm.

The first method, which we are calling Undersampling Before Bootstrapping (UBB), 
is simpler to implement, since it does not require any modification of the standard RF 
algorithm. When applying the UBB method, the decision trees in the RF are built from 
bootstrap samples of a training set with balanced class proportions, and the majority 
class instances that were discarded in the undersampling process are never seen by the 
RF.

The second method of applying undersampling to RFs is the Balanced Random For-
est (BRF) algorithm (Chen et  al. 2004). The BRF receives the entire imbalanced train-
ing set as input. Then, for each tree in the forest, it draws a bootstrap sample of minority 
class instances, and randomly draws the same number of instances from the majority class 
instances, meaning the subset of instances used to generate the tree has the desired ratio 
(1:1) of instances in each class. The rest of the RF algorithm remains unchanged. In this 
method, all training instances of the majority class have a chance of being used in the crea-
tion of the model, increasing the variability of training instances, a desirable characteristic 
for the RF algorithm.

Because of this increased variability, intuitively the BRF method would generate clas-
sifiers that are less overfitted to a part of the training set than classifiers generated with the 
UFF. In order to confirm that intuition, we report the results of experiments comparing the 
UBB and BRF methods in Sect.7.2. Next, we move on to comparing the MVI methods 
using the BFR method (which performed better) in Sect. 7.3.

In all result Tables reported in this Section, the datasets are ordered based on their class 
Imbalance Ratio (IR), calculated by dividing the number of instances in the majority class 
by the number of instances in the minority class. Classifiers trained from datasets with 
higher IR values usually have decreased performance, due to an added bias for classifying 
instances in the majority class (to artificially increase the overall accuracy).

The RFs were trained and tested using the Weka toolkit, with the default parameters 
ntrees = 100 (number of decision trees) and mtry = ⌊log2(d)⌋ + 1 = 8 (number of fea-
tures randomly sampled to be used as candidate features at each tree node), where the total 
number of features is d = 140 , and ⌊x⌋ is the “floor” of x, i.e., the biggest integer which is 
smaller than or equal to x.

The RF classifiers were evaluated based on the following metrics: Sensitivity (True Pos-
itive Rate), Specificity (True Negative Rate), and Accuracy (percentage of correct classi-
fications). These metrics were chosen based on (Malley et al. 2011, Chapter 4), who claim 
that for imbalanced biomedical data, models should have their results analysed using met-
rics that consider their ability to predict each class separately (i.e., Sensitivity and Speci-
ficity) and at least one “global” measure of performance considering both classes – in our 
case, we chose Accuracy, which is the complement of the Error measure suggested by the 
authors. We chose to use Accuracy rather than Error so that all 3 metrics are to be maxim-
ised, for consistency in the analysis of the results.
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7.2  Comparing the UBB and BRF methods for class balancing

In this Section we compare the predictive performance of the UBB and BRF undersam-
pling methods for Random Forests (RF) in our ELSA nurse-data datasets. For each of 
the 10 classes (age-related diseases), with different Imbalance Ratios (IR), we created 
RF classifiers using the UBB and BRF undersampling methods.

The IR measure, as mentioned earlier, is calculated by dividing the number of major-
ity class instances (individuals not diagnosed with a disease) by the number of minority 
class instances (individuals diagnosed with a disease). The IR value is an indication of 
how imbalanced the class distribution of a dataset is, and our 10 datasets have very dif-
ferent levels of class imbalance, with IR values ranging from 1.35 (Arthritis) to 160.3 
(Parkinson’s Disease), depending on how rare the age-related disease is.

Tables 4 and 5 show the average Sensitivity (True Positive rate) and Specificity (True 
Negative rate) of the RF models, over a 10-fold cross-validation. In the last row of the 
Tables, we report how many times each class-balancing method (UBB and BRF) got a 
higher value (i.e., was the winner) across the 10 datasets – equal values, with 3 decimal 
places being considered, mean that each method got 0.5 ’win’ points.

Table 4 shows a noticeable trend for higher Sensitivity values when using the BRF 
method. For every MVI method, BRF outperformed UBB for the majority of the data-
sets, with the greatest difference being observed for the Baseline approach, where BRF 
won 9 out of 10 times.

On the other hand, as seen in Table 5, overall higher Specificity values were observed 
when using the UBB method, although the difference was not as clear. The number of 
wins for UBB was greater than the number of wins for BRF for 4 out of the 7 MVI 
methods, with the greatest difference being observed in the Prev method, where the 
UBB had a higher Specificity value in 7.5 out of the 10 datasets.

The opposing results between Sensitivity and Specificity measures are expected, since 
these performance metrics evaluate the classifier’s abilities to predict different classes, and 
usually the prediction of one class can be improved, but in detriment of the other class. It 
is important to note, however, that the BRF method still managed to get better Specificity 
values in some cases, achieving the same number of wins than UBB for the PrevNext and 
7NN methods, and even winning 6 out of 10 times for the Data-Driven approach.

As a global measure of the RF models’ performances, their average Accuracy values 
are reported in Table 6.

In the Accuracy analysis, the BRF method again performs better than the UBB 
method, getting the highest number of wins (between 6 and 8 out of 10 datasets) for all 
missing value imputation methods.

Therefore, when analysing the performance of the RF models, both on a class-based 
analysis (measuring Sensitivity and Specificity) and considering the global measure of 
Accuracy, the BRF method was overall superior to the UBB method. This trend can be 
explained by the notion that, in the UBB method, the model overfits more on the positive 
instances (the majority class, of healthy individuals), as it is trained with a dataset hav-
ing less variability of positive instances. Conversely, when applying the BRF method, the 
model is trained with a wider variety of positive class instances due to the undersampling 
happening inside each bootstrapping process (for each tree in the RF), so different decision 
trees in the RF are likely to learn to detect different aspects of the majority class.

In conclusion, overall the BRF method performed better than the UBB method in 
our experiments, and is intuitively better due to using more varied training instances of 
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the majority class, so from here on all our experiments will be performed with datasets 
where the majority-class instances are undersampled using the BRF method.

7.3  Comparing the missing value imputation methods

Once we have chosen the BRF undersampling as the method for handling the class 
imbalance in our datasets, based on the results reported in the previous Section, in this 
Section we analyse which of the Missing Value Imputation (MVI) methods is the most 
adequate for our datasets. The Sensitivity and Specificity results obtained by each MVI 
method (with BRF undersampling) are presented in Tables  7 and  8, respectively. For 
this analysis, we ranked all 7 methods from the best (rank 1) to the worst (rank 7) based 

Table 7  Average Sensitivity (True Positive Rate) values for the Random Forest algorithm, over a 10-fold 
cross-validation, using different missing value handling methods. The last row contains the average rank of 
each method, and the best value in each row is in boldface

Dataset (IR) Baseline Globalmean Agebased Prev PrevNext 7-NN Data-Driven

Arthritis (1.35) 0.702 0.66 0.678 0.674 0.658 0.674 0.679
High Blood Pressure (1.49) 0.653 0.697 0.695 0.647 0.644 0.694 0.699
Cataract (2.06) 0.662 0.671 0.675 0.677 0.64 0.667 0.67
Diabetes (6.5) 0.661 0.763 0.762 0.687 0.666 0.781 0.773
Osteoporosis (9.85) 0.644 0.702 0.693 0.648 0.648 0.706 0.695
Stroke (15.86) 0.603 0.705 0.704 0.616 0.57 0.713 0.703
Heart Attack (16.7) 0.645 0.717 0.7 0.625 0.63 0.718 0.727
Angina (26.51) 0.627 0.695 0.698 0.61 0.61 0.698 0.71
Dementia (56.96) 0.706 0.745 0.752 0.679 0.682 0.768 0.748
Parkinson’s (160.3) 0.601 0.67 0.681 0.581 0.562 0.677 0.648
Average Rank 5.2 3.2 2.85 5.35 6.5 2.4 2.5

Table 8  Average Specificity (True Negative Rate) values for the Random Forest algorithm, over a 10-fold 
cross-validation, using different missing value handling methods. The last row contains the average rank of 
each method, and the best value in each row is in boldface

Dataset (IR) Baseline Globalmean Agebased Prev PrevNext 7-NN Data-Driven

Arthritis (1.35) 0.533 0.524 0.507 0.546 0.56 0.505 0.518
High Blood Pressure (1.49) 0.702 0.618 0.604 0.655 0.691 0.605 0.616
Cataract (2.06) 0.676 0.593 0.587 0.623 0.677 0.589 0.58
Diabetes (6.5) 0.794 0.71 0.655 0.804 0.813 0.708 0.684
Osteoporosis (9.85) 0.709 0.581 0.59 0.662 0.673 0.589 0.598
Stroke (15.86) 0.724 0.599 0.52 0.722 0.734 0.601 0.568
Heart Attack (16.7) 0.698 0.571 0.608 0.721 0.716 0.574 0.591
ngina (26.51) 0.69 0.539 0.55 0.721 0.709 0.547 0.62
ementia (56.96) 0.764 0.635 0.642 0.764 0.73 0.669 0.655
Parkinson’s (160.3) 0.652 0.409 0.5 0.606 0.636 0.394 0.485
Average Rank 2.05 5.5 5.7 2.25 1.7 5.6 5.2
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on each of the measures, using three decimal places, and having tied methods share the 
same average rank – e.g., if two methods are joint first, each is assigned a rank of 1.5.

Regarding the Sensitivity values (Table 7), the 7NN method obtained the lowest aver-
age rank (2.4) and 4 best values across the 10 datasets, closely followed by the Data-
Driven method with the second lowest average rank (2.5) and 3 best values.

As expected, the trade-off for this is observed in the Specificity (Table  8) values, 
which show lower values for the 7NN and Data-Driven methods. The Prev, PrevNext 
and Baseline methods have the best Specificity results, with PrevNext achieving the 
lowest average rank (1.7) and the highest number of best Specificity values (4 out of 
10). It is worth noting, however, that the success of the Prev and PrevNext methods is 
largely due to the success of the baseline approach for handling missing values embed-
ded in the RF algorithm. This is because Prev and PrevNext have a low rate of applica-
bility, as discussed in Sect. 6, and for the missing values where these methods cannot be 
applied, the RF’s baseline approach is used.

For the analysis of global predictive performance, we present the models’ Accuracy 
results in Table 9.

Accuracy values reflect how well a model predicts both positive and negative class 
instances. Note, however, that the proportion to which each class contributes to the 
accuracy value is dependent on the proportion of instances of each class in the dataset. 
As the Accuracy values are calculated by dividing the sum of true positive and true 
negative predictions by the total number of predictions, and the positive class represents 
the majority of instances, the number of true positive predictions has a bigger impact on 
the accuracy value than the number of true negative predictions (Table 10).

In the Accuracy results the 7NN method has the smallest average rank (2.8), followed 
by the proposed Data-Driven approach (average rank of 3), repeating the trend observed 
when analysing Sensitivity (Table 7). When considering Accuracy, the Baseline mod-
els (learned from datasets without any missing value imputation) were outperformed by 
both the 7NN and Data-Driven methods for 7 out of the 10 datasets. These results cor-
roborate the conclusions of our classifier-independent comparison of the missing value 

Table 9  Average Accuracy values for the Random Forest algorithm, over a 10-fold cross-validation, using 
different missing value handling methods. The last row contains the average rank of each method, and the 
best value in each row is in boldface

Dataset (IR) Baseline Globalmean Agebased Prev PrevNext 7-NN Data-Driven

Arthritis (1.35) 0.63 0.602 0.605 0.62 0.616 0.602 0.611
High Blood Pressure (1.49) 0.673 0.665 0.658 0.65 0.663 0.658 0.666
Cataract (2.06) 0.666 0.646 0.646 0.659 0.652 0.642 0.641
Diabetes (6.5) 0.679 0.756 0.747 0.703 0.686 0.772 0.761
Osteoporosis (9.85) 0.65 0.691 0.683 0.649 0.65 0.695 0.686
Stroke (15.86) 0.61 0.698 0.693 0.622 0.58 0.706 0.695
Heart Attack (16.7) 0.648 0.709 0.694 0.63 0.635 0.71 0.72
Angina (26.51) 0.629 0.689 0.692 0.614 0.614 0.692 0.707
Dementia (56.96) 0.707 0.743 0.75 0.681 0.683 0.766 0.746
Parkinson’s (160.3) 0.601 0.668 0.679 0.581 0.563 0.674 0.647
Average Rank 4.15 3.6 3.6 5.4 5.45 2.8 3
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imputation methods (Sect. 6), where the 7NN and Data-Driven methods had overall the 
best results considering both their applicability and average estimation error rates.

To further investigate the difference between the RF models’ performances, we com-
pared their results using two non-parametric statistical significance tests, as follows. First, 
we performed the Friedman’s test, a rank-based non-parametric version of ANOVA with 
repeated measures (Friedman 1940). The Friedman’s test can be used to compare the per-
formance of several classification models simultaneously, and infer whether their results 
are statistically equivalent or not. In the latter case, a second, non-parametric, post-hoc sta-
tistical test would be required to determine whether or not different pairs of models have 
equivalent performance.

We chose non-parametric rank-based tests as, due to the small sample size (10 datasets), 
we could not assume a normal distribution of the data (Higgins 2004, Chapter 4), which is 
necessary for several other statistical tests that could be used to compare classifier results.

We applied the Friedman’s test to the Accuracy results for the 7 missing value-han-
dling techniques, with the usual significance level of � = 0.05 . The test resulted in a 
p-value= 0.022774 , which meant there was enough evidence to reject the null hypothesis 
(that the models’ performances were equivalent).

Therefore, we applied a post-hoc non-parametric test to compare the best ranked method 
(7NN) to each of the other imputation methods, adjusting the � values using Holm’s proce-
dure for multiple tests (Holm 1979). The test’s results showed that 7NN can be considered 
significantly superior to the Prev (p-value= 0.0015 compared against adjusted � = 0.0083 ) 
and PrevNext methods (p-value= 0.0019 compared against adjusted � = 0.01 ), and equiva-
lent to all other methods.

8  Conclusions

In this article we proposed a Data-Driven missing value imputation approach, and per-
formed two sets of experiments comparing it to different strategies to handle missing val-
ues in 10 longitudinal datasets. The datasets were created for the task of classification, 
using real data from the English Longitudinal Study of Ageing, with 10 age-related dis-
eases as target variables and 140 features (mostly biomarkers, with numeric, nominal and 
binary values), and a proportion of 38.5% missing values.

The proposed Data-Driven approach performs a feature-wise ranking of a set of miss-
ing value imputation methods, based on a calculation of their average estimation error 
for the known values of each feature. Then, it applies these methods to replace the miss-
ing values in each feature, starting from the best ranked one (lowest estimation error) up 
until no missing values remain, or no more methods can be used. We chose five missing 
value imputation methods for our experiments in this study, but any set of methods can 
be used by the Data-Driven approach. The chosen methods were Global Mean/mode and 
Age-based Mean/Mode, Previous Observation Carried Forward, Previous and Next Obser-
vations Combined, and K-Nearest Neighbours Mean/Mode. This set of methods includes 
representatives of standard statistics methods, methods devised specifically for longitudinal 
data, and a more sophisticated method that uses a machine learning algorithm.

The proposed approach has been evaluated in two sets of experiments. First, we com-
pared the five imputation methods to the Data-Driven approach on a classifier-independ-
ent evaluation where we calculated their applicabilities and average error rates. Then, 
we trained Random Forest classifiers with each of these methods and a baseline of doing 
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no imputation, in a classifier-dependent approach where we investigated how the chosen 
method to handle missing data affected the performance of the resulting classifiers.

For the classifier-independent evaluation, the experimental results showed that each 
of the six tested imputation methods was the most accurate for some features in the 
datasets, which corroborates the notion that no single imputation method is the best for 
every feature. The most sophisticated method, the proposed Data-Driven approach, was 
considered the best-performing method overall, due to its 100% applicability rate and 
low mean error values.

The two methods devised specifically for longitudinal data (Prev and PrevNext) had 
very low applicability (35.57% and 2.95%, respectively). However, they had the small 
average error rates both considering the numeric features and considering all features 
in the dataset, with PrevNext having the smallest average error over all methods. That, 
together with the good performance of the KNN method (which also had longitudinal 
characteristics), shows the value of considering the often ignored temporal aspect of the 
data when handling missing values in a longitudinal dataset.

For the classifier-dependent scenario, first we performed a series of experiments with 
two undersampling approaches, to decide on the one that best fitted our datasets, and 
chose the Balanced Random Forest approach. Then, we compared the effects of employ-
ing seven different approaches to handle missing values in our longitudinal datasets. 
These strategies were using the five selected methods and the proposed Data-Driven 
approach to replace as many missing values as possible in the dataset, as well as the 
baseline approach of not replacing the missing values – letting the classification algo-
rithm handle them internally. We analysed the performances of RF models trained with 
datasets created with each approach using three metrics: Sensitivity, Specificity and 
Accuracy.

The 7NN and Data-Driven methods achieved the best results for this set of experi-
ments, with one of these two methods obtaining the highest Sensitivity and Accuracy 
values in 7 out of 10 datasets, and both methods obtained the two best (lowest) average 
ranks for both metrics. Although the 7NN approach slightly outperformed the Data-
Driven approach in this classifier-dependent evaluation, the latter has the advantage of 
guaranteeing that every missing value will be replaced, whereas the 7NN method was 
applicable to only 81.79% of the missing values in the datasets.

Future work may involve additional experiments with the proposed Data-Driven 
approach, both with different longitudinal datasets and different sets of missing value 
imputation methods. As a general recommendation, we highlight the inclusion of meth-
ods devised for longitudinal data in machine learning applications for this type of data-
set, given the good results these methods obtained in our experiments.

Appendix A: Feature Description Table

See Table 10.
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