Skip to main content
Log in

Ranking of single-valued neutrosophic numbers through the index of optimism and its reasonable properties

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In this paper an innovative method of ranking neutrosophic number based on the notions of value and ambiguity of a single-valued neutrosophic number is being developed. The method is based on the convex combination of value and ambiguity of truth-membership function with the sum of values and ambiguities of indeterminacy-membership and falsity-membership functions. This convex combination is also termed as an index of optimism. The index of optimism, \(\lambda =1\), is termed as optimistic decision-maker as it considers the value and the ambiguity of the truth-membership function, ignoring the contributions from indeterminacy-membership and falsity-membership functions. Similarly, the index of optimism, \(\lambda =0\), is termed as pessimistic decision-maker as it considers the values and the ambiguities of the indeterminacy-membership and falsity-membership functions, ignoring the contribution from truth-membership function. Further, the index of optimism, \(\lambda =0.5\), is termed as moderate decision-maker as it considers the values and the ambiguities of all the membership functions. The approach is a novel as it completely oath to follow the reasonable properties of a ranking method. It is worth to mention that the current approach consistently ranks the single-valued neutrosophic numbers as well as their corresponding images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aal SIA, Ellatif MAA, Hassan MM (2018) Two ranking methods of single valued triangular neutrosophic numbers to rank and evaluate information systems quality. Neutrosophic Sets Syst 19:131–141

    Google Scholar 

  • Atanassov KT (1989) More on intuitionistic fuzzy sets. Fuzzy Sets Syst 33(1):37–45

    Article  MathSciNet  Google Scholar 

  • Atanassov KT (1999) Intuitionistic fuzzy sets. Springer, Berlin, pp 1–137

    Book  Google Scholar 

  • Atanassov KT (2000) Two theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst 110(2):267–269

    Article  MathSciNet  Google Scholar 

  • Biswas P, Pramanik S, Giri BC (2016) Value and ambiguity index based ranking method of single-valued trapezoidal neutrosophic numbers and its application to multi-attribute decision making. Neutrosophic Sets Syst 12:127–138

    Google Scholar 

  • Chakraborty D, Jana DK, Roy TK (2015) Arithmetic operations on generalized intuitionistic fuzzy number and its applications to transportation problem. Opsearch 52:431–471

    Article  MathSciNet  Google Scholar 

  • Chutia R (2017) Ranking of fuzzy numbers by using value and angle in the epsilon-deviation degree method. Appl Soft Comput 60:706–721

    Article  Google Scholar 

  • Chutia R (2020) Ranking of Z-numbers based on value and ambiguity at levels of decision making. Int J Intell Syst 36(1):313–331

    Article  Google Scholar 

  • Chutia R, Chutia B (2017) A new method of ranking parametric form of fuzzy numbers using value and ambiguity. Appl Soft Comput 52(Supplement C):1154–1168

    Article  Google Scholar 

  • Chutia R, Saikia S (2018) Ranking intuitionistic fuzzy numbers at levels of decision-making and its application. Expert Syst 35(5):e12292

    Article  Google Scholar 

  • Deli I (2018) Operators on single valued trapezoidal neutrosophic numbers and SVTN-group decision making. Neutrosophic Sets Syst 22:131–150

    Google Scholar 

  • Deli I, Subas Y (2017) A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems. Int J Mach Learn Cybern 8(4):1309–1322

    Article  Google Scholar 

  • Edalatpanah SA (2020a) Neutrosophic structured element. Expert Syst 37(5):e12542

    Article  Google Scholar 

  • Edalatpanah SA (2020b) Systems of neutrosophic linear equations. Neutrosophic Sets Syst 33(1):92–104

    Google Scholar 

  • Edalatpanah SA (2020) Data envelopment analysis based on triangular neutrosophic numbers. CAAI Trans Intell Technol 5(2):94–98

    Article  MathSciNet  Google Scholar 

  • Edalatpanah SA (2020) A direct model for triangular neutrosophic linear programming. Int J Neutrosophic Sci 1(1):19–28

    Article  Google Scholar 

  • Edalatpanah SA, Smarandache F (2019) Data envelopment analysis for simplified neutrosophic sets. Neutrosophic Sets Syst 29:215–226

    Google Scholar 

  • Giri B, Molla MU, Biswas P (2018) Topsis method for MADM based on interval trapezoidal neutrosophic number. Neutrosophic Sets Syst 22:151–167

    Google Scholar 

  • Jana C, Pal M, Karaaslan F, Wang JQ (2020) Trapezoidal neutrosophic aggregation operators and their application to the multi-attribute decision-making process. Sci Iran 27(3):1655–1673

    Google Scholar 

  • Karaaslan F (2018a) Gaussian single-valued neutrosophic numbers and its application in multi-attribute decision making. Neutrosophic Sets Syst 22(1):101–117

    Google Scholar 

  • Karaaslan F (2018b) Multi-criteria decision-making method based on similarity measures under single-valued neutrosophic refined and interval neutrosophic refined environments. Int J Intell Syst 33(5):928–952

    Article  MathSciNet  Google Scholar 

  • Karaaslan F, Davvaz B (2018) Properties of single-valued neutrosophic graphs. J Intell Fuzzy Syst 34(1):57–79

    Article  Google Scholar 

  • Karaaslan F, Hayat K (2018) Some new operations on single-valued neutrosophic matrices and their applications in multi-criteria group decision making. Appl Intell 48(12):4594–4614

    Article  Google Scholar 

  • Karaaslan F, Hunu F (2020) Type-2 single-valued neutrosophic sets and their applications in multi-criteria group decision making based on topsis method. J Ambient Intell Humaniz Comput 11:4113–4132

    Article  Google Scholar 

  • Lee JG, Senel G, Lim PK, Kim J, Hur K (2020) Octahedron sets. Ann Fuzzy Math Inform 19(3):211–238

    MathSciNet  MATH  Google Scholar 

  • Mao X, Guoxi Z, Fallah M, Edalatpanah SA (2020) A neutrosophic-based approach in data envelopment analysis with undesirable outputs. Math Probl Eng

  • Nancy Garg H (2016) An improved score function for ranking neutrosophic sets and its application to decision-making process. Int J Uncertain Quantif 6(5):377–385

    Article  Google Scholar 

  • Peng JJ, Wang JQ, Zhang HY, Chen XH (2014) An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl Soft Comput 25:336–346

    Article  Google Scholar 

  • Smarandache F (1998) A unifying field in logics neutrosophy: neutrosophic probability, set and logic. American Research Press, Rehoboth

    MATH  Google Scholar 

  • Smarandache F (1999) A unifying field in logics: Neutrosophic logic. In: Philosophy. American Research Press, Rehoboth, pp 1–141

    Google Scholar 

  • Smarandache F (2006) Neutrosophic set - a generalization of the intuitionistic fuzzy set. In: 2006 IEEE International Conference on Granular Computing, pp 38–42

  • Ulucay V, Kilic A, Yildiz I, Sahin M (2018) A new approach for multi-attribute decision-making problems in bipolar neutrosophic sets. Neutrosophic Sets Systs 23(1):142–159

    Google Scholar 

  • Ulucay V, Kilic A, Yildiz I, Sahin M (2019) An outranking approach for MCDM-problems with neutrosophic multi-sets. Neutrosophic Sets Syst 30(1):213–224

    Google Scholar 

  • Wang X, Kerre EE (2001a) Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst 118(3):375–385

    Article  MathSciNet  Google Scholar 

  • Wang X, Kerre EE (2001b) Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets Syst 118(3):387–405

    Article  MathSciNet  Google Scholar 

  • Wang H, Smarandache F, Zhang Y, Sunderraman R (2010) Single valued neutrosophic sets. Multispace Multistruct 4:410–413

    MATH  Google Scholar 

  • Yang W, Cai L, Edalatpanah SA, Smarandache F (2020) Triangular single valued neutrosophic data envelopment analysis: application to hospital performance measurement. Symmetry 12(4):588

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rituparna Chutia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs of the theorems

Proofs of the theorems

1.1 Proof of the Theorem 3.2

The proof of the above statements are as follows.

  1. 1.

    The proof of this statement is followed immediately.

  2. 2.

    Consider the cases when \(\widetilde{a}\succ \widetilde{b}\) happens, that is,

    $$\begin{aligned} \widetilde{a}\succ \widetilde{b}\,\text {happens for}\, {\left\{ \begin{array}{ll} &{}{\mathcal {R}}_{\lambda }(\widetilde{a},0,0,0)>{\mathcal {R}}_{\lambda }(\widetilde{b},0,0,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},0,0,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{b},0,0,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},0,\pm 1,0)>{\mathcal {R}}_{\lambda }(\widetilde{b},0,\pm 1,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},0,\pm 1,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{b},0,\pm 1,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,0,0)>{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,0,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,0,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,0,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,\pm 1,0)>{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,\pm 1,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,\pm 1,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,\pm 1,\pm 1) \end{array}\right. }. \end{aligned}$$

    Consider the cases when \(\widetilde{b}\succ \widetilde{c}\) happens, that is,

    $$\begin{aligned} \widetilde{b}\succ \widetilde{c}\,\text {happens for}\, {\left\{ \begin{array}{ll} &{}{\mathcal {R}}_{\lambda }(\widetilde{b},0,0,0)>{\mathcal {R}}_{\lambda }(\widetilde{c},0,0,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{b},0,0,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{c},0,0,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{b},0,\pm 1,0)>{\mathcal {R}}_{\lambda }(\widetilde{c},0,\pm 1,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{b},0,\pm 1,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{c},0,\pm 1,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,0,0)>{\mathcal {R}}_{\lambda }(\widetilde{c},\pm 1,0,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,0,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{c},\pm 1,0,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,\pm 1,0)>{\mathcal {R}}_{\lambda }(\widetilde{c},\pm 1,\pm 1,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,\pm 1,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{c},\pm 1,\pm 1,\pm 1) \end{array}\right. } \end{aligned}$$

    Now, to proof this property, it need to discuss these \(8\times 8\) cases, which will make the proof tedious. However, one can see the proof trivially, if following claims can be established. Claim 1: Let \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\), and \(\theta _i=0\) in ordering \(\widetilde{b}\) and \(\widetilde{c}\). Then \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{c}\). The proof of this claim is as follows. Let \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Similarly, if \(\theta _i=0\) in ordering \(\widetilde{b}\) and \(\widetilde{c}\), then \({\mathcal {V}}(\mu _{\widetilde{b}})\ne {\mathcal {V}}(\mu _{\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{b}})\ne {\mathcal {V}}(\rho _{\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{b}})\ne {\mathcal {V}}(\nu _{\widetilde{c}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{c}})\). So, \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{c}\). Claim 2: Let \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\), and \(\theta _i=\pm 1\) in ordering \(\widetilde{b}\) and \(\widetilde{c}\). Then \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{c}\). The proof of this claim is as follows. Let \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Similarly, if \(\theta _i=\pm 1\) in ordering \(\widetilde{b}\) and \(\widetilde{c}\), then \({\mathcal {V}}(\mu _{\widetilde{b}})={\mathcal {V}}(\mu _{\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{b}})={\mathcal {V}}(\rho _{\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{b}})={\mathcal {V}}(\nu _{\widetilde{c}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{c}})\). So, \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{c}\). Claim 3: Let \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\), and \(\theta _i=\pm 1\) in ordering \(\widetilde{b}\) and \(\widetilde{c}\). then \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{c}\). The proof of this claim is as follows. Let \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Similarly, if \(\theta _i=\pm 1\) in ordering \(\widetilde{b}\) and \(\widetilde{c}\), then \({\mathcal {V}}(\mu _{\widetilde{b}})={\mathcal {V}}(\mu _{\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{b}})={\mathcal {V}}(\rho _{\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{b}})={\mathcal {V}}(\nu _{\widetilde{c}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{c}})\). So, \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{c}\). Claim 4: Let \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\), and \(\theta _i=0\) in ordering \(\widetilde{b}\) and \(\widetilde{c}\). Then \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{c}\). The proof of this claim is as follows. Let \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Similarly, if \(\theta _i=0\) in ordering \(\widetilde{b}\) and \(\widetilde{c}\), then \({\mathcal {V}}(\mu _{\widetilde{b}})\ne {\mathcal {V}}(\mu _{\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{b}})\ne {\mathcal {V}}(\rho _{\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{b}})\ne {\mathcal {V}}(\nu _{\widetilde{c}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{c}})\). So, \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{c}\). From these four claims, it is trivial enough to show that if \(\widetilde{a}\succ \widetilde{b}\) and \(\widetilde{b}\succ \widetilde{c}\), then \(\widetilde{a}\succ \widetilde{c}\). Further, from the definition of \(\succeq\), it follows that transitivity also holds for the order relation \(\succeq\).

  3. 3.

    This statement is followed immediately, as the order relations \(\succ\) and \(\sim\) particularly based on order relation > and \(=\) of real numbers.

  4. 4.

    If \(\widetilde{a}=\widetilde{b}\), then \({\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3)={\mathcal {R}}_{\lambda }(\widetilde{b},\theta _1,\theta _2,\theta _3)\). Thus, the statement is followed.

1.2 Proof of the Theorem 3.5

The proof of this theorem, follows immediately if the invariance of \(\theta _i\) in ordering \(\widetilde{a}\), \(\widetilde{b}\) and \(\widetilde{a}+\widetilde{c}\), \(\widetilde{b}+\widetilde{c}\) can be established. Hence, a claim has to be made. The claim is as follows.

Claim : The value of \(\theta _i\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\) are invariant in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{c}\). The proof of the claim follows from the following eight cases:

Case 1::

Let \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{c}})\). So, \(\theta _i=0\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{c}\).

Case 2::

Let \(\theta _1=0\), \(\theta _2=0\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})= {\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{c}})\). So, \(\theta _1=0\), \(\theta _2=0\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{c}\).

Case 3::

Let \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})= {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})= {\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{c}})\). So, \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=0\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{c}\).

Case 4::

Let \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})= {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})={\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})={\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{c}})\). So, \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{c}\).

Case 5::

Let \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})= {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})= {\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{c}})\). So, \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=0\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{c}\).

Case 6::

Let \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})= {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})= {\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})={\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{c}})\). So, \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{c}\).

Case 7::

Let \(\theta _1=\pm 1\), \(\theta _2=\pm 1\) and \(\theta _3=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})= {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})= {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})= {\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})= {\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{c}})\). So, \(\theta _1=\pm 1\), \(\theta _2=\pm 1\) and \(\theta _3=0\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{c}\).

Case 8::

Let \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})= {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})= {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})= {\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})= {\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})= {\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{c}})\). So, \(\theta _i=\pm 1\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{c}\).

The above eight cases suggest that \(\theta _1\) and \(\theta _2\) are invariant in ordering \(\widetilde{a}\), \(\widetilde{b}\) and \(\widetilde{a}+\widetilde{c}\), \(\widetilde{b}+\widetilde{c}\). Hence, the claim.

Now, by the Theorem 3.1 it follows that

$$\begin{aligned} {\mathcal {R}}_{\lambda }(\widetilde{a}+\widetilde{c},\theta _1,\theta _2,\theta _3)={\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3)+{\mathcal {R}}_{\lambda }(\widetilde{c},\theta _1,\theta _2,\theta _3), \end{aligned}$$

and

$$\begin{aligned} {\mathcal {R}}_{\lambda }(\widetilde{b}+\widetilde{c},\theta _1,\theta _2,\theta _3)={\mathcal {R}}_{\lambda }(\widetilde{b},\theta _1,\theta _2,\theta _3)+{\mathcal {R}}_{\lambda }(\widetilde{c},\theta _1,\theta _2,\theta _3), \end{aligned}$$

Hence, if \(\widetilde{a}\succeq \widetilde{b}\), then it is obvious that \({\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},\theta _1,\theta _2,\theta _3)\). This leads to the inequality \({\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3)+{\mathcal {R}}_{\lambda }(\widetilde{c},\theta _1,\theta _2,\theta _3)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},\theta _1,\theta _2,\theta _3)+{\mathcal {R}}_{\lambda }(\widetilde{c},\theta _1,\theta _2,\theta _3)\), which evidently follows the inequality \({\mathcal {R}}_{\lambda }(\widetilde{a}+\widetilde{c},\theta _1,\theta _2,\theta _3)\ge {\mathcal {R}}_{\lambda }(\widetilde{b}+\widetilde{c},\theta _1,\theta _2,\theta _3)\). Thus, the result follows immediately.

1.3 Proof of the Theorem 3.9

Let \(\widetilde{a}\succeq \widetilde{b}\). Then \({\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},\theta _1,\theta _2,\theta _3)\). Let \(k>0\). Then using the Proposition 3.4, it follows that

$$\begin{aligned} {\mathcal {R}}_{\lambda }(k\widetilde{a},\theta _1,\theta _2,\theta _3)=&\lambda \{{\mathcal {V}}(\mu _{k\widetilde{a}})+\theta _1{\mathcal {A}}(\mu _{k\widetilde{a}})\}&\\&+(1-\lambda )\{{\mathcal {V}}(\rho _{k\widetilde{a}})+\theta _2{\mathcal {A}}(\rho _{k\widetilde{a}})+{\mathcal {V}}(\nu _{k\widetilde{a}})+\theta _3{\mathcal {A}}(\nu _{k\widetilde{a}})\}&\\ =&k\lambda \{{\mathcal {V}}(\mu _{\widetilde{a}})+\theta _1{\mathcal {A}}(\mu _{\widetilde{a}})\}&\\&+k(1-\lambda )\{{\mathcal {V}}(\rho _{\widetilde{a}})+\theta _2{\mathcal {A}}(\rho _{\widetilde{a}})+{\mathcal {V}}(\nu _{\widetilde{a}})+\theta _3{\mathcal {A}}(\nu _{\widetilde{a}})\}&\\ =&k{\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3).&\end{aligned}$$

Thus, when \(\widetilde{a}\succeq \widetilde{b}\), it follows that \({\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},\theta _1,\theta _2,\theta _3)\). Equivalently, it follows that \(k{\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3)\ge k{\mathcal {R}}_{\lambda }(\widetilde{b},\theta _1,\theta _2,\theta _3)\), which can be trivially expressed as \({\mathcal {R}}_{\lambda }(k\widetilde{a},\theta _1,\theta _2,\theta _3) \ge {\mathcal {R}}_{\lambda }(k\widetilde{b},\theta _1,\theta _2,\theta _3)\). So, the result, \(k\widetilde{a}\succeq k\widetilde{b}\), follows immediately.

Let \(k<0\), assume \(k=-m<0\), then the following cases arise.

Case 1::

Let \(\widetilde{a}\succeq \widetilde{b}\) for \(\theta _i=0\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(\widetilde{a},0,0)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},0,0)\). Now, as \(\widetilde{a}\succeq \widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\ge {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ge {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ge {\mathcal {V}}(\nu _{\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ne {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ne {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ne {\mathcal {V}}(\nu _{-m\widetilde{b}})\). Thus, \(\theta _i=0\) in ordering \(-m\widetilde{a}\) and \(-m\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\le {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\le {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\le {\mathcal {V}}(\nu _{-m\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(-m\widetilde{a},0,0,0)\le {\mathcal {R}}_{\lambda }(-m\widetilde{b},0,0,0)\). Hence, the result \(-m \widetilde{a}\preceq -m \widetilde{b}\) follows immediately.

Case 2::

Let \(\widetilde{a}\succeq \widetilde{b}\) for \(\theta _1=0\), \(\theta _2=0\) and \(\theta _3=\pm 1\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(\widetilde{a},0,0,\pm 1)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},0,0,\pm 1)\). Now, as \(\widetilde{a}\succeq \widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\ge {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ge {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\pm {\mathcal {A}}(\nu _{\widetilde{a}})\ge {\mathcal {V}}(\nu _{\widetilde{b}})\pm {\mathcal {A}}(\nu _{\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ne {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ne {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})={\mathcal {V}}(\nu _{-m\widetilde{b}})\). Thus, \(\theta _1=0\), \(\theta _2=0\) and \(\theta _3=\mp 1\) in ordering \(-m\widetilde{a}\) and \(-m\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\le {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\le {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\mp {\mathcal {A}}(\nu _{-m\widetilde{a}})\le {\mathcal {V}}(\nu _{-m\widetilde{b}})\mp {\mathcal {A}}(\nu _{-m\widetilde{a}})\). So, \({\mathcal {R}}_{\lambda }(-m\widetilde{a},0,0,\mp 1)\le {\mathcal {R}}_{\lambda }(-m\widetilde{b},0,0,\mp 1)\). Hence, the result \(-m \widetilde{a}\preceq -m \widetilde{b}\) follows immediately.

Case 3::

Let \(\widetilde{a}\succeq \widetilde{b}\) for \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=0\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(\widetilde{a},0,\pm 1,0)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},0,\pm 1,0)\). Now, as \(\widetilde{a}\succeq \widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\ge {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\pm {\mathcal {A}}(\rho _{\widetilde{a}})\ge {\mathcal {V}}(\rho _{\widetilde{b}})\pm {\mathcal {A}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ge {\mathcal {V}}(\nu _{\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ne {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})={\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ne {\mathcal {V}}(\nu _{-m\widetilde{b}})\). Thus, \(\theta _1=0\), \(\theta _2=\mp 1\) and \(\theta _3=0\) in ordering \(-m\widetilde{a}\) and \(-m\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\le {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\mp {\mathcal {A}}(\rho _{-m\widetilde{a}})\le {\mathcal {V}}(\rho _{-m\widetilde{b}})\mp {\mathcal {A}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\le {\mathcal {V}}(\nu _{-m\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(-m\widetilde{a},0,\mp 1,0)\le {\mathcal {R}}_{\lambda }(-m\widetilde{b},0,\mp 1,0)\). Hence, the result \(-m \widetilde{a}\preceq -m \widetilde{b}\) follows immediately.

Case 4::

Let \(\widetilde{a}\succeq \widetilde{b}\) for \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=\pm 1\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(\widetilde{a},0,\pm 1,\pm 1)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},0,\pm 1,\pm 1)\). Now, as \(\widetilde{a}\succeq \widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\ge {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\pm {\mathcal {A}}(\rho _{\widetilde{a}})\ge {\mathcal {V}}(\rho _{\widetilde{b}})\pm {\mathcal {A}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\pm {\mathcal {A}}(\nu _{\widetilde{a}}) \ge {\mathcal {V}}(\nu _{\widetilde{b}})\pm {\mathcal {A}}(\nu _{\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ne {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})={\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})={\mathcal {V}}(\nu _{-m\widetilde{b}})\). Thus, \(\theta _1=0\), \(\theta _2=\mp 1\) and \(\theta _3=\mp 1\) in ordering \(-m\widetilde{a}\) and \(-m\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\le {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\mp {\mathcal {A}}(\rho _{-m\widetilde{a}})\le {\mathcal {V}}(\rho _{-m\widetilde{b}})\mp {\mathcal {A}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\mp {\mathcal {A}}(\nu _{-m\widetilde{a}})\le {\mathcal {V}}(\nu _{-m\widetilde{b}})\mp {\mathcal {A}}(\nu _{-m\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(-m\widetilde{a},0,\mp 1,\mp 1)\le {\mathcal {R}}_{\lambda }(-m\widetilde{b},0,\mp 1,\mp 1)\). Hence, the result \(-m \widetilde{a}\preceq -m \widetilde{b}\) follows immediately.

Case 5::

Let \(\widetilde{a}\succeq \widetilde{b}\) for \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=0\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,0,0)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,0,0)\). Now, as \(\widetilde{a}\succeq \widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\pm {\mathcal {A}}(\mu _{\widetilde{a}})\ge {\mathcal {V}}(\mu _{\widetilde{b}})\pm {\mathcal {A}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ge {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ge {\mathcal {V}}(\nu _{\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{-m\widetilde{a}})={\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ne {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ne {\mathcal {V}}(\nu _{-m\widetilde{b}})\). Thus, \(\theta _1=\mp 1\), \(\theta _2=0\) and \(\theta _3=0\) in ordering \(-m\widetilde{a}\) and \(-m\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\mp {\mathcal {A}}(\mu _{-m\widetilde{a}})\le {\mathcal {V}}(\mu _{-m\widetilde{b}})\mp {\mathcal {A}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\le {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\le {\mathcal {V}}(\nu _{-m\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(-m\widetilde{a},\mp 1,0,0)\le {\mathcal {R}}_{\lambda }(-m\widetilde{b},\mp 1,0,0)\). Hence, the result \(-m \widetilde{a}\preceq -m \widetilde{b}\) follows immediately.

Case 6::

Let \(\widetilde{a}\succeq \widetilde{b}\) for \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=\pm 1\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,0,\pm 1)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,0,\pm 1)\). Now, as \(\widetilde{a}\succeq \widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\pm {\mathcal {A}}(\mu _{\widetilde{a}})\ge {\mathcal {V}}(\mu _{\widetilde{b}})\pm {\mathcal {A}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ge {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\pm {\mathcal {A}}(\nu _{\widetilde{a}})\ge {\mathcal {V}}(\nu _{\widetilde{b}})\pm {\mathcal {A}}(\nu _{\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{-m\widetilde{a}})={\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ne {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})={\mathcal {V}}(\nu _{-m\widetilde{b}})\). Thus, \(\theta _1=\mp 1\), \(\theta _2=0\) and \(\theta _3=\mp 1\) in ordering \(-m\widetilde{a}\) and \(-m\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\mp {\mathcal {A}}(\mu _{-m\widetilde{a}})\le {\mathcal {V}}(\mu _{-m\widetilde{b}})\mp {\mathcal {A}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\le {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\mp {\mathcal {A}}(\nu _{-m\widetilde{a}})\le {\mathcal {V}}(\nu _{-m\widetilde{b}})\mp {\mathcal {A}}(\nu _{-m\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(-m\widetilde{a},\mp 1,0,\mp 1)\le {\mathcal {R}}_{\lambda }(-m\widetilde{b},\mp 1,0,\mp 1)\). Hence, the result \(-m \widetilde{a}\preceq -m \widetilde{b}\) follows immediately.

Case 7::

Let \(\widetilde{a}\succeq \widetilde{b}\) for \(\theta _1=\pm 1\), \(\theta _2=\pm 1\) and \(\theta _3=0\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,\pm 1,0)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,\pm 1,0)\). Now, as \(\widetilde{a}\succeq \widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\pm {\mathcal {A}}(\mu _{\widetilde{a}})\ge {\mathcal {V}}(\mu _{\widetilde{b}})\pm {\mathcal {A}}(\mu _{\widetilde{a}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\pm {\mathcal {A}}(\rho _{\widetilde{a}})\ge {\mathcal {V}}(\rho _{\widetilde{b}})\pm {\mathcal {A}}(\rho _{\widetilde{a}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ge {\mathcal {V}}(\nu _{\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{-m\widetilde{a}})={\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})={\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ne {\mathcal {V}}(\nu _{-m\widetilde{b}})\). Thus, \(\theta _1=\mp 1\), \(\theta _2=\mp 1\) and \(\theta _3=0\) in ordering \(-m\widetilde{a}\) and \(-m\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\mp {\mathcal {A}}(\mu _{-m\widetilde{a}})\le {\mathcal {V}}(\mu _{-m\widetilde{b}})\mp {\mathcal {A}}(\mu _{-m\widetilde{a}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\mp {\mathcal {A}}(\rho _{-m\widetilde{a}})\le {\mathcal {V}}(\rho _{-m\widetilde{b}})\mp {\mathcal {A}}(\rho _{-m\widetilde{a}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\le {\mathcal {V}}(\nu _{-m\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(-m\widetilde{a},\mp 1,\mp 1,0)\le {\mathcal {R}}_{\lambda }(-m\widetilde{b},\mp 1,\mp 1,0)\). Hence, the result \(-m \widetilde{a}\preceq -m \widetilde{b}\) follows immediately.

Case 8::

Let \(\widetilde{a}\succeq \widetilde{b}\) for \(\theta _i=\pm 1\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,\pm 1,\pm 1)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,\pm 1,\pm 1)\). Now, as \(\widetilde{a}\succeq \widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\pm {\mathcal {A}}(\mu _{\widetilde{a}})\ge {\mathcal {V}}(\mu _{\widetilde{b}})\pm {\mathcal {A}}(\mu _{\widetilde{a}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\pm {\mathcal {A}}(\rho _{\widetilde{a}})\ge {\mathcal {V}}(\rho _{\widetilde{b}})\pm {\mathcal {A}}(\rho _{\widetilde{a}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\pm {\mathcal {A}}(\nu _{\widetilde{a}})\ge {\mathcal {V}}(\nu _{\widetilde{b}})\pm {\mathcal {A}}(\nu _{\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{-m\widetilde{a}})={\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})={\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})={\mathcal {V}}(\nu _{-m\widetilde{b}})\). Thus, \(\theta _i=\mp 1\) in ordering \(-m\widetilde{a}\) and \(-m\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\mp {\mathcal {A}}(\mu _{-m\widetilde{a}})\le {\mathcal {V}}(\mu _{-m\widetilde{b}})\mp {\mathcal {A}}(\mu _{-m\widetilde{a}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\mp {\mathcal {A}}(\rho _{-m\widetilde{a}})\le {\mathcal {V}}(\rho _{-m\widetilde{b}})\mp {\mathcal {A}}(\rho _{-m\widetilde{a}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\mp {\mathcal {A}}(\nu _{-m\widetilde{a}})\le {\mathcal {V}}(\nu _{-m\widetilde{b}})\mp {\mathcal {A}}(\nu _{-m\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(-m\widetilde{a},\mp 1,\mp 1,\mp 1)\le {\mathcal {R}}_{\lambda }(-m\widetilde{b},\mp 1,\mp 1,\mp 1)\). Hence, the result \(-m \widetilde{a}\preceq -m \widetilde{b}\) follows immediately.

1.4 Proof of the Theorem 3.10

Let \(k>0\) and \(k\widetilde{a}\succeq k\widetilde{b}\). Then \({\mathcal {R}}_{\lambda }(k\widetilde{a},\theta _1,\theta _2,\theta _3)\ge {\mathcal {R}}_{\lambda }(k\widetilde{b},\theta _1,\theta _2,\theta _3)\). However, by Proposition 3.4, it follows that \(k{\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3)\ge k{\mathcal {R}}_{\lambda }(\widetilde{b},\theta _1,\theta _2,\theta _3)\). Thus, the result follows immediately. If \(k<0\), let \(k=-m<0\), then \(-m\widetilde{a}\succeq -m\widetilde{b}\) implies that \({\mathcal {R}}_{\lambda }(-m\widetilde{a},\theta _1,\theta _2,\theta _3)\ge {\mathcal {R}}_{\lambda }(-m\widetilde{b},\theta _1,\theta _2,\theta _3)\). Now, eight cases arise.

Case 1::

Let \(-m\widetilde{a}\succeq -m\widetilde{b}\) for \(\theta _i=0\). Then \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ne {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ne {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ne {\mathcal {V}}(\nu _{-m\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(-m\widetilde{a},0,0,0)\ge {\mathcal {R}}_{\lambda }(-m\widetilde{b},0,0,0)\). Now, as \(-m\widetilde{a}\succeq -m\widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ge {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ge {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ge {\mathcal {V}}(\nu _{-m\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\le {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\le {\mathcal {V}}(\rho _{\widetilde{b}})\)and \({\mathcal {V}}(\nu _{\widetilde{a}})\le {\mathcal {V}}(\nu _{\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(\widetilde{a},0,0,0)\le {\mathcal {R}}_{\lambda }(\widetilde{b},0,0,0)\). Hence, the result \(\widetilde{a}\preceq \widetilde{b}\) follows immediately.

Case 2::

Let \(-m\widetilde{a}\succeq -m\widetilde{b}\) for \(\theta _1=0\), \(\theta _2=0\) and \(\theta _3=\pm 1\) then \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ne {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ne {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})={\mathcal {V}}(\nu _{-m\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(-m\widetilde{a},0,0,\pm 1)\ge {\mathcal {R}}_{\lambda }(-m\widetilde{b},0,0,\pm 1)\). Now, as \(-m\widetilde{a}\succeq -m\widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ge {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ge {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\pm {\mathcal {A}}(\nu _{-m\widetilde{a}})\ge {\mathcal {V}}(\nu _{-m\widetilde{b}})\pm {\mathcal {A}}(\nu _{-m\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, \(\theta _1=0\), \(\theta _2=0\) and \(\theta _3=\mp 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\le {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\le {\mathcal {V}}(\rho _{\widetilde{b}})\)and \({\mathcal {V}}(\nu _{\widetilde{a}})\mp {\mathcal {A}}(\nu _{\widetilde{a}})\le {\mathcal {V}}(\nu _{\widetilde{b}})\mp {\mathcal {A}}(\nu _{\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(\widetilde{a},0,0,\mp 1)\le {\mathcal {R}}_{\lambda }(\widetilde{b},0,0,\mp 1)\). Hence, the result \(\widetilde{a}\preceq \widetilde{b}\) follows immediately.

Case 3::

Let \(-m\widetilde{a}\succeq -m\widetilde{b}\) for \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=0\). Then \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ne {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})={\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ne {\mathcal {V}}(\nu _{-m\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(-m\widetilde{a},0,\pm 1,0)\ge {\mathcal {R}}_{\lambda }(-m\widetilde{b},0,\pm 1,0)\). Now, as \(-m\widetilde{a}\succeq -m\widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ge {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\pm {\mathcal {A}}(\rho _{-m\widetilde{a}})\ge {\mathcal {V}}(\rho _{-m\widetilde{b}})\pm {\mathcal {A}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ge {\mathcal {V}}(\nu _{-m\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, \(\theta _1=0\), \(\theta _2=\mp 1\) and \(\theta _3=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\le {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\mp {\mathcal {A}}(\rho _{\widetilde{a}})\le {\mathcal {V}}(\rho _{\widetilde{b}})\mp {\mathcal {A}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\le {\mathcal {V}}(\nu _{\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(\widetilde{a},0,\mp 1,0)\le {\mathcal {R}}_{\lambda }(\widetilde{b},0,\mp 1,0)\). Hence, the result \(\widetilde{a}\preceq \widetilde{b}\) follows immediately.

Case 4::

Let \(-m\widetilde{a}\succeq -m\widetilde{b}\) for \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=\pm 1\). Then \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ne {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})={\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})={\mathcal {V}}(\nu _{-m\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(-m\widetilde{a},0,\pm 1,\pm 1)\ge {\mathcal {R}}_{\lambda }(-m\widetilde{b},0,\pm 1,\pm 1)\). Now, as \(-m\widetilde{a}\succeq -m\widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\ge {\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\pm {\mathcal {A}}(\rho _{-m\widetilde{a}})\ge {\mathcal {V}}(\rho _{-m\widetilde{b}})\pm {\mathcal {A}}(\rho _{-m\widetilde{a}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\pm {\mathcal {A}}(\nu _{-m\widetilde{a}})\ge {\mathcal {V}}(\nu _{-m\widetilde{b}})\pm {\mathcal {A}}(\nu _{-m\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, \(\theta _1=0\), \(\theta _2=\mp 1\) and \(\theta _3=\mp 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\le {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\mp {\mathcal {A}}(\rho _{\widetilde{a}})\le {\mathcal {V}}(\rho _{\widetilde{b}})\mp {\mathcal {A}}(\rho _{\widetilde{a}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\mp {\mathcal {A}}(\nu _{\widetilde{a}})\le {\mathcal {V}}(\nu _{\widetilde{b}})\mp {\mathcal {A}}(\nu _{\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(\widetilde{a},0,\mp 1,\mp 1)\le {\mathcal {R}}_{\lambda }(\widetilde{b},0,\mp 1,\mp 1)\). Hence, the result \(\widetilde{a}\preceq \widetilde{b}\) follows immediately.

Case 5::

Let \(-m\widetilde{a}\succeq -m\widetilde{b}\) for \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=0\). Then \({\mathcal {V}}(\mu _{-m\widetilde{a}})={\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ne {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ne {\mathcal {V}}(\nu _{-m\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(-m\widetilde{a},\pm 1,0,0)\ge {\mathcal {R}}_{\lambda }(-m\widetilde{b},\pm 1,0,0)\). Now, as \(-m\widetilde{a}\succeq -m\widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\pm {\mathcal {A}}(\mu _{-m\widetilde{a}})\ge {\mathcal {V}}(\mu _{-m\widetilde{b}})\pm {\mathcal {A}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ge {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ge {\mathcal {V}}(\nu _{-m\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, \(\theta _1=\mp 1\), \(\theta _2=0\) and \(\theta _3=0\), in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\mp {\mathcal {A}}(\mu _{\widetilde{a}})\le {\mathcal {V}}(\mu _{\widetilde{b}})\mp {\mathcal {A}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\le {\mathcal {V}}(\rho _{\widetilde{b}})\)and \({\mathcal {V}}(\nu _{\widetilde{a}})\le {\mathcal {V}}(\nu _{\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(\widetilde{a},\mp 1,0,0)\le {\mathcal {R}}_{\lambda }(\widetilde{b},\mp 1,0,0)\). Hence, the result \(\widetilde{a}\preceq \widetilde{b}\) follows immediately.

Case 6::

Let \(-m\widetilde{a}\succeq -m\widetilde{b}\) for \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=\pm 1\). Then \({\mathcal {V}}(\mu _{-m\widetilde{a}})={\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ne {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})={\mathcal {V}}(\nu _{-m\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(-m\widetilde{a},\pm 1,0,\pm 1)\ge {\mathcal {R}}_{\lambda }(-m\widetilde{b},\pm 1,0,\pm 1)\). Now, as \(-m\widetilde{a}\succeq -m\widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\pm {\mathcal {A}}(\mu _{-m\widetilde{a}})\ge {\mathcal {V}}(\mu _{-m\widetilde{b}})\pm {\mathcal {A}}(\mu _{-m\widetilde{a}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\ge {\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\pm {\mathcal {A}}(\nu _{-m\widetilde{a}})\ge {\mathcal {V}}(\nu _{-m\widetilde{b}})\pm {\mathcal {A}}(\nu _{-m\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, \(\theta _1=\mp 1\), \(\theta _2=0\) and \(\theta _3=\mp 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\mp {\mathcal {A}}(\mu _{\widetilde{a}})\le {\mathcal {V}}(\mu _{\widetilde{b}})\mp {\mathcal {A}}(\mu _{\widetilde{a}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\le {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\mp {\mathcal {A}}(\nu _{\widetilde{a}})\le {\mathcal {V}}(\nu _{\widetilde{b}})\mp {\mathcal {A}}(\nu _{\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(\widetilde{a},\mp 1,0,\mp 1)\le {\mathcal {R}}_{\lambda }(\widetilde{b},\mp 1,0,\mp 1)\). Hence, the result \(\widetilde{a}\preceq \widetilde{b}\) follows immediately.

Case 7::

Let \(-m\widetilde{a}\succeq -m\widetilde{b}\) for \(\theta _1=\pm 1\), \(\theta _2=\pm 1\) and \(\theta _3=0\). Then \({\mathcal {V}}(\mu _{-m\widetilde{a}})={\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})={\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ne {\mathcal {V}}(\nu _{-m\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(-m\widetilde{a},\pm 1,\pm 1,0)\ge {\mathcal {R}}_{\lambda }(-m\widetilde{b},\pm 1,\pm 1,0)\). Now, as \(-m\widetilde{a}\succeq -m\widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\pm {\mathcal {A}}(\mu _{-m\widetilde{a}})\ge {\mathcal {V}}(\mu _{-m\widetilde{b}})\pm {\mathcal {A}}(\mu _{-m\widetilde{a}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\pm {\mathcal {A}}(\rho _{-m\widetilde{a}})\ge {\mathcal {V}}(\rho _{-m\widetilde{b}})\pm {\mathcal {A}}(\rho _{-m\widetilde{a}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\ge {\mathcal {V}}(\nu _{-m\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, \(\theta _1=\mp 1\), \(\theta _2=\mp 1\) and \(\theta _3=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\mp {\mathcal {A}}(\mu _{\widetilde{a}})\le {\mathcal {V}}(\mu _{\widetilde{b}})\mp {\mathcal {A}}(\mu _{\widetilde{a}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\mp {\mathcal {A}}(\rho _{\widetilde{a}})\le {\mathcal {V}}(\rho _{\widetilde{b}})\mp {\mathcal {A}}(\rho _{\widetilde{a}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\le {\mathcal {V}}(\nu _{\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(\widetilde{a},\mp 1,\mp 1,0)\le {\mathcal {R}}_{\lambda }(\widetilde{b},\mp 1,\mp 1,0)\). Hence, the result \(\widetilde{a}\preceq \widetilde{b}\) follows immediately.

Case 8::

Let \(-m\widetilde{a}\succeq -m\widetilde{b}\) for \(\theta _i=\pm 1\). Then \({\mathcal {V}}(\mu _{-m\widetilde{a}})={\mathcal {V}}(\mu _{-m\widetilde{b}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})={\mathcal {V}}(\rho _{-m\widetilde{b}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})={\mathcal {V}}(\nu _{-m\widetilde{b}})\) and \({\mathcal {R}}_{\lambda }(-m\widetilde{a},\pm 1,\pm 1,\pm 1)\ge {\mathcal {R}}_{\lambda }(-m\widetilde{b},\pm 1,\pm 1,\pm 1)\). Now, as \(-m\widetilde{a}\succeq -m\widetilde{b}\) it follows that \({\mathcal {V}}(\mu _{-m\widetilde{a}})\pm {\mathcal {A}}(\mu _{-m\widetilde{a}})\ge {\mathcal {V}}(\mu _{-m\widetilde{b}})\pm {\mathcal {A}}(\mu _{-m\widetilde{a}})\), \({\mathcal {V}}(\rho _{-m\widetilde{a}})\pm {\mathcal {A}}(\rho _{-m\widetilde{a}})\ge {\mathcal {V}}(\rho _{-m\widetilde{b}})\pm {\mathcal {A}}(\rho _{-m\widetilde{a}})\) and \({\mathcal {V}}(\nu _{-m\widetilde{a}})\pm {\mathcal {A}}(\nu _{-m\widetilde{a}})\ge {\mathcal {V}}(\nu _{-m\widetilde{b}})\pm {\mathcal {A}}(\nu _{-m\widetilde{b}})\). Clearly, \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, \(\theta _i=\mp 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Further, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}})\mp {\mathcal {A}}(\mu _{\widetilde{a}})\le {\mathcal {V}}(\mu _{\widetilde{b}})\mp {\mathcal {A}}(\mu _{\widetilde{a}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\mp {\mathcal {A}}(\rho _{\widetilde{a}})\le {\mathcal {V}}(\rho _{\widetilde{b}})\mp {\mathcal {A}}(\rho _{\widetilde{a}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\mp {\mathcal {A}}(\nu _{\widetilde{a}})\le {\mathcal {V}}(\nu _{\widetilde{b}})\mp {\mathcal {A}}(\nu _{\widetilde{b}})\). So, \({\mathcal {R}}_{\lambda }(\widetilde{a},\mp 1,\mp 1,\mp 1)\le {\mathcal {R}}_{\lambda }(\widetilde{b},\mp 1,\mp 1,\mp 1)\). Hence, the result \(\widetilde{a}\preceq \widetilde{b}\) follows immediately.

1.5 Proof of the Theorem 3.13

The proof of this theorem, follows immediately if the invariance of \(\theta _1\) and \(\theta _2\) in ordering \(\widetilde{a}\), \(\widetilde{b}\) and \(\widetilde{a}-\widetilde{c}\), \(\widetilde{b}-\widetilde{c}\) can be established. Hence, a claim has to be made. The claim is as follows.

Claim : The value of \(\theta _1\) and \(\theta _2\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\) are invariant in ordering \(\widetilde{a}-\widetilde{c}\) and \(\widetilde{b}-\widetilde{c}\). The proof of the claim follows from the following eight cases:

Case 1::

Let \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{b}-\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{b}-\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{b}-\widetilde{c}})\). So, \(\theta _i=0\) in ordering \(\widetilde{a}-\widetilde{c}\) and \(\widetilde{b}-\widetilde{c}\).

Case 2::

Let \(\theta _1=0\), \(\theta _2=0\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{b}-\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{b}-\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}-\widetilde{c}})= {\mathcal {V}}(\nu _{\widetilde{b}-\widetilde{c}})\). So, \(\theta _1=0\), \(\theta _2=0\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}-\widetilde{c}\) and \(\widetilde{b}-\widetilde{c}\).

Case 3::

Let \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})= {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{b}-\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}-\widetilde{c}})= {\mathcal {V}}(\rho _{\widetilde{b}-\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{b}-\widetilde{c}})\). So, \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=0\) in ordering \(\widetilde{a}-\widetilde{c}\) and \(\widetilde{b}-\widetilde{c}\).

Case 4::

Let \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})= {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{b}-\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}-\widetilde{c}})={\mathcal {V}}(\rho _{\widetilde{b}-\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}-\widetilde{c}})={\mathcal {V}}(\nu _{\widetilde{b}-\widetilde{c}})\). So, \(\theta _1=0\), \(\theta _2=\pm 1\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}-\widetilde{c}\) and \(\widetilde{b}-\widetilde{c}\).

Case 5::

Let \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})= {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}-\widetilde{c}})= {\mathcal {V}}(\mu _{\widetilde{b}-\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{b}-\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{b}-\widetilde{c}})\). So, \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=0\) in ordering \(\widetilde{a}-\widetilde{c}\) and \(\widetilde{b}-\widetilde{c}\).

Case 6::

Let \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})= {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}-\widetilde{c}})= {\mathcal {V}}(\mu _{\widetilde{b}-\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{b}-\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}-\widetilde{c}})={\mathcal {V}}(\nu _{\widetilde{b}-\widetilde{c}})\). So, \(\theta _1=\pm 1\), \(\theta _2=0\) and \(\theta _3=\pm 1\) in ordering \(\widetilde{a}-\widetilde{c}\) and \(\widetilde{b}-\widetilde{c}\).

Case 7::

Let \(\theta _1=\pm 1\), \(\theta _2=\pm 1\) and \(\theta _3=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})= {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})= {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}-\widetilde{c}})= {\mathcal {V}}(\mu _{\widetilde{b}-\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}-\widetilde{c}})= {\mathcal {V}}(\rho _{\widetilde{b}-\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}-\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{b}-\widetilde{c}})\). So, \(\theta _1=\pm 1\), \(\theta _2=\pm 1\) and \(\theta _3=0\) in ordering \(\widetilde{a}-\widetilde{c}\) and \(\widetilde{b}-\widetilde{c}\).

Case 8::

Let \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then, \({\mathcal {V}}(\mu _{\widetilde{a}})= {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})= {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}-\widetilde{c}})= {\mathcal {V}}(\mu _{\widetilde{b}-\widetilde{c}})\), \({\mathcal {V}}(\rho _{\widetilde{a}-\widetilde{c}})= {\mathcal {V}}(\rho _{\widetilde{b}-\widetilde{c}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}-\widetilde{c}})= {\mathcal {V}}(\nu _{\widetilde{b}-\widetilde{c}})\). So, \(\theta _i=\pm 1\) in ordering \(\widetilde{a}-\widetilde{c}\) and \(\widetilde{b}-\widetilde{c}\).

The above eight cases suggest that \(\theta _1\) and \(\theta _2\) are invariant in ordering \(\widetilde{a}\), \(\widetilde{b}\) and \(\widetilde{a}-\widetilde{c}\), \(\widetilde{b}-\widetilde{c}\). Hence, the claim.

Now, by the Theorem 3.1 it follows that it follows that

$$\begin{aligned} {\mathcal {R}}_{\lambda }(\widetilde{a}-\widetilde{c},\theta _1,\theta _2,\theta _3)={\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3)+{\mathcal {R}}_{\lambda }(-\widetilde{c},\theta _1,\theta _2,\theta _3), \end{aligned}$$

and

$$\begin{aligned} {\mathcal {R}}_{\lambda }(\widetilde{b}-\widetilde{c},\theta _1,\theta _2,\theta _3)={\mathcal {R}}_{\lambda }(\widetilde{b},\theta _1,\theta _2,\theta _3)+{\mathcal {R}}_{\lambda }(-\widetilde{c},\theta _1,\theta _2,\theta _3), \end{aligned}$$

Then, if \(\widetilde{a}\succeq \widetilde{b}\), then it is obvious that \({\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},\theta _1,\theta _2,\theta _3)\). Eventually, it leads to the inequality \({\mathcal {R}}_{\lambda }(\widetilde{a},\theta _1,\theta _2,\theta _3)+{\mathcal {R}}_{\lambda }(-\widetilde{c},\theta _1,\theta _2,\theta _3)\ge {\mathcal {R}}_{\lambda }(\widetilde{b},\theta _1,\theta _2,\theta _3)+{\mathcal {R}}_{\lambda }(-\widetilde{c},\theta _1,\theta _2,\theta _3)\). Thus, evidently it follows that \({\mathcal {R}}_{\lambda }(\widetilde{a}+(-\widetilde{c}),\theta _1,\theta _2,\theta _3)\ge {\mathcal {R}}_{\lambda }(\widetilde{b}+(-\widetilde{c}),\theta _1,\theta _2,\theta _3)\). So, the result follows immediately.

1.6 Proof of the Theorem 3.15

Consider the cases when \(\widetilde{a}\succ \widetilde{b}\) happens, that is,

$$\begin{aligned} \widetilde{a}\succ \widetilde{b}\,\text {happens for}\, {\left\{ \begin{array}{ll} &{}{\mathcal {R}}_{\lambda }(\widetilde{a},0,0,0)>{\mathcal {R}}_{\lambda }(\widetilde{b},0,0,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},0,0,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{b},0,0,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},0,\pm 1,0)>{\mathcal {R}}_{\lambda }(\widetilde{b},0,\pm 1,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},0,\pm 1,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{b},0,\pm 1,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,0,0)>{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,0,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,0,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,0,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,\pm 1,0)>{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,\pm 1,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{a},\pm 1,\pm 1,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{b},\pm 1,\pm 1,\pm 1) \end{array}\right. }. \end{aligned}$$

Consider the cases when \(\widetilde{c}\succ \widetilde{d}\) happens, that is,

$$\begin{aligned} \widetilde{c}\succ \widetilde{d}\,\text {happens for}\, {\left\{ \begin{array}{ll} &{}{\mathcal {R}}_{\lambda }(\widetilde{c},0,0,0)>{\mathcal {R}}_{\lambda }(\widetilde{d},0,0,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{c},0,0,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{d},0,0,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{c},0,\pm 1,0)>{\mathcal {R}}_{\lambda }(\widetilde{d},0,\pm 1,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{c},0,\pm 1,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{d},0,\pm 1,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{c},\pm 1,0,0)>{\mathcal {R}}_{\lambda }(\widetilde{d},\pm 1,0,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{c},\pm 1,0,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{d},\pm 1,0,\pm 1)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{c},\pm 1,\pm 1,0)>{\mathcal {R}}_{\lambda }(\widetilde{d},\pm 1,\pm 1,0)\\ &{}{\mathcal {R}}_{\lambda }(\widetilde{c},\pm 1,\pm 1,\pm 1)>{\mathcal {R}}_{\lambda }(\widetilde{d},\pm 1,\pm 1,\pm 1) \end{array}\right. } \end{aligned}$$

Now, to proof this property, it need to discuss these \(8\times 8\) cases, which will make the proof tedious. However, one can see the proof trivially, if following claims can be established.

Claim 1: Let \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\), and \(\theta _i=0\) in ordering \(\widetilde{c}\) and \(\widetilde{d}\). Then \(\theta _i=0\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{d}\). The proof of this claim is as follows. Let \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Similarly, if \(\theta _i=0\) in ordering \(\widetilde{c}\) and \(\widetilde{d}\). Then \({\mathcal {V}}(\mu _{\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{d}})\), \({\mathcal {V}}(\rho _{\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{d}})\) and \({\mathcal {V}}(\nu _{\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{d}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{d}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{d}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{d}})\). So, \(\theta _i=0\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{d}\).

Claim 2: Let \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\), and \(\theta _i=\pm 1\) in ordering \(\widetilde{c}\) and \(\widetilde{d}\). Then \(\theta _i=\pm 1\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{d}\). The proof of this claim is as follows. Let \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Similarly, if \(\theta _i=\pm 1\) in ordering \(\widetilde{c}\) and \(\widetilde{d}\), then \({\mathcal {V}}(\mu _{\widetilde{c}})={\mathcal {V}}(\mu _{\widetilde{d}})\), \({\mathcal {V}}(\rho _{\widetilde{c}})={\mathcal {V}}(\rho _{\widetilde{d}})\) and \({\mathcal {V}}(\nu _{\widetilde{c}})={\mathcal {V}}(\nu _{\widetilde{d}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})={\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{d}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})={\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{d}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})={\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{d}})\). So, \(\theta _i=\pm 1\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{d}\).

Claim 3: Let \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\), and \(\theta _i=\pm 1\) in ordering \(\widetilde{b}\) and \(\widetilde{c}\). Then \(\theta _i=0\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{d}\). The proof of this claim is as follows. Let \(\theta _i=0\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})\ne {\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})\ne {\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})\ne {\mathcal {V}}(\nu _{\widetilde{b}})\). Similarly, if \(\theta _i=\pm 1\) in ordering \(\widetilde{c}\) and \(\widetilde{d}\), then \({\mathcal {V}}(\mu _{\widetilde{c}})={\mathcal {V}}(\mu _{\widetilde{d}})\), \({\mathcal {V}}(\rho _{\widetilde{c}})={\mathcal {V}}(\rho _{\widetilde{d}})\) and \({\mathcal {V}}(\nu _{\widetilde{c}})={\mathcal {V}}(\nu _{\widetilde{d}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{d}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{d}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{d}})\). So, \(\theta _i=0\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{d}\).

Claim 4: Let \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\), and \(\theta _i=0\) in ordering \(\widetilde{c}\) and \(\widetilde{d}\). Then \(\theta _i=0\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{d}\). The proof of this claim is as follows. Let \(\theta _i=\pm 1\) in ordering \(\widetilde{a}\) and \(\widetilde{b}\). Then \({\mathcal {V}}(\mu _{\widetilde{a}})={\mathcal {V}}(\mu _{\widetilde{b}})\), \({\mathcal {V}}(\rho _{\widetilde{a}})={\mathcal {V}}(\rho _{\widetilde{b}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}})={\mathcal {V}}(\nu _{\widetilde{b}})\). Similarly, if \(\theta _i=0\) in ordering \(\widetilde{c}\) and \(\widetilde{d}\), then \({\mathcal {V}}(\mu _{\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{d}})\), \({\mathcal {V}}(\rho _{\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{d}})\) and \({\mathcal {V}}(\nu _{\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{d}})\). Thus, it follows that \({\mathcal {V}}(\mu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\mu _{\widetilde{b}+\widetilde{d}})\), \({\mathcal {V}}(\rho _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\rho _{\widetilde{b}+\widetilde{d}})\) and \({\mathcal {V}}(\nu _{\widetilde{a}+\widetilde{c}})\ne {\mathcal {V}}(\nu _{\widetilde{b}+\widetilde{d}})\). So, \(\theta _i=0\) in ordering \(\widetilde{a}+\widetilde{c}\) and \(\widetilde{b}+\widetilde{d}\).

From these four claims, it is trivial enough to show that if \(\widetilde{a}\succ \widetilde{b}\) and \(\widetilde{b}\succ \widetilde{c}\), then \(\widetilde{a}+\widetilde{c}\succ \widetilde{b}+\widetilde{d}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chutia, R., Smarandache, F. Ranking of single-valued neutrosophic numbers through the index of optimism and its reasonable properties. Artif Intell Rev 55, 1489–1518 (2022). https://doi.org/10.1007/s10462-021-09981-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-021-09981-3

Keywords

Navigation