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Abstract
This paper formalizes a novel model that is able to use both interval representations,

parameterizations, partial memberships and multi-polarity. These are differing modalities

of uncertain knowledge that are supported by many models in the literature. The new

structure that embraces all these features simultaneously is called interval-valued multi-

polar fuzzy soft set (IVmFSS, for short). An enhanced combination of interval-valued m-

polar fuzzy (IVmF) sets and soft sets produces this model. As such, the theory of IVmFSSs

constitutes both an interval-valued multipolar-fuzzy generalization of soft set theory; a

multipolar generalization of interval-valued fuzzy soft set theory; and an interval-valued

generalization of multi-polar fuzzy set theory. Some fundamental operations for IVmFSSs,

including intersection, union, complement, ‘‘OR’’, ‘‘AND’’, are explored and investigated

through examples. An algorithm is developed to solve decision-making problems having

data in interval-valued m-polar fuzzy soft form. It is applied to two numerical examples. In

addition, three parameter reduction approaches and their algorithmic formulation are

proposed for IVmFSSs. They are respectively called parameter reduction based on optimal

choice, rank based parameter reduction, and normal parameter reduction. Moreover, these

outcomes are compared with existing interval-valued fuzzy methods; relatedly, a com-

parative analysis among reduction approaches is investigated. Two real case studies for the

selection of best site for an airport construction and best rotavator are studied.
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1 Introduction

Interval representations, parameterizations, partial memberships and multi-polarity are

various modalities of uncertain knowledge. They have been combined in a myriad of forms

in the literature (Akram et al. 2018; Alcantud et al. 2020b; Atanassov 1986; Chen et al.

2014; Jiang et al. 2010; Maji et al. 2001; Molodtsov 1999; Roy and Maji 2007; Yang et al.

2009; Zadeh 1965). The main purpose of this paper is the formalization of a model that

takes all these features into account. We call it interval-valued multi-polar fuzzy soft set,

also interval-valued m-polar fuzzy soft set or IVmFSS for short. Then we prove its versality

with several theoretical and applied developments, inclusive of fundamental operations,

parameter reductions, and applications to decision-making.

Fig. 1 Flowchart of selecting the suitable option
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Soft set theory (Molodtsov 1999) was designed to overcome the lack of parameteri-

zation tools in traditional uncertainty theories, including probability theory (Varadhan

2001), fuzzy set theory (Zadeh 1965), intuitionistic fuzzy set theory (Atanassov 1986), and

rough set theory (Pawlak 1982). However, the theory of soft sets is not a generalization of

previous mathematical theories: the concept behind the production of soft sets is strikingly

different from classical models for handling uncertainties. Real and potential applications

of soft set theory have been reported in different domains such as game theory, decision-

making, measurement theory, medical diagnosis, etc.

The inception of soft sets inspired numerous researchers who were attracted by this

powerful idea, for example, for the purpose of studying its fundamentals, hybrid structures

or its interactions with other disciplines. In this way basic properties of soft set theory were

presented by Maji et al. (2003). Ali et al. (2009) argued that some features of soft sets

discussed in (Maji et al. 2003) were not true in general. They thus produced some novel

formal properties of soft sets and verified the applicability of De Morgan’s laws for soft

sets.

Maji and Roy (2002) solved a decision-making problem based upon soft sets. In their

analysis they realized that in a given problem whose structure pertains to soft set theory,

there might exist one or more parameters that have no effect on the optimal decision. Such

parameters may be safely removed from the dataset in order to reduce the simulation cost.

Accordingly they took advantage of the idea of attribute reduction in rough set theory (

Pawlak 1982) in order to launch the investigation of parameter reduction in soft set theory.

Several additional investigations on the reduction of parameters in soft sets have been

reported. For instance, Chen et al. (2005) and Kong et al. (2008) launched parameteriza-

tion and normal parameter reductions for soft sets, respectively, to overcome the defi-

ciencies of decision-making applications in (Maji and Roy 2002). Ma et al. (2011)

developed a novel efficient normal parameter reduction method in order to further improve

(Chen et al. 2005; Maji and Roy 2002; Pawlak and Skowron 2007). Following their

strategy, Ali Ali (2012) introduced an alternative approach for the reduction of parameters

in soft sets. Now a practical distinction is in order. In normal parameter reduction

approaches, the reduction set in a given problem can be reused when the expert needs to

add some new parameters. However this is not the case of parameter reduction based on

optimal choice, as it relies on the preservation of the the decision object. The application

scope of parameter reduction based on optimal choice is wider than the former case, but

this comes at the cost of a natural inconvenience: when new parameters are added to the set

of parameters, an altogether new reduction process is needed, because the optimal object

may have changed. In short, the reduction set cannot be reused in the case of parameter

reduction based on optimal choice when new parameters are added to the required set of

parameters. Clearly we find the same difficulty in rank based parameter reduction, for it

keeps the ranking order of all objects.

Soft set theory developed beyond the original formulation soon. Roy and Maji Roy and

Maji (2007) proposed a more general model, namely, fuzzy soft sets, which allows to

model and solve a different sort of decision-making cases. Alcantud et al. (2017) presented

an alternative approach to solve decision-making problems based on fuzzy soft sets. The

idea of attributes reduction has also received considerable attention by many researchers in

the analyses of fuzzy soft sets and its extensions. For example, Feng et al. (2010b) pro-

posed the idea of parameter reduction of fuzzy soft sets based on concept of level soft sets.

With the help of level soft sets in an intuitionistic fuzzy environment, Jiang et al. (2011)

developed a reduction approach for the intuitionistic fuzzy soft set model that had been

introduced by Maji et al. (2001), Maji et al. (2004). The combination of the soft set and
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interval-valued fuzzy set models (Deschrijver and Kerre 2003; Gorzalczany 1987)

prompted Yang et al. (2009) to present interval-valued fuzzy soft sets (IVFSSs). Following

their approach, Feng et al. (2010a) proposed an alternative way to solve decision-making

problems with IVFSS data. And Ma et al. (2014) developed different parameter reduction

techniques for IVFSSs. On another note, Kong et al. (2020) proposed three types of

attribute reducts for multi-granulation information systems, and Akram et al. (2020) pre-

sented parameter reduction method of N-soft sets (Fatimah et al. 2018) and studied its

applications to decision-making.

Most of the real world problems ranging from medical to social fields involve bipolar

information: artificial vs. natural, profit vs. loss, et cetera, are normally two facets in

different decision-making situations. For instance, an expert panel voted on December 10,

2020 in the United States to recommend that the F.D.A. (Food and Drug Administration)

authorize a vaccine developed by the German company BioNTech and the American

company Pfizer. Efficacy and fast-track approval are accompanied by potential safety

issues and erosion of public trust. Although there were benefits and risks, the committee

decided the former outweighed the later.1 Based on this fact, in 1994, Zhang (1994) was

the first who presented a formalization of the idea of bipolar fuzzy sets (YinYang bipolar

fuzzy sets). They are a natural extension of fuzzy sets because in bipolar fuzzy sets, the

membership value range is extended from [0, 1] to ½�1; 1�. In other words, Yin and Yang

represents the two opposite parts of a phenomenon. Yin is the negative part while Yang is

the positive part. From inspection of the research of the past two decades, one can easily

observe that there exist many applications of bipolar fuzzy sets (and its hybrid models with

other uncertainty theories) in several domains, including artificial intelligence systems. For

example, Ali et al. (2019) explored an alternative technique to solve decision-making

problems based upon bipolar fuzzy soft sets and investigated certain reduction approaches

for them. In addition, Ali et al. (2020) developed attribute reduction methods in bipolar

fuzzy relation decision systems, and they also produced applications to decision-making.

But nowadays, scientists accept the fact that many real world problems contain or are

affected by multipolar information. Therefore there is a need for innovative mathematical

models in this domain. Motivated by this concern, Chen et al. (2014) introduced the

concept of mF sets as an extension of bipolar fuzzy sets. In an mF set, the membership

interval range of an alternative is extended to ½0; 1�m, which allows the practitioner to

capture all the m distinct characteristics of an alternative. However in some multipolar

situations, it is still not possible to represent the various membership degrees of an

alternative by a precise number. That is, even at the level of mF sets, intervals may be more

suitable than exact membership degrees. This issue has recently prompted Mahapatra et al.

(2020) to introduce IVmF sets as an extension of mF sets. They discussed the applications

of this model in graph theory as well.

At this point, the criticism was raised that there are many real-world decision-making

problems involving IVmF information which cannot be solved due to the lack of a con-

venient parameterization tool. For instance, suppose the metro stations of China and we

want to give membership degree on the basis of criteria as follows: the capacity of metro

trains that can travel in the metro station in a month and the ticket fare of journey. No

doubt, the above mentioned notions contain uncertainty because the number of visits on the

metro station in a month may vary and the ticket fare is also not unique. Thus in both of

these situations, a novel hybrid model is needed because IVmF sets (Mahapatra et al. 2020)

are not useful to deal with these types of situations in the presence of different parameters.

1 News retrieved from https://www.nytimes.com/2020/12/10/health/covid-vaccine-pfizer-fda.html.
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Motivated by all these factors, the aim of this research article is to produce a framework

to deal with IVmF soft information involving vagueness and imprecision in a parameter-

ized setting. We introduce a novel hybrid model that combines the advantages of both

IVmF sets (Mahapatra et al. 2020) and soft sets (Molodtsov 1999), and we call it IVmFSS.

Actually, IVmFSS theory developed in this research article can be viewed both as a

multipolar generalization of the IVFSS model (Yang et al. 2009), as an IVmF general-

ization of the soft set model (Molodtsov 1999), or as an interval-valued generalization of

the mF soft set model ( Akram et al. 2018). The reason is that the IVmFSS model here

proposed is based on all mF soft sets, IVmF sets, and IVFSSs. Further, three parameter

reduction approaches for this novel hybrid model are presented along with their algorithms.

Moreover, two real case studies (this is, an airport site selection and selection of rotavator)

are explored. Finally, a comparison of the proposed model with some existing interval-

valued fuzzy methods is discussed, and a comparative analysis among the reduction

approaches is also provided.

For more useful notions not discussed in the article, the readers are suggested to refer to

(Adeel et al. 2020; Akram 2019; Alcantud et al. 2020a; Ali and Akram 2020; Danjuma

et al. 2017; Deng and Wang 2012; Jiang et al. 2010; Perveen et al. 2019; Zhan and

Alcantud 2019; Zhang 2013; Kumar and Mohanraj 2017; Prasad 1996).

The structure of this research article is as follows. Section 2 first recalls some defini-

tions like soft sets, mF sets, mF soft sets and IVmF sets. Then it presents the concept of

IVmFSS and briefly discusses the basic operations in their context. Numerical examples

help to understand all the new concepts. Section 3 studies the three parameter reduction

approaches for the new hybrid model. Section 4 explores two real case studies of an airport

site selection and rotavator selection and it contains a solution of these critical problems by

the methodology of IVmFSSs and their parameter reduction techniques. Section 5 dis-

cusses a comparative analysis among the reduction approaches, and it also investigates a

comparison of the proposed model with some existing interval-valued fuzzy methods.

Finally in Sect. 6, we provide the conclusions and future research directions.

2 Interval-valued mF soft sets

This section firstly recalls some basic notions briefly, including soft set and IVmF sets

which are very helpful in the remaining study of the paper. Secondly, IVmFSS model is

presented with its basic properties and decision-making mechanism.

Definition 1 (Molodtsov 1999) Let U be an initial universal set and Z be a set of

parameters related to the objects of the universe. Let C � Z then a soft set ðw;CÞ is defined

as below:

ðw;CÞ ¼ fðc;wðcÞÞjc 2 C;w 2 PðUÞg;

where w : C ! PðUÞ is a mapping where P(U) denotes the collection of all subsets of U.

Definition 2 (Chen et al. 2014) A function A : U ! ½0; 1�m is called an mF set (or a

½0; 1�m-set ) and it is represented as (U, A) where A ¼ p1 � A; p2 � A; . . .pmð o A ) and pi � A
is the ith part of A.

Definition 3 (Akram et al. 2018) Let U be an initial universe, Z a set of parameters and

C � Z. Then, a pair ðc;CÞ is said to be an mF soft set on U, which is given as below:
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ðc;CÞ ¼ fðu; pi � C�ðuÞÞ : u 2 Uand� 2 Cg:

Let ~M ¼ ML;MU½ � be an interval number where 0�ML �MU � 1: We denote the col-

lection of all sub-intervals of the closed interval [0, 1] by D[0, 1] . If both the lower and the

upper bound of an interval are same, that is, [M, M], then M 2 ½0; 1�: For interval numbers

eMi ¼ MLi ;MUi
½ � 2 D½0; 1�; i 2 f1; 2; . . .g ¼ N define inf eMi ¼ ^i2NMLi ;^i2NMUi

½ � and

sup eMi ¼ _i2NMLi ;_i2NMUi
½ �. For three interval values eM ; eM1; eM2, we have

1. eM1 � eM2 , ML1
�ML2

and MU1
�MU2

.

2. eM1 ¼ eM2 , ML1
¼ ML2

and MU1
¼ MU2

:

3. eM1\ eM2 , eM1 � eM2 and eM1 6¼ eM2.

4. k ~M ¼ kML; kMU½ �; where 0� k� 1

Definition 4 (Mahapatra et al. 2020) An IVmF set f in U is a function f : U ! D½0; 1�m;
which is defined as follows:

f ¼
n

�

a; h ML1ðaÞ;MU1ðaÞ
� �

; ML2ðaÞ;MU2ðaÞ
� �

; ML3ðaÞ;MU3ðaÞ
� �

. . . MLmðaÞ;MUmðaÞ
� �

i
�

ja 2 U
o

where MLiðaÞ and MUiðaÞ are the lower and upper limits of the ith interval of the element a.

Now we develop a novel MCDM model called IVmFSSs and investigate its fundamental

properties with examples.

Definition 5 Let U be a nonempty universe and Z be a set of parameters. For any C � Z, a

pair ðg;CÞ is called an interval valued mF soft set or IVmFSS of U which is given as

follows:

ðg;CÞ ¼ fhc; gðcÞjc 2 Cig; ð1Þ

where gðcÞ is an IVmF subset of U, for all c 2 C. In other words,

Table 1 Tabular form of the IVmFSS g;CÞ

ðg;CÞ c1 � � � cr

u1

D

M11
L1ðu1Þ;M

11
U1ðu1Þ

h i

; . . .; M11
Lmðu1Þ;M

11
Umðu1Þ

h iE � � � D

M1r
L1ðu1Þ;M

1r
U1ðu1Þ

h i

; . . .; M1r
Lmðu1Þ;M

1r
Umðu1Þ

h iE

u2

D

M21
L1ðu2Þ;M

21
U1ðu2Þ

h i

; . . .; M21
Lmðu2Þ;M

21
Umðu2Þ

h iE � � � D

M2r
L1ðu2Þ;M

2r
U1ðu2Þ

h i

; . . .; M2r
Lmðu2Þ;M

2r
Umðu2Þ

h iE

..

. ..
. . .

. ..
.

un
D

Mn1
L1ðunÞ;M

n1
U1ðunÞ

h i

; . . .; Mn1
LmðunÞ;M

n1
UmðunÞ

h iE � � � D

Mnr
L1ðunÞ;M

nr
U1ðunÞ

h i

; . . .; Mnr
LmðunÞ;M

nr
UmðunÞ

h iE
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gðcÞ ¼
n

�

u; h ML1ðuÞ;MU1ðuÞ
� �

; ML2ðuÞ;MU2ðuÞ
� �

; ML3ðuÞ;MU3ðuÞ
� �

. . . MLmðuÞ;MUmðuÞ
� �

i
�

ju 2 U
o

:

Let U ¼ fu1; u2; � � � ; ung be a universe having ‘n’ objects, and C ¼ fc1; c2; � � � ; crg be a set

of parameters. Then, the tabular arrangement of an IVmFSS ðg;CÞ is given below (see

Table 1).

Example 1 Let U ¼ fu1; u2; . . .; u5g be a set of five hotels and Z ¼ fc1 ¼ material; c2 ¼
location; c3 ¼ beauty; c4 ¼ priceg be a universe of parameters and C ¼ fc1; c3; c4g � Z.

These parameters are further characterized as follows.

• The parameter ‘‘Material’’ includes wooden, aluminum and concrete.

• The parameter ‘‘Location’’ includes centrality, neighborhood and commercial

development.

• The parameter ‘‘Beauty’’ includes landscape, furniture and wall decorations.

• The parameter ‘‘Price’’ includes cheap, costly, very costly.

Then, the tabular representation of an IV3FSS ðg;CÞ is displayed in Table 2.

From Table 1, one can easily see that the evaluations for every object regarding

parameters are not clear unless the lower and upper bounds of these evaluations are

provided. For instance, one cannot describe the exact membership value about wooden

material used in the hotel u1 in the first pole of first cell of Table 2, that is, the least

membership degree bound regarding wooden material is 0.6 and most membership degree

bound is 0.8.

Definition 6 Let ðg;CÞ be an IVmFSS over a universe U and gðcÞ be the IVmF set of

parameter c, then a set of all IVmF sets in IVmFSS ðg;CÞ are called IVmF class of ðg;CÞ,
and is denoted by Clðg;CÞ, then

Clðg;CÞ ¼ fgðcÞjc 2 Cg:

Table 2 Tabular form of the IV3FSS ðg;CÞ

ðg;CÞ c1 c3 c4

u1

�

½0:6; 0:8�; ½0:2; 0:4�; ½0:5; 0:7�
� �

½0:5; 0:6�; ½0:7; 0:8�; ½0:5; 0:9�
� �

½0:7; 0:9�; ½0:1; 0:3�; ½0:8; 1:0�
�

u2

�

½0:4; 0:6�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:5; 0:7�; ½0:4; 0:6�; ½0:1; 0:4�
� �

½0:8; 1:0�; ½0:6; 0:8�; ½0:3; 0:5�
�

u3

�

½0:7; 0:9�; ½0:5; 0:6�; ½0:3; 0:8�
� �

½0:1; 0:5�; ½0:3; 0:7�; ½0:7; 1:0�
� �

½0:5; 0:8�; ½0:3; 0:5�; ½0:4; 0:6�
�

u4

�

½0:1; 0:3�; ½0:9; 1:0�; ½0:7; 0:8�
� �

½0:2; 0:4�; ½0:5; 0:8�; ½0:4; 0:8�
� �

½0:3; 0:6�; ½0:1; 0:4�; ½0:7; 0:9�
�

u5

�

½0:5; 0:7�; ½0:6; 0:9�; ½0:2; 0:4�
� �

½0:1; 0:3�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:4; 0:7�; ½0:2; 0:6�; ½0:6; 0:8�
�
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Example 2 Consider Example 1, then Clðg;CÞ ¼ fgðc1Þ; gðc3Þ; gðc4Þg, where

gðc1Þ ¼
��

u1;
�

½0:6; 0:8�; ½0:2; 0:4�; ½0:5; 0:7�
��

;
�

u2;
�

½0:4; 0:6�; ½0:7; 0:9�; ½0:2; 0:5�
��

;
�

u3;
�

½0:7; 0:9�; ½0:5; 0:6�; ½0:3; 0:8�
��

;
�

u4;
�

½0:1; 0:3�; ½0:9; 1:0�; ½0:7; 0:8�
��

;
�

u5;
�

½0:5; 0:7�; ½0:6; 0:9�; ½0:2; 0:4�
��	

;

gðc3Þ ¼
��

u1;
�

½0:5; 0:6�; ½0:7; 0:8�; ½0:5; 0:9�
��

;
�

u2;
�

½0:5; 0:7�; ½0:4; 0:6�; ½0:1; 0:4�
��

;
�

u3;
�

½0:1; 0:5�; ½0:3; 0:7�; ½0:7; 1:0�
��

;
�

u4;
�

½0:2; 0:4�; ½0:5; 0:8�; ½0:4; 0:8�
��

;
�

u5;
�

½0:1; 0:3�; ½0:7; 0:9�; ½0:2; 0:5�
��	

;

gðc4Þ ¼
��

u1;
�

½0:7; 0:9�; ½0:1; 0:3�; ½0:8; 1:0�
��

;
�

u2;
�

½0:8; 1:0�; ½0:6; 0:8�; ½0:3; 0:5�
��

;
�

u3;
�

½0:5; 0:8�; ½0:3; 0:5�; ½0:4; 0:6�
��

;
�

u4;
�

½0:3; 0:6�; ½0:1; 0:4�; ½0:7; 0:9�
��

;
�

u5;
�

½0:4; 0:7�; ½0:2; 0:6�; ½0:6; 0:8�
��	

:

Definition 7 Let U be a universal set, Z be a universe of parameters and C1;C2 � Z. For

two IVmFSSs ðg1;C1Þ and ðg2;C2Þ, we say that ðg1;C1Þ is called the IVmF soft subset of

ðg2;C2Þ and is denoted by ðg1;C1Þbðg2;C2Þ if

1. C1 � C2,

2. g1ðcÞ is an IVmF subset of g2ðcÞ; for all c 2 C1.

Here, IVmFSS ðg2;C2Þ is called an IVmF soft super-set of IVmFSS ðg1;C1Þ.

Table 3 Tabular form of the IV3FSS ðg1;C1Þ

ðg1;C1Þ c2 c4

u1

�

½0:5; 0:7�; ½0:1; 0:3�; ½0:3; 0:6�
� �

½0:5; 0:8�; ½0:1; 0:2�; ½0:7; 1:0�
�

u2

�

½0:2; 0:5�; ½0:5; 0:8�; ½0:1; 0:4�
� �

½0:6; 0:7�; ½0:5; 0:6�; ½0:2; 0:4�
�

u3

�

½0:6; 0:9�; ½0:5; 0:5�; ½0:3; 0:7�
� �

½0:4; 0:8�; ½0:2; 0:3�; ½0:3; 0:5�
�

u4

�

½0:1; 0:2�; ½0:7; 0:9�; ½0:6; 0:5�
� �

½0:1; 0:5�; ½0:0; 0:3�; ½0:6; 0:8�
�

u5

�

½0:4; 0:5�; ½0:5; 0:2�; ½0:1; 0:4�
� �

½0:2; 0:5�; ½0:1; 0:4�; ½0:5; 0:7�
�

Table 4 Tabular form of the IV3FSS ðg2;C2Þ

ðg2;C2Þ c2 c3 c4

u1

�

½0:6; 0:8�; ½0:2; 0:4�; ½0:5; 0:7�
� �

½0:5; 0:6�; ½0:7; 0:8�; ½0:5; 0:9�
� �

½0:7; 0:9�; ½0:1; 0:3�; ½0:8; 1:0�
�

u2

�

½0:4; 0:6�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:5; 0:7�; ½0:4; 0:6�; ½0:1; 0:4�
� �

½0:8; 1:0�; ½0:6; 0:8�; ½0:3; 0:5�
�

u3

�

½0:7; 0:9�; ½0:5; 0:6�; ½0:3; 0:8�
� �

½0:1; 0:5�; ½0:3; 0:7�; ½0:7; 1:0�
� �

½0:5; 0:8�; ½0:3; 0:5�; ½0:4; 0:6�
�

u4

�

½0:1; 0:3�; ½0:9; 1:0�; ½0:7; 0:8�
� �

½0:2; 0:4�; ½0:5; 0:8�; ½0:4; 0:8�
� �

½0:3; 0:6�; ½0:1; 0:4�; ½0:7; 0:9�
�

u5

�

½0:5; 0:7�; ½0:6; 0:9�; ½0:2; 0:4�
� �

½0:1; 0:3�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:4; 0:7�; ½0:2; 0:6�; ½0:6; 0:8�
�
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Example 3 Consider Example 1, where U ¼ fu1; u2; . . .; u5g is a set of five hotels. Let

C1 ¼ fc2 ¼ location; c4 ¼ priceg and C2 ¼ fc2 ¼ location; c3 ¼ beauty; c4 ¼ priceg be

two subsets of Z. Then, two IV3FSS ðg1;C1Þ and ðg2;C2Þ are given by Tables 3 and 4 ,

respectively.

Clearly, C1 � C2 and for all c 2 C1, g1ðcÞ is the IVmF subset of g2ðcÞ. Thus,

ðg1;C1Þbðg2;C2Þ.

Definition 8 Two IVmFSSs ðg1;C1Þ and ðg2;C2Þ over a universal set U are called equal

IVmFSSs if

1. ðg1;C1Þ is an IVmF soft subset of ðg2;C2Þ.
2. ðg2;C2Þ is an IVmF soft subset of ðg1;C1Þ.
It is denoted by ðg1;C1Þ ¼ ðg2;C2Þ.

Definition 9 The complement of an IVmFSS ðg;CÞ over a nonempty universe U is rep-

resented by ðg;CÞ	 ¼ ðg	 ;:CÞ, which is given as

ðg;CÞ	 ¼ ðg	 ;:CÞ ¼ fh:c; g	 ð:cÞj:c 2 Cig; ð2Þ

where g	 ð:cÞ is an IVmF set of U, 8c 2 C. In other words,

g	 ð:cÞ ¼
�

u; h 1 �MU1ðuÞ; 1 �ML1ðuÞ
� �

; 1 �MU2ðuÞ; 1 �ML2ðuÞ
� �

; . . .; 1 �MUmðuÞ; 1 �MLmðuÞ
� �

i
	

;

for all :c 2 :C and u 2 U. Here :C represent the not set of parameters which holds

opposite meaning corresponding to each parameter c 2 C.

Example 4 Assume data in Example 1 again, where an IV3FSS is given in Table 2. Then,

by Definition 9 its complement is computed in Table 5.

Definition 10 Let ðg1;C1Þ and ðg2;C2Þ be two IVmFSSs over a universal set U, then the

operation ‘‘AND’’ among them is represented as ðg1;C1Þ �̂ðg2;C2Þ and is given by

ðg1;C1Þ �̂ðg2;C2Þ ¼ ðW;C1 
 C2Þ;

where Wðr; kÞ ¼ g1ðrÞ \ g2ðkÞ for all ðr; kÞ 2 C1 
 C2.

Table 6 Tabular form of the IV3FSS ðg1;C1Þ

ðg1;C1Þ c1 c3

u1

�

½0:4; 0:5�; ½0:1; 0:3�; ½0:4; 0:8�
� �

½0:5; 0:8�; ½0:0; 0:2�; ½0:8; 0:9�
�

u2

�

½0:2; 0:8�; ½0:5; 0:7�; ½0:1; 0:6�
� �

½0:7; 0:9�; ½0:5; 0:7�; ½0:2; 0:4�
�

u3

�

½0:6; 0:7�; ½0:3; 0:4�; ½0:3; 0:8�
� �

½0:4; 0:6�; ½0:2; 0:6�; ½0:3; 0:7�
�

u4

�

½0:2; 0:4�; ½0:7; 0:8�; ½0:5; 0:9�
� �

½0:2; 0:5�; ½0:1; 0:3�; ½0:6; 0:8�
�

u5

�

½0:3; 0:8�; ½0:5; 0:8�; ½0:1; 0:6�
� �

½0:6; 0:8�; ½0:3; 0:5�; ½0:5; 0:9�
�
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Example 5 Let U ¼ fu1; u2; . . .; u5g be a set of five flats and C1 ¼ fc1 ¼
convenienttraffic; c3 ¼ modernrepairg;C2 ¼ fc1 ¼ convenienttraffic; c2 ¼ ingoodrepair;
c3 ¼ modernrepairg � Z be two sets of parameters. Then, two IV3FSSs ðg1;C1Þ and

ðg2;C2Þ are respectively given by Tables 6 and 7 .

The result of ‘‘AND’’ operation of IV3FSSs ðg1;C1Þ and ðg2;C2Þ is displayed in

Table 8.

Definition 11 Let ðg1;C1Þ and ðg2;C2Þ be two IVmFSSs on a universal set U, then the

operation ‘‘OR’’ among them is represented by ðg1;C1Þ �_ðg2;C2Þ and is given as

ðg1;C1Þ �_ðg2;C2Þ ¼ ðK;C1 
 C2Þ;

where Kðr; kÞ ¼ g1ðrÞ \ g2ðkÞ, 8ðr; kÞ 2 C1 
 C2.

Example 6 Consider Example 5 again, where two IV3FSSs ðg1;C1Þ and ðg2;C2Þ are

respectively given by Tables 6 and 7. The result of ‘‘OR’’ operation of IV3FSSs ðg1;C1Þ
and ðg2;C2Þ is displayed in Table 8 (Table 9).

We now investigate the DeMorgan’s laws for IVmFSSs.

Theorem 1 Let ðg1;C1Þ and ðg2;C2Þ be two IV m FSSs on a universal set U. Then,

1.
�

ðg1;C1ÞZðg2;C2Þ
�	 ¼ ðg1;C1Þ	 �_ðg2;C2Þ	 ,

2.
�

ðg1;C1Þ �_ðg2;C2Þ
�	 ¼ ðg1;C1Þ	 �̂ðg2;C2Þ	 .

Proof

ðg1;C1Þ	 �_ðg2;C2Þ	 ¼ ðg1
	 ;:C1Þ �_ðg2

	 ;:C2Þ;
¼ ðK;:C1 
 :C2Þ;whereKð:r;:kÞ ¼ g1

	 ðrÞ [ g2
	 ðkÞ;

¼ ðK;:ðC1 
 C2ÞÞ;

for all ðr; kÞ 2 C1 
 C2. Suppose that ðg1;C1ÞZðg2;C2Þ ¼ ðW;C1 
 C2Þ, then we obtain
�

ðg1;C1ÞZðg2;C2Þ
�	 ¼ ðW;C1 
 C2Þ	 ¼ ðW	 ;:ðC1 
 C2ÞÞ. Now for all

ðr; kÞ 2 C1 
 C2, we have

Table 7 Tabular form of the IV3FSS ðg2;C2Þ

ðg2;C2Þ c1 c2 c3

u1

�

½0:6; 0:8�; ½0:2; 0:4�; ½0:5; 0:7�
� �

½0:5; 0:6�; ½0:7; 0:8�; ½0:5; 0:9�
� �

½0:7; 0:9�; ½0:1; 0:3�; ½0:8; 1:0�
�

u2

�

½0:4; 0:6�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:5; 0:7�; ½0:4; 0:6�; ½0:1; 0:4�
� �

½0:8; 1:0�; ½0:6; 0:8�; ½0:3; 0:5�
�

u3

�

½0:7; 0:9�; ½0:5; 0:6�; ½0:3; 0:8�
� �

½0:1; 0:5�; ½0:3; 0:7�; ½0:7; 1:0�
� �

½0:5; 0:8�; ½0:3; 0:5�; ½0:4; 0:6�
�

u4

�

½0:1; 0:3�; ½0:9; 1:0�; ½0:7; 0:8�
� �

½0:2; 0:4�; ½0:5; 0:8�; ½0:4; 0:8�
� �

½0:3; 0:6�; ½0:1; 0:4�; ½0:7; 0:9�
�

u5

�

½0:5; 0:7�; ½0:6; 0:9�; ½0:2; 0:4�
� �

½0:1; 0:3�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:4; 0:7�; ½0:2; 0:6�; ½0:6; 0:8�
�
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W	 ð:r;:kÞ ¼ ðWðr; kÞÞ	 ;
¼ ðg1ðrÞ \ g2ðkÞÞ	 ;

¼ g1ðrÞ	 [ g2ðkÞ	 ;
¼ g1

	 ð:rÞ [ g2
	 ð:kÞ:

From the above discussion, we get
�

ðg1;C1ÞZðg2;C2Þ
�	 ¼ ðg1;C1Þ	 �_ðg2;C2Þ	 . Simi-

larly, the other part can be easily followed by similar arguments. h

Theorem 2 Let ðg1;C1Þ, ðg2;C2Þ and ðg3;C3Þ be three IV m FSSs over a universal set U.
Then,

1. ðg1;C1Þ �̂
�

ðg2;C2Þ �̂ðg3;C3Þ
�

¼
�

ðg1;C1Þ �̂ðg2;C2Þ
�

�̂ðg3;C3Þ;
2. ðg1;C1Þ �_

�

ðg2;C2Þ �_ðg3;C3Þ
�

¼
�

ðg1;C1Þ �_ðg2;C2Þ
�

�_ðg3;C3Þ;
3. ðg1;C1Þ �̂

�

ðg2;C2Þ �_ðg3;C3Þ
�

¼
�

ðg1;C1Þ �̂ðg2;C2Þ
�

�_
�

ðg1;C1Þ �̂ðg3;C3Þ
�

;

4. ðg1;C1Þ �_
�

ðg2;C2Þ �̂ðg3;C3Þ
�

¼
�

ðg1;C1Þ �_ðg2;C2Þ
�

�̂
�

ðg1;C1Þ �_ðg3;C3Þ
�

:

Proof For all r 2 C1; r2 2 C2 and r3 2 C3, we have g1ðr1Þ \ ðg2ðr2Þ \ g3ðr3ÞÞ ¼
ðg1ðr1Þ \ g2ðr2ÞÞ \ g3ðr3Þ; by the properties of interval-valued fuzzy sets, from which we

directly obtain that ðg1;C1Þ �̂
�

ðg2;C2Þ �̂ðg3;C3Þ
�

¼
�

ðg1;C1Þ �̂ðg2;C2Þ
�

�̂ðg3;C3Þ: Using

similar arguments, it can be easily see that ðg1;C1Þ �_
�

ðg2;C2Þ �_ðg3;C3Þ
�

¼
�

ðg1;C1Þ �_ðg2;C2Þ
�

�_ðg3;C3Þ:
For all r 2 C1; r2 2 C2 and r3 2 C3, by the properties of interval-valued fuzzy sets, we

get gðr1Þ \ ðg2ðr2Þ [ gðr3ÞÞ ¼ ðgðr1Þ \ g2ðr2ÞÞ [ ðgðr1Þ \ gðr3ÞÞ, from which we

directly obtain that

ðg1;C1Þ �̂
�

ðg2;C2Þ �_ðg3;C3Þ
�

¼
�

ðg1;C1Þ �̂ðg2;C2Þ
�

�_
�

ðg1;C1Þ �̂ðg3;C3Þ
�

. The remaining

part (4) directly follow by similar arguments. h

Definition 12 Let U ¼ fu1; u2; � � � ; ung be a universe, Z ¼ fc1; c2; � � � ; crg a universal set

of parameters and C � Z. For an IVmFSS ðg;CÞ, we define the scores for the lower and

upper bounds of membership degree intervals are respectively represented by b�LjðuiÞ and

bþLjðuiÞ and defined as follows:

b�LjðuiÞ ¼
X

n

s¼1

ðMLjðuiÞ �MLjðusÞÞ; ð3Þ

bþUj
ðuiÞ ¼

X

n

s¼1

ðMUj
ðuiÞ �MUj

ðusÞÞ: ð4Þ

for each cj 2 C; ðj ¼ 1; 2; � � � ; rÞ.

Definition 13 Let U ¼ fu1; u2; � � � ; ung be a universe, Z ¼ fc1; c2; � � � ; crg a universal set

of parameters and C � Z. For an IVmFSS ðg;CÞ, the accumulated score of an object

regarding an arbitrary parameter for all given poles is denoted by ðbcjðuiÞÞ, and is com-

puted by
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bcjðuiÞ ¼
X

m

t¼1

ðb�LtjðuiÞ þ bþUt
j
ðuiÞÞ; ð5Þ

Table 10 Tabular representation of the IVmFSS ðg;CÞ

ðg;CÞ c1 c2 c3

u1

�

½0:2; 0:9�; ½0:4; 0:7�; ½0:1; 0:4�
� �

½0:3; 0:5�; ½0:6; 0:9�; ½0:5; 0:8�
� �

½0:7; 0:9�; ½0:1; 0:3�; ½0:8; 1:0�
�

u2

�

½0:1; 0:5�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:5; 0:7�; ½0:4; 0:6�; ½0:1; 0:4�
� �

½0:8; 1:0�; ½0:6; 0:8�; ½0:3; 0:5�
�

u3

�

½0:3; 0:8�; ½0:5; 0:6�; ½0:3; 0:8�
� �

½0:1; 0:5�; ½0:3; 0:7�; ½0:7; 1:0�
� �

½0:5; 0:8�; ½0:3; 0:5�; ½0:4; 0:6�
�

u4

�

½0:4; 0:6�; ½0:9; 1:0�; ½0:7; 0:8�
� �

½0:2; 0:4�; ½0:5; 0:8�; ½0:4; 0:8�
� �

½0:3; 0:6�; ½0:1; 0:4�; ½0:7; 0:9�
�

u5

�

½0:1; 0:5�; ½0:6; 0:9�; ½0:2; 0:4�
� �

½0:1; 0:3�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:4; 0:7�; ½0:2; 0:6�; ½0:6; 0:8�
�

u6

�

½0:2; 0:6�; ½0:7; 0:8�; ½0:5; 0:7�
� �

½0:4; 0:6�; ½0:2; 0:4�; ½0:3; 0:6�
� �

½0:1; 0:5�; ½0:4; 0:7�; ½0:1; 0:3�
�

Table 11 Scores of lower bounds for each pole of IV3FSS ðg;CÞ

c1 c2 c3

b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ

u1 � 0.1 � 1.4 � 1.4 0.2 0.9 0.8 1.4 � 1.1 1.9

u2 � 0.7 0.4 � 0.8 1.4 � 0.3 � 1.6 2.0 1.9 � 1.1

u3 0.5 � 0.8 � 0.2 � 1.0 � 0.9 2.0 0.2 0.1 � 0.5

u4 1.1 1.6 2.2 � 0.4 0.3 0.2 � 1.0 � 1.1 1.3

u5 � 0.7 � 0.2 � 0.8 � 1.0 1.5 � 1.0 � 0.4 � 0.5 0.7

u6 � 0.1 0.4 1.0 0.8 � 1.5 � 0.4 � 2.2 0.7 � 2.3

Table 12 Scores of upper bounds for each pole of IV3FSS ðg;CÞ

c1 c2 c3

bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ

u1 1.5 � 0.7 � 1.2 0.0 1.1 0.7 0.9 � 1.5 1.9

u2 � 0.9 0.5 � 0.6 1.2 � 0.7 � 1.7 1.5 1.5 � 1.1

u3 0.9 � 1.3 1.2 0.0 � 0.1 1.9 0.3 � 0.3 � 0.5

u4 � 0.3 1.1 1.2 � 0.6 0.5 0.7 � 0.9 0.9 1.3

u5 � 0.9 0.5 � 1.2 � 1.2 1.1 � 1.1 � 0.3 0.3 0.7

u6 � 0.3 � 0.1 0.6 0.6 � 1.9 � 0.5 � 1.5 0.9 � 2.3
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where b�Ltj
ðuiÞ and b�Ut

j
ðuiÞ are the scores of lower and upper bounds for the intervals of

membership degrees and ‘m’ represents the number of poles.

Definition 14 Let U ¼ fu1; u2; � � � ; ung be an initial universal set, Z ¼ fc1; c2; � � � ; crg a

universal set of parameters and C � Z. For an IVmFSS ðg;CÞ, we define the final score Si
for every element ui of the universe which is given as

Si ¼
X

cj2C
ðbcjðuiÞÞ: ð6Þ

This novel proposed decision-making method under IVmFSS model is supported by an

algorithm below (see Algorithm 1).

Example 7 Let U ¼ fu1; u2; u3; u4; u5; u6g be the set of six laptops, Z ¼ fc1 ¼ costly; c2 ¼
beauty; c3 ¼ design; c4 ¼ technology; c5 ¼ materialg a set of parameters and

C ¼ fc1; c2; c3g � Z. Then, an IVmFSS ðg;CÞ is displayed in Table 10. We now apply

Algorithm 1 to IVmFSS ðg;CÞ.
By using Equations (3) and (4), the scores of lower and upper bounds for every pole

(interval) are given in Tables 11 and 12 . First cell of the Table 11 is computed as below.

b�c1
ðu1Þ ¼

X

6

s¼1

ðML1
ðu1Þ �ML1

ðusÞÞ;

¼ ðML1
ðu1Þ �ML1

ðu1ÞÞ þ ðML1
ðu1Þ �ML1

ðu2ÞÞ þ ðML1
ðu1Þ �ML1

ðu3ÞÞþ
ðML1

ðu1Þ �ML1
ðu4ÞÞ þ ðML1

ðu1Þ �ML1
ðu5ÞÞ þ ðML1

ðu1Þ �ML1
ðu6ÞÞ;

¼ ð0:2 � 0:2Þ þ ð0:2 � 0:1Þ þ ð0:2 � 0:3Þ þ ð0:2 � 0:4Þ þ ð0:2 � 0:1Þ
þ ð0:2 � 0:2Þ;¼ �0:1:

Table 13 Accumulated score
with respect to each parameter of
membership degrees of IV3FSS
ðg;CÞ

. c1 c2 c3

u1 � 3.3 � 3.7 � 3.5

u2 � 2.1 � 1.7 � 4.7

u3 � 0.3 � 1.9 � 0.7

u4 � 6.9 � 0.7 � 1.3

u5 � 3.3 � 1.7 0.5

u6 1.5 � 2.9 � 6.7
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Table 14 Final score table
. c1 c2 c3 Si

u1 � 3.3 3.7 3.5 3.9

u2 � 2.1 � 1.7 4.7 0.9

u3 0.3 1.9 � 0.7 1.5

u4 6.9 0.7 � 1.3 6.3

u5 � 3.3 � 1.7 0.5 � 4.5

u6 1.5 � 2.9 � 6.7 � 8.1

Table 15 Tabular representation of the IV4FSS ðg;CÞ

ðg;CÞ c1 c3

u1

�

½0:4; 0:8�; ½0:3; 0:6�; ½0:4; 0:6�; ½0:9; 1:0�
� �

½0:7; 0:8�; ½0:3; 0:4�; ½0:2; 0:4�; ½0:7; 0:9�
�

u2

�

½0:2; 0:5�; ½0:1; 0:5�; ½0:7; 0:9�; ½0:5; 0:7�
� �

½0:1; 0:4�; ½0:8; 1:0�; ½0:6; 0:8�; ½0:3; 0:5�
�

u3

�

½0:3; 0:8�; ½0:5; 0:6�; ½0:3; 0:8�; ½0:1; 0:5�
� �

½0:5; 0:8�; ½0:3; 0:5�; ½0:3; 0:7�; ½0:4; 0:6�
�

u4

�

½0:1; 0:3�; ½0:8; 1:0�; ½0:5; 0:8�; ½0:4; 0:7�
� �

½0:1; 0:4�; ½0:3; 0:5�; ½0:6; 0:9�; ½0:5; 0:8�
�

u5

�

½0:2; 0:5�; ½0:4; 0:7�; ½0:5; 0:7�; ½0:2; 0:6�
� �

½0:3; 0:7�; ½0:4; 0:8�; ½0:3; 0:5�; ½0:6; 0:8�
�

Table 16 Scores of lower bounds
for each pole of IV4FSS ðg;CÞ c1 c3

b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L4ðuiÞ b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L4ðuiÞ

u1 0.8 � 0.6 � 0.4 2.4 1.8 � 0.6 � 1.0 1.0

u2 � 0.2 � 1.6 1.1 0.4 � 1.2 1.9 1.0 � 1.0

u3 0.3 0.4 � 0.9 � 1.6 0.8 � 0.6 � 0.5 � 0.5

u4 � 0.7 1.9 0.1 � 0.1 � 1.2 � 0.6 1.0 0.0

u5 � 0.2 � 0.1 0.1 � 1.1 � 0.2 � 0.1 � 0.5 � 0.5

Table 17 Scores of upper bounds for each pole of IV4FSS ðg;CÞ

c1 c3

bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ

u1 1.1 � 0.4 � 0.8 1.5 0.9 � 1.2 � 1.3 0.9

u2 � 0.4 � 0.9 0.7 0.0 � 1.1 1.8 0.7 � 1.1

u3 1.1 � 0.4 0.2 � 1.0 0.9 � 0.7 0.2 � 0.6

u4 � 1.4 1.6 0.2 0.0 � 1.1 � 0.7 1.2 1.4

u5 � 0.4 0.1 � 0.3 � 0.5 0.4 0.8 � 0.8 0.4
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Similarly, one can readily compute the remaining values, which are displayed in Table 11

and 12 .

From Definition 13, the tabular representation for the accumulated scores of member-

ship values of IV3FSS ðg;CÞ with respect to each parameter is displayed by Table 13.

By Definition 14, the final score of every laptop ui is displayed in Table 14. First entry

of final score table is computed as:

S1 ¼
X

cj2Z
ðbcjðu1ÞÞ

¼ bc1
ðu1Þ þ bc2

ðu1Þ þ bc3
ðu1Þ;

¼ ð�1:3Þ þ ð0:9Þ þ ð3:3Þ ¼ 2:9:

From Table 14, the object having highest score is S4 ¼ 6:3. Thus, it can be used as

decision object.

Example 8 Let U ¼ fu1; u2; u3; u4g be the set f four cars, Z ¼ fc1 ¼ costly; c2 ¼
beauty; c3 ¼ design; c4 ¼ technology; c5 ¼ materialg a set of parameters and

C ¼ fc1; c3g � Z. Then, an IV4FSS ðg;CÞ is displayed in Table 15. We now apply

Algorithm 1 to IV4FSS ðg;CÞ.
By using Equations (3) and (4), the scores of lower and upper bounds for every pole

(interval) are given in Tables 16 and 17 . First cell of the Table 16 is computed as below.

b�c1
ðu1Þ ¼

X

5

s¼1

ðML1
ðu1Þ �ML1

ðusÞÞ;

¼ ðML1
ðu1Þ �ML1

ðu1ÞÞ þ ðML1
ðu1Þ �ML1

ðu2ÞÞ þ ðML1
ðu1Þ �ML1

ðu3ÞÞþ
ðML1

ðu1Þ �ML1
ðu4ÞÞ þ ðML1

ðu1Þ �ML1
ðu5ÞÞ;

¼ ð0:4 � 0:4Þ þ ð0:4 � 0:2Þ þ ð0:4 � 0:3Þ þ ð0:4 � 0:1Þ þ ð0:4 � 0:3Þ;
¼ 0:8:

Similarly, one can readily compute the remaining values, which are displayed in Table 16

and 17 .

From Definition 13, the tabular representation for the accumulated scores of member-

ship values of IV4FSS ðg;CÞ with respect to each parameter is displayed by Table 18.

By Definition 14, the final score of every car ui is displayed in Table 19. First entry of

final score table is computed as:

Table 18 Accumulated score
with respect to each parameter of
membership degrees of IV4FSS
ðg;CÞ

. c1 c3

u1 3.6 0.5

u2 � 0.9 1.0

u3 � 1.9 � 1.0

u4 1.6 � 1.0

u5 � 2.4 0.5
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S1 ¼
X

cj2Z
ðbcjðu1ÞÞ

¼ bc1
ðu1Þ þ bc3

ðu1Þ;
¼ ð3:6Þ þ ð0:5Þ ¼ 4:1:

From the Table 19, the object having highest score is u1 because S1 ¼ 4:1. Thus, u1 can

be selected as decision.

In the following, to find the optimal decision based on IVmF soft sets, we construct a

flowchart diagram whichdescribe the proposed mathematical method more precisely and feasibly.

By the analysis of above examples, one can easily see that developed decision-making

method under IVmFSSs is useful and reliable. Although, decision-making hybrid methods

involving soft sets as one of their component may contain some redundant parameters. To

remove this drawback in the developed hybrid model, we now provide three parameter

reductions approaches for IVmFSSs.

3 Parameter reductions of IVmFSSs

An approach to reduce the parameter set to acquire a minimal subset of parameter set that

provides a decision similar to the whole set of parameter is called parameter reduction. In

this section, we investigate three kinds of parameter reductions of IVmFSSs to handle

different reduction situations.

1. Parameter reduction based on optimal choice
We discuss the parameter reduction based on optimal choices and then give an algo-

rithm for this parameter reduction approach, which is explained through an example.

Definition 15 Let U ¼ fu1; u2; � � � ; ung be a universe, Z ¼ fc1; c2; � � � ; cmg a set of

parameters and C � Z. For an IVmFSS ðg;CÞ, we denote a subset OC � U as a set having

optimal values of final score Si. For any A � C, if OC�A ¼ OC , then A is said to be

dispensable in C, else, A is said to be indispensable in the favorable parameter set C. The

set C of parameters is said to be independent if each A � C is indispensable in C,

otherwise, C is dependent. Any set B � C is called a parameter reduction based on optimal
choice (PR-OC, henceforth) of C if it satisfy the following axioms.

1. B is independent (it means B � C which is minimal and keeps the decision

unchanged).

Table 19 Final score table
. c1 c3 Si

u1 3.6 0.5 4.1

u2 � 0.9 1.0 0.1

u3 � 1.9 � 1.0 � 2.9

u4 1.6 � 1.0 0.6

u5 � 2.4 � 0.5 � 1.9
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2. OB ¼ OC.

Using the Definition 15, we present an algorithm for PR-OC which remove the irrelevant

parameters while preserving the decision invariant.

Example 9 Consider Example 7 where C ¼ fc1; c2; c3g � Z. We apply Algorithm 2 to the

IVmFSS ðg;CÞ. Using Table 20, we deduce that for B
0 ¼ fc2; c3g, we obtain OC�B

0 ¼ OC.

Hence, one PR-OC of IVmFSS ðg;CÞ is given by C � B
0 ¼ fc1g which is displayed in

Table 20.

From Table 20, one can easily see that u4 is the decision after reduction. Definitely, the

subset fc1g � C is smallest which preserves decision invariant.

2. Rank based parameter reduction

Nowadays, most of the practical problems are mainly solved to find the rank of all the

alternatives under consideration. Since, the objects other than optimal choice are not

considered in PR-OC technique. To tackle this issue, we define a novel parameter

reduction which preserves the rank of all the objects and develop an algorithmic method

which maintains the ranking order of all the objects after reduction.

Definition 16 Let U ¼ fu1; u2; � � � ; ung be a universe, Z ¼ fc1; c2; � � � ; crg a set of

parameters and P � Z. For an IVmFSS ðg; ZÞ, an indiscernibility relation is given as

INDðPÞ ¼ fðui; ujÞ 2 X 
 XjSPðuiÞ ¼ SPðujÞg;

where SPðuiÞ ¼
P

cs2P
McsðuiÞ. For any IVmFSS ðg; ZÞ on U ¼ fu1; u2; � � � ; ung, the decision

Table 20 PR-OC
O c1 Si

u1 � 3.3 �,3.3

u2 � 2.1 � 2.1

u3 0.3 0.3

u4 6.9 6.9

u5 � 3.3 � 3.3

u6 1.5 � 1.5
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partition is given by

DZ ¼ ffu1; u2; � � � ; uigS1
; fuiþ1; � � � ; ujgS2

; � � � ; fuk; � � � ; ungSzg;

where for every sub-class fua; uaþ1; � � � ; uaþbgSi ; SZðuaÞ ¼ SZðuaþ1Þ ¼ � � � ¼ SZðuaþbÞ ¼
Si; and S1 � S2 � � � � � Sr; it means there exist r sub-classes. Actually, in RB-PR elements

of the universe are ranked regarding scores Si, where i 2 f1; 2; � � � ; ng.

Definition 17 Let U ¼ fu1; u2; � � � ; ung be a universe, Z ¼ fc1; c2; � � � ; crg a set of

parameters and let ðg; ZÞ be an IVmFSS. For every C � Z, if DZ�C ¼ DZ , then C is called

dispensable in Z, otherwise, C is indispensable in Z. The set Z of parameters is called

independent if every C � Z is indispensable in Z, otherwise, Z is dependent. A set B � Z is

called a rank based parameter reduction (RB-PR, in short) of Z if it satisfy the following

two conditions.

1. B is independent (it means B � Z is smallest which keeps the ranking order of all the

objects invariant, including optimal decision object).

2. DB ¼ DZ .

Using Definition 17, we now present an algorithm(see Algorithm 3) for the RB-PR method

that reduces the set of parameters while preserving the original rank fation.

Example 10 Let U ¼ fu1; u2; u3; u4; u5g be the set of five houses, Z ¼ fc1 ¼ costly; c2 ¼
beauty; c3 ¼ design; c4 ¼ location; c5 ¼ materialg a set of parameters and

C ¼ fc3; c4; c5g � Z. Then, an IV3FSS ðg;CÞ is displayed in Table 21. We now apply

Algorithm 1 to IV3FSS ðg;CÞ.

Table 21 Tabular representation of the IV3FSS ðg;CÞ

ðg;CÞ c3 c4 c5

u1

�

½0:5; 0:6�; ½0:2; 0:3�; ½0:4; 0:6�
� �

½0:5; 0:7�; ½0:1; 0:3�; ½0:3; 0:8�
� �

½0:8; 1:0�; ½0:2; 0:6�; ½0:4; 0:9�
�

u2

�

½0:2; 0:3�; ½0:4; 0:7�; ½0:3; 0:5�
� �

½0:6; 0:9�; ½0:4; 0:6�; ½0:5; 0:7�
� �

½0:2; 0:5�; ½0:7; 0:9�; ½0:3; 0:6�
�

u3

�

½0:4; 0:7�; ½0:7; 0:8�; ½0:2; 0:4�
� �

½0:3; 0:5�; ½0:6; 0:7�; ½0:4; 0:6�
� �

½0:7; 0:9�; ½0:4; 0:6�; ½0:5; 0:7�
�

u4

�

½0:6; 0:8�; ½0:4; 0:5�; ½0:6; 0:9�
� �

½0:7; 0:8�; ½0:8; 0:9�; ½0:5; 0:6�
� �

½0:3; 0:4�; ½0:5; 0:7�; ½0:6; 0:8�
�

u5

�

½0:3; 0:4�; ½0:5; 0:8�; ½0:8; 1:0�
� �

½0:7; 1:0�; ½0:6; 0:8�; ½0:3; 0:6�
� �

½0:5; 0:7�; ½0:3; 0:5�; ½0:1; 0:3�
�
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By using Equations (3) and (4), the scores of lower and upper bounds for every pole

(interval) are given in Tables 22 and 23 . First cell of the Table 22 is computed as below.

Table 22 Scores of lower bounds for each pole of IV3FSS ðg;CÞ

c3 c4 c5

b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ

u1 0.5 � 1.2 � 0.3 � 0.3 � 2.0 � 0.5 1.5 � 1.1 0.1

u2 � 1.0 � 0.2 � 0.8 0.2 � 0.5 0.5 � 1.5 1.4 � 0.4

u3 0.0 1.3 � 1.3 � 1.3 0.5 0 1.0 � 0.1 0.6

u4 1.0 � 0.2 0.7 0.7 1.5 0.5 � 1.0 0.4 1.1

u5 � 0.5 0.3 1.7 1.7 0.5 � 0.5 0.0 � 0.6 � 1.4

Table 23 Scores of upper bounds for each pole of IV3FSS ðg;CÞ

c3 c4 c5

bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ

u1 0.2 �1:6 �0:4 �0:4 �1:8 0.7 1.5 �0:3 1.2

u2 �1:3 0.4 �0:9 0.6 �0:3 �0:2 �1:0 1.2 �0:3

u3 0.7 0.9 �1:4 �1:4 0.2 �0:3 1.0 �0:3 0.2

u4 1.2 �0:6 1.1 0.1 1.2 �0:3 �1:5 0.2 0.7

u5 �0:8 0.9 1.6 1.1 0.7 �0:3 0.0 �0:8 �1:8

Table 24 Accumulated score
with respect to each parameter of
membership degrees of IV3FSS
ðg;CÞ

. c3 c4 c5

u1 � 2.8 � 4.3 � 2.9

u2 � 3.8 0.7 � 0.6

u3 0.2 � 2.3 2.4

u4 3.2 3.7 � 0.1

u5 3.2 2.2 � 4.6

Table 25 Final score table
. c3 c4 c5 Si

u1 � 2.8 � 4.3 2.9 � 4.2

u2 � 3.8 0.7 � 0.6 � 3.7

u3 0.2 � 2.3 2.4 0.3

u4 3.2 3.7 � 0.1 6.8

u5 3.2 2.2 � 4.6 0.8
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b�c1
ðu1Þ ¼

X

5

s¼1

ðML1
ðu1Þ �ML1

ðusÞÞ;

¼ ðML1
ðu1Þ �ML1

ðu1ÞÞ þ ðML1
ðu1Þ �ML1

ðu2ÞÞ þ ðML1
ðu1Þ �ML1

ðu3ÞÞþ
ðML1

ðu1Þ �ML1
ðu4ÞÞ þ ðML1

ðu1Þ �ML1
ðu5ÞÞ;

¼ ð0:5 � 0:5Þ þ ð0:5 � 0:2Þ þ ð0:5 � 0:4Þ þ ð0:5 � 0:6Þ þ ð0:5 � 0:3Þ;
¼ 0:5:

Similarly, one can readily compute the remaining values, which are displayed in Table 22

and 23 .

From Definition 13, the tabular representation for the accumulated scores of member-

ship values of IV3FSS ðg;CÞ with respect to each parameter is displayed by Table 24.

By Definition 14, the final score of every laptop ui is displayed in Table 25. First entry

of final score table is computed as:

S1 ¼
X

cj2Z
ðbcjðu1ÞÞ

¼ bc3
ðu1Þ þ bc4

ðu1Þ þ bc5
ðu1Þ;

¼ ð�2:8Þ þ ð�4:3Þ þ ð2:9Þ ¼ �4:2:

From the Table 25, one can readily see that the object having highest score is u4

because S4 ¼ 6:8. Thus, u4 is the optimal decision object. Furthermore, using Table 25, it

can readily computed that

DC ¼ ffu4g6:8; fu5g0:8; fu3g0:3; fu2g�3:7; fu2g�4:2g:

By applying Algorithm 3, we now compute a minimal subset of C which preserves the

rank of all objects of the universe. Thus, for B
0 ¼ fc5g, we obtain DC�B

0 ¼
ffu4g6:9; fu5g5:4; fu3g�2:1; fu2g�3:1; fu2g�7:1g with DC�B

0 ¼ DC. Notice that partition and

rank of elements of the universe are same after reduction. Thus, fc3; c4g is the only RB-PR

of IV3FSS ðg;CÞ as displayed by Table 26.

Clearly, fc3; c4g � C is the only minimal subset which keeps the ranking order of all

objects invariant.

Table 26 RB-PR
O c3 c4 Si

u1 � 2.8 � 4.3 � 7.1

u2 � 3.8 0.7 � 3.1

u3 0.2 � 2.3 � 2.1

u4 3.2 3.7 6.9

u4 3.2 2.2 5.4
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3. Normal parameter reduction

The reduction approaches discussed above may not be useful in different real situations.

That’s why, we give another reduction approach called normal parameter reduction (NPR)

for IVmFSSs, which handles the issue of added parameters. We propose the notion of NPR

and provide its algorithmic approach, that is, how to remove redundant parameters using

NPR method.

Definition 18 Let U ¼ fu1; u2; � � � ; ung be a universe of objects, C � Z ¼ fc1; c2; � � � ; crg
a favorable set of parameters. For an IVmFSS ðg;CÞ, B is said to be dispensable if we

compute a set B ¼ fc1; c2; � � � ; cpg � C, which verify the expression given below.
X

cj2B
bcjðu1Þ ¼

X

cj2B
bcjðu2Þ ¼ � � � ¼

X

cj2B
bcjðunÞ:

Otherwise, B is called indispensable. A set N � C is said to be NPR of C, if it satisfy the

conditions given as follows.

1. N is indispensable.

2.
P

zj2C�N

bcjðu1Þ ¼
P

cj2C�N

bcjðu2Þ ¼ � � � ¼
P

cj2C�N

bcjðunÞ:

Using Definition 18, we develop the NPR algorithm as below:

Table 27 Tabular representation of the IV3FSS ðg;CÞ

ðg;CÞ c1 c2 c5

u1

�

½0:4; 0:5�; ½0:1; 0:2�; ½0:4; 0:5�
� �

½0:7; 0:9�; ½0:5; 0:6�; ½0:5; 0:9�
� �

½0:6; 0:7�; ½0:1; 0:2�; ½0:4; 0:5�
�

u2

�

½0:6; 0:7�; ½0:3; 0:4�; ½0:2; 0:3�
� �

½0:6; 0:8�; ½0:4; 0:7�; ½0:4; 0:6�
� �

½0:4; 0:5�; ½0:3; 0:4�; ½0:2; 0:3�
�

u3

�

½0:5; 0:6�; ½0:2; 0:3�; ½0:3; 0:4�
� �

½0:3; 0:6�; ½0:7; 0:9�; ½0:3; 0:4�
� �

½0:5; 0:6�; ½0:2; 0:3�; ½0:3; 0:4�
�

u4

�

½0:7; 0:8�; ½0:4; 0:5�; ½0:1; 0:2�
� �

½0:4; 0:7�; ½0:6; 0:8�; ½0:7; 0:9�
� �

½0:3; 0:4�; ½0:4; 0:5�; ½0:1; 0:2�
�
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Example 11 Let U ¼ fu1; u2; u3; u4g be the set of four houses, Z ¼ fc1 ¼ costly; c2 ¼
beauty; c3 ¼ design; c4 ¼ location; c5 ¼ materialg a set of parameters and

C ¼ fc1; c2; c5g � Z. Then, an IV3FSS ðg;CÞ is displayed in Table 27. We now apply

Algorithm 4 to IV3FSS ðg;CÞ.

By using Equations (3) and (4), the scores of lower and upper bounds for every pole

(interval) are given in Tables 28 and 29 . First cell of the Table 28 is computed as below.

Table 28 Scores of lower bounds for each pole of IV3FSS ðg;CÞ

c1 c2 c5

b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ

u1 � 0.6 � 0.6 0.6 0.8 � 0.2 0.1 0.6 � 0.6 0.6

u2 � 0.2 � 0.2 0.2 � 0.8 0.6 � 0.7 0.2 � 0.2 0.2

u3 0.2 0.2 � 0.2 0.4 � 0.6 � 0.3 � 0.2 0.2 � 0.2

u4 0.6 0.6 � 0.6 � 0.4 0.2 0.9 � 0.6 0.6 � 0.6

Table 29 Scores of upper bounds for each pole of IV3FSS ðg;CÞ

c1 c2 c5

bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ

u1 � 0.6 � 0.6 0.6 0.6 � 0.6 0.8 0.6 � 0.6 0.6

u2 � 0.2 � 0.2 0.2 � 0.6 0.6 � 1.2 0.2 � 0.2 0.2

u3 0.2 0.2 � 0.2 0.2 � 0.2 � 0.4 � 0.2 0.2 � 0.2

u4 0.6 0.6 � 0.6 � 0.2 0.2 0.8 � 0.6 0.6 � 0.6

Table 30 Accumulated score with respect to each parameter of membership degrees of IV3FSS ðg;CÞ

. c1 c2 c5

u1 � 1.2 1.5 1.2

u2 � 0.4 � 2.1 0.4

u3 0.4 � 0.9 � 0.4

u4 1.2 1.5 � 1.2

Table 31 Final score table
. c1 c2 c5 Si

u1 � 1.2 1.5 1.2 1.5

u2 � 0.4 � 2.1 0.4 � 2.1

u3 0.4 � 0.9 � 0.4 � 0.9

u4 1.2 1.5 � 1.2 1.5
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b�c1
ðu1Þ ¼

X

5

s¼1

ðML1
ðu1Þ �ML1

ðusÞÞ;

¼ ðML1
ðu1Þ �ML1

ðu1ÞÞ þ ðML1
ðu1Þ �ML1

ðu2ÞÞ þ ðML1
ðu1Þ �ML1

ðu3ÞÞþ
ðML1

ðu1Þ �ML1
ðu4ÞÞ;

¼ ð0:4 � 0:4Þ þ ð0:4 � 0:6Þ þ ð0:4 � 0:5Þ þ ð0:4 � 0:7Þ;
¼ �0:6:

Similarly, one can readily compute the remaining values, which are displayed in Table 28

and 29 .

From the Definition 13, the tabular representation for the accumulated scores of

membership values of IV3FSS ðg;CÞ for each parameter is displayed by Table 30.

By Definition 14, the final score of every house ui is displayed in Table 31. First entry

of final score table is computed as:

S1 ¼
X

cj2Z
ðbcjðu1ÞÞ

¼ bc1
ðu1Þ þ bc2

ðu1Þ þ bc5
ðu1Þ;

¼ ð�1:2Þ þ ð1:5Þ þ ð1:2Þ ¼ 1:5:

Clearly, objects u1 and u4 have maximum score that is 1.5. Thus, one from them can be

chosen as optimal decision. By Table 31, one can easily observe that for N ¼ fc1; c5g, we

have
X

cj2N
bcjðu1Þ ¼

X

cj2B
bcjðu2Þ ¼ � � � ¼

X

cj2B
bcjðu4Þ ¼ 0:

Thus, C � fc1; c5g ¼ fc2g is the NPR of IVmFSS ðg;CÞ, which is given by Table 32.

4 Application to MCDM

This section solves two real decision-making situations using the developed model and

discusses the impact of the proposed parameter reduction approaches on them.

1. Case Study: Selection of a suitable site for an airport

Choosing an appropriate site for another airport, or assessing how suitably a current site

can be extended to give another significant airport, is a complicated procedure. A pro-

portion must be accomplished among air-transport and aeronautical needs and the effect of

the airport on its current circumstance. For an aeronautical perspective, the fundamental

necessity of an airport is its generally flat area of land adequately enormous to adapt the

Table 32 NPR
. c2 Si

u1 1.5 1.5

u2 � 2.1 � 2.1

u3 � 0.9 � 0.9

u4 1.5 1.5
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runways and different services and that this site is in a territory liberated from such

obstacles to air route as tall buildings and mountains. For the perspective of air-transport

requirements, airport sites should be adequately near to population centers that these are

thought to be approached by users easily. However, environmental factors demand that the

location should be too much long way from urban areas which will overcome the noise and

other destructive impacts on the population to tolerable levels. Moreover, the natural

beauty of different areas and other important assets should not be destroyed by the airport.

The environmental and aeronautical, nearly necessarily clash, with the conflict getting

more serious as the size of the envisaged airport increases for these two sets of require-

ments. The most unassuming airport facility with an aircraft parking, a building, and a

single runway that serves at the same time as terminal, control tower, and administration

area can quietly be constructed on a location as little as 75 acres since it needs just a flat,

very much depleted area adequate to oblige a short runway and its encompassing safety

strip. On the other hand, more modern and huge airport facilities need a large number of

runways of huge length, huge terminal aircraft parking areas, and huge territories of land

committed to landside access roads and parking. For this kind of airport, a base area of

3000 acres is probably going to be needed. A few significant airports, for example, King

Abdul Aziz International Airport close to Jeddah, Saudi Arabia, Charles de Gaulle Airport

close to Paris, and Dallas-Fort Worth International Airport in Texas are based on desti-

nations well in overabundance of above mentioned figure. The site selecting procedure for

a huge airport can take several months; in some essential circumstances, it has gone on for

several years. The difficulty in the process is due to the involvement of several factors.

First, evaluate the operational capabilities of the station, especially for weather conditions

(such as fog, low visibility, ice, snow, and wind), as well as obstacles to air navigation

nearby the airport, especially on the approach and take-off paths. The location of the

facility relative to the air traffic control airspace is also practically significant. Furthermore,

the capability of available land must be evaluated to adjust the expected configuration of

runways and other facilities. The landing must be flat or very gentle, because the runway

must be constructed based on the maximum allowable slope, which depends on the per-

formance of the aircraft during landing and takeoff. Also consider the ground access of the

airport. Evaluate the distance to population centers, regional highway infrastructure, public

transportation facilities (like railways), and the distance to land available for parking. Also

consider the nature of the terrain, rock and soil conditions, drainage needs and local land

value to estimate development costs. In a site selection process, the effect of an airport

development on the environment is very high. The effect of aircraft noise on the sur-

rounding population is usually a very important environmental factor, but in different

countries, the effect on the fauna and flora of the area must also be considered, the

pollution of local groundwater by chemical runoff, the existence of endangered species or

important culture sites, and even bad changes in land use. Several countries now demand

environmental analysis of airport development projects, including changes in employment

patterns, assessments of population migration, transportation plans and distortions in

existing regional land use. Suppose that government of a country planned to construct a

new airport on a most suitable site from twenty alternatives. This critical task is given to a

team of experts of the field. Let U ¼ fu1; u2; . . .; u20g be a set of twenty sites for the

selection of most suitable site for an airport construction and Z ¼ fc1 ¼ size; c2 ¼
cost; c3 ¼ environmentalconsequences; c4 ¼ groundaccesg be a set of parameters from

which C ¼ fc2; c3; c4g � Z are favorable according to the team of experts. These

parameters can be further classified as follows:
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• The parameter ‘‘Size’’ includes medium, large, very large.

• The parameter ‘‘Cost’’ includes low, medium, high.

• The parameter ‘‘Environmental Consequences’’ includes distortion of existing regional

land use, changes in employment patterns, and evaluations of population relocation.

• The parameter ‘‘Ground Access’’ includes public transport facilities, the regional

highway infrastructure, distance from population centers.

The report collected from the team of experts is in the form of an IV3FSS, which is

displayed by Table 33.

By using Equations (3) and (4), the scores of lower and upper bounds for every pole

(interval) are given in Tables 34 and 35 . First cell of the Table 34 is computed as below.

b�c2
ðu1Þ ¼

X

5

s¼1

ðML1
ðu1Þ �ML1

ðusÞÞ;

¼ ðML1
ðu1Þ �ML1

ðu1ÞÞ þ ðML1
ðu1Þ �ML1

ðu2ÞÞ þ ðML1
ðu1Þ �ML1

ðu3ÞÞ þ . . .þ
ðML1

ðu1Þ �ML1
ðu19ÞÞ þ ðML1

ðu1Þ �ML1
ðu20ÞÞ;

¼ ð0:4 � 0:4Þ þ ð0:4 � 0:5Þ þ ð0:4 � 0:3Þ þ . . .þ ð0:4 � 0:5Þ þ ð0:4 � 0:2Þ;
¼ 0:3:

Table 33 Tabular representation of the IV3FSS ðg;CÞ

ðg;CÞ c2 c3 c4

u1

�

½0:4; 0:6�; ½0:2; 0:3�; ½0:7; 0:8�
� �

½0:6; 0:7�; ½0:1; 0:3�; ½0:6; 0:8�
� �

½0:9; 1:0�; ½0:5; 0:6�; ½0:7; 0:9�
�

u2

�

½0:5; 0:7�; ½0:7; 0:8�; ½0:4; 0:6�
� �

½0:8; 0:9�; ½0:5; 0:7�; ½0:6; 0:9�
� �

½0:3; 0:4�; ½0:5; 0:6�; ½0:1; 0:2�
�

u3

�

½0:3; 0:5�; ½0:6; 0:7�; ½0:5; 0:8�
� �

½0:4; 0:7�; ½0:3; 0:4�; ½0:7; 0:9�
� �

½0:6; 0:8�; ½0:5; 0:7�; ½0:4; 0:6�
�

u4

�

½0:5; 0:6�; ½0:7; 0:8�; ½0:4; 0:6�
� �

½0:1; 0:3�; ½0:5; 0:7�; ½0:7; 0:8�
� �

½0:4; 0:5�; ½0:6; 0:8�; ½0:3; 0:5�
�

u5

�

½0:3; 0:4�; ½0:5; 0:8�; ½0:8; 1:0�
� �

½0:7; 1:0�; ½0:6; 0:8�; ½0:3; 0:6�
� �

½0:5; 0:7�; ½0:3; 0:5�; ½0:1; 0:3�
�

u6

�

½0:6; 0:9�; ½0:4; 0:7�; ½0:1; 0:4�
� �

½0:3; 0:5�; ½0:6; 0:9�; ½0:5; 0:8�
� �

½0:7; 0:9�; ½0:1; 0:3�; ½0:8; 1:0�
�

u7

�

½0:2; 0:6�; ½0:7; 0:8�; ½0:5; 0:7�
� �

½0:4; 0:6�; ½0:2; 0:4�; ½0:3; 0:6�
� �

½0:1; 0:5�; ½0:4; 0:7�; ½0:1; 0:3�
�

u8

�

½0:7; 0:9�; ½0:5; 0:6�; ½0:3; 0:8�
� �

½0:1; 0:5�; ½0:3; 0:7�; ½0:7; 1:0�
� �

½0:5; 0:8�; ½0:3; 0:5�; ½0:4; 0:6�
�

u9

�

½0:4; 0:6�; ½0:9; 1:0�; ½0:7; 0:8�
� �

½0:2; 0:4�; ½0:5; 0:8�; ½0:4; 0:8�
� �

½0:3; 0:6�; ½0:1; 0:4�; ½0:7; 0:9�
�

u10

�

½0:5; 0:7�; ½0:6; 0:9�; ½0:2; 0:4�
� �

½0:1; 0:3�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:4; 0:7�; ½0:2; 0:6�; ½0:6; 0:8�
�

u11

�

½0:3; 0:8�; ½0:5; 0:6�; ½0:3; 0:8�
� �

½0:1; 0:5�; ½0:3; 0:7�; ½0:7; 1:0�
� �

½0:5; 0:8�; ½0:3; 0:5�; ½0:4; 0:6�
�

u12

�

½0:3; 0:4�; ½0:5; 0:8�; ½0:8; 1:0�
� �

½0:7; 1:0�; ½0:6; 0:8�; ½0:3; 0:6�
� �

½0:5; 0:7�; ½0:3; 0:5�; ½0:1; 0:3�
�

u13

�

½0:2; 0:5�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:5; 0:7�; ½0:4; 0:6�; ½0:1; 0:4�
� �

½0:8; 1:0�; ½0:6; 0:8�; ½0:3; 0:5�
�

u14

�

½0:1; 0:3�; ½0:9; 1:0�; ½0:7; 0:8�
� �

½0:2; 0:4�; ½0:5; 0:8�; ½0:4; 0:8�
� �

½0:3; 0:6�; ½0:1; 0:4�; ½0:7; 0:9�
�

u15

�

½0:6; 0:8�; ½0:2; 0:4�; ½0:5; 0:7�
� �

½0:5; 0:6�; ½0:7; 0:8�; ½0:5; 0:9�
� �

½0:7; 0:9�; ½0:1; 0:3�; ½0:8; 1:0�
�

u16

�

½0:3; 0:5�; ½0:6; 0:9�; ½0:2; 0:4�
� �

½0:1; 0:3�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:4; 0:7�; ½0:2; 0:6�; ½0:6; 0:8�
�

u17

�

½0:4; 0:7�; ½0:7; 0:8�; ½0:2; 0:4�
� �

½0:3; 0:5�; ½0:6; 0:7�; ½0:4; 0:6�
� �

½0:7; 0:9�; ½0:4; 0:6�; ½0:5; 0:7�
�

u18

�

½0:4; 0:6�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:5; 0:7�; ½0:4; 0:6�; ½0:1; 0:4�
� �

½0:8; 1:0�; ½0:6; 0:8�; ½0:3; 0:5�
�

u19

�

½0:5; 0:6�; ½0:7; 0:9�; ½0:2; 0:5�
� �

½0:8; 1:0�; ½0:4; 0:5�; ½0:6; 0:7�
� �

½0:6; 0:8�; ½0:4; 0:7�; ½0:4; 0:6�
�

u20

�

½0:2; 0:3�; ½0:4; 0:7�; ½0:3; 0:5�
� �

½0:6; 0:9�; ½0:4; 0:6�; ½0:5; 0:7�
� �

½0:2; 0:5�; ½0:7; 0:9�; ½0:3; 0:6�
�
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Similarly, one can readily compute the remaining values, which are displayed in Table 34

and 35 .

From Definition 13, the tabular representation for the accumulated scores of member-

ship degrees of IV3FSS ðg;CÞ with respect to each parameter is displayed by Table 36.

By Definition 14, the final score of every site ui is displayed Table 37.

Clearly, from Table 37 the object having highest score is u15 because S15 ¼ 20:4. Thus,

u15 is the most suitable site from all the available alternatives. From the Table 37, it can be

readily compute that B
0 ¼ fc2g � C such that C � B

0 ¼ fc3; c4g is the only PR-OC.

Regrettably, there is no RB-PR in present situation.

Now we apply our decision-making Algorithm 1 under IVmFSSs, and the reduction

Algorithms 2, 3 and 4 , to another situation from agriculture engineering.

2. Case Study: Selection of a suitable rotavator machine

In agricultural engineering, a rotavator is a useful machine for seedbed preparation. It is

directly connected with a tractor to plow the soil by a set of blades that cuts, mixes,

pulverizes and level the soil and makes the ground perfect before planting bulbs and seeds.

Thus blades become very essential components in the rotavator. This is an effective

agriculture equipment which replaces the disc harrow, cultivator and leveler because it

works collectively of these three equipments. It is better than traditional agricultural rotary

Table 34 Scores of lower bounds for each pole of IV3FSS ðg;CÞ

c2 c3 c4

b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ

u1 0.3 � 7.7 5.8 4.0 � 7.3 3.2 7.8 2.8 5.4

u2 2.3 � 2.3 � 0.2 8.0 .7 3.2 � 4.2 2.8 � 6.6

u3 � 0.7 0.3 1.8 0.0 � 3.3 5.2 1.8 2.8 � 0.6

u4 2.3 2.3 � 0.2 � 6.0 0.7 5.2 � 2.2 4.8 � 2.6

u5 � 1.7 � 1.7 7.8 6.0 2.7 � 2.8 � 0.2 � 1.2 � 6.6

u6 4.3 � 3.7 � 6.2 � 2.0 2.7 1.2 3.8 � 5.2 7.4

u7 � 3.7 2.3 1.8 0.0 � 5.3 � 2.8 � 8.2 0.8 � 6.6

u8 6.3 � 1.7 � 2.2 � 6.0 � 3.3 5.2 � 0.2 � 1.2 � 0.6

u9 0.3 6.3 5.8 � 4.0 0.7 � 0.8 � 4.2 � 5.2 5.4

u10 2.3 0.3 � 4.2 � 6.0 4.7 � 4.8 � 2.2 � 3.2 3.4

u11 � 1.7 � 1.7 � 2.2 � 6.0 � 3.3 5.2 � 0.2 � 1.2 � 0.6

u12 � 1.7 � 1.7 7.8 6.0 2.7 � 2.8 � 0.2 � 1.2 � 6.6

u13 � 3.7 2.3 � 4.2 2.0 � 1.3 � 6.8 5.8 4.8 � 2.6

u14 � 5.7 6.3 5.8 � 4.0 0.7 � 0.8 � 4.2 � 5.2 5.4

u15 4.3 � 7.7 1.8 2.0 4.7 1.2 3.8 � 5.2 7.4

u16 � 1.7 0.3 � 4.2 � 6.0 4.7 � 4.8 � 2.2 � 3.2 3.4

u17 0.3 2.3 � 4.2 � 4.0 2.7 � 0.8 3.8 0.8 1.4

u18 0.3 2.3 � 4.2 2.0 � 0.3 � 6.8 5.8 4.8 � 2.6

u19 2.3 2.3 � 4.2 8.0 � 1.3 3.2 1.8 0.8 � 0.6

u20 � 3.7 � 3.7 � 2.2 4.0 � 1.3 1.2 � 6.2 6.8 � 2.6
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machines due to its rapid and efficient seedbed preparation. The rotavator is a very reliable

source of transmission of the engine power of a tractor directly to the soil without any

serious reduction in transmission power loss and wheel slip. Due to this fact, it saves a lot

of time and reduces the cost of operation more than other classical tillage machines. In the

manufacturing process of a rotavator, major errors can be reduced by the analysis of its

components design. The design optimization of a rotavator machine is achieved by

decreasing its cost and weight, and by enhancing a field efficiency to high weed removal

performance. Soil conditions directly affect the types of blades selected in terms of power

requirement of rotary cultivator. For example, clay soil consumes more power than loamy

soil. Therefore, soil condition is also an important factor in the development of a suit-

able rotavator. Other main factors which affect the selection procedure of an appropriate

rotavator are: size, cost, fuel consumption and material quality.

Nowadays, with the advancement in agriculture sector, agriculture engineers are trying

to enhance the rotavator design and its material, with the goal of achieving maximum

outputs in minimum time and with the lowest cost. Experts believe that there are different

characteristics which should be considered in the selection of a rotavator, such as size, cost,

fuel consumption, blades shape, material quality, soil condition etc.

Suppose that an agricultural university arranges an agriculture exhibition where engi-

neers can present their innovative agricultural equipments. The university management

Table 35 Scores of upper bounds for each pole of IV3FSS ðg;CÞ

c2 c3 c4

bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ

u1 � 0.0 � 9.3 3.0 1.5 � 7.6 1.7 5.2 0.2 5.4

u2 2.0 0.7 � 1.0 5.5 0.4 3.7 � 6.8 0.2 � 8.6

u3 � 2.0 � 1.3 3.0 1.5 � 5.6 3.7 1.2 2.2 � 0.6

u4 � 0.0 0.7 � 1.0 � 6.5 0.4 1.7 � 4.8 4.2 � 2.6

u5 � 4.0 0.7 7.0 7.5 2.4 � 2.3 � 0.8 � 1.8 � 6.6

u6 6.0 � 1.3 � 5.0 � 2.5 4.4 1.7 3.2 � 5.8 7.4

u7 � 0.0 0.7 1.0 � 0.5 � 5.6 � 2.3 � 4.8 2.2 � 6.6

u8 6.0 � 3.3 3.0 � 2.5 0.4 5.7 1.2 � 1.8 � 0.6

u9 � 0.0 4.7 3.0 � 4.5 2.4 1.7 � 2.8 � 3.8 5.4

u10 2.0 2.7 � 5.0 � 6.5 4.4 � 4.3 � 0.8 0.2 3.4

u11 4.0 � 3.3 3.0 � 2.5 0.4 5.7 1.2 � 1.8 � 0.6

u12 � 4.0 0.7 7.0 7.5 2.4 � 2.3 � 0.8 � 1.8 � 6.6

u13 � 2.0 2.7 � 3.0 1.5 � 1.6 � 6.3 5.2 4.2 � 2.6

u14 � 6.0 4.7 3.0 � 4.5 2.4 1.7 � 2.8 � 3.8 5.4

u15 4.0 � 7.3 1.0 � 0.5 2.4 3.7 3.2 � 5.8 7.4

u16 � 2.0 2.7 � 5.0 � 6.5 4.4 � 4.3 � 0.8 0.2 3.4

u17 2.0 0.7 � 5.0 � 2.5 0.4 � 2.3 3.2 0.2 1.4

u18 � 0.0 2.7 � 3.0 1.5 � 1.6 � 6.3 5.2 4.2 � 2.6

u19 � 0.0 2.7 � 3.0 7.5 � 3.6 � 0.3 1.2 2.2 � 0.6

u20 6.0 � 1.3 � 3.0 5.5 � 1.6 � 0.3 � 4.8 6.2 � 0.6
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Table 36 Accumulated score
with respect to each parameter of
membership degrees of IV3FSS
ðg;CÞ

. c2 c3 c4

u1 � 7.9 � 4.5 26.8

u2 6.1 21.5 � 23.2

u3 0.1 1.5 6.8

u4 4.1 � 4.5 � 3.2

u5 8.1 13.5 � 17.2

u6 � 5.9 5.5 10.8

u7 2.1 � 16.5 � 23.2

u8 8.1 � 0.5 � 3.2

u9 20.1 � 4.5 � 5.2

u10 � 1.9 � 12.5 0.8

u11 � 1.9 � 0.5 � 3.2

u12 8.1 13.5 � 17.2

u13 � 7.9 � 12.5 14.8

u14 8.1 � 4.5 � 5.2

u15 � 3.9 13.5 10.8

u16 � 9.9 � 12.5 0.8

u17 � 3.9 � 4.5 10.8

u18 � 1.9 � 12.5 14.8

u19 0.1 13.5 4.8

u20 � 19.9 7.5 � 1.2

Table 37 Final score table
. c2 c3 c4 Si

u1 � 7.9 � 4.5 26.8 14.4

u2 6.1 21.5 � 23.2 4.4

u3 0.1 1.5 6.8 8.4

u4 4.1 � 4.5 � 3.2 � 3.6

u5 8.1 13.5 � 17.2 4.4

u6 � 5.9 5.5 10.8 10.4

u7 2.1 � 16.5 � 23.2 � 37.6

u8 8.1 � 0.5 � 3.2 4.4

u9 20.1 � 4.5 � 5.2 10.4

u10 � 1.9 � 12.5 0.8 � 13.6

u11 � 1.9 � 0.5 � 3.2 � 5.6

u12 8.1 13.5 � 17.2 4.4

u13 � 7.9 � 12.5 14.8 � 5.6

u14 8.1 � 4.5 � 5.2 � 1.6

u15 � 3.9 13.5 10.8 20.4

u16 � 9.9 � 12.5 0.8 � 21.6

u17 � 3.9 � 4.5 10.8 2.4

u18 � 1.9 � 12.5 14.8 0.4

u19 0.1 13.5 4.8 18.4

u20 � 19.9 7.5 � 1.2 � 13.6
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also announces an award to the best rotavator model from the ten alternatives which are

evaluated by a team of senior agriculture experts with respect to some favorable param-

eters. Let U ¼ fu1; u2; . . .; u10g be a set of ten alternatives (rotavators) for the selection of

most suitable option and Z ¼ fc1 ¼ size; c2 ¼ materialquality; c3 ¼ cost; c4 ¼
soilconditiong be a set of parameters from which C ¼ fc1; c2; c4g � Z are favorable

according to the team of experts. These parameters can be further classified as follows:

• The parameter ‘‘Size’’ includes medium, large, very large.

• The parameter ‘‘Material Quality’’ includes low, medium, and high.

• The parameter ‘‘Cost’’ includes low, medium, high.

• The parameter ‘‘Soil Condition’’ includes slit soil, clay soil, loamy soil.

The report collected from the team of experts is in the form of an IV3FSS, which is

displayed by Table 38.

By using Equations (3) and (4), the scores of lower and upper bounds for every pole

(interval) are given in Tables 39 and 40 .

From Definition 13, the tabular representation for the accumulated scores of member-

ship degrees of IV3FSS ðg;CÞ with respect to each parameter is displayed by Table 41.

By Definition 14, the final score of every site ui is displayed Table 42.

Clearly, from Table 42 the object having highest score is u1 because S1 ¼ 7:1. Thus, u1

is the most suitable rotavator from all the available alternatives. From Table 42, it can be

readily computed that B
0 ¼ fc1; c2g � C such that C � B

0 ¼ fc4g is the only PR-OC.

Regrettably, there is no RB-PR and NPR in the present situation.

Figure 2 presents a flowchart to compute the parameter reductions of IVmFSSs.

5 Comparison

This section provides a detailed comparison among the reduction methods developed in

Sect. 3, in terms of their respective reduction of computational speed and scope of

application. It also gives a comparative discussion between the IVmF model developed in

this paper and some existing models.

Table 38 Tabular representation of the IV3FSS ðg;CÞ

ðg;CÞ c1 c2 c4

u1

�

½0:9; 1:0�; ½0:5; 0:6�; ½0:7; 0:9�
� �

½0:4; 0:6�; ½0:2; 0:3�; ½0:7; 0:8�
� �

½0:6; 0:7�; ½0:1; 0:3�; ½0:6; 0:8�
�

u2

�

½0:8; 0:9�; ½0:5; 0:7�; ½0:6; 0:9�
� �

½0:5; 0:7�; ½0:7; 0:8�; ½0:4; 0:6�
� �

½0:3; 0:4�; ½0:5; 0:6�; ½0:1; 0:2�
�

u3

�

½0:6; 0:8�; ½0:5; 0:7�; ½0:4; 0:6�
� �

½0:4; 0:7�; ½0:3; 0:4�; ½0:7; 0:9�
� �

½0:3; 0:5�; ½0:6; 0:7�; ½0:5; 0:8�
�

u4

�

½0:5; 0:6�; ½0:7; 0:8�; ½0:4; 0:6�
� �

½0:4; 0:5�; ½0:6; 0:8�; ½0:3; 0:5�
� �

½0:1; 0:3�; ½0:5; 0:7�; ½0:7; 0:8�
�

u5

�

½0:7; 1:0�; ½0:6; 0:8�; ½0:3; 0:6�
� �

½0:5; 0:7�; ½0:3; 0:5�; ½0:1; 0:3�
� �

½0:3; 0:4�; ½0:5; 0:8�; ½0:8; 1:0�
�

u6

�

½0:7; 0:9�; ½0:1; 0:3�; ½0:8; 1:0�
� �

½0:3; 0:5�; ½0:6; 0:9�; ½0:5; 0:8�
� �

½0:6; 0:9�; ½0:4; 0:7�; ½0:1; 0:4�
�

u7

�

½0:2; 0:6�; ½0:7; 0:8�; ½0:5; 0:7�
� �

½0:1; 0:5�; ½0:4; 0:7�; ½0:1; 0:3�
� �

½0:4; 0:6�; ½0:2; 0:4�; ½0:3; 0:6�
�

u8

�

½0:5; 0:8�; ½0:3; 0:5�; ½0:4; 0:6�
� �

½0:1; 0:5�; ½0:3; 0:7�; ½0:7; 1:0�
� �

½0:7; 0:9�; ½0:5; 0:6�; ½0:3; 0:8�
�

u9

�

½0:2; 0:4�; ½0:5; 0:8�; ½0:4; 0:8�
� �

½0:4; 0:6�; ½0:9; 1:0�; ½0:7; 0:8�
� �

½0:3; 0:6�; ½0:1; 0:4�; ½0:7; 0:9�
�

u10

�

½0:5; 0:7�; ½0:6; 0:9�; ½0:2; 0:4�
� �

½0:4; 0:7�; ½0:2; 0:6�; ½0:6; 0:8�
� �

½0:1; 0:3�; ½0:7; 0:9�; ½0:2; 0:5�
�
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5.1 Comparison of reduction of computational speed and scope of application

Suppose that j represents the number of parameter reductions calculated in one or more

data-sets. Basically, j denotes the application scope of the developed reduction approaches

in different situations and described as computation speed in reduction techniques.

• PR-OC only preserves the maximum score value, that is, decision object. That is the

reason why PR-OC is an easy and fast way to compute reduction set. For example, fc1g
is the PR-OC in Example 7, fc1g is the PR-OC in Example 8, fc4g is the PR-OC in

Example 10, fc2g is the PR-OC in Example 11. Hence, j ¼ 100% because in all

presented numerical examples we easily computed PR-OC.

Table 39 Scores of lower bounds for each pole of IV3FSS ðg;CÞ

c1 c2 c4

b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ b�L1ðuiÞ b�L2ðuiÞ b�L3ðuiÞ

u1 3.4 0.0 2.3 0.5 � 2.5 2.2 2.3 � 3.1 1.7

u2 2.4 0.0 1.3 1.5 2.5 � 0.8 � 0.7 0.9 � 3.3

u3 0.4 0.0 � 0.7 0.5 � 1.5 2.2 � 0.7 1.9 0.7

u4 � 0.6 2.0 � 0.7 0.5 1.5 � 1.8 � 2.7 0.9 2.7

u5 1.4 1.0 � 1.7 1.5 � 1.5 � 3.8 � 0.7 0.9 3.7

u6 1.4 � 4.0 3.3 � 0.5 1.5 0.2 2.3 � 0.1 � 3.3

u7 � 3.6 2.0 0.3 � 2.5 � 0.5 � 3.8 0.3 � 2.1 � 1.3

u8 � 0.6 � 2.0 � 0.7 � 2.5 � 1.5 2.2 3.3 0.9 � 1.3

u9 � 3.6 0.0 � 0.7 0.5 4.5 2.2 � 0.7 � 3.1 2.7

u10 � 0.6 1.0 � 2.7 � 0.5 � 2.5 1.2 � 2.7 2.9 � 2.3

Table 40 Scores of upper bounds for each pole of IV3FSS ðg;CÞ

c1 c2 c4

bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ bþU1ðuiÞ bþU2ðuiÞ bþU3ðuiÞ

u1 2.3 � 0.9 1.9 0.0 � 3.7 1.2 1.4 � 3.1 1.2

u2 1.3 0.1 1.9 1.0 1.3 � 0.8 � 1.6 � 0.1 � 4.8

u3 0.3 0.1 � 1.1 1.0 � 2.7 2.2 � 0.7 1.9 0.7

u4 � 1.7 1.1 � 1.1 � 1.0 1.3 � 1.8 � 2.7 0.9 1.2

u5 2.3 1.1 � 1.1 1.0 � 1.7 � 3.8 � 1.6 1.9 3.2

u6 1.3 � 3.9 2.9 � 1.0 2.3 1.2 3.4 0.9 � 2.8

u7 � 1.7 1.1 � 0.1 � 1.0 0.3 � 3.8 0.4 � 2.1 � 0.8

u8 0.3 � 1.9 � 1.1 � 1.0 0.3 3.2 3.4 � 0.1 1.2

u9 � 3.7 1.1 0.9 0.0 3.3 1.2 0.4 � 2.1 2.2

u10 � 0.7 2.1 � 3.1 1.0 � 0.7 1.2 � 2.6 2.9 � 1.8
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• The RB-PR approach maintains the rank of all alternatives under consideration.

Therefore, RB-PR is difficult as compared to PR-OC because this reduction method not

only preserves rank of optimal decision object but also sub-optimal choices. For

example, fc3; c4g is the RB-PR in Example 10 and fc2g is the RB-PR in Example 11, It

can be easily see that we find no RB-PR in Examples 7 and 8 . Thus, j ¼ 2=4 ¼ 50%.

• NPR preserves not only rank but also maintain final score values of objects. The

computation of NPR in a given problem is difficult as compared to aforementioned

reduction techniques. Clearly, fc2g is the only NPR in Example 11. Unfortunately, we

compute no NPR in Examples 7, 8 and 10 . Hence, j ¼ 1=4 ¼ 25%:

As we know, in the case of NPR the reduction set can be reused if new parameter added in

the set of parameters. Now we give an example to examine this issue.

Example 12 Let fc0

1; c
0

2g be the set of parameters we wish to add in the IVmFSSs ðg;CÞ in

Example 11 where

gðc0

1Þ ¼
�

hu1; ½0:6; 0:8�; ½0:4; 0:5�; ½0:6; 0:7�i; hu2; ½0:3; 0:4�; ½0:2; 0:3�; ½0:5; 0:7�i;
hu3; ½0:8; 0:9�; ½0:2; 0:3�; ½0:1; 0:4�i; hu4; ½0:5; 0:6�; ½0:9; 1:0�; ½0:4; 0:5�i

	

;

gðc0

2Þ ¼
�

hu1; ½0:5; 0:7�; ½0:3; 0:5�; ½0:8; 0:9�i; hu2; ½0:2; 0:4�; ½0:8; 0:9�; ½0:5; 0:7�i;
hu3; ½0:3; 0:4�; ½0:2; 0:3�; ½0:5; 0:7�i; hu4; ½0:3; 0:5�; ½0:7; 0:8�; ½0:6; 0:9�i

	

:

Table 41 Accumulated score
with respect to each parameter of
membership degrees of the
IV3FSS ðg;CÞ

. c1 c2 c4

u1 9.0 � 2.3 0.4

u2 7.0 4.7 � 9.6

u3 � 1.0 1.7 3.4

u4 � 1.0 � 1.3 0.4

u5 3.0 � 8.3 7.4

u6 1.0 3.7 0.4

u7 � 2.0 � 11.3 � 5.6

u8 � 6.0 0.7 7.4

u9 � 6.0 11.7 � 0.6

u10 � 4.0 0.7 � 3.6

Table 42 Final score table
. c1 c2 c4 Si

u1 � 7.9 � 4.5 26.8 7.1

u2 6.1 21.5 � 23.2 2.1

u3 0.1 1.5 6.8 4.1

u4 4.1 � 4.5 � 3.2 � 1.9

u5 8.1 13.5 � 17.2 2.1

u6 � 5.9 5.5 10.8 5.1

u7 2.1 � 16.5 � 23.2 � 18.9

u8 8.1 � 0.5 � 3.2 2.1

u9 20.1 � 4.5 � 5.2 5.1

u10 � 1.9 � 12.5 0.8 � 6.9
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Fig. 2 Flowchart of the suitable parameter reduction approach
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For the parameters c
0
1 and c

0
2, the final scores of the lower and upper bounds of membership

degrees are displayed in Table 43.

By combining Tables 31 (Final score table of IVmFSS ðg;CÞ) and Table 32 (NPR for

the IVmFSS ðg;CÞ) with Table 43 (added parameters final score table). From Tables 44

and 45 , one can readily find the following partitions.

DCþfc0
1
;c

0
2
g ¼ ffu4g6:3; fu1g4:7; fu3g�3:3; fu2g�7:7g;

and

Dfc2gþfc0
1
;c

0
2
g ¼ ffu4g6:3; fu1g4:7; fu3g�3:3; fu2g�7:7g;

respectively. Thus, the rankings are similar in both cases. Hence, re-usability of reduction

set is maximum in NPR case.

5.2 Discussion

In this section, we give a comparison of the developed model with certain existing hybrid

models and also provide a comparative analysis of the proposed reduction approaches with

some existing reduction methods.

1. IVmFSSs constitute a generalized structure of IVmF sets or mF soft sets because they

are still a function from set of parameters to the set of IVmF subsets of universal set.

Table 43 Added parameters
score

. c
0
1 c

0
2

u1 1.8 1.4

u2 � 1.8 � 3.8

u3 � 3.0 0.6

u4 3.0 1.8

Table 44 Final scores table after
adding new parameters

. c1 c2 c5 c
0

1 c
0

2
Si

u1 � 1.2 1.5 1.2 1.8 1.4 4.7

u2 � 0.4 � 2.1 0.4 � 1.8 � 3.8 � 7.7

u3 0.4 � 0.9 � 0.4 � 3.0 0.6 � 3.3

u4 1.2 1.5 � 1.2 3.0 1.8 6.3

Table 45 NPR
. c2 c

0

1 c
0

2
Si

u1 1.5 1.8 1.4 4.7

u2 � 2.1 � 1.8 � 3.8 � 7.7

u3 � 0.9 � 3.0 0.6 � 3.3

u4 1.5 3.0 1.8 6.3
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Table 46 Comparison with different hybrid models in Application 1 (Sect. 4)

Objects IVFSSs (m ¼ 1) (Yang
et al. 2009)

IVmFSSs
(m ¼ 2)

Proposed IVmFSSs
(m ¼ 3)

IVmF sets (m ¼ 3) (Mahapatra
et al. 2020)

u1 18.8 � 10.1 14.4 � 7.9

u2 6.8 13.9 4.4 6.1

u3 0.8 � 4.1 8.4 0.1

u4 � 17.2 � 4.1 � 3.6 4.1

u5 6.8 7.9 4.4 8.1

u6 12.8 3.9 10.4 � 5.9

u7 � 17.2 � 22.1 � 37.6 2.1

u8 4.8 � 6.1 4.4 8.1

u9 � 15.2 � 10.1 10.4 20.1

u10 � 11.2 � 2.1 � 13.6 � 1.9

u11 � 5.2 � 16.1 � 5.6 � 1.9

u12 6.8 7.9 4.4 8.1

u13 8.8 19.9 � 5.6 � 7.9

u14 � 27.2 � 22.1 � 1.6 8.1

u15 16.8 � 2.1 20.4 � 3.9

u16 � 19.2 � 10.1 � 21.4 9.9

u17 4.8 11.9 2.4 � 3.9

u18 14.8 25.9 0.4 � 1.9

u19 20.8 23.9 18.4 0.1

u20 � 11.2 � 6.1 � 13.6 � 19.9

Fig. 3 Comparison with existing hybrid models in Application 1 (Sect. 4)
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• IVFSS is arising as a significant model and has been attracted by many researchers.

When m ¼ 1, the developed model degenerates into IVFSS model (Yang et al.

2009). To check the validity of the proposed model, decision-making method

presented by Yang et al. (2009) applied to the developed Application in Sect. 4 and

the experimental results are displayed in Table 46. One can easily observe from the

Table 46 and Fig. 3 that optimal and sub-optimal decision objects are different.

Since, u15 is the optimal decision object by the proposed decision-making method,

that is, IVmFSSs, Clearly, u19 is the optimal decision object by the IVFSS model

(Yang et al. 2009). Similarly, it can be readily see from the Table 47 that the

overall rankings are also different for the proposed IVmFSS model and IVFSS

model (Yang et al. 2009). The reason behind these differences is that IVFSSs

(Yang et al. 2009) only consider one pole (one membership value) with respect to

parameters, that is, in this case for a particular parameter its all properties are not

considered which may lead to wrong decision because all the parameters and their

further characterizations (poles) are independent. That’s why, when we consider all

possible further features of a particular parameter, the ranking of optimal and

suboptimal choices changed or we can say more exact decision choices computed

because in the case of IVmFSSs decision is made on the basis of all the possible

information in a given decision-making problem. Thus, IVmFSS model is more

generalized because it has strength to consider all possible properties of any

parameter in a decision-making problem as compared to IVFSSs (Yang et al.

2009).

• When only one parameter and some of its characteristics are considered in

decision-making process of the IVmFSSs, it degenerates into IVmF set theory

(Mahapatra et al. 2020). We now apply the decision-making method proposed by

Mahapatra et al. (2020) to the developed application in Sect. 4 and the obtained

results are given in Table 46 and displayed by Fig. 3. From the Table 46 and

Fig. 3, it can be easily see that u15 and u9 are the optimal decision objects for the

proposed IVmFSSs and IVmF sets (Mahapatra et al. 2020), respectively. The

reason behind these differences is that in a given problem all the parameters are

independent, that is, their membership values are not dependent to each other.

Intuitively, if there exist more than one important parameters in a given problem

then IVmF set model (Mahapatra et al. 2020) only consider one parameter which

Table 47 Comparison between rankings of proposed IVmFSS model with existing hybrid models in
Application 1 (Sect. 4)

Models Rankings

IVFSSs (Yang et al. 2009) u19 [ u1 [ u15 [ u18 [ u6 [ u13 [ u2 [ ¼ u5 ¼ u12 [ u8 ¼
u17 [ u3 [ u11 [ u10 ¼ u20 [ u9 [ u4 ¼ u7 [ u16 [ u14

IVmFSSs (m ¼ 2) u18 [ u19 [ u13 [ u2 [ u17 [ u5 ¼ u12 [ u6 [ u10 ¼ u15 [
u3 ¼ u4 [ u20 ¼ u8 [ u1 ¼ u9 ¼ u16 [ u11 [ u7 ¼ u14

IVmF sets (m ¼ 3) (Mahapatra et al.
2020)

u9 [ u16 [ u5 ¼ u8 ¼ u12 ¼ u14 [ u2 [ u4 [ u7 ¼ u3 ¼
u19 [ u10 ¼ u11 ¼ u18 [ u15 ¼ u17 [ u6 [ u1 ¼ u13 ¼ u20

Proposed IVmFSES (m ¼ 3) u15 [ u19 [ u1 [ u6 ¼ u9 [ u3 [ u2 ¼ u5 ¼ u8 ¼ u112 [
u17 [ u18 [ u14 [ u4 [ u11 ¼ u13 [ u10 ¼ u20 [ u16 ¼ u7
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may lead to wrong decision because in this case some important parameters may be

missed in the decision-making process. Therefore, IVmFSS model is an extension

of IVmF set model with respect to parameters and provides more accurate results

than IVmF sets (Mahapatra et al. 2020).

• Chen et al. (2014) proved that 2-polar fuzzy sets and bipolar fuzzy sets (YinYang

bipolar fuzzy sets) are cryptomorphic mathematical tools. According to this strong

fact, interval-valued bipolar fuzzy soft set model and IV2FSS model are

crypotomorphic mathematical notions. Thus, interval-valued bipolar fuzzy soft

set model is a particular case of our proposed IVmFSS model, for m ¼ 2.

• When the mF values are fixed, that is, not in the interval form, IVmFSS model

degenerates into mF soft set model (Akram et al. 2018).

Thus, our proposed model is a generalization of the IVFSS model (Yang et al. 2009),

IVmF set model (Mahapatra et al. 2020) and mF soft set model (Akram et al. 2018).

2. PR-OC approach only preserves the decision object invariant after reduction (it means,

the ranking order of sub-optimal object may be varied after reduction). Thus, the re-

usability of reduction set is lower. RB-PR method removes redundant parameters by

keeping the partition and ranking order of all elements under consideration. Thus, the

re-usability of reduction set is higher than PR-OC. With similar arguments, it is clear

that the re-usability of reduction set is highest in case of NPR method. A comparison

between the optimal decision values obtained by proposed IVmFSS model and its PR-

OC on the Application explored in Sect. 4 is displayed in Fig. 4. Moreover, reduction

set is obtained by applying the parameter reduction techniques discussed in (Ma et al.

2014) for IVFSS and is compared with reduction set computed for IV3FSS in

Application 1 (Sect. 4). For more clarification, the obtained results are displayed in

Fig. 5.

Fig. 4 Comparison between proposed model and its PR-OC in Application 1 (Sect. 4)
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6 Conclusions and future directions

The theory of IVFSSs is arising as a helpful expansion of soft sets which is upheld by

genuine data-sets. In this study, we have improved upon the hypothetical premise of this

theory in directions that are validated by their impact on specific settings and their role in

various theories. In this context, we have developed a novel hybrid model, namely,

IVmFSSs. It produces a formal generalization of many existing models. It can be regarded

as a multi-fuzzy extension of the IVFSS model. Alternatively, it can be considered as a

IVmF extension of the soft set model (Molodtsov 1999). At one and the same time, it is an

interval-valued extension of the mF soft set model (Akram et al. 2018). Some fundamental

operations, including complement, union, intersection, ‘‘AND’’, ‘‘OR’’ are studied on the

IVmFSSs and investigated through examples. An algorithm is developed to handle deci-

sion-making situations having data in interval-valued multi-fuzzy soft form, which has

been applied on two numerical examples. In addition, three parameter reduction approa-

ches in algorithmic expression are proposed for IVmFSSs, namely, PR-OC, RB-PR and

NPR. After that, two real case studies for the selection of best site for an airport con-

struction and best rotavator are explored. Finally, the significance and rationale behind the

new hybrid model and its parameter reduction methods are discussed, particularly through

a comparative analysis with some existing approaches like IVFSSs ( Yang et al. 2009).

We may advance some lines of research whose examination should produce innovative

contribution:

• Alternative methodologies from additional perspectives for parameter reduction are still

possible, regardless of whether they are original or imported from external settings.

• Our overall research objectives can be exported to other relevant settings such as

spherical fuzzy soft sets (Perveen et al. 2019).
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