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Abstract Electroencephalography (EEG) is used in the diagnosis and prognosis
of mental disorders because it provides brain biomarkers. However, only highly
trained doctors can interpret EEG signals due to its complexity. Machine learning
has been successfully trained with EEG signals for classifying mental disorders,
but a time consuming and disorder-dependant feature engineering (FE) and sub-
sampling process is required over raw EEG data. Deep Learning (DL) is positioned
as a prominent research field to process EEG data because (i) it features auto-
mated FE by taking advantage of raw EEG signals improving results and (ii) it
can be trained over the vast amount of data generated by EEG. In this work, a
systematic mapping study has been performed with 46 carefully selected primary
studies. Our goals were (i) to provide a clear view of which are the most prominent
study topics in diagnosis and prognosis of mental disorders by using EEG with
DL, and (ii) to give some recommendations for future works. Some results are:
epilepsy was the predominant mental disorder present in around half of the stud-
ies, convolutional neural networks also appear in approximate 50% of the works.
The main conclusions are (i) processing EEG with DL to detect mental disorders
is a promising research field and (ii) to objectively compare performance between
studies: public datasets, intra-subject validation, and standard metrics should be
used. Additionally, we suggest to pay more attention to ease the reproducibility,
and to use (when possible) an available framework to explain the results of the
created DL models.
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1 Introduction

There are more than 150 recognised mental disorders (Association et al. 2013),
some of them having high prevalence in the population. Indeed, it is estimated
that 38.2% of the European population suffer some mental disorder with a 12-
month prevalence, that is 164.8 million people (Wittchen et al. 2011). The four
most common mental disorders are anxiety, insomnia, major depression and so-
matoform (diseases characterized by various discomforts that afflict the patient
but which cannot be explained by the existence of an organic lesion). Therefore,
an early and accurate diagnostic of mental disorders could improve the quality of
life of patients. Regarding such diagnosis, one of the most commonly used tech-
niques is Electroencephalogram (EEG), which provides information from patient’s
brain that can aid to develop a trustworthy diagnostic.

EEG is performed by using a noninvasive device that captures the electrical
brain activity produced by its upper layers. It consists of an array of electrodes
which are placed over the scalp of the patient. EEG is widely used in the diagno-
sis and prognosis of mental disorders, such as epilepsy, which is currently a very
active research field (Li et al. 2019b; Sharma and Pachori 2017; Zhang and Chen
2016; Sharma et al. 2018). EEG provides objective biomarkers from the patient’s
brain (Olbrich and Arns 2013; Jeste, Frohlich, and Loo 2015; Olbrich, Van Din-
teren, and Arns 2016; Mcloughlin, Makeig, and Tsuang 2014). These biomarkers
can be recorded because of the high temporal resolution of EEG, which for some
devices can reach up to 5000Hz (see Figure 9). This high-sample frequency pro-
vides a continuous lecture of the brain function. Besides, other techniques such as
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET),
although provide a full spatial brain map, only capture a static brain image. Fur-
thermore, EEG is a relatively cheap technology since devices cost from in 700
Euros for Emotiv wearable devices and rise up to 20000 Euros in the case of a
g.tec system (Zerafa et al. 2018). EEG also enables ambulatory diagnostic, thus
reducing the costs of the health system (Dash et al. 2012; Faulkner, Arima, and
Mohamed 2012).

Traditionally, the interpretation of the EEG records is performed by doctors
who have been trained for hundred of hours. Manually analyzing EEG records
is a time-consuming task since the length of the recorded data ranges may vary
from hours to days. In order to try to automate the process, Artificial Intelli-
gence (AI) techniques have been proposed to efficiently analyzing these signals,
thus minimizing human intervention. The more typical AI task is a classification,
where an algorithm is trained to distinguish whether a patient has a mental dis-
order or not. The main advantages of using AI are (i) to provide a more objective
diagnosis and prognosis avoiding the cognitive bias (Croskerry 2003) because AI
over EEG only use biometric signals and (ii) to enable us to join EEG signals with
other biometrics data captured from the patient such as Electrocardiogram (ECG)
and Eye Movement(EM), among others, trying to increase the detection accuracy.
Machine learning (ML) is a subclass of AI techniques which has been proposed to
automatize the processing of these signals (Podgorelec 2012; Acharya et al. 2012).
However, a highly manual and time-consuming Feature Engineering (FE) process,
including channel selection (Baig, Aslam, and Shum 2020), is still needed for tra-
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ditional ML algorithms to achieve reasonable accuracy levels. To construct the
input features for a ML algorithm, it is necessary to manually compound features
that make explicit the information that is contained in the high-complexity raw
EEG data (Sun and Zhou 2014). Moreover, the FE stage is task-dependent, so
this hand-crafted process needs to be adjusted to each mental illness.

Deep Learning (DL) is, in turn, subset of ML algorithms that extend the con-
cept of the Neural Networks (NNs) by incorporating more than one hidden layer.
DL has successfully been used with a wide range of applications such as computer
vision, natural language processing and signal processing. A key feature of DL
algorithms is that using their hidden layers, they develop an automatic FE, saving
considerable human time and effort although at the cost of the capability to ex-
plain the FE carried out. DL is positioning as an alternative to process EEG data
because this automation of the FE stage minimizes human intervention. It also
can improve the classification accuracy since DL can deal with the raw EEG data
by avoiding the information loss produced in an hand-engineered FE. Because of
the previously stated reasons, we are only focusing on DL techniques. The number
of studies where DL is used to process EEG data to diagnose or prognose a mental
disorder has been increasing over the time (see Figure 12). This fact indicates that
it is an open and promising research field. We consider that a wide number of stud-
ies can be performed in this field since (i) the high number of mental disorders,
DL can process EEG biomarkers to try to automate a more objective diagnosis
or prognosis, (ii) DL is an AI field in constant evolution where continuously new
algorithms are presented which outperform the previous ones. Therefore, when a
new algorithm is released, a new research opportunity is open.

Some previous secondary studies regarding EEG and DL have already been
performed (Merlin Praveena, Angelin Sarah, and Thomas George 2020; Craik, He,
and Contreras-Vidal 2019; Roy et al. 2019). However, to the best of our knowl-
edge, and as we will explain throughout the whole paper, there is still a need for
continuing with this research topic (i) by focusing in the diagnosis or prognosis of
mental disorders because of the high number of people that presents this type of
disorders and (ii) to provide a clear mapping between mental disorders and DL
algorithms for detecting the main research areas and research gaps. These are the
main reasons why, in this paper, we carry out a Systematic Mapping Study (SMS)
for providing which mental disorders and DL techniques have been used for di-
agnosing and prognosing by means of EEG and DL. Therefore, we are discarding
those works not forcing on diagnosis or prognosis. Additionally, in this scientific
secondary study we present a mapping of mental disorders with DL techniques and
additional biomarkers used. In this mapping, we expose both the main research
areas and the existing research gaps in diagnosis and prognosis of mental disor-
ders by means of EEG and DL. In other words, what is already done and what
could be done is this field. To carry out this task, the selected primary works were
mapped by using previously defined categories according to the research questions
proposed in Section 4.1. Therefore, to the best of our knowledge, this is the first
detailed systematic review work that analyzes and classifies all the current pro-
posals that consider applying Deep Learning techniques on EEG for the diagnosis
and prognosis of different mental disorders.
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The main purpose of this work is to provide a clear view of which are the most
prominent study topics in diagnosis and prognosis of mental disorders by using
EEG with DL, as well as to expose some issues we found. For each issue, we pro-
vide insights and directions on how to potentially address them. In this manner,
we aim to contribute to make genuine progress in the diagnosis and prognosis of
mental disorders by using EEG and DL. We strongly believe that this work will
be a useful starting point to save time in finding which are the most adequate DL
techniques and their best results in the diagnosis and prognosis of mental disor-
ders. Moreover, offering a clear view of the existing issues and potential lines of
research will help to foster new ideas and solutions.

The organization of the paper is as follows: in Section 2 EEG and DL concepts
are briefly presented. Related works and motivation of this work can be found
in Section 3. The methodology we followed to carry out this study, the research
questions, databases used to retrieve papers, screening of studies, the keywording
extraction and the mapping results are shown in Section 4. In Section 5 a discussion
of the main insights is presented. Finally, in Section 6, shows the conclusions
obtained from the study.

2 EEG and Deep Learning

In the following, EEG and Deep Learning (DL) will be introduced for the sake of
the understandably of the rest of this manuscript. Hence, Section 2.1 will present
EGG and after that, Section 2.2 will do so with regard to DL.

2.1 EEG

EEG devices consist of an array of electrodes which are placed in the scalp to
capture the electrical signals produced not only by a single neuron but also in a
brain region. These signals can be used as biomarkers to diagnose and prognose
a wide range of mental illnesses. With regards to the position of the electrodes,
the international 10-20 system is the most used one (Jurcak, Tsuzuki, and Dan
2007) which typically consists in 19 electrodes with 2 additional ones located near
the ears (Mecarelli 2019). Moreover, high-density electrode systems such as 10-10
system with 81 channels and the 10-5 system with up to 345 electrodes are avail-
able. The 10-5 system has not yet been accepted by the American Clinical Neuro-
physiology Society or by the International Federation of Clinical Neurophysiology
(Mecarelli 2019). Using an internationally recognized system fosters the study re-
producibility.

EEG provides a high temporal resolution because of the high sample rate fre-
quency that can be used in the data acquisition. For analyzing the EEG captured
data, it is usually split into five frequency bands, namely, delta <4 Hz, theta 4-
8 Hz, alpha 8-13 Hz, beta 13-30 Hz and gamma >30 Hz (Hu and Zhang 2019).
Some advantages that EEG provides over MRI and PET are the low cost price,
the non-invasive nature and the possibility of performing an ambulatory diagnos-
tic. This enables the study of the brain activity continuously, over hours or even
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days. In contrast, because of the sensibility of the EEG system, patient’s muscle
movements, eye blinks and heartbeats as well as the 50 or 60 Hz of the power
lines are recorded too, thus producing interference. Hence, the signal needs to be
cleaned of noise in a pre-processing stage, prior to their analysis.

2.2 Deep Learning

Neural Networks (NNs) are a type of ML algorithm which is composed by layers
where artificial neurons or units are placed. NNs have three kind of layers called
input, hidden and output. In the input layer, the input data is placed. Next, the
hidden layer takes the input data and then a computation is done to end up trans-
ferring the result to the output layer where the final result is returned by the
network. Neurons between layers are connected, thus having each of these con-
nections a different weight. Neurons from the hidden and the output layers take
their inputs and weights and carry out a dot product which result is passed to an
activation function. Usually, this activation function is nonlinear. The inference
in NNs is done by a process called Forward-Propagation where the information
flows from the input to the output layers. For training the NNs, that is, adjust-
ing the parameters or weights of each unit to produce the expected output, the
Back-Propagation algorithm is used (Rumelhart, Hinton, and Williams 1986). In
this algorithm, the calculated error in the output layer is “propagated” through
the networks to adjust the weights of the connections. The amount added or sub-
tracted for each weight is calculated with the gradient descent algorithm which use
the direction obtained with the partial derivative of the nonlinear activation func-
tion over each weight. In this process a nonlinear boundary decision is “learned”.

Deep Learning (DL) involves all NNs architectures which employ a more than
one hidden layer. There are several DL architectures although the most com-
mons are: Multilayer Perceptron (MLP), convolutional neural networks (CNN),
Recurrent Neural Networks (RNN), Autoencoders (AE), and generative models
(Shrestha and Mahmood 2019). A more detailed description of all these kinds of
DL architectures is provided in Section 4.4.

In recent years DL has been widely applied to computer vision, natural lan-
guage processing and signal processing tasks, achieving groundbreaking results in
these fields. In healthcare, DL has become a relevant AI technique (Miotto et al.
2017; Domingues et al. 2019; Murtaza et al. 2019). Also, in recent years, DL has
become a promising research topic to process EEG records (see Figure 12). The
main advantage of processing EEG data with DL, is that, in contrast with tradi-
tional ML techniques, it can treat raw EEG data because it performs an automatic
feature engineering (FE) or feature extraction. An automatic FE can extract new
information from the raw data which can improve the classification result where
performing hand-crafted FE is not feasible. In this sense, CNNs can process raw
EEG data benefiting from spatial information, by applying convolutions over the
input EEG data in various manner: 1D convolutions to process channels in a iso-
lated form or 2D and 3D convolutions to process neighboring channels together
(Wei et al. 2018; Phang et al. 2020; Mumtaz and Qayyum 2019). Raw EEG data,
as sequence data, can also be processed by exploiting its temporal component.
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RNNs can benefit from this information by using feedback connections capable of
learning from this sequence data (Warrick, Lostanlen, and Nabhan Homsi 2019).
Machine learning techniques such as Decision Trees, KNN, or SVM are not capable
of use raw EEG data due to (i) high dimensionality: e.g. an EEG that involves 19
channels with a sample rate of 256Hz generates 292k records per minute, that is,
292k raw input features. As a result, this becomes a problem for ML algorithms
because (i) the data volume translates into significant processing time, (ii) can
translate into an overfitting problem, and (iii) they can not take advantage of the
spatio-temporal information because there is not possible to inform the algorithm
that a set of features are spatially together or form a sequence. Even when a huge
amount of data is not available, DL is still a feasible method by using pre-trained
networks. This technique is called transfer learning (Yosinski et al. 2014). For more
details see Section 5.

3 Related works

Some previous secondary studies has been done by reviewing the application of the
AI field to process EEG data. Concerning to the use of ML, (Hosseini, Hosseini,
and Ahi 2020) reviewed ML methods made for EEG analysis with bioengineering
applications. They presented that all main ML algorithms that have been used for
EEG classification tasks, such as emotion recognition, measure mental workload,
sleep scoring and mental disorder among others. As stated in the introduction
section, Feature Engineering is an important step prior to using ML over EEG
data, (Noor and Ibrahim 2020) reviewed which EEG-extracted features are more
useful for a favourable or unfavorable outcome prediction made by ML algorithms.

Regarding reviews in EEG with DL, (Merlin Praveena, Angelin Sarah, and
Thomas George 2020) has focused in which DL techniques were used for EEG
signal applications; (Craik, He, and Contreras-Vidal 2019) analysed which DL al-
gorithms have been used for EEG classification tasks. Additionally, they (i) showed
how the input data is presented to the algorithm: images, calculated features and
signal values, and (ii) explore the existence of specifics DL algorithms for a spe-
cific type of task. Finally in (Roy et al. 2019) a systematic review is done for
DL-based EEG analysis where they discuss the studies from various aspects: data,
preprocessing methodology, DL design choices, results and reproducibility of the
experiments.

To the best of our knowledge, this research is the first Systematic Mapping
Study (SMS) done in diagnosis and prognosis of mental disorders by means of
EEG and DL. We have analysed four main aspects in the selected studies: (i)
which mental disorders have been diagnosed and prognosed, (ii) DL techniques
used, (iii) additional used biomarkers and (iv) datasets used. Additionally, we
present two mappings: (i) mapping with mental disorders, DL techniques and ad-
ditional used biomarkers and (ii) mapping with the nature of the disorder detection
(diagnosis/prognosis), mental disorders and DL techniques. With those mapping,
we will show what is already done and what could be done is this field.
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With the millions of people who are affected with a mental disorder in our mind,
we have done this mapping to motivate to the research community to investigate
in this field of study by clearly showing which are the most active topics as well
as exposing some future research directions. In the same manner, we provide some
guidelines for future studies.

4 Methodology

A Systematic Mapping Study (SMS) is a secondary study which reviews primary
research with the aim of identifying research literature gaps in the field of inter-
est (Petersen et al. 2008; Budgen et al. 2008; Kitchenham, Budgen, and Brereton
2011). Other secondary studies can be used to carry out reviews such as system-
atic literature review (Kitchenham and Charters 2007) but we have chosen SMS
because of the clearer visual summary that this kind of study provides.

This work follows the SMS methodology proposed in (Petersen et al. 2008).
However, we have applied a slightly different approach in order to provide more
details and deeper understanding. Indeed, instead of reading only the papers’
abstract and conclusion, a full read has been done because the shortage of works
in our field of interest. The stages of the SMS are:

1. Definition of Research Questions. These are the questions that guide the work.
2. Conduct Search. Identification of the primary studies in databases through

querying.
3. Screening of Papers. A inclusion and exclusion criteria are used to keep relevant

papers according the work target.
4. Keywording of full text. A set of keywords and concepts is extracted of each

paper while reading. These concepts could be put together into categories.
Finally all keywords must be grouped. This enables us to relate all the works
giving a global view and to put each one in context with regards to the rest.
Keywording in the methodology proposed by (Petersen et al. 2008) is done by
reading abstracts, but we have carried out with a full read because the low
number of works present in out field of interest.

5. Data Extraction and Mapping of Studies. Frequency analysis of the keywords
enables us to identify which categories has been exploited in the past on the
topic and hence identify gaps and future research directions.

4.1 Definition of Research Questions

As we have to collect works which use EEG data with DL to detect or predict
illness in patients, we propose the following four research questions:

– RQ1: Which mental disorders have already been diagnosed and prognosed by
means of EEG and DL?

– RQ2: Which DL techniques have already been applied for diagnosing or prog-
nosing mental disorders by using EEG data as input?

– RQ3: Which other biometric data is combined with EEG?
– RQ4: Which is the source of the datasets?
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Table 1: Queries made for each database

Database Query
Scopus TITLE-ABS-KEY ( ( *eeg* OR electroencephalogra* ) AND

( diagnos* OR prognos* ) AND ”deep learning” )
Web of Science TS=( ( *eeg* OR electroencephalograp* ) AND ( diagnos*

OR prognos* ) AND ”deep learning” )
IEEE Xplore (”All Metadata”:*eeg* OR electroencephalograp*) AND

(”All Metadata”:diagnos* OR prognos*) AND (”All Meta-
data”:”deep learning” )

ScienceDirecta ( ( eeg OR electroencephalography ) AND ( diagno-
sis OR prognosis ) AND ”deep learning” )

ACM Title:(*eeg* OR electroencephalograp*) OR Ab-
stract:(*eeg* OR electroencephalograp*) OR
Keyword:(*eeg* OR electroencephalograp*))
AND (Title:(diagnos* OR prognos ) OR Ab-
stract:(diagnos* OR prognos ) OR Key-
word:(diagnos* OR prognos )) AND (Title:(”deep learning”)
OR Abstract:(”deep learning”) OR Keyword:(”deep learn-
ing”)

a Wildcard characters are not supported in this database

4.2 Conducted Search

The following terms were used to assemble the set of works which will be used in
order to answer our research questions:

– EEG
– DL
– diagnosis
– prognosis

These terms were combined to assemble the query EEG and DL and (diagnosis
or prognosis). The search was carried out in five well-known public databases,
namely Scopus, Web of Science, IEEE Xplore, ScienceDirect and ACM Digital
Library. In Table 1, it is shown the composed queries for each database according
to each search engine syntax. These queries were carried out by using the following
text fields: title, abstract and keywords. A total of 341 works were obtained. In
the next subsection we defined an inclusion and exclusion criteria to obtain only
relevant works.

4.3 Screening of Papers

Once the initial collection of works has been compiled, it is necessary to establish
inclusion and exclusion criteria to keep only those works related to our research
questions. Table 2 shows our defined criteria. Within the inclusion criteria, i1 is
relevant because only few papers were found before 2016. That is because such
year could be considered as the the upswing of DL (mainly, due to the introduction
of GPU parallel processing) and we considered that the algorithms and techniques
used prior to 2016 were not relevant for our goal. The criterion i2 was selected
to keep only the most relevant works and i4 because the followed methodology
advised so (Petersen et al. 2008). Relative to the exclusion criteria, e1 ensure that
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Table 2: Inclusion and exclusion criteria used to keep relevant papers.

criteria
Inclusion Exclusion

i1 Date of publish between 2016 to 2020-05-28 e1 No EEG signal used
i2 Journal paper e2 No mental disorder associated
i3 English-written works e3 No deep learning
i4 Primary study

we selected works where EEG is used in standalone form or combined with other
biometric signals. Hence e1 criteria is related to all of our four RQs showed in
Section 4.1. The e2 is used due to RQ1, we only want to keep works where mental
disorders are treated. Finally e3 is applied because of RQ2, and since we stick to
field of artificial intelligence, that is, DL.

As shown in Figure 1, after removing duplicate works by using DOI, inclusion
and exclusion criteria from Table 2 were applied. The criteria i4, e1, e2 and e3
were carried out manually after reading the title and abstract of the 97 candidate
works. At the end of this process a total of 46 studies were carefully selected to
accomplish this work. For a comprehensive list with the selected papers and their
extracted features, see Appendix B.

Scopus
n=190

Web of Science
n=91

IEEE Xplore
n=70

ACM
n=0

ScienceDirect
n=22

- Removing duplicates
- i1: Date
- i2: Journal
- i3: English

i4: Primary study e1: No EEG data
used

e2: No mental
disorder
associated

e3: No deep
learning

n=46

n=373

n=97 n=91

n=71n=52

Fig. 1: Procedure to select works for mapping
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4.4 Keywording of full text

Following the methodology, prior to answering the RQs (see Section 4.1), it is
fundamental to define for each RQ a set of keywords which are extracted by
reading the papers. In our analysis, we firstly made a full lecture for each of
the 46 selected papers where we extracted all the keywords that were considered
as relevant to answer the RQs. Because of the number of keywords and the high
granularity of them, we then defined groups of related keywords called categories.
Finally each category is associated with the related RQ. The discovered keywords
and categories are as follows:

RQ1.- After a full read of the selected works, we have collected a set of 23 keywords
(see Table 3) which we will use to answer the RQ. Each of these keywords corre-
spond to a mental disorder. A brief explanation of the gathered mental disorders is
presented in the following: Attention Deficit Hyperactivity Disorder (ADHD) is a
neuropsychiatric disorder characterized by inattentively, hyperactivity and impul-
sive behaviour which has high prevalence in children and adolescents (Kieling and
Rohde 2012); Autism Spectrum Disorder is a developmental disorder that affects
communication and social interaction by the presence of repetitive patterns and
behaviours (Johnson et al. 2007); Coma is a prolonged state of unconsciousness
where a person is alive but unable to move or interact with his or her environ-
ment (Jonas et al. 2019); Creutzfeldt-Jakob disease is a fatal and rapid degenera-
tive brain disorder (Zerr et al. 2009) whose first symptoms are poor coordination,
memory problems or impaired vision; Dementia is the progressive loss of cogni-
tive functions that avoid to develop everyday activities; Alzheimer’s Disease is the
most common cause of dementia type (Ferri et al. 2005); Dementia with Lewy bod-
ies is a common form of dementia characterized leading in thinking problems and
fluctuations in the level of consciousness (Weisman and McKeith 2007); Rapidly
Progressive Dementia whose speed of patient’s deterioration is over months, weeks
or days (Geschwind et al. 2008); Depression is a serious mood disorder that affect
negatively in sleeping, eating or working (Organization 2001); Fast Ripples are high
frequency signals that can be recorded by EEG and has been studied as biomarker
of Epilepsy (Bernardo et al. 2018); Epilepsy causes frequent seizures which is a ab-
normal electrical activity (Fisher et al. 2005); Parkinson’s Disease is a progressive
neurological disorder that cause not voluntary and uncontrollable movements in
the body (Jankovic 2008); Schizophrenia is a mental disorder that interrupts the
normal thinking, speech, feelings and behaviours (Andreasen 1982); Insomnia is a
sleep disorder that can make it difficult to fall asleep (Roth 2007); Apnea is a sleep
disorder where the patient has pauses in breathing (Young, Peppard, and Gottlieb
2002); Limb Movements makes the patient moves limbs involuntarily and during
sleep (Picchietti and Winkelman 2005); Sleep Arousals are short interruptions in
the sleep (Halász et al. 2004). From 23 keywords, we determined 10 mental disor-
der categories (see Table 3). Collapsing specific mental disorders into a category
will enable us to obtain a high-level vision of the spectrum of disorders that have
been diagnosed and prognosed with EEG and DL.

RQ2.- These 18 keywords relative to DL algorithms were extracted (see Table 4):
Multilayer Perceptron (MLP) is composed by one input layer, one or more hid-
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den layers and one output layer (Rumelhart, Hinton, and Williams 1986). If the
network has more than one hidden layer then can be called Deep Neural Network
(DNN); Convolutional Neural Network (CNN) uses the convolution operation in
one or more layers where a convolution kernel is applied to the input data to
produce a feature map. These networks can learn spatial features from the in-
put data (LeCun et al. 1998); Fast Region-based Convolutional Network (Fast
R-CNN) develops object detection with high accuracy and less training time con-
sumption because of the low number of parameters (Girshick 2015); Recurrent
Neural Network (RNN) is a DNN which includes feedback connections capable
to learn from sequence data (Rumelhart, Hinton, and Williams 1986); Long-Short
Term Memory (LSTM) is a RNN that uses LSTM cells for solving the vanish gra-
dient problem, performing better, taking less time to train and detecting long-term
dependencies (Hochreiter and Schmidhuber 1997); Gated Recurrent Unit (GRU)
is a simplification of the LSTM cell (Cho et al. 2014); Bidirectional LSTM not
only preserve information of the input sequence from the past (backward) but also
from the future (forward) (Graves and Schmidhuber 2005); RCNN and C-LSTM
are hybrid architectures called Recurrent Convolutional Neural Network and Con-
volutional Long-Short Term Memory respectively, which are composed by a CNN
model followed by a RNN model, these networks can learn spatio-temporal fea-
tures from the input data (Zhou et al. 2015); Autoencoder is an neural network
capable to create a deterministic low dimensional representation of the input vec-
tor (Bourlard and Kamp 1988); Stacked Autoencoder is an Autoencoder with more
than one hidden layer (Hinton and Salakhutdinov 2006); Denoising Autoencoder
(DAE) differs that is trained with corrupted inputs, the result is a learned low di-
mensional representation more robust to noise (Vincent et al. 2010); Multimodal
Denoising Autoencoder (MDAE) is capable to learn a join representation from
the input data that come from multiple modalities (Poirson and Idrees 2013);
Convolutional Autoencoder (CAE) can learn a low dimensional latent representa-
tion preserving spatial locality of the input data (Masci et al. 2011); Convolutional
Variational Autoencoder (Convolutional VAE) is a probabilistic Autoencoder that
can generate new instances similar to the training set (Kingma and Welling 2014)
preserving spatial locality as well; Restricted Boltzmann Machines (RBM ) is a
type of generative model that learns a probability distribution from its inputs and
has not connections between visible or between hidden units (Smolensky 1986);
Wasserstein Generative Adversarial Network (WGAN ) is a generative model that
involves two neural networks called generator, that produce fake noise samples
from training data, and discriminator, that have to differentiate if the sample is
real or a fake made by the generator, and uses Wasserstein distance for measuring
model performance in order to avoid the vanishing gradient problem (Arjovsky,
Chintala, and Bottou 2017); Siamese Neural Network SNN are two identical net-
works where comparing their encoding outputs for two given inputs, is returned
the degree of similarity of these two inputs (Bromley et al. 1994). Once all key-
words were put together, 13 categories were defined (see Table 4). That are: Au-
toencoder, C-LSTM, CAE, CNN, Convolutional VAE, GRU, LSTM, MLP, RCNN,
RBM, RNN, SNN and WGAN. We only collapsed those keywords which, as far
as we known, are DNN related ones.
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Table 3: Keywords and categories extracted for the RQ1

Keyword Category
ADHD ADHD
Autism Spectrum Disorder Autism
Coma Coma
Creutzfeldt-Jakob disease

Dementia
Alzheimer’s Disease
Dementia with Lewy bodies
Rapidly Progressive Dementia
Dementia
Unipolar Depression

Depression
Major Depressive Disorder
Mild Depression
Depression
Fast Ripples

Epilepsy
Idiopathic Generalized Epilepsy
Epileptic Seizure Detection
Epileptic Seizure Prediction
Parkinson’s Disease Parkinson’s Disease
Schizophrenia Schizophrenia
Insomnia

Sleep disorder
Sleep disorder
Apnea
Limb Movements
Sleep Arousals

RQ3.- We have found eight keywords corresponding to different signals that were
obtained in conjunction with EEG (see Table 5): Abdomen belt, Airflow and Chest
belt capture respiratory signals; Electrocardiogram (ECG) measure the electrical
signals generated by the heart; Eye movement (EM ) data can be used to detect
eye blinks and clean EEG signals; Electromyography (EMG) measure the electrical
activity produced by skeletal muscles; Electrooculography (EOG) capture the eye
movements measuring the standing corneal-retinal potential; Oxygen Saturation
(SaO2 ) measure by blood analysis.

RQ4.- Thirteen keywords were defined for RQ4 which compounds the same cat-
egories (see Table 6). Category Ad-hoc refers to a datasets made purposely for
the work and Other refers to the use of third-party EEG data coming from other
studies.

In the next section, we will answer the RQs by doing frequency analysis of the
related categories and also, we will provide additional information extracted from
the full read done of each work.

4.5 Data Extraction and Mapping of Studies

For answering the proposed RQs in Section 4.1, we carried out a frequency analysis
of the categories defined above. It is worth noticing that a paper can involve more
than one category for an attribute, e.g. there are papers where more than a DL
algorithm, additional biometric data or dataset was used. In the same manner,



EEG and Deep Learning: A Systematic Mapping Study 13

Table 4: Keywords and categories extracted for the RQ2

Keyword Category
Autoencoder

Autoencoder
Stacked Autoencoder
DAE
MDAE
C-LSTM C-LSTM
CAE CAE
CNN

CNN
Fast R-CNN
Convolutional VAE Convolutional VAE
GRU GRU
Bidirectional LSTM

LSTM
LSTM
MLP MLP
RCNN RCNN
RBM RBM
RNN RNN
SNN SNN
WGAN WGAN

Table 5: Keywords and categories extracted for the RQ3

Keyword Category
Abdomen belt
Airflow
Chest belt
ECG
EM
EMG
EOG
SaO2

Table 6: Keywords and categories extracted for the RQ4.

Keyword Category
Ad-hoc
Bonn University (Andrzejak et al. 2001)
CHB-MIT (Shoeb 2009)
Freiburg University (University of Freiburg 2003)
Lomonosov Moscow State University (Gorbachevskaya and
Borisov 2002)
Kagglea

Other

PhysioNet/CinC 2018 Challengeb

Predictc

Sleep Heart Health Study (SHHS) (Dean et al. 2016)
Temple University (Obeid and Picone 2016)

UCId

a https://www.kaggle.com/
b https://physionet.org/content/challenge-2018/1.0.0/
c http://predict.cs.unm.edu/downloads.php
d https://archive.ics.uci.edu/ml/index.php
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some studies do not provide information for some analyzed attributes such as
sampling frequency or the number of EEG channels, among others. Thus, in the
following analysis, the reader will notice how the sum of papers may be higher or
lower (because the study do not provide information), that the number of selected
papers (n=46). In Appendix B is provided the extracted information from the
selected studies allowing the reproducibility of our results. In overall, the number
of the published works growth each year (see Figure 12) being China, USA and
Malaysia the countries where more studies are produced (see Figure 13). The
frequency analysis for the RQs are as follows:

RQ1.- Nine mental disorders have been diagnosed or prognosed with DL (see
Figure 2a). The predominant disorder found was epilepsy, representing the 47.83%
(22 papers) of the total of studies, followed by depression with a 15.22% (7 papers)
and schizophrenia with 8.7% (4 papers). The next disorders correspond to sleep
disorder, dementia (3 papers) and ADHD with a 6.52% (3 papers) for each one,
Coma with 4.35% (2 papers) and finally Parkinson’s disease and autism appearing
in (Ruffini et al. 2019; Ali et al. 2020) respectively. Concerning to the performance
achieved by classifying each mental disorder, we have extracted the accuracy for
those studies which made a more-reliable intra-subject validation, that is, the test
set only contains patients not used in the training set. In the same manner, there
is not possible to carry out an objective performance comparison between studies
because (i) there is not a reference dataset for each mental disorder and (ii) there
is not a common set of metrics used in the studies to measure the performance
(see Section 5 for more details). Hence, the following information is provided as
a guideline only. The median accuracy by mental disorders is as follows: sleep
disorder 90.1%, schizophrenia 88.13%, epilepsy 87.84%, comma 87.04%, depression
82.74%, Parkinson’s disease 81% and ADHD 83% (see Figure 3a). For dementia
and autism, the studies carry out inter-subject validation. On the other hand, we
have classified the studies in two classes (see Figure 2b): diagnosis and prognosis.
Most of the studies perform diagnosis of the mental disorders with a 69.64% (39
papers) with 23.21% for prognosis (13 papers). It is worth noting that there are 6
studies (Thara, PremaSudha, and Xiong 2019; Liang et al. 2019; Wei et al. 2018;
Acharya et al. 2018b; Hussein et al. 2019; Khan et al. 2018) where we considered
that both, diagnosis and prognosis, was carried out.

RQ2.- CNN is the most widely used DL algorithm (see Figure 3b) with a 48.58%
(28 papers), following by C-LSTM with a 10.34% (6 papers), LSTM with a 8.62%
(5 papers) and AE with a 5.17% (3 papers). After, we can find RNN, MLP, GRU,
CAE and Bidirectional LSTM with a 3.45% (2 papers) for each one. The DL
algorithms with less frequency are WGAN, SNN, RBM, RCNN, DAE and Convo-
lutional VAE used in (Wei et al. 2019; Calhas, Romero, and Henriques 2020; Bi
and Wang 2019; Biswal et al. 2018; Yuan et al. 2019; Abdelhameed and Bayoumi
2019) respectively. It is clear that Convolutional and Recurrent networks are the
most used techniques, with the hybridization between these two models, that is,
C-LSTM standing in third place. Because of epilepsy is the most frequent mental
disorder, we have repeated this analysis after removing studies which involve this
mental disorder. We noticed how the distribution of DL algorithms remain similar.
Consequently, our analysis is not biased. For those studies that provide details,
some characteristics of their DL algorithms were extracted:
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– The mean of the number of layers is 8.5 with a standard deviation of 4.81 (see
Figure 4a).

– The activation functions used are: softmax appears in the 45.28% (24 papers),
second is Rectified Linear Unit (ReLU) with a 30.19% (16 papers) and third
is sigmoid with a 9.43% (5 papers). Next are hyperbolic tangent (Tanh) and
Leaky ReLU present in a 5.66% (3 papers) for each one. Finally Exponential
Linear Unit (ELU) and linear activation functions were only used in (Vahid
et al. 2019) (see Figure 4b).

– Dropout to avoid overfitting is used in 52.17% (22 papers) and Batch Normal-
ization, which avoids the vanish and explode gradient problems, is less used,
thus appearing in the 19.57% (9 papers) (see Figure 4c).

– In term of optimizers, Adam is the most widely used with a 78.79% (26 papers)
following by Stochastic Gradient Descent (SGD), RMSprop and Adadelta with
a 6.06% (2 papers) for each one. Finally Nadam only appears in (Chen, Song,
and Li 2019) (see Figure 4d).

As for the type to the metrics used to measure the performance (see Figure 5a),
the four most used are accuracy with a 29.13% (37 papers), sensitivity with a
23.62% (30 papers), specificity with a 17.32% (22 papers) and ROC-AUC with
a 11.02% (14 papers). The rest of the metrics are as follows: precision with a
7.87% (10 papers), F1-score with a 5.51% (7 papers), false positive rate with a
3.15% (4 papers), precision-recall curve (PRC) with a 1.57% (2 papers) and false
negative rate with 0.79% (1 paper). On the other hand, 39.13%, that is, 18 papers
have measured the performance of the proposed DL algorithm with a intra-subject
validation (see Figure 5b).

RQ3.- As we explained above, we have found eight additional signals processed
together with EEG signals (see Table 6) in only four different papers (8.7%). EMG
is the most frequent one which has been used in (Wei et al. 2019; Biswal et al.
2018; Warrick, Lostanlen, and Nabhan Homsi 2019). Abdomen belt, Airflow, Chest
Belt and SaO2 were used in (Biswal et al. 2018; Warrick, Lostanlen, and Nabhan
Homsi 2019). ECG and EOG appear in (Wei et al. 2019; Warrick, Lostanlen, and
Nabhan Homsi 2019). Finally, EM was used in (Zhu et al. 2019).

RQ4.- There are 10 public EEG datasets present in the 50.98% of the studies.
Ad-hoc datasets which were built for the paper purpose or reused from the au-
thor’s previous study are employed in the 43.14% (see Figure 7a). A third case
named Other refers to the use of third-party EEG data coming from other stud-
ies which constitutes the 5.88%. In five works (Abdelhameed and Bayoumi 2019;
Wen and Zhang 2018; Khan et al. 2018; Biswal et al. 2018; Fürbass et al. 2020)
two datasets were used. In the Figure 7b, it is showed the frequency in the use
of datasets by their source (ad-hoc, public or other) and mental disorder. Only
in epilepsy, schizophrenia, sleep disorder and depression there are studies where
a public dataset has been used. Moreover, in the first three mental disorders, the
number of studies carried out with public datasets is greater or equal to those
performed with ad-hoc datasets. On the other hand, regarding to the number of
channels used to record EEG signals, 19 is the most common number with a 21.05%
(8 papers) and 256 Hz is the most used sample rate with a 35% (14 papers). See
Figures 8 and 9.



16 Manuel J. Rivera et al.

0 5 10 15 20

Adhd

Autism

Coma

Dementia

Depression

Epilepsy

Parkinson'S Disease

Schizophrenia

Sleep Disorder

(a)

Diagnosis Prognosis
0

5

10

15

20

25

30

35

40

(b)

Fig. 2: (a) Frequency of defined mental disorders categories in selected works and
(b) frequency of nature of the disorder detection in selected works

Finally, as proposed in the methodology (Petersen et al. 2008), we have carried
out two visualizations to map the RQ1, RQ2 and RQ3. We consider that doing
these mapping where RQs are combined, enables us to detect gaps where new
research works could be carried out. In the following, the relationship among RQ1
with RQ2 and RQ3 will be presented:

– Mapping of mental disorders with DL (mapping of the RQ1 and RQ2). Epilepsy
is the mental disorder where most of the DL techniques has been used: CNN,
RNN, C-LSTM, Bidirectional LSTM, CAE, Convolutional VAE, DAE, GRU,
LSTM and WGAN. In second place is dementia with four algorithms: CNN,
AE, MLP, RBM. With three DL techniques are sleep disorder (MLP, Bidirec-
tional LSTM and RCNN), Parkinson’s disease (CNN, GRU, LSTM), schizophre-
nia (CNN, GRU, LSTM) and depression (CNN, AE, C-LSTM). In ADHD only
CNN and RNN have been studied. Finally in coma and autism CNN is the only
technique employed. See Figure 10.

– Mapping of Mental disorders and other biometric data (mapping of the RQ1
and RQ3). In sleep disorder EEG data has been combined with ECG, EMG,
EOG, Abdomen belt, Airflow, Chest belt and SaO2 signals, that is, 7 out
8 additional biometric data categories identified. In epilepsy, ECG, EMG and
EOG has been used. At last with depression only appears with EM. See Figure
10.

– Mapping of mental disorder with the nature of the disorder detection (map-
ping of the RQ1). Diagnosis has been carried out for ADHD, autism, depres-
sion, schizophrenia, and sleep disorder. Prognosis has been done for coma and
Parkinson’s disease. With dementia and epilepsy, both diagnosis and prognosis,
has been carried out. See Figure 11.

– Mapping of DL with the nature of the disorder detection (mapping of the RQ1
and RQ2). For diagnosis, only GRU cells has not been used. In prognosis there
has been used AE, Bidirectional LSTM, C-LSTM, CNN, LSTM, RNN and
GRU. See Figure 11.
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Fig. 3: (a) Accuracy achieved by mental disorder (only studies with intra-subject
validation) and (b) frequency of DL techniques present in the studies

5 Discussion

In this section, we will discuss interesting insights discovered in this review and
expose some issues we found out for those we will provide some insights in order
to address them.

Related to mental disorders and DL techniques (see Figure 10), we can say
that, without taking account epilepsy which is where most studies have focused,
the rest of mental disorders present several gaps regarding to DL techniques ap-
plication. Thus, these gaps indicate unexplored fields where new researches could
be carried out, that is, processing EEG data with DL to diagnose or prognose
mental disorders. In this sense, CNN is the most used DL architecture, while the
rest of the algorithms are much less used. To the best of our knowledge, CNNs
can extract spatial features from the input data but not features that take into
account the sequentiality present in those data, i.e. EEG data. We consider that
more efforts should be done with regards to the use of recurrent DL architectures
to take advantage of the temporal component, i.e. using LSTM or GRU cells. Fur-
thermore in (Liu et al. 2020) the hybrid architecture C-LSTM was compared with
CNN and LSTM for seizure detection, obtaining C-LSTM the best performance.
In our opinion this result should motivate to use C-LSTM in the new works. With
this in mind, and since the no free lunch theorem establishes that there is no best
algorithm to every problem, it should motivate us to use more than one algorithm
when a new research work is done because we need (i) to achieve the best possible
performance and (ii) to compare the performance of these algorithms in the diag-
nosis or prognosis of a specific illnesses.

When using CNNs, an important choice is how to sort EEG channels because
adjacent channels will be processed together due to 2D convolution operation.
Usually, EEG data is presented to CNNs as a 2D array, where the X-axis is the
time and the Y-axis represents the EEG channels (see Figure 14). To carry out
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Fig. 4: (a) number of layers used for the DL algorithms, (b) frequency of the
activation functions, (c) frequency of use of Batch Normalization and Dropout
and (d) frequency of the optimizers.

a 2D convolution, a kernel with size nxm needs to be defined, where n is the
number of consecutive ”pieces” of time taken into account, and m is the number
of channels which are convoluted together. Hence, the order of the channels will
condition the accuracy of the network. A common solution is to sort the channels
regarding their correlations. In our opinion, it may not be a good solution because
channels which are not correlated with another would be treated in an isolated
manner and would not be put together with another channel with no correlation.
To avoid this issue, we propose the following method: firstly split the EEG record
(2D array) in several equal-sized 2D arrays (called records). Secondly, build a 3D
array by appending all those arrays where the dimensions are X-time, Y-channels,
Z-record. Finally, compound a 3D kernel to carry out 3D convolutions to process
every channel in an isolated manner. In Figure 15 we show this process.

A major advantage of the use of DL is the possibility of using pre-trained net-
works to carry out a totally new but related task. This can save computing time
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Fig. 9: Frequency of the sampling rate used to record EEG signals

and enables us to perform the training stage with less data. This concept is called
transfer learning (Yosinski et al. 2014). In our opinion, using transfer learning to
process EEG data should be used when the number of EEG records for training
is low, e.g. due to the lack of patients to accomplish EEG records. An example of
application could be training a network to classify patients with sleep disorders
using available public datasets (see Table 6), and then training a classifier to diag-
nosis another mental disorder, e.g. depression, by using transfer learning over this
pre-trained network.

Considering the mental disorders which have been diagnosed or prognosed with
DL (see Figure 2a), and according to (Wittchen et al. 2011) where the most preva-
lent 12 month disorders in Europe 2010 were presented, we have identified a set
of mental disorders with high prevalence which are not been diagnosed or prog-
nosed by means of EEG and DL. Those mental disorders are: i) anxiety disorders
which is the most prevalent 12-month disorder in Europe affecting to 61.5M of
persons, ii) alcohol dependence 14.6M, iii) post traumatic stress disorder 7.7M,
iv) personality disorders 6.3M, v) mental retardation 4.2M, vii) obsessive compul-
sive disorder 2.9M, viii) conduct disorder 2.1M, ix) eating disorders 1.5M and x)
cannabis dependence 1.4M. Because the amount of people affected and the promis-
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ing results employing DL with EGG, efforts in diagnosis and prognosis of these
mental disorders by means EEG and DL should be done. For a complete reference
list of mental disorders see (Association et al. 2013).

Regarding to recording and processing other biometrical data alongside EEG,
we can say that this is an open field, as we showed in our mapping (see Figure 10),
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only the 8.7% of the studies have used at least one additional kind of biometric
data. In the same manner, only in the 33% of the found mental disorders (Sleep
Disorder, Epilepsy and Depression), EEG has been combined with at least another
additional biomarker. In this sense, (Zhu et al. 2019) showed promising results by
joining EEG and EM to increase the performance of the classifier for mild depres-
sion recognition. In addition to the biometric signals used in the selected studies,
there are previous works where other different signals were combined with EEG:
in (Dupuy et al. 2014) EEG and electrodermal activity (EDA) was employed to
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Fig. 14: Example of EEG record with 19 channels

Fig. 15: Preprocessing EEG data to carry out 3D convolutions over every channel
in an isolated manner. Pink and orange cuboids are two examples of 3D kernels
convolutions.

explain ADHD symptoms. In (Gallagher et al. 2008), they used EEG with near-
infrared spectroscopy at the same time to locate the ictal onset zone in a epileptic
patient. It is important to notice that, as (Zhu et al. 2019) mention, if some of
these biometric signals are recorded, an accurate synchronization between these
signals and EEG data is essential for simultaneous analysis.

DL are blackbox algorithms, that is, their predictions are not self-explanatory.
Giving an explanation to the outcome can increase the confidence in their predic-
tions by showing that EEG electrodes and their amplitude are relevant to classify
a mental disorder. This is known as the inverse problem. Providing that explana-
tions could help doctors to trust in DL-based tools. In (Shahin et al. 2017), it was
used the Gradient-Weighted Class Activation Mapping (Grad-CAM) to identify
which EEG features have more importance for the network to predict a favourable
outcome. To explain the CNNs predictions SHAP (Lundberg and Lee 2017) can be
used, which is a game-theory-based approach aimed at explaining ML algorithms.
In their library (Lundberg and Lee 2016) two methods for explaining CNNs are
available. For a complete review of explainable methods for DL refer to (Xie et al.
2020).

The validation stage enables us to know the performance of the proposed DL
framework. As we showed, the only 39.13% of the works realized an intra-subject
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validation (see Figure 5b). This type of validation offers a realistic performance of
the algorithm because the test set is composed by different never-seen subjects,
which were not used for training. In contrast, an inter-subject validation offers an
artificial high level of performance because it do not show how the algorithm will
generalize its outcomes for a new patient. Hence, we encourage the use of intra-
subject validation. Furthermore, it is important to emphasise the significance of
being able to objectively compare the classification results among studies. This
comparison enables us to know which are the algorithms that achieve the best
performance by mental disorder. Unfortunately, only a preliminary comparison of
results has been showed because of (i) there is not a common set of metrics used
in the studies to measure the performance and (ii) there is not a reference dataset
by mental disorder. In this respect, only in 4 out 9 mental disorders (epilepsy,
schizophrenia, sleep disorder and depression) there is available a public dataset
(see Figure 7b). It is worth noting that, these 4 mental disorders are the most
common across the studies (see Figure 2a). Nevertheless, for future works (i) only
intra-subject validation should be performed, (ii) a reference dataset should be
created by mental disorder and (iii) a standard set of metrics should be used for
objectively measure the performance.

With regards to the reproducibility of the results, we have found out that the
majority of the studies do not share their source code, thus making their out-
come non-reproducible. Besides, some of the works neither offer a good detailed
explanation of the DL architecture nor presents the set-up process for the EEG
data acquisition process, such as the layout used to place the electrodes, sample
frequency, or subject characteristics. In the same manner, the captured EEG data
rarely is shared but as we noticed, sometimes privacy restrictions do not allow
researchers to make it publicly available. We consider that a detailed explanation
of the selected patients, capturing EEG data process, preprocessing (if required),
DL architecture and the type of training and validation used should be provided.
Additionally, source code and data ideally should be shared. All of these pieces
of information would allow the progress beyond the state of the art in this field
progress.

Finally, we have to mention that a limitation of our study is that it is focused
on diagnosis or prognosis of mental disorders, hence the results presented in our
work could not be generalized to other fields where EEG is used.

6 Conclusions

There is a growing interest in using EEG to train DL algorithms for diagnosis and
prognosis of mental disorders because of the promising results observed and the
continuous improvements achieved by using DL techniques. In this work, a Sys-
tematic Mapping Study is presented for clearly knowing what is already done and
what could be done within this field. Four RQs were proposed in Section 4.1 and
four public databases were queried to retrieve relevant works. 46 primary studies
were finally selected and after a full read, there were extracted relevant keywords
which were grouped in categories to answer the RQs.
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The main results are as follows: (i) nine mental disorders categories which have
been diagnosed or prognosed by using EEG data and DL, being Epilepsy the most
common one, present in 47.83% of the works, (ii) 13 categories of DL algorithms,
being CNN the most frequent appearing in 48.28% of the papers, (iii) eight addi-
tional biomarkers were combined with EEG data in 8.7% of the studies and (iv)
in 50.98% of the works, it were used a public EEG dataset.

Additional discoveries were done by combining RQs: (i) epilepsy is the men-
tal disorder where more DL techniques have been tried out and (ii) additional
biomarkers have only been employed in sleep disorder, epilepsy and depression.
Finally in the discussion section, insights and recommendations were done: (i)
without taking account epilepsy, for the rest of mental disorders there are many
gaps in the use of DL techniques. For future works, we recommend to focus in the
use of LSTM and GRU cells, as well as the hybrid C-LSTM networks because of
the continuous nature of the EEG signal, (ii) some of the most prevalent mental
disorders such as anxiety, alcohol dependence, post traumatic stress, personality
disorders, mental retardation, obsessive compulsive disorder, conduct disorder, eat-
ing disorders and cannabis dependence have not been diagnosed or prognosed by
using DL and EEG, (iii) combining additional biomarkers with EEG is a promis-
ing approach to improve the classification results, yet more efforts should be done
in this sense. Other recommendations were also provided: (i) explaining the DL
model results can be achieved for some DL techniques by using of available frame-
works. It can help in the adoption of DL techniques by providing the most relevant
EEG channels for the model predictions, (ii) we encourage to perform intra-subject
validation for getting a more realistic performance of the algorithms, thus avoiding
artificial high accuracy, (iii) to objectively compare performance between studies,
it is important to define a reference dataset by mental disorder, as well as the use
of a standard set of metrics for measuring the DL performance, and (iv) we sug-
gest paying more attention to ease the reproducibility of their results by providing
more details of the selected patients, capturing EEG data process, preprocessing
(if needed), DL architecture and the type of training and validation used as well
as sharing both the source code and the recorded data in an anonymous manner.

As a limitation, our study is focused on diagnosis or prognosis of mental dis-
orders. Hence the results presented in our work could not be generalized to other
fields where EEG is used.
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Baloglu, Ulas Baran and Özal Yildirim (2019). “Convolutional long-short term
memory networks model for long duration EEG signal classification”. In: Jour-
nal of Mechanics in Medicine and Biology 19.1, pp. 1–21. issn: 02195194. doi:
10.1142/S0219519419400050.

Bernardo, Danilo et al. (2018). “Visual and semi-automatic non-invasive detection
of interictal fast ripples: A potential biomarker of epilepsy in children with
tuberous sclerosis complex”. In: Clinical Neurophysiology 129.7, pp. 1458–1466.



EEG and Deep Learning: A Systematic Mapping Study 27

issn: 18728952. doi: 10.1016/j.clinph.2018.03.010. url: https://doi.
org/10.1016/j.clinph.2018.03.010.

Bi, Xiaojun and Haibo Wang (2019). “Early Alzheimer’s disease diagnosis based on
EEG spectral images using deep learning”. In: Neural Networks 114, pp. 119–
135. issn: 18792782. doi: 10.1016/j.neunet.2019.02.005. url: https:

//doi.org/10.1016/j.neunet.2019.02.005.
Biswal, Siddharth et al. (2018). “Expert-level sleep scoring with deep neural net-

works”. In: Journal of the American Medical Informatics Association 25.12,
pp. 1643–1650. issn: 1527974X. doi: 10.1093/jamia/ocy131.
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A List of acronyms

Table 7: List of acronyms

Text Acronym
Attention Deficit Hyperactivity Disorder ADHD
Autoencoder AE
Artificial Intelligence AI
Convolutional Long-Short Term Memory C-LSTM
Convolutional Autoencoder CAE
Convolutional Neural Network CNN
Convolutional Variational Autoencoder Convolutional VAE
Denoising Autoencoder DAE
Deep Learning DL
Deep Neural Network DNN
Electrocardiogram ECG
Electrodermal Activity EDA
Electroencephalogram EEG
Exponential Linear Unit ELU
Eye Movement EM
Electromyography EMG
Electrooculography EOG
Feature Engineering FE
Fast Region-based Convolutional Network Fast R-CNN
Gated Recurrent Unit GRU
Gradient-Weighted Class Activation Mapping Grad-CAM
Long-Short Term Memory LSTM
Multimodal Denoising Autoencoder MDAE
Multilayer Perceptron MLP
Magnetic Resonance Imaging MRI
Neural Network NN
Positron Emission Tomography PET
Restricted Boltzmann Machines RBM
Recurrent Convolutional Neural Network RCNN
Recurrent Neural Network RNN
Area Under the Receiver Operator Characteristic ROC AUC
Research Question RQ
Rectified Linear Unit ReLU
Stochastic Gradient Descent SGD
Systematic Mapping Study SMS
Siamese Neural Network SNN
Oxygen Saturation SaO2
Hyperbolic Tangent Tanh
Wasserstein Generative Adversarial Network WGAN

B Information about extracted papers
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