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Abstract
Sine Cosine Algorithm (SCA) is a recent meta-heuristic algorithm inspired by the pro-
prieties of trigonometric sine and cosine functions. Since its introduction by Mirjalili in 
2016, SCA has attracted great attention from researchers and has been widely used to solve 
different optimization problems in several fields. This attention is due to its reasonable 
execution time, good convergence acceleration rate, and high efficiency compared to sev-
eral well-regarded optimization algorithms available in the literature. This paper presents 
a brief overview of the basic SCA and its variants divided into modified, multi-objective, 
and hybridized versions. Furthermore, the applications of SCA in several domains such 
as classification, image processing, robot path planning, scheduling, radial distribution 
networks, and other engineering problems are described. Finally, the paper recommended 
some potential future research directions for SCA.
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1 Introduction

In the last three decades, researchers and scientific have given more attention to the field of 
optimization using meta-heuristics, so many meta-heuristics are being developed regularly 
for solving complex and real-world problems in various fields. According to BoussaïD 
et  al. (2013), meta-heuristics can be classified into single solutions and algorithms with 
populations as shown in Fig. 1.

The generation of a single solution at each run is the main principle of single-based 
meta-heuristic algorithms, also known as trajectory algorithms. This solution is improved 
based on the neighborhood mechanism. Some of the popular single-based meta-heuristics 
are: Simulated Annealing (SA) (Kirkpatrick et al. 1983), Guided Local Search (GLS) (Vou-
douris and Tsang 1999), Tabu Search (TS) (Glover 1994; Glover and Laguna 1998), Vari-
able Neighborhood Search (VNS) (Mladenović and Hansen 1997), Iterated Local Search 
(ILS) (Lourenço et al. 2003), Stochastic Local Search (SLS) (Hoos and Stützle 2004), and 
Greedy Randomized Adaptive Search Procedure (GRASP) (Feo and Resende 1989, 1995; 
Resende and Ribeiro 1998).

On the other side, population-based meta-heuristic algorithms requires the generation 
of a set of multiples solutions (population) at each run. It can be divided into five main 
classes: evolutionary-based, swarm intelligence-based, event-based, physics-based, and 
maths-based.

Evolutionary Algorithms (EA) is the first class of population-based algorithms which is 
inspired from the evolutionary phenomena in nature using 3 main operators (i.e. selection, 
recombination, and mutation). Some well-regarded evolutionary algorithms are: Genetic 
Algorithm (GA) (Holland 1992), Differential Evolution (DE) (Storn and Price 1997), Evo-
lutionary Programming (EP) (Yao et al. 1999), Genetic Programming (GP) (Koza 1997), 
Evolution Strategy (ES) (Beyer and Schwefel 2002), and Biogeography-Based Optimizer 
(BBO) (Simon 2008; Ma et al. 2017).

The second category includes Swarm Intelligence (SI) approaches, in which the source 
of information is the collective behaviours in nature. (e.g. birds, ants, bees, etc.). The main 
strengths of these algorithms are their simplicity, flexibility, robustness, scalability, and 
self-organization (Meraihi et al. 2020b). The two most popular SI algorithms are Particle 
Swarm Optimization (PSO) (Eberhart and Kennedy 1995; Kennedy 2010), and Ant Colony 
Optimization (ACO) (Dorigo and Di Caro 1999). Other techniques in this class are: Arti-
ficial Bee Colony (ABC) Algorithm (Karaboga and Basturk 2007), Cuckoo Search Algo-
rithm (CS) (Yang and Deb 2009; Shehab et al. 2017), Firefly Algorithm (FA) (Yang 2009; 
Fister et al. 2013), Bat Algorithm (BA) (Yang 2010, 2013), Krill Herd (KH) (Gandomi and 
Alavi 2012; Wang et al. 2019), Fruit Fly Optimization (FFO) algorithm (Pan 2012), Grey 
Wolf Optimizer (GWO) (Mirjalili et al. 2014; Faris et al. 2018; Hatta et al. 2019), Elephant 
Search Algorithm (ESA) (Deb et al. 2015), Ant Lion Optimizer (ALO) (Mirjalili 2015a; 
Abualigah et  al. 2020), Moth-Flame Optimization (MFO) Algorithm (Mirjalili 2015b; 
Hussien et al. 2020), Dragonfly Algorithm (DA) (Mirjalili 2016a; Meraihi et al. 2020b), 
Whale Optimization Algorithm (WOA) (Mirjalili and Lewis 2016; Gharehchopogh and 
Gholizadeh 2019), Grasshopper Optimization Algorithm (GOA) (Saremi et al. 2017; Mer-
aihi et al. 2021), Crow Search Algorithm (CSA) (Askarzadeh 2016; Meraihi et al. 2020a), 
and Salp Swarm Algorithm (SSA) (Mirjalili et al. 2017; Abualigah et al. 2019).

The third class is related the inspirations from different human-made events (Fausto 
et  al. 2019). Some of the most well-regarded human-based algorithms are: Harmony 
Search (HS) (Geem et al. 2001; Manjarres et al. 2013; Zhang and Geem 2019), Imperialist 
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Fig. 1  Classification of meta-heuristic algorithms
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Competitive Algorithm (ICA) (Atashpaz-Gargari and Lucas 2007), FireWork Algorithm 
(FWA) (Tan and Zhu 2010), Teaching Learning-Based Algorithm (TLBA) (Rao et  al. 
2011), and Football Game Inspired Algorithm (FGIA) (Fadakar and Ebrahimi 2016).

The fourth category is Physics-based Algorithms (PA) that imitate rules and principles 
in physics. Some examples of physics-based algorithms are: Central Force Optimization 
(CFO) (Formato 2007, 2008, 2009), Gravitational Search Algorithm (GSA) (Rashedi et al. 
2009; Siddique and Adeli 2016; Rashedi et al. 2018), and Big-Bang Big-Crunch (BBBC) 
(Erol and Eksin 2006). Other recently developed physics-based algorithms are: Magnetic 
Charged System Search (MCSS) (Kaveh et al. 2013), Electromagnetic Field Optimization 
(EFO) (Abedinpourshotorban et al. 2016), Water Evaporation Optimization (WEO) (Kaveh 
and Bakhshpoori 2016), Optics Inspired Optimization (OIO) (Kashan 2015), Multi-Verse 
Optimizer (MVO) (Mirjalili et al. 2016; Abualigah 2020), Thermal Exchange Optimization 
(TEO) (Kaveh and Dadras 2017), Sonar Inspired Optimization (SIO) (Tzanetos and Dou-
nias 2017), Vibrating Particles System Algorithm (VPSA) (Kaveh and Ghazaan 2017), and 
Henry Gas Solubility Optimization (HGSO) (Hashim et al. 2019).

The last category is Maths-based Algorithms (MA) that imitate mathematical rules. 
Some of the most well-known maths-based algorithms are: Hyper-Spherical Search (HSS) 
algorithm (Karami et  al. 2014), Radial Movement Optimization (RMO) (Rahmani and 
Yusof 2014), Stochastic Fractal Search (SFS) (Salimi 2015), Golden Ratio Optimization 
Method (GROM) (Nematollahi et al. 2020), and Sine Cosine Algorithm (SCA) (Mirjalili 
2016b).

SCA is one of the recent promising population-based meta-heuristic optimization algo-
rithms introduced by Mirjalili in 2016. This algorithm is used to solve different optimiza-
tion problems such as feature selection, image processing, robot path planning, scheduling, 
economic dispatch, radial distribution networks, and many others. It is based on the propri-
eties of the trigonometric sine and cosine functions and showed its performance and high 
efficiency compared to several well-regarded meta-heuristics existing in the literature.

This paper presents a survey of SCA, its variants (modified, multi-objective, and hybrid-
ized versions), and its applications in different domains. In order to collect published SCA 
articles, we consider various well-regarded publishers (i.e. Springer, IEEE, Elsevier, Taylor 
& Francis, Hindawi, and others) and we use Google scholar by employing the following 
search strings to build a database of SCA related articles:

• Sine Cosine Algorithm;
• Sine Cosine Optimization Algorithm;
• Improved Sine Cosine Algorithm;
• Sine Cosine meta-heuristics;
• Sine Cosine Algorithm applications;
• SCA.

The resulted papers are screened to retain only credible and original ones, using the com-
bination of inclusion and exclusion criteria shown in Table 1. These criteria ensure that the 
selection process is objective and helps to limit irrelevant papers.

The statistics arisen from our study are presented in the figures below. Figure 2 shows 
the number of related SCA publications per publisher and per publication type. We can see 
that Springer and IEEE are those who published the most about SCA. The names of the 
concerned journals are detailed in the top 10 ranking shown in Table 2. Figure 3 presents 
the number of SCA publications per year and per publisher. We can see that SCA attracted 
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a lot of interest over the last 3 years with a peak recorded in 2020. In fact, since the intro-
duction of SCA in 2016, more than 210 works have been published on this algorithm. Fig-
ure  4 represents the top 10 countries ranked by the number of SCA publications where 
India and China are the most active countries in this area ahead of Egypt, Iran, Malaysia, 
Algeria, Turkey, Canada, Spain, and Chile. Finally, Fig. 5 shows the tag cloud of the top 
ten SCA-related keywords.

Table 1  Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Papers presenting new propositions involving SCA 
algorithm

Papers published in predatory journals or predatory 
conferences

Papers presenting surveys on different SCA based 
approaches

Papers with less than 4 pages

Papers addressing at least one of the identified 
research questions

Papers written in a language other than English

Paper representing a complete version when several 
versions exist

Papers that do not provide details on the areas of 
interest of SCA algorithm

All available papers from 2016 to 2021 Papers published in the form of tutorial, abstract, 
poster, keynote, or a summary of a conference

The full paper is not available for download
Not peer-reviewed scientific papers
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Fig. 2  Number of SCA related publications by scientific databases
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Table 2  Top 10 journals ranked 
by number of SCA publications

Rank Journal Number of 
publication

1 IEEE Access 14
2 Expert Systems with Applications 13
3 Neural Computing and Applications 7
4 Applied Soft Computing 7
5 Arabian Journal for Science and Engineering 6
6 Soft Computing 6
7 Evolutionary Intelligence 5
8 Engineering with Computers 4
9 Knowledge-based Systems 3
10 Energy Conversion and Management 2

Fig. 3  Number of publications 
on SCA per year
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Fig. 4  Top 10 countries ranked by number of publications on the SCA algorithm
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To the best of our knowledge, there is only one survey (Abualigah and Diabat (2021)) 
analyzing the SCA-based papers in the literature. It covers around 100 research articles. 
However, the present SCA survey collects and discusses more than 210 articles published 
between 2016 and the beginning of 2021 which makes it different.

The rest of this paper is organized as follows. Section 2 describes the structure of the 
standard SCA. Section 3 presents the modified, multi-objective, and hybridized versions of 
SCA. The applications of SCA in various domains are discussed in Sect. 4. Section 5 gives 
comparisons and results of SCA with some well-regarded meta-heuristics. Discussion and 
some suggestions for further works are given in Sect. 6. In the end, Sect. 7 concludes the 
paper.

2  Sine Cosine Algorithm

The SCA algorithm was proposed by Seyedali Mirjalili in 2016 (Mirjalili 2016b) as a pop-
ulation-based meta-heuristic to solve optimization problems. This optimization algorithm 
uses the principle of trigonometric sine and cosine functions for updating the positions of 
individuals toward the optimal solution. The solutions in SCA are updated using the fol-
lowing equations (Mirjalili 2016b):

The effects of sine and cosine functions on Eqs. (1) and (2) are shown in Fig. 6
In general, the aforementioned equations are combined to be used as follows:

where Xt
ij
 represents the current individual i at iteration t in the d th dimension, Pt

ij
 shows 

the best individual’s position at iteration t in the d th dimension, and r1, r2, r3, r4 are random 

(1)Xt+1
ij

= Xt
ij
+ r1 ∗ sin(r2) ∗ |r3Pt

ij
− Xt

ij
|

(2)Xt+1
ij

= Xt
ij
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ij
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ij
|
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ij

=

{
Xt
ij
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ij
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ij
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Fig. 5  Top 10 SCA-related keywords
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parameters. These parameters are incorporated to avoid falling into local optima and bal-
ance exploratory and exploitative search patterns.

The parameter r1 decides whether a solution updates its position towards the best solu-
tion (r1 < 1) or outwards it (r1 > 1) . Note that r1 decreases linearly from a preset constant 
(a) to 0 (Mirjalili 2016b; Attia et al. 2018) to balance exploratory and exploitative search 
patterns. It is updated using the following equation:

where a is a constant, t is the current iteration, and Tmax represents the maximum iterations 
allowed.

The parameter r2 is set in the range of [0, 2�] that dictates how big the movement of a 
solution is towards or outwards of the destination. Another random parameter, r3 , assigns 
a random weighing to the destination. This allows emphasizing (r3 > 1) or de-emphasizing 
(r3 < 1) the impact of the destination of the position updating of other solutions. r3 is in 
the range of [0, 2]. Finally, the last random parameter r4 is in [0, 1] and acts as a switch to 
choose between the trigonometric functions of sine of cosine the Eq. 3 (Mirjalili 2016b; 
Attia et al. 2018).

The pseudo-code of the standard Sine Cosine Algorithm is illustrated in Algorithm 1 
(Mirjalili 2016b). Its corresponding flowchart is illustrated in Fig. 7.

(4)r1 = a − t
a

Tmax

Fig. 6  The effects of sine cosine functions in Eqs. (1) and (2) on the next position (Mirjalili 2016b)
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3  Recent variants of the Sine Cosine Algorithm

A wide range of SCA’s variants have been proposed in the literature, dividing into: modi-
fied, multi-objective, and hybridized versions. The variants of SCA are shown in Fig. 8.

3.1  Modified versions of Sine Cosine Algorithm

As shown previously, there are nine modified versions of SCA in the literature. In each 
version, several approaches are proposed as it is represented in Fig. 9. In the following, the 
realization details of each approach are given and the summary of the main points to retain 
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for each of them is provided in Table 3, where N represents the number of populations, D is 
the dimension, and T is the number of iterations.

3.1.1  Binary Sine Cosine Algorithm

Fernández et al. (2018) proposed a Binary Percentile SCA (BPSCOA) for solving the Set 
Covering Problem (SCP). A percentile concept is used to perform the binarization process 
of SCA. The effectiveness of BPSCOA was evaluated based on different SCP instances in 
comparison with Jumping PSO (JPSO) and Multi Dynamic Binary Black Hole (MDBBH) 
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Fig. 9  Modified versions of SCA
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algorithms. Simulation results showed that BPSCOA gives competitive results when com-
pared with JPSO and MDBBH algorithms.

Reddy et  al. (2018) proposed a new variant of binary SCA (BSCA) for solving the 
profit-based unit commitment (PBUC) problem. In BSCA, the modified sigmoidal trans-
formation function was used for binary mapping of the continuous real-valued position to 
binary search space. The performance of BSCA was evaluated using 3 generic operations 
of the competitive electricity market and results demonstrated the effectiveness of BSCA 
compared to the state-of-the-art algorithms in terms of solution quality and convergence 
speed.

Taghian and Nadimi-Shahraki (2019) proposed two versions of binary SCA, called 
S-shaped binary SCA(SBSCA) and V-shaped binary SCA (VBSCA) as a seminal attempt 
to solve binary problems (specially feature selection). S-shaped and V-shaped transfer 
functions were used to map the continuous values into the binary position values. The 
performance of SBSCA and VBSCA were tested using 5 medical datasets taken from the 
UCI repository in comparison with Binary BA (BBA), Binary GSA (BGSA), Binary GWO 
(BGWO), and Binary DA (BDA). Numerical results demonstrated that SBSCA provides 
better results compared to BBA, BGSA, BGWO, and BDA on most of the medical datasets.

Pinto et al. (2019) proposed a binary SCA (BPSCOA) for solving the multidimensional 
backpack problem (MKP). The percentile technique was applied in the binarization process 
of SCA. The performance BPSCOA was evaluated using OR-Library benchmarks MKP 
and results showed that BPSCA obtains competitive results compared to Binary Artificial 
Algae (BAAA) and K-Means Transition Ranking (KMTR) algorithms.

3.1.2  Chaotic Sine Cosine Algorithm

Tuncer (2018a) proposed a novel chaotic weighted SCA (LDW-SCSA) based on the inte-
gration of chaos into SCA for numerical functions optimization. In LDW-SCSA algorithm, 
the logistic map was used to generate the weights dynamically. The performance of LDW-
SCSA was evaluated based on 7 uni-modal and 6 multi-modal benchmark functions in 
comparison with the original SCA, PSO, and Vortex Search (VS) algorithm. Simulation 
results showed that LDW-SCSA achieves better results compared to VS, PSO, and SCA.

Alzaidi et  al. (2018) introduced an enhanced SCA based on the incorporation of 
enhanced 1D chaotic map in SCA for building bijective substitution-boxes creating salient 
cryptographic features. Enhanced 1D chaotic map was introduced into the original SCA to 
explore and exploit the search space. Simulation results showed the superiority of the pro-
posed approach compared to some optimization-based S-box techniques.

Dash and Rup (2018) proposed a chaotic-Based SCA with fitness approximation (FA) 
strategy for block-based motion estimation. FA was incorporated with SCA to maintain the 
balance between the exploration and exploitation. This approach was tested based on the 
widely used video sequences: Foreman, Carphone, Akiyo, Container, Football, and Ste-
fan by considering only the luminance component of the sequences. Experimental results 
demonstrated that the proposed approach yields satisfactory and better results compared 
to other methods in terms of Peak-Signal-to-Noise-Ratio (PSNR), PSNR degradation ratio 
(DPSNR) , and the number of search points.

Liang et al. (2020) proposed a chaotic oppositional SCA (COSCA) for solving global 
optimization problems. Opposition-based learning method was used to optimize the explo-
ration and exploitation capability of the original SCA. The effectiveness of COSCA was 
validated based on a set of 22 benchmark functions and 3 complex engineering problems 
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including welded beam design, I-beam design, and pressure vessel design problems. Simu-
lation results showed the efficiency and superiority of COSCA compared to the state-of-
the-art optimization methods existing in the literature.

3.1.3  Adaptive Sine Cosine Algorithm

Jusof et  al. (2018b) proposed two enhanced versions of SCA (LASCA, EASCA) based 
on the incorporation of Linear and exponential adaptive strategies (EASCA) into SCA for 
solving global optimization problems. The performance of LASCA and EASCA were eval-
uated on a wide range of test functions and compared with the original SCA. It was demon-
strated that the effectiveness of the adaptive versions compared to original SCA in terms of 
accuracy and convergence speed.

Zamli et  al. (2020) proposed an adaptive SCA for solving the combinatorial testing 
problem. A combination of linear and exponential magnitude update strategies was used for 
the search displacement. Simulation results demonstrated the superiority of the enhanced 
SCA compared to the original SCA, TLBO, and Jaya algorithms in terms of test suite sizes.

In the work of Feng et al. (2020b), an adaptive SCA (ASCA) based on elite mutation, 
neighborhood search, and simplex search strategies was proposed for optimizing the mul-
tiple hydro-power reservoirs operation. The Wu River cascade hydro-power system in 
southwest China was chosen to validate the performance of ASCA in comparison with GA, 
PSO, GSA, and original SCA. The superiority of ASCA compared to other well-known 
algorithms was demonstrated in terms of convergence rate and solution quality.

3.1.4  Lévy flight‑based Sine Cosine Algorithm

An improved version of SCA based on Lévy Flight distribution was proposed in the work 
of Li et al. (2017) for solving the complex nonlinear optimization problems. The perfor-
mance of the proposed SCA was evaluated based on five benchmark functions and com-
pared to GA, PSO, and SCA. It was demonstrated that the proposed SCA gives better per-
formance compared to GA, PSO, and SCA.

Attia et al. (2018) introduced a modified SCA (MSCA) based on the incorporation of 
Lévy flight in the original SCA to solve Optimal Power Flow (OPF) problems. The perfor-
mance of MSCA was validated based on 2 standard benchmark networks namely IEEE-30 
bus and IEEE 118-bus test systems under selected objective functions. MSCA was demon-
strated to outperform all other comparative algorithms on this problem area.

Abdel-Fatah et  al. (2019) introduced a modified SCA (MSCA) based on Lévy Flight 
distribution. The made of this modification to SCA in an attempt to solve the Optimal 
Reactive Power Dispatch (ORPD) problem. The performance of MSCA was tested based 
on IEEE 30-bus system taking into account 3 metrics including power loss reduction, volt-
age deviations minimization, and voltage stability enhancement. MSCA was demonstrated 
to outperform all other comparative algorithms on this problem area.

Huang et al. (2020) introduced an improved SCA (CLSCA) based on the combination 
of SCA with Lévy flight operator and chaotic local search mechanism. Another similar 
work was done by Wang et al. (2020c), in which an enhanced approach (LSCA) based on 
the integration of Lévy flight alternative distribution into SCA for HyperSpectral image 
(HSI).

Raut and Mishra (2020a) introduced an improved SCA (ISCA) based on Lévy Flight 
distribution for solving the problems of simultaneous distributed generators (DGs) 
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allocation and network reconfiguration (NR). The performance of ISCA was evaluated 
based on 33-bus and 69-bus distribution systems and compared to HSA, GA, FWA, RGA, 
and FF algorithms. ISCA was demonstrated to outperform all other comparative algo-
rithms on this problem area

3.1.5  Fuzzy‑based Sine Cosine Algorithm

Al-Qaness et  al. (2018) hybridized CA with Adaptive Neuro-Fuzzy Inference System 
(SCA-ANFIS) for Oil Consumption Forecasting. Another similar work was done by Kamel 
et al. (2019), in which a novel method based on combining SCA with Fuzzy Logic Control 
Normalized Loss Sensitivity Factor (NLSF) for optimum allocation of shunt capacitors in 
distribution systems. The efficiency of the proposed method was validated based on 15 bus 
and 69-bus distribution networks and was compared to DE and PSO algorithms.

Lin et  al. (2019) introduced a hybrid optimization approach, called CESCA-FKNN, 
based on the hybridization of Chaos-Enhanced (CESCA) with Fuzzy K-Nearest Neighbor 
(FKNN) for predicting the college students’ intentions for master programs. The effective-
ness of CESCA-FKNN was evaluated based on a real-life dataset collected from Wenzhou 
University in comparison with some classifier methods such as RF, KELM, SVM, SCA-
FKNN, DA-FKNN, and MFO-FKNN. Experimental results demonstrated that the CESCA-
FKNN algorithm achieves better performance compared to other classifier methods in 
terms of Matthews Correlation Coefficients (MCC), Classification Accuracy (ACC), sen-
sitivity, and specificity.

3.1.6  Opposition‑based learning Sine Cosine Algorithm

In the work of Elaziz et  al. (2017a), an enhanced SCA called Opposition-Based Sine 
Cosine Algorithm (OBSCA) was proposed for solving global optimization problems. The 
Opposition-Based Learning (OBL) was integrated into SCA to enhance substantially its 
accuracy and performance. The effectiveness of OBSCA was evaluated based on several 
benchmark functions and engineering problems in comparison with the standard SCA and 
13 well-known meta-heuristic techniques. OBSCA was demonstrated to outperform all 
other comparative algorithms on this problem area.

Opposition-Based Sine Cosine Algorithm (OSCA) was proposed in the work of Bairathi 
and Gopalani (2017) for learning enhancement of feed-forward neural network (FNN). The 
performance of OSCA was tested using eight different UCI datasets and compared to GA, 
DE, ES, ACO, and PSO algorithms. OSCA was demonstrated to outperform all other com-
parative algorithms in training FNNs.

Liu (2018) proposed an improved SCA (ISCA) based on the integration of OBL strat-
egy and tent chaos search into SCA.In ISCA, the generation of individuals was made using 
OBL and Chaos strategies. ISCA was applied to six standard uni-modal and multi-modal 
benchmark functions in comparison with RLPSO, wFIPS, and classical SCA. Numerical 
results showed that ISCA has better performance compared to the original SCA, RLPSO, 
and wFIPS.

Chen et  al. (2019) introduced a new improved opposition-based sine cosine tech-
nique, called ISCA, for solving the solar photovoltaic parameter identification problems. 
ISCA is based on the integration of OBL mechanism and Nelder-Mead simplex (NMs) 
strategy into SCA to enhance the diversification of the population. Experimental and 
statistical results demonstrated that ISCA gives superior and very competitive results 
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compared to several well-known meta-heuristics such as ABC, ABSO, SA, PS, CPSO, 
GOTLBO, and GOFPANM.

3.1.7  Orthogonal‑based Sine Cosine Algorithm

In the work of Rizk-Allah (2018), MOSCA was proposed hybridizing SCA with Multi-
Orthogonal Search Strategy (MOSS). The application area was design and manufac-
turing optimization problem. The performance of MOSCA was evaluated based on 18 
benchmark problems and 4 engineering design problems. Simulation results demon-
strated that MOSCA outperforms other existing techniques in most cases.

Sahu et al. (2020) proposed an improved SCA (i-SCA) using the integration of multi-
orthogonal search strategy into SCA for optimal design of robust Fractional Order-Mul-
tistage controller for frequency awareness of an islanded AC Micro-grid. The effective-
ness of i-SCA was validated through different dynamic responses in comparison with 
GA, PSO, and basic SCA and results revealed the performance and supremacy of i-SCA.

An improved variant of the SCA algorithm, called OMGSCA, based on the incorpo-
ration of orthogonal learning mechanism, greedy selection strategy, and multi-popula-
tion scheme into the basic SCA was proposed by Chen et al. (2020a). The performance 
of OMGSCA was tested based on 30 benchmark functions selected from the well-
regarded IEEE CEC 2014 in comparison with the basic SCA, 6 improved SCA variants, 
and 10 well-known meta-heuristic algorithms. OMGSCA was also used to solve three 
constrained engineering design problems. It was demonstrated that OMGSCA is supe-
rior in this problem area.

3.1.8  Mutation‑based Sine Cosine Algorithm

A new improved version of SCA (MSCA) based on greedy Levy mutation strategy and 
neighborhood search scheme was proposed in the work of Qu et al. (2018). MSCA was 
tested using 20 benchmark test functions including unimodal high-dimensional func-
tions, multimodal high-dimensional functions, and multimodal low-dimensional func-
tions. The MSCA algorithm was compared with PSO, DE, BA, TLBO, GWO, and SCA. 
The superiority of MSCA compared to these algorithms was demonstrated in terms of 
convergence rate and solution quality.

Gholizadeh and Sojoudizadeh (2019) proposed a modified SCA (MSCA) for discrete 
sizing optimization of truss structures. An efficient mutation operator is integrated into 
MSCA to reduce the probability of getting stuck in local optima. The performance of 
MSCA was assessed using benchmark truss optimization problems in comparison with 
HPSO, HHS, AEDE, ECBO, IMBA, IGA, ESASS, and SCA. Experimental results dem-
onstrated the efficiency and robustness of MSCA compared to the mentioned optimiza-
tion algorithms.

An enhanced SCA (RFSCA) based on Riesz fractional derivative mutation strat-
egy was proposed in the work of Guo et  al. (2019). In Gupta et  al. (2020b), another 
improved SCA (MSCA) was propose using a mutation operator strategy and transition 
parameter for solving global optimization problems.
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3.1.9  Other improved Sine Cosine Algorithms

Meshkat and Parhizgar (2017) proposed a novel SCA (S&C) based on a novel position 
update mechanism for solving global optimization problems. In S&C, the new position 
update mechanism is based on the coefficients of exploration rate (ExrR) and exploita-
tion rate (ExtR). The effectiveness of S&C was evaluated based on CEC 2014 bench-
mark functions and results demonstrated the superiority of S&C over the original SCA 
in terms of accuracy and convergence speed.

Sindhu et  al. (2017) proposed an improved SCA (ISCA) by combining SCA with 
new position update mechanism and elitism strategy for solving the feature selection 
problem. The effectiveness of ISCA was validated based on 10 medical and non-medi-
cal benchmark datasets. The superiority of ISCA was demonstrated compared to well-
known meta-heuristics.

Mahdad and Srairi (2018) proposed an interactive SCA (ISCA) for optimizing the 
loading margin stability under contingency of practical power system. In ISCA, the ran-
dom parameters r1, r2, and r3 are tuned dynamically to avoid the premature convergence 
of SCA. The performance of ISCA was evaluated based on IEEE 30-Bus and IEEE 118-
Bus test systems.

Suid et  al. (2018) proposed an improved SCA (iSCA) for solving the optimization 
problems. A nonlinear control strategy was introduced in order to synthesize the iSCA’s 
strength. The performance of iSCA was evaluated based on 23 classical well-known 
benchmark functions and compared to four other algorithms. Simulation results showed 
that iSCA provides competitive results.

Cheng and Duan (2019) proposed a Cloud model-based SCA (CSCA) for solv-
ing optimization problems. The cloud model was employed to tune the parameters of 
SCA adaptively. CSCA was validated using three benchmark function tests and results 
showed its superiority in comparison with GA, PSO, SA, ACO, ABC, and Scatter 
Search (SS) algorithms.

Gupta and Deep (2019b) proposed an improved SCA (ISCA) based on the incorpo-
ration of crossover, self-learning, and global search mechanisms into SCA for solving 
global optimization problems. The performance of ISCA was evaluated based on the 
classical, CEC 2014, and CEC 2017 benchmarks. ISCA was also used to solve 5 engi-
neering problems and image thresholding problem.

Suid et  al. (2019) proposed a modified SCA (M-SCA) for improving the energy pro-
duction of wind plants. Two modifications i.e. the updated step size gain and the updated 
design variable were introduced into M-SCA to avoid the premature convergence condition 
and enhance the balance between exploration and exploitation rates. M-SCA was applied 
for maximizing energy production of a row of ten turbines and results showed that M-SCA 
gives the highest total energy production when compared with other existing techniques.

Raut and Mishra (2019) proposed an improved version of SCA (ISCA) for solv-
ing the Power Distribution Network Reconfiguration (PDNR) problem. In ISCA, the 
conversion parameter r1 is defined using the nonlinear decreasing method, the simple 
branch exchange-based heuristic is also used to generate the initial population. The per-
formance of ISCA was evaluated considering IEEE 33-bus, 69-bus, 84-bus, 119-bus, 
and 136-bus distribution systems and results showed the capability of ISCA to obtain 
global minimum results in most of the test distribution systems.

In (Long et al. 2019), an improved SCA (ISCA) was proposed based on the integra-
tion of nonlinear decreasing conversion parameter strategy and modified position update 
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mechanism for solving global optimization problems. The effectiveness of ISCA was 
validated using 24 high-dimensional functions and several engineering design prob-
lems. Simulation results showed that ISCA gives competitive solutions compared to the 
original SCA and other population-based approaches.

Yang et al. (2020) proposed a Multi-group Multi-strategy SCA (MMSCA) for solving 
the capacitated vehicle routing problem (CVRP) in transportation. In MMSCA, multiple 
populations are executed in parallel and each population executes a different optimization 
strategy. The effectiveness of MMSCA was validated using 19 different types of test func-
tions and results showed the feasibility and efficiency of MMSCA compared to the original 
SCA.

Chen et al. (2020b) introduced a multi-strategy enhanced SCA (MSCA) based on the 
incorporation of Cauchy mutation operator, chaotic local search mechanism, opposition-
based learning, mutation, and crossover strategies into the original SCA for global opti-
mization and constrained practical engineering problems. The performance of MSCA was 
evaluated based on 23 continuous benchmark tasks and three constrained practical engi-
neering problems.

Guo et al. (2020) proposed an improved SCA (QISCA) based on the optimal neighbor-
hood, quasi-opposition learning, and quadratic interpolation strategies for solving global 
optimization and engineering problems. QISCA was tested based on 23 benchmark func-
tions, 30 latest CEC2017 test functions, and 3 constrained engineering problems. Simula-
tion results showed the effectiveness of QISCA in solving practical problems compared to 
13 well-regarded optimization techniques existing in the literature.

The percentage of modified versions of SCA is given in Fig. 10. As it is shown in this 
figure, improved SCA has more percentage.

3.2  Multi‑objective Sine Cosine Algorithm

There are some multi-objective versions of SCA that are proposed as shown in Table 4.

Orthogonal-based Learning
7%

Mutation

8%

Improved

36%

Binary
7%

Chaotic

8%

Adaptive

5%

Levy Fight

13%
Fuzzy

7%

Opposition-based Learning

9%

Fig. 10  The modified versions of SCA
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Rizk-Allah et al. (2017) proposed a multi-objective SCA (MSCO) for solving the non-
smooth EELD problem. In MSCO, a pareto optimal concepts were used to find the set of 
non-dominated solutions. The MSCO algorithm was assessed based on 6-unit and 10-unit 
benchmarking test systems and results revealed the robustness and effectiveness of MSCO 
compared to other optimization techniques existing in the literature.

Tawhid and Savsani (2019b) introduced a multi-objective SCA (MO-SCA) for solving 
the multi-objective engineering design problems. Elitist non-dominated sorting approach 
and crowding distance strategy are introduced to determine non-domination levels and 
increase the coverage of Pareto optimal solutions obtained.

Wan et al. (2019) proposed a novel multi-objective SCA (MOSCA) for band selection 
of real HSI remote sensing images. The effectiveness of MOSCA was tested using two real 
HSI scenes such as the public Indian Pine HSI and the Unmanned Aerial Vehicle (UAV) 
HSI provided by the Intelligent Data Extraction and Analysis of Remote Sensing group 
(RSIDEA group). Simulation results showed the better performance of MOSCA compared 
to Sequential Forward Selection (SFS) algorithm, Dominant Set Extraction-Based Selector 
(DSEBS), PSO, and basic SCA.

Selim et  al. (2019) proposed a multi-objective SCA (MOSCA) for optimum size and 
location of multiple Distribution STATic COMpensators (DSTATCOMs) in radial distribu-
tion networks. The performance of MOSCA was evaluated using IEEE 33-bus and IEEE 
69-bus distribution systems taken into account 3 main objective functions such as total 
active power losses, total voltage deviation, and voltage stability index. Results showed the 
efficiency of MOSCA compared to LSA, BFOA, and MOPSO in terms of overall voltage 
profile and total power losses.

3.3  Hybridized versions of Sine Cosine Algorithm

This section describes the hybridized versions of SCA (Fig. 11). A summary of the main 
hybrid versions of SCA is illustrated in Table 5.

3.3.1  Hybridization with local search

Tawhid and Savsani (2019a) proposed a discrete SCA (DSCA) based on the combination 
of SCA with 2-opt local search method as an attempt to solve TSP problems. The 2-opt 
local search method was used to update the solutions in each generation. The effectiveness 
of DSCA was tested based on 41 experimental benchmarks of symmetrical TSP taken from 
the TSPLIB library. The superiority of DSCA over the existing methods was demonstrated.

3.3.2  Hybridization with harmony search

Kaveh and Vazirinia (2017) proposed an Upgraded SCA (USCA) based on the hybridiza-
tion of SCA with harmony search algorithm for solving the Tower Crane Selection and 
Layout Problem (TCSLP). Harmony search-based operator was used to deal with variable 
constraints and enhance the exploration, simultaneously. The performance of USCA was 
evaluated on several benchmark functions and results revealed the superiority of USCA 
compared to the original SCA and other state-of-the-arts optimization algorithms such as: 
PSO, VPS, CBO, WOA, and SSA.
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3.3.3  Hybridization with differential evolution

Elaziz et al. (2017b) hybridized SCA and DE for the first time in the literature. DE opera-
tors were used to avoid the search from local optima stagnation. The performance of 
SCADE was assessed using eight datasets taken from the UCI machine learning site and 
compared to ABC, SSO, and SCA. It was demonstrated that SCADE gives better perfor-
mance compared to other well-known techniques in terms of performance measures and 
statistical tests.

Hybridization
versions of
SCA

SCA+Local
Search

SCA+Harmony
search

SCA+
GA

SCA+
DE

SCA+
ACO

SCA+
ABC

SCA+
SQA

SCA+
SKFA

SCA+
PSO

SCA+
FA

SCA+
GSA

SCA+
BFOA

SCA+
TLBO

SCA+
WWO

SCA+
MFO

SCA+
GWO

SCA+
MVO

SCA+
HHO

SCA+
WOA

SCA+
VPL

SCA+
ALO

SCA+
CSA

SCA+
SSA

SCA+
CA

SCA+
HA

SCA+
BSO

SCA+
SE

SCA+
SS

SCA+
BOA

SCA+
SVM

SCA+
SVR

SCA+
ELM

SCA+
SVR

SCA+
Random
Forest

SCA
with others

DSCA Tawhid and Savsani
(2019a)

USCA Kaveh and Vazirinia
(2017)

SCAGA Abualigah and Du-
laimi (2021)

SCADE

ASCA-DE

SCA-DE

HGSCADE

Elaziz et al. (2017b)

Bureerat and Pholdee
(2017)

Nenavath and Jatoth
(2018)

Li et al. (2021a)

ASCA-AACO
Kumar et al. (2020)

SCABC

ABCSCA

Gupta and Deep
(2019a)

Ewees et al. (2020)

HSCA Gupta and Deep
(2019c)

KFSCA
Jusof et al. (2018a)

SOSCALF

ASCA-PSO

SCSO

SCA-PSO

HBPSO-SCA

MASCA-PSO

PSO-SCANMS

HSPS

Chegini et al. (2018)

Issa et al. (2018b)

Tuncer (2018b)

Nenavath et al. (2018)

Kumar and Bharti
(2019)

Mishra et al. (2019)

Fakhouri et al. (2020)

Bansal and Wadhawan
(2021)

CSCF
Hassan (2020)

SCGSA
Jiang et al. (2020)

EDSCA

HBFSCA

Mohammad et al.
(2020a)

Mohammad et al.
(2020b)

SCA-TLBO Nenavath and Jatoth
(2019)

SCWWO
Zhang et al. (2018a)

ASC-MFO
Wu et al. (2020)

GWO-SCA

MHGWO-SCA

IHGWO-SCA

SC-GWO

MGWO-SCA

Singh and Singh
(2017)

Fu et al. (2019a)

Fu et al. (2019b)

Gupta et al. (2020c)

Devarapalli and Bhat-
tacharyya (2020)

AMVO-SCA
Jui and Ahmad (2021)

MSCA-HHO

SCHHO

Fu et al. (2020)

Hussain et al. (2021)

WOA-SCA

WOASCA

Selim et al. (2018)

Dey and Bhat-
tacharyya (2021)

VPLSCA
Moghdani et al. (2020)

EALO-SCA
Zhang et al. (2020)

SCCSA

SCCSA

SCCSA

Pasandideh and
Khalilpourazari (2018)

Ye et al. (2018)

Khalilpourazari and
Pasandideh (2019)

ISSAFD

HSSASCA

Neggaz et al. (2020)

Singh et al. (2020)

CCSCA
Zou et al. (2018)

MOCSFO
Lan et al. (2019)

EBS-SCA

BSO SCA

Li et al. (2019)

Li et al. (2020)

SCA-SE
Cai et al. (2020)

SSSCA
Wang et al. (2020b)

BOSCASharma and Saha
(2021)

SCA-SVM
Jing and Ying (2018)

SCA-SVR
Li et al. (2018)

MSCA-ELM

SCA-RELM

Nayak et al. (2018b)

Nayak et al. (2018a)

SCA-NN

SCA-ANN

SCA-NN

SCA-BP

SCAk-NN

SCA-ANN

Sahlol et al. (2016)

Hamdan et al. (2017)

Majhi (2018)

Song et al. (2019)

Moorthy and Pabitha
(2020)

Lawal et al. (2021)

SCA-RF
Yu et al. (2020)

WPSCO

SCA PDLR

SCA-SM

QSCA

EO-SCA

Kumar et al. (2017)

Zhang et al. (2018b)

Abdel-Baset et al.
(2019)

Lv et al. (2019)

Atre et al. (2020)

Fig. 11  Hybridization versions of SCA
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Bureerat and Pholdee (2017) introduced another hybridization of SCA and DE, called 
(ASCA-DE), for tackling the structural damage detection problem. The mutation operator 
of differential evolution and an adaptive strategy were integrated into SCA to avoid falling 
into local optima. The effectiveness of ASCA-DE was evaluated using several test prob-
lems for structural damage detection in comparison with DE, ABC, ACOR, ChSS, LCA, 
SA, TLBO, CMAES, ES, PSO, JADE, and classical SCA. The superiority of ASCA-DE 
was evident in their results.

Nenavath and Jatoth (2018) proposed a combined method, called SCA-DE, by hybrid-
izing SCA with DE for solving single-objective optimization problems and visual tracking. 
In SCA-DE, SCA was used to emphasize the diversification, while DE was employed to 
focus on the intensification. The performance of SCA-DE was evaluated based on 23 uni-
modal, multi-modal, and fixed dimension multi-modal benchmark functions and results 
showed that SCA-DE gives competitive results compared to the state-of-the-art meta-heu-
ristics. SCA-DE was also applied for object tracking as a real thought-provoking case study 
and results showed its merits.

3.3.4  Hybridization with Ant Colony Algorithm

Kumar et al. (2020) hybridized an advanced SCA (ASCA) and advanced ACO (AACO) 
for solving the mobile robot path planning problem. SCA is used to find global best posi-
tions, while ACO is applied to find the next stand-point. The proposed ASCA-AACO was 
validated based on an unknown environment with static and dynamic obstacles. The results 
demonstrated its efficiency when compared with other existing optimization algorithms in 
this problem area.

3.3.5  Hybridization with artificial Bee Colony Algorithm

Gupta and Deep (2019a) developed a combined approach, called SCABC algorithm, using 
SCA and ABC for global optimization and image segmentation. The aim of this hybridiza-
tion is to enhance the level of exploitation and exploration. The performance of SCABC 
was validated based on 23 benchmark functions and results showed its efficacy and robust-
ness. Moreover, SCABC also used to solve the multilevel thresholding problem and results 
showed its efficacy in determining the optimal thresholds of gray images.

Ewees et al. (2020) introduced a hybrid method (ABCSCA) based on the hybridization 
of SCA with ABC for multi-level thresholding image segmentation. ABC was applied to 
reduce the search region, while the SCA algorithm was used to find the global optimal 
solution. The performance of ABCSCA was assessed using 19 images in low and high 
threshold levels in comparison with WOA, SSA, GWO, SSO, FASSO, WOAPSO, ABC, 
and SCA. The effectiveness of ABCSCA compared to other well-regarded methods was 
demonstrated by the authors in terms of PSNR and Structural Similarity Index (SSIM).

3.3.6  Hybridization with simulated quenching algorithm

Gupta and Deep (2019c) proposed a hybrid algorithm (HSCA) based on the hybridization 
of SCA with Simulated Quenching Algorithm (SQA) for global optimization and multi-
layer perceptrons.The leading guidance and simulated quenching algorithm were used to 
improve the search mechanism of SCA. HSCA was evaluated on 23 classical benchmark 
functions, standard and complex benchmark sets (IEEE CEC 2014 and CEC 2017), and 
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4 engineering optimization problems. It was also used for training multilayer perceptrons. 
Simulation results showed the superiority of HSCA compared to the classical SCA and 
other comparative optimization algorithms.

3.3.7  Hybridization with simulated Kalman filter algorithm

Jusof et al. (2018a) proposed a combined technique (KFSCA) based on the combination 
of SCA with Simulated Kalman Filter (SKF) algorithm for solving global optimization 
problems. SKF was integrated into SCA to provide a good balances between the explora-
tion and exploitation. KFSCA was evaluated based on five benchmark functions and results 
showed its effectiveness and superiority compared to SCA and SKF in terms of accuracy 
and convergence speed.

3.3.8  Hybridization with particle swarm optimization algorithm

In the work of Issa et al. (2018b), an improved version of SCA (ASCA-PSO) is proposed 
for solving pairwise local sequence alignment problem. PSO was hybridized with SCA to 
enhance the exploitation of the search space. The performance of ASCA-PSO was tested 
based on biological protein sequences taken from the Swiss-Prot database with various 
lengths. Experimental results showed the good performance of ASCA-PSO compared to 
the classical SCA and Smith-Waterman (SW) alignment algorithm in terms of accuracy 
and computational time.

Tuncer (2018b) proposed a hybrid technique (SCSO) based on combining SCA with 
PSO for numerical functions optimization. The effectiveness of SCSO was evaluated using 
14 well known unimodal and multimodal numerical benchmark functions in comparison 
with ABC, KH, BBO, MFO, SCA, and HGWOSCA. Simulation results showed that SCSO 
has better results in numerical functions optimization compared to other existing meta-heu-
ristic approaches.

In the work of Nenavath et al. (2018), hybrid approach (SCA-PSO) based on the hybrid-
ization of SCA with PSO was proposed for solving global optimization problems. SCA-
PSO combines the exploitation capability of PSO and exploration capability of SCA to 
obtain optimal global solutions. SCA-PSO was tested using 23 classical, CEC 2005 and 
CEC 2014 benchmark functions and results showed its efficiency compared to the state-of-
the-art meta-heuristics. SCA-PSO was also applied to solve object track as a real thought-
provoking case study and results demonstrated that SCA-PSO gives better capability to 
track an object when compared to other trackers such as Mean-shift (MS), PF, PSO, BA, 
SCA, Hybrid GSA (HGSA).

Kumar and Bharti (2019) proposed a hybrid method (HBPSOSCA) based on the 
hybridization of SCA with binary Binary PSO for feature selection problem. A cross breed 
approach of binary PSO was used to enhance the convergence performance of SCA. The 
performance of HBPSOSCA was validated based on seven real-life scientific datasets taken 
from the UCI machine learning repository and gene expression model selector (GEMS). 
Experimental results revealed that HBPSOSCA provides better performance compared to 
some competitive methods such as BPSO, C-BPSO, BMFO, BDFA, BWOA, SCA, BABC.

Mishra et al. (2019) proposed a modified adaptive SCA integrated with PSO (MASCA-
PSO) based local linear radial basis function neural network (LLRBFNN) model. The 
application area of this paper was tumor detection and classification. PSO was combined 
with Adaptive SCA to provide a good balance between the exploitation and exploration. 
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The performance of MASCA-PSO was tested using Dataset-160 and Data-255 taken from 
Harvard medical school of architecture.

In (Chegini et al. 2018), a hybrid algorithm (SOSCALF) was proposed combining SCA, 
PSO, and Lévy flight distribution for solving optimization problems. The effectiveness of 
SOSCALF was evaluated using 23 standard benchmark functions and 8 real constrained 
engineering problems in comparison with other PSO variants and well-known algorithms 
proposed in recent years. Simulation results demonstrated the superiority and effectiveness 
of SOSCALF when compared with well-regarded optimization approaches.

In (Fakhouri et  al. 2020), PSOSCANMS was proposed hybridizing SCA, PSO, and 
Nelder–Mead simplex (NMS) optimization technique for solving engineering design prob-
lems. The mathematical formulations of both PSO and NMS were applied to make the 
search space more effective and ensure a good balance between the exploitation and explo-
ration. The performance of PSOSCANMS was evaluated using 23 well-known unimodal 
and multimodal benchmark functions and 2 engineering design problems (compression 
spring design and welded beam design).

3.3.9  Hybridization with gravitational search algorithm

Jiang et al. (2020) proposed a hybrid method (SCGSA) by hybridizing SCA with Chaotic 
SGA (CGSA) for solving continuous optimization problems. Chaotic gravitational con-
stants of CGSA were used to enhance the exploration ability and escape from local optima 
stagnation. The performance of SCGSA was tested based on 30 benchmark functions (CEC 
2014) and results showed its efficiency compared to CGSA in terms of global optima and 
speed of convergence.

3.3.10  Hybridization with bacterial foraging algorithm

Mohammad et al. (2020a) proposed an improved SCA, called Elimination-Dispersal SCA 
(EDSCA), based on the combination of SCA with Bacterial Foraging Algorithm (BFA) 
for dynamic modeling of a twin-rotor system. The ED phase of BFA was integrated into 
the classical SCA to help search agents for solving the local optima problem. The perfor-
mance of EDSCA was evaluated based on various CEC2014 benchmark functions with 
different fitness landscapes and features. Simulation results revealed the better performance 
of EDSCA compared to the classical SCA by obtaining less modeling error and better 
dynamic response.

3.3.11  Hybridization with teaching–learning‑based optimization algorithm

Nenavath and Jatoth (2019) proposed SCA–TLBO method using SCA and TLBO for solv-
ing global optimization problems and visual tracking. The idea of TLBO was integrated 
into SCA to escape from local optima and enhance its search ability. SCA-TLBO was eval-
uated based on 23 eminent test functions and results showed its performance compared to 
other existing algorithms. Additionally, SCA-TLBO was used for visual tracking as a real 
thought-provoking case study and results revealed its effectiveness when compared to other 
existing trackers.
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3.3.12  Hybridization with water wave optimization algorithm

Zhang et al. (2018a) proposed a hybrid method (SCWWO) using SCA and Water Wave 
Optimization (WWO) algorithm for global optimization. WWO was combined with 
SCA to obtain global optimal solutions. The effectiveness of SCWWO was evaluated 
using 14 benchmark test functions in comparison with the original SCA, ABC, CS, DA, 
MFO, WWO. Simulation results demonstrated the feasibility and efficiency of SCWWO 
compared to other well-regarded meta-heuristics existing in the literature.

3.3.13  Hybridization with Grey Wolf optimizer

In (Singh and Singh 2017), a hybrid method (GWO-SCA) was proposed for solving the 
classical and real-life optimization problems. Another hybrid of these two algorithms 
was done by Fu et  al. (2019a), in which MHGWOSCA benefiting from search capa-
bilities of SCA, GWO, and mutation operator for fault diagnosis of rotating machin-
ery. The effectiveness of MHGWOSCA was tested using vibration signals with different 
fault locations and sizes taken from Bearings Data Center of Case Western Reserve Uni-
versity. Experimental results showed the superiority and availability of MHGWOSCA 
compared to a number of other algorithms.

Another similar work can be found in Fu et al. (2019b), in which IHGWOSCA was 
proposed. The IHGWOSCA algorithm was used for multi-step short-term wind speed 
prediction. IHGWOSCA was investigated to optimize the parameters of Phase Space 
Reconstruction (PSR)and Extreme Learning Machine (ELM) successfully. The perfor-
mance of IHGWOSCA was evaluated based on 7 data sets from Sotavento Galicia and 
Inner Mongolia and results showed its effectiveness compared to some relevant single 
and hybrid techniques.

In Gupta et  al. (2020c), SC-GWO was proposed using SCA with GWO for solv-
ing engineering design problems. The social and cognitive components of GWO were 
integrated into SCA to maintain a good balance between exploration and exploitation. 
The performance of SC-GWO was validated based on 13 well-known benchmark func-
tions. SC-GWO was also used to determine the optimal setting for over-current relays. 
Another similar work was done by Devarapalli and Bhattacharyya (2020), in which 
MGWO-SCA was proposed for tuning the power system stabilizer parameters of an 
interconnected multi-machine power system. The effectiveness of MGWO-SCA was 
evaluated based on benchmark model of two area four generator multi-machine system. 
Simulation results showed that MGWO-SCA gives lesser overshoot values and faster 
settling time compared to the state-of-the-art optimization methods.

3.3.14  Hybridization with Harris Hawks optimization algorithm

In the work of Fu et al. (2020), MSCAHHO was proposed using SCA, HHO, and muta-
tion operator to tune the parameters of Support Vector Machine (SVM) for fault clas-
sification. MSCAHHO was evaluated using vibration signals collected from Bearings 
Data Center of Case Western Reserve University and results showed its effectiveness 
and superiority when compared with some relevant techniques existing in the literature.
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3.3.15  Hybridization with Whale optimization algorithm

WOA-SCA was proposed by Selim et al. (2018) for voltage profile improvement in active 
distribution networks. WOA was combined with SCA to raise its convergence. The perfor-
mance of WOA-SCA was evaluated with the basic WOA based on IEEE 33-bus and 69-bus 
distribution systems. Simulation results demonstrated the superiority of WOA-SCA com-
pared to the traditional WOA in minimizing the total power losses.

3.3.16  Hybridization with volleyball premier league algorithm

In Moghdani et al. (2020) VPLSCA was proposed hybridizing SCA with Volleyball Pre-
mier League (VPL) algorithm. SCA operators were used in the learning phase to obtain 
global optimal solutions. The effectiveness of VPLSCA was evaluated using 25 benchmark 
function and several engineering problems. Simulation results indicated the high perfor-
mance of VPLSCA compared to some well-known meta-heuristics such as CS, SSA, ALO, 
MFO, WOA, and classical SCA.

3.3.17  Hybridization with ant lion optimizer algorithm

Zhang et al. (2020) developed a hybrid approach, called EALO-SCA, based on the hybridi-
zation of SCA with Extended ALO (EALO) for abrupt motion tracking. EALO was inte-
grated into SCA to enhance the global exploration ability. The robustness of EALO-SCA 
was evaluated based on 12 video sequences and results showed its efficiency compared to 
other state-of-the-art optimization trackers.

3.3.18  Hybridization with Salp Swarm Algorithm

In Neggaz et al. (2020), a novel feature selection method, called ISSAFD, was proposed 
combining SSA, SCA, and Disrupt operator (DO). The efficiency of ISSAFD was validated 
based on 2O datasets in comparison with GA, PSO, ALO, GWO, and, SSA, SCA. It was 
demonstrated that ISSAFD is superior compared to other well-regarded optimization tech-
niques in terms of accuracy, sensitivity, specificity, and the number of selected features. 
Another similar hybrid can be found in Singh et al. (2020) called HSSASCA.

3.3.19  Hybridization with cultural algorithm

Zou et al. (2018) proposed a hybrid method (CCSCA) based on the hybridization of SCA 
with Cultural Algorithm (CA) for solving optimal operation of cascade hydropower sta-
tions (OOCHS). CA which includes three components (i.e. population space, belief space, 
and communication protocol) is adopted as the evolution process of the population. The 
effectiveness of CCSCA was validated using as case study 5 hydropower stations located 
in the lower reaches of Yalong river. Simulation results showed the efficiency of CCSCA in 
solving OOCHS.

3.3.20  Hybridization with Hungarian algorithm

Lan et al. (2019) proposed a combined optimization algorithm (SCA-VNS) based on the 
incorporation of variable neighborhood search (VNS) of Iterated Hungarian Algorithm 
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(IHA) into SCA for solving the physicians and medical staff scheduling problem in outpa-
tient department of large hospitals with multiple branches. The performance of SCA-VNS 
was evaluated based on 22 instances with different number of physicians and branches. 
Experimental results demonstrated the robustness and better performance of SCA-VNS 
compared to SCA, VNS, PSO, GA, and SA algorithms.

3.3.21  Hybridization with brain storm optimization algorithm

Li et al. (2019) developed an enhanced hybrid technique (EBS-SCA) based on the hybridi-
zation of SCA with Brain Storm Optimization Algorithm for solving global optimization 
problems. EBS strategy is introduced in EBS-SCA to enhance the diversity of the popula-
tion and the balance between exploration and exploitation.

3.3.22  Hybridization with support vector machine

In the work of Jing and Ying (2018), SCA-SVM was proposed for fault diagnosis in analog 
circuits. The performance of SCA-SVM was evaluated using four-op amp biquad high-
pass filter circuit in comparison with Grid Search (GS), GA, and PSO. Simulation results 
revealed the effectiveness of SCA-SVM compared to GS, GA, and PSO in terms of clas-
sification accuracy and iteration speed.

3.3.23  Hybridization with support vector regression

In Li et  al. (2018), SCA-SVR was proposed for optimal tuning of the penalty and ker-
nel parameters in SVR. The performance of SCA-SVR was evaluated based on commonly 
used benchmark datasets in comparison with Grid Search-SVM (GS-SVR), PSO-SVR, 
ABC-SVR, KHA-SVR, GWO-SVR, FPA-SVR, SSO-SVR, ALO-SVR, and MVO-SVR. 
Computational results showed SCA-SVR’s feasibility and reliability compared to other 
existing meta-heuristic methods.

3.3.24  Hybridization with extreme learning machine

Nayak et  al. (2018a) proposed a hybrid classification technique (SCA-RELM) based on 
the hybridization of SCA with Regularized ELM for automated diagnosis of pathological 
brain. The performance of SCA-RELM was evaluated using 3 well-studied datasets and 
results showed its efficiency and superiority compared to state-of-the-art methods.

3.3.25  Hybridization with neural network

In Sahlol et  al. (2016) SCA-NN was proposed hybridizing SCA and NN for optimizing 
the multi-layer perceptron neural network. Another similar work was done by Hamdan 
et al. (2017), in which a combined method based on the combination of SCA with ANN 
was proposed for solving the load forecasting problem. The effectiveness of the combined 
method was tested using data of Temperature ( ◦C), relative humidity (%) and electricity 
load demand (MW) collected for 3 years, i.e. 2014, 2015, and 2016 from Sharjah Electric-
ity and Water Authority (SEWA). Experimental results showed that the combined method 
provides good fitting in both training and testing sets.
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In Majhi (2018), another hybrid SCA-NN was proposed for breast cancer classifica-
tion. The performance of SCA-NN was evaluated based on Wisconsin Hospital data set 
taking into account 2 metrics including Correct Classification Rate (CCR) and Average 
Squared Classification Error (ASCE). Experimental results demonstrated the superiority 
of the SCA-NN compared to the recently reported classifiers in terms of accuracy and 
error rate.

Song et al. (2019) proposed the hybrid SCA-BP for images classification. The per-
formance of SCA-BP was evaluated using a bunch of real images in comparison with 
GA-BP and PSO-BP. Simulation results demonstrated that SCA-BP provides better per-
formance compared to some optimization algorithms in terms of classification accuracy.

3.3.26  Hybridization with other algorithms

Kumar et  al. (2017) proposed WPSCO hybridizing SCA with Weibull distribution 
method and Pareto distribution function for the maximum power point tracking (MPPT) 
problem. The performance of WPSCO was evaluated over the PV fed battery load by 
using a boost converter and results showed its reliability and robustness compared to 
state-of-the-art methods such as MFA and LIPSO.

In the work of Zhang et al. (2018b), an efficient algorithm (SCA_PDLR) based on the 
hybridization of SCA with population diversity based local refinement strategy (PDLR) 
was proposed. The performance of SCA_PDLR was validated based on CEC’17 bench-
mark functions and results showed its effectiveness when compared with the classical 
SCA in terms of solution accuracy and convergence speed.

Abdel-Baset et  al. (2019) proposed a combined optimization approach (SCA-SM) 
based on the combination of SCA with Simpson method (SM) for solving numerical 
integration problems. The performance of SCA-SM was tested using several examples 
(single and multiples) and results showed the effectiveness and robustness of SCA-SM 
in calculating numerical value of definite integrals.

The percentage of hybridized versions of SCA with meta-heuristics, SVM, SVR, 
ELM, ANN, and other algorithms is given in Fig. 12. As it is shown in this figure, meta-
heuristics have more percentage.

4  Applications of the Sine Cosine Algorithm

Since the proposal, SCA has been employed to solve diverse problems in both science 
and industry. As application areas, we can find electrical engineering (e.g. economic 
load dispatch, optimal power flow, distributed generators allocation, optimal load fre-
quency control), computer engineering (e.g. wireless sensor nodes localiser, clustering, 
optimal camera placement, capacitated vehicle routing problem), classification (e.g. fea-
ture selection, image classification, Sonar target classification, pathological brain detec-
tion), and many others ( e.g. higher-order continuous systems, measuring similarity of 
COVID-19, oil consumption forecasting, block-based motion estimation, visual track-
ing, conceptual design of automobile components). Some of SCA applications are sum-
marized in Table 6 and their details are given below.
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4.1  Electrical engineering

4.1.1  Economic load dispatch

Gonidakis and Vlachos (2019) used SCA for solving the Combined Economic and 
Emission Dispatch (CEED) in power system. The performance of SCA was tested using 
3 test systems with different characteristics in comparison with Lagrange’s Method 
(LM), SA, and PSO. Simulation results showed that SCA provides high-quality results 
and outperforms other well-known optimization methods existing in the literature.

4.1.2  Photovoltaic power system

Sahu et al. (2019) applied SCA to optimize the factors of PID and FOPID controllers 
in photovoltaic (PV) system. Oscillation, time response, settling time, voltage, current 
and power of the system parameters were used to evaluate the performance of SCA and 
results demonstrated its effectiveness compared to P&O and PID methods by achieving 
the maximum power.

4.1.3  Radial distribution networks

Abdelsalam (2020) used SCA for optimal locations and sizes of distributed energy 
resources (DERs) in various configurations of radial distribution networks. The effec-
tiveness of SCA was evaluated based on IEEE 33-bus and IEEE 69-bus radial distribu-
tion networks in comparison with Improved Analytical (IA) method. Simulation results 
showed the better performance of SCA in comparison with other methods by achieving 
the maximum saving and maximum reduction of power losses of 61.3% and 69.2% for 
IEEE 33-bus and 69-bus networks, respectively.

Ang and Leeton (2019) used SCA for optimal size and placement of Distributed Gen-
eration (DG) in radial distribution networks. The performance of SCA was tested based on 
15 bus system, 33 bus system, 69 bus system, and 85 bus system by considering single and 
double DG units. Simulation results showed the performance and robustness of SCA com-
pared to ABC, Voltage Sensitivity Index (VSI), and Index Vector (IV) methods in terms 
of power loss reduction and voltage profile improvement. SCA was also used for solving 
the problem of optimal selection of conductors in Egyptian radial distribution networks in 
Ismael et al. (2017).

4.1.4  Optimal load frequency control

Babaei and Safari (2020) used SCA for optimizing the parameters of fractional-order pro-
portional-integral-derivative (FOPID) controller for the load frequency control (LFC) sys-
tem. The performance of GOA was validated in single and two-area LFC system with EV 
aggregators with time-varying delays. Experimental results showed the superiority of SCA 
compared to PSO algorithm by obtaining fewer frequency variations.

Mishra et al. (2018) applied SCA-based PID controller for the LFC of power system. 
The performance of SCA was validated using different test scenarios with random load 
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perturbations and results showed the robustness and superiority of SCA-PIDN controller 
compared to other controller methods.

4.1.5  Optimal PMU placement

Laouamer et al. (2018) used SCA for solving the optimal Phasor Measurement Unit (PMU) 
placement problem. The performance of SCA was evaluated based on 3 standards IEEE-
9,14 and 30-buses and results revealed its effectiveness to obtain optimal number and 
placement of PMU.

4.1.6  Hybrid power generation system

Algabalawy et  al. (2018) used SCA Optimal Design of Hybrid Power Generation. The 
performance of SCA was evaluated using 2 scenarios under different weather conditions. 
Simulation results revealed the efficiency and performance of SCA compared to CS, FA, 
and WOA in terms of total annual cost and system emissions.

4.1.7  Unit commitment

de Oliveira et al. (2018) used SCA for solving the Thermal Unit Commitment (TUC) prob-
lem. The performance of SCA was evaluated using two test systems of 4 and 10 units and 
results showed the effectiveness and applicability of SCA for solving the TUC problem.

Bhadoria et al. (2019) employed SCA for solving the unit commitment problem of the 
electric power system. The effectiveness of SCA was evaluated based on various small and 
medium level power systems including 4, 5, 6, 7, 10, 19, 20 and 40 unit test systems. Simu-
lation results showed the efficacy and feasibility of SCA when compared with GWO, PSO, 

Meta-heuristics

77%

SVM

2%

Other Algorithms

7%
SVR

2%
ELM

3%
ANN

9%

Fig. 12  The hybridized versions of SCA
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DE, FEP, and WOA. Another similar work in the area of Optimal Reach Setting of Quadri-
lateral Relays can be found in Shukla et al. (2020).

4.1.8  Bend photonic crystal waveguides

Mirjalili et al. (2020) used SCA for solving the Bend Photonic Crystal Waveguides (PCW) 
designing problem. Experimental results showed the efficiency and robustness of SCA 
compared to the classical method by providing optimal design of bend PCW. Another simi-
lar work in the area of Optimal Allocation of Capacitor Banks can be found in Abdelsalam 
and Mansour (2019).

4.1.9  Short‑term hydrothermal scheduling

Das et  al. (2018) employed SCA for solving the short-term hydrothermal scheduling 
problem in power system. The performance of SCA was evaluated using six different test 
systems with different cost functions in comparison with CSA, MCSA, IMO, QRIMO, 
MFO,DA, WOA, and ALO algorithms. Experimental results demonstrated that SCA pro-
vides superior results compared to state-of-the-art.

4.2  Control engineering

4.2.1  Optimal parameters control

Ghayad et  al. (2019) used SCA and GSA for optimal parameters of PI controller under 
different disturbances. The performance of SCA and GSA were validated using 3 differ-
ent disturbances namely three phase fault, step-change in AC voltage of system, and step-
change in reference values. Experimental results showed that SCA has better results than 
GSA in terms of reactive power deviation, but GSA has better performance in terms of 
settling time.

Bhookya and Jatoth (2019) used SCA for tuning the PID controller parameters of an 
Automatic Voltage Regulator (AVR) system. The effectiveness of SCA was tested taking 
into account the overshoot, rising time, settling time, and steady-state error of the system 
as performance metrics. Experimental results revealed the performance and robustness 
of GOA compared to other FOPID and PID controller design methods for AVR system. 
Another similar work can be found in Hekimoğlu (2019).

Gorripotu et al. (2020) used a SCA-based PD-PID controller for frequency control of 
hybrid power system. The performance of SCA-based PD-PID controller was evaluated 
under 3 different cases: step load disturbance, band-limited noise, and step disturbance 
with noise at the wind system. Simulation results demonstrated the effectiveness of SCA-
based PD-PID controller compared to other standard techniques.

A comparative analysis of an autonomous hybrid microgrid (AHM) system with con-
trollable loads for demand-side management (DSM) using SCA based PID controller was 
presented in the work of Bhuyan et al. (2019). The performance of SCA based PID con-
troller was validated using three different scenarios of the renewable source and load vari-
ations and results showed that SCA based PID controller gives better performance com-
pared to PSO based PID controller in most of the scenarios.
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Mehra et al. (2020) used SCA-based PID controller for level control design of three-tank 
system by minimizing the integral-of-squared error (ISE). Experimental results showed the 
efficiency of SCA-based PID controller compared to other controller methods.

4.3  Computer engineering

4.3.1  Lifetime enhancement of wireless sensor networks

Pandey et al. (2018) SCA for maximizing the lifetime of Wireless Sensor Networks (WSNs) 
in routing and clustering. The performance of SCA was evaluated by varying the number of 
sensors from 100 to 800 and moving the base station at different locations in comparison with 
GA, PSO, and least distance clustering (LDC) algorithms. Experimental results showed that 
SCA enhances the lifetime of sensors more than other algorithms and works better when mov-
ing the base station at different locations.

4.3.2  Optimal re‑entry trajectory planning

Banerjee and Nabi (2017) used SCA for solving the re-entry trajectory problem for space 
shuttle vehicle. Maximizing the cross-range along with satisfying certain boundary conditions 
is selected for the problem. Simulation results showed that SCA gives good results in terms of 
simplicity and computational complexity.

4.3.3  Optimal pamera placement

Fatlawi et al. (2018) applied SCA for obtaining optimal placement of cameras. The effective-
ness of SCA was validated in several scenarios and results showed the superiority of SCA 
compared to GA and PSO in terms of maximum coverage and better placement of cameras.

4.4  Classification

4.4.1  Feature selection

Hafez et al. (2016) used SCA for solving the channels feature selection problem. The clas-
sification accuracy and feature size reduction were used as evaluation metrics to validate the 
performance of SCA. The performance of SCA was evaluated based on 18 datasets from the 
UCI machine learning repository and results showed the effectiveness and robustness of SCA 
compared to GA and PSO algorithms by providing minimum selected features set with maxi-
mum classification accuracy.

Belazzoug et al. (2019) proposed an improved SCA (ISCA) for feature selection in text cat-
egorization. ISCA takes into account the position of the best solution found so far and a given 
random position from the search space to generate a new solution. The effectiveness of ISCA 
was validated using 9 text datasets in comparison with GA, ACO, MFO, original SCA and 
some of its variants and results showed its high performance in solving the text categorization 
problem.



5525A comprehensive survey of sine cosine algorithm: variants and…

1 3

4.5  Image processing

4.5.1  Manuscript image binarization

Elfattah et al. (2016) used SCA for Arabic manuscript image binarization. The algorithm 
was compared with Otsu’s and Niblack’s methods. Computational results demonstrated the 
robustness and superiority of SCA compared to the famous binarization methods existing 
in the literature.

4.5.2  Curve fitting

Amat et al. (2019) used SCA for solving the curve fitting problem. The main objective of 
SCA is to find the best middle control points by minimizing the sum square errors (SSE) 
which is considered as objective function. Simulation results showed a better performance 
of SCA compared to least square method (LSM).

4.6  Other applications

4.6.1  Global sequence alignment

Issa et al. (2018a) used SCA for solving pairwise global sequence alignment problem. The 
performance of SCA was tested based on the sequence of protein in humans and mice. 
It was shown that SCA gives better results compared to Dynamic Programming (DP) 
approach in terms of accuracy and execution time.

4.6.2  Higher‑order continuous systems

In the work of Singh (2017), SCA was applied to derive a reduced-order model (ROM) of 
higher-order continuous system (HOCS). The performance of SCA was evaluated using 
the ninth-order boiler system and results showed that SCA outperforms some existing 
algorithms such as PSO, Elephant herding optimizations (EHO), Luus–Jaakola (LJ), and 
Nelder-Mead Simplex (NMS) algorithms.

The percentage of applications of SCA for solving different optimization problems is 
given in Fig. 13. As it is shown, SCA has been mostly used in the field of Electrical Engi-
neering with 25%.

5  Results and comparisons

In this section, the SCA algorithm is evaluated and compared with six well-known meta-
heuristics such as GA, PSO, FA, PFA, BA, and GSA. Three groups of mathematical test 
functions (i.e. uni-modal, multi-modal, and composite) are selected in the experiments. 
Each of the test functions is solved using 30 search agents and 500 iterations. As presented 
in Table7, the simulation results revealed that the SCA algorithm gives very competitive 
results on the majority of the test cases. Firstly, the SCA algorithm gives better perfor-
mance on 3 out of 7 uni-modal test functions (F1, F2, and F7). Considering the proprieties 
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and characteristics of the uni-modal functions, these results demonstrated that SCA ben-
efits from high exploitation ability and convergence. Secondly, for the multi-modal test 
functions, it can be observed that SCA provides excellent results on 4 out of 6 test func-
tions (F9, F11, F12, and F13). These results demonstrate the efficiency of SCA to avoid the 
search from local optima stagnation during optimization. Finally, the SCA algorithm gives 
better results on the composite test functions with challenging search spaces. SCA algo-
rithm ensures a good balance between intensification and diversification.

To confirm and decide about the significance of the results, a non-parametric statis-
tical Wilcoxon test is used at 5% significance level and the P-values obtained are pre-
sented in Table 8. Note that N/A is written for the best algorithm in each test function 
which means Not Applicable. These results demonstrate strongly that the efficiency of 
SCA is statistically significant in comparison with other optimization algorithms.

6  Discussion and future works

SCA is a recent population-based optimization algorithm. It was quickly adopted in vari-
ous fields to solve optimization problems thanks to two main criteria. It has the reputation 
of finding the global optimum. It considers the problem as a black box which make it pos-
sible to be applied in any king of optimization problem. The finding from this study can be 
summarized as follow:

• SCA attracted a lot of interest over the last 3 years. Since its introduction in 2016, more 
than 210 works have been published. The peak of publications is recorded in 2020 with 
71 articles.

• India is the country that shows the most interest for SCA with total publications of 64.
• SCA has been applied to solve various optimization problems in different fields. Elec-

trical engineering is the most addressed one. The part of applications developed with 
SCA in this area is estimated to 25%.

• Several modified versions of SCA are proposed. Improved SCA has the higher percent-
age with 36%.

• SCA is also hybridized with many other methods where 77% of contributions join SCA 
with other meta-heuristics especially PSO (18%) and GWO (13%).

• SCA is even applied to address multi-objective problems. Five variants are already 
available in the literature.

This focus on SCA is due to its many advantages. Some of them are given in Table 9. 
However, it suffers from the No Free Lunch (NFL) theorem which states that there is no 
optimization technique that can solve all optimization problems Wolpert and Macready 
(1997). Moreover, SCA may be getting stuck in local optimal.

Despite this positive, there are still possible future directions such as:

• Combining SCA with other meta-heuristics like GA, CS, FA, KH, and DA.
• Investigating a systematical theoretical analysis of the running time, robustness, and 

stability of SCA.
• Comparing the effectiveness of SCA with other optimization techniques such as KH, 

MVO, FPA, CFO, and WEO.
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• Extending multi-objective variants of SCA for tackling many-objective optimization 
problems.

• Enhancing SCA to be applied on some complex and real-world optimization problems 
such as self-driving cars, data analysis, and big data analysis.

• Applying SCA to solve other optimization problems in different fields such as computer 
science (Network and linear antenna array, multi-cast routing, intrusion detection, graph 
coloring), electrical engineering (renewable energy system, visible light communica-
tion, voltage source inverters, annual energy loss), civil engineering (fiber-reinforced 
polymer sheets, optimal sizing of skeletal structures, soil stability analysis), mechanical 
engineering (permanent magnet synchronous motor, steel making, parameter calibra-
tion), and real-world applications (timetabling, self-driving cars).

7  Conclusion

In this paper, we provide the first comprehensive survey of SCA according to the modi-
fications, hybridizations, and applications. Since the development of SCA in 2016, more 
than 210 SCA papers have been published by several academics and researchers. These 
related papers proved the effectiveness, robustness, scalability, and efficiency of SCA to 
solve a large variety of optimization problems in different fields. This success is due to 
its simple implementation, its good convergence speed, its reasonable execution time, 
and its ability to be easily hybridized with other optimization algorithms. Despite the 
success of SCA, there are still several suggestions for future works. The modifications 
of the standard SCA needs more research by investigating new strategies and operators. 
Additional studies need to propose other SCA variants by combining it with other meta-
heuristics and techniques. In addition, a systematical theoretical analysis of the running 
time, robustness, and stability of SCA needs to be investigated. Also, another interesting 
research area is the application of SCA to solve other optimization problems, especially 
complex, dynamic, and large-scale optimization problems.
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Electrical Engineering

25%

Other Applications

18%

Benchmark Functions
17%

Classification
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Control Engineering
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Image Processing
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Fig. 13  The applications of SCA

Table 7  The average results for 
solving benchmark functions

Function GA PSO FA PFA BA GSA SCA

F1 0.8078 0.0003 0.0004 0.2111 1.0000 0.0000 0.0000
F2 0.5406 0.0693 0.0177 0.9190 1.0000 0.0100 0.0000
F3 0.5323 0.0157 0.0000 0.2016 1.0000 0.0016 0.0371
F4 0.8837 0.0936 0.0000 0.8160 1.0000 0.1177 0.0956
F5 0.6677 0.0000 0.0000 0.0813 1.0000 0.0000 0.0005
F6 0.7618 0.0004 0.0004 0.2168 1.0000 0.0000 0.0002
F7 0.5080 0.0398 0.0009 0.3587 1.0000 0.0021 0.0000
F8 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
F9 1.0000 0.3582 0.0190 0.8714 0.4248 0.0222 0.0000
F10 0.8323 0.1045 0.0000 1.0000 0.8205 0.1569 0.3804
F11 0.7679 0.0521 0.0074 0.2678 1.0000 0.4011 0.0000
F12 0.4573 0.0000 0.0000 0.0008 1.0000 0.0000 0.0000
F13 0.6554 0.0000 0.0000 0.0187 1.0000 0.0000 0.0000
F14 0.4201 0.1816 0.0000 0.3786 1.0000 0.0961 0.3908
F15 0.0000 0.3016 0.4395 0.2235 1.0000 0.2926 0.0230
F16 0.0000 0.0427 0.5298 0.2652 0.3572 1.0000 0.0497
F17 0.1093 0.0249 0.7093 0.5197 0.8189 0.7887 0.0000
F18 0.0000 0.1772 0.0723 0.1310 1.0000 0.8018 0.0129
F19 0.0192 0.7727 0.8176 0.3192 1.0000 0.9950 0.0000
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Table 8  The P-values of the Wilcoxon ranksum test over all runs

Function GA PSO FA PFA BA GSA SCA

F1 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165 N/A
F2 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165 N/A
F3 0.002165 0.002165 N/A 0.002165 0.002165 0.008658 0.004329
F4 0.002165 0.002165 N/A 0.002165 0.002165 0.002165 0.002165
F5 0.002165 0.002165 0.002165 0.002165 0.002165 0.681818 N/A
F6 0.002165 0.002165 0.002165 0.002165 0.002165 N/A 0.002165
F7 0.002165 0.002165 0.240260 0.002165 0.002165 0.002165 N/A
F8 0.002165 0.002165 0.002165 0.002165 N/A 0.002165 0.002165
F9 0.002165 0.002165 0.484848 0.002165 0.002165 0.818182 N/A
F10 0.002165 0.002165 N/A 0.002165 0.002165 0.093074 1.000000
F11 0.002165 0.002165 0.002165 0.002165 0.002165 0.002165 N/A
F12 0.002165 0.015152 0.064935 0.002165 0.002165 0.064935 N/A
F13 0.002165 0.002165 N/A 0.002165 0.002165 0.393939 0.002165
F14 0.064935 0.588745 N/A 0.064935 0.002165 0.132035 0.064935
F15 N/A 0.064935 0.008658 0.008658 0.002165 0.002165 0.179654
F16 N/A 0.937229 0.002165 0.002165 0.002165 0.002165 0.818182
F17 0.015152 1.000000 0.002165 0.002165 0.002165 0.002165 N/A
F18 N/A 0.393939 0.699134 0.002165 0.002165 0.025974 0.818182
F19 0.699134 0.064935 0.041126 0.041126 0.002165 0.002165 N/A
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