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Abstract
Microorganisms such as bacteria and fungi play essential roles in many application fields, 
like biotechnique, medical technique and industrial domain. Microorganism counting 
techniques are crucial in microorganism analysis, helping biologists and related research-
ers quantitatively analyze the microorganisms and calculate their characteristics, such as 
biomass concentration and biological activity. However, traditional microorganism manual 
counting methods, such as plate counting method, hemocytometry and turbidimetry, are 
time-consuming, subjective and need complex operations, which are difficult to be applied 
in large-scale applications. In order to improve this situation, image analysis is applied 
for microorganism counting since the 1980s, which consists of digital image processing, 
image segmentation, image classification and suchlike. Image analysis-based microorgan-
ism counting methods are efficient comparing with traditional plate counting methods. In 
this article, we have studied the development of microorganism counting methods using 
digital image analysis. Firstly, the microorganisms are grouped as bacteria and other micro-
organisms. Then, the related articles are summarized based on image segmentation meth-
ods. Each part of the article is reviewed by methodologies. Moreover, commonly used 
image processing methods for microorganism counting are summarized and analyzed to 
find common technological points. More than 144 papers are outlined in this article. In 
conclusion, this paper provides new ideas for the future development trend of microorgan-
ism counting, and provides systematic suggestions for implementing integrated microor-
ganism counting systems in the future. Researchers in other fields can refer to the tech-
niques analyzed in this paper.
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1  Introduction

1.1 � Basic knowledge of microorganisms

Microorganism is a kind of tiny organism which cannot be observed by naked eyes but can 
be observed by light microscope or electron microscope (Madigan et al. 1997). There are 
many different types of microorganisms, and the classification standards are various. Gen-
erally, microorganisms are composed of bacteria, viruses, fungi and some algae.

a	  Bacteria are unicellular organisms with minimal size, simple structure, lack of nuclei, 
cytoskeletons, and membranous organelles. It widely distributes in soil and water, and 
most of them are decomposers at the bottom of the biological chain, such as Escherichia 
coli. Some bacteria are consumers and producers. For example, sulfur bacteria and iron 
bacteria are producers. They can use inorganic materials to produce organic substances 
they need. The rhizobia can consume organic substances produced by the photosynthesis 
of legumes (Doetsch and Cook 2012).

b	  The virus is a kind of microorganism that can spread and infect other organisms. It 
is small and has a simple structure. It contains only one type of nucleic acid, such as 
ribonucleic acid(RNA) virus and deoxyribonucleic acid(DNA) virus. It must parasitize 
in living cells and proliferate in the way of replication. Viruses consist of single and 
double-stranded RNA virus, single and double-stranded DNA virus (Cui et al. 2019). 
For example, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a sin-
gle-stranded RNA virus (Andersen et al. 2020).

c	 The fungus is one type of eukaryotic microorganism, including mold, yeast and mush-
room, that can produce spores through asexual and sexual reproduction. Tinea pedis is 
a kind of foot skin disease caused by pathogenic fungi, which is widely spread glob-
ally. There are no sebaceous glands between the soles of human feet and toes, so the 
environment lacking fatty acids and poor air circulation is conducive to the growth of 
filamentous fungi (Perea et al. 2000).

d	 Algae are eukaryotes of the protozoa and most of them are aquatic organisms, which 
can carry out photosynthesis. Algae can be composed of one or a few cells, or many 
cells aggregate into tissue-like structures. According to the color, algae can be divided 
into green algae, brown algae and red algae. Red tide is an abnormal phenomenon in 
the marine ecosystem. It is caused by the explosive proliferation of red tide algae under 
specific environmental conditions, which is a signal of marine pollution. During the red 
tide period, a large number of fish, shrimp, crabs, and shellfish die, causing significant 
damage to aquatic resources and human health (Kirkpatrick et al. 2004).

 Some microorganisms are harmful to human beings by causing food decomposition, infect 
humans and cause diseases, but some microorganisms are beneficial to human beings. Pen-
icillin is an epoch-making discovery in the medical field, which has saved countless lives. 
Yeast is widely used in industrial fermentation, ethanol production and food production for 
human beings (Brill 1981). Some microorganisms can degrade plastics, treat waste-water, 
gas, and have great potential in renewable resources  (Rizzo et  al. 2013). There are also 
many microorganisms in the intestines of healthy people, which can help humans decom-
pose and absorb food and toxic substances. Some microorganisms have adverse effects on 
the human body and industrial production. For example, the human immunodeficiency 
virus (HIV) can cause the loss of immune function of patients and cause infection. The 
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disease spreads rapidly, has high mortality and cannot be cured, which has caused a signifi-
cant threat to world health; SARS-CoV-2 breaks out at the end of December in 2019 (Hui 
et  al. 2020). More than 183,000,000 people have been infected worldwide till July 1st, 
2021, which becomes a global malignant epidemic (University 2020). The SARS-CoV-2 
is highly infectious and mainly transmitted through close contact and respiratory droplets. 
Microorganisms play an essential role in human’s daily life and production. Therefore, 
beneficial microorganisms should be used wildly, and harmful microorganisms should be 
prevented.

Microorganism counting is an essential part of microbial research, which is widely used 
in food and drug safety tests, biomedical tests, and environmental monitoring  (Liu et al. 
2004). At present, there are two main methods for microorganism counting and quantifi-
cation, one of the methods is manual counting, the other one is computer image analysis 
counting  (Rajapaksha et  al. 2019). Manual counting mainly includes the plate counting 
method, hemocytometry and turbidimetry. In the plate counting method, the bacteria are 
placed in a suitable medium and then wait for them to grow into colonies. After that, the 
number of colonies is counted through the microscope. The advantage of the plate count-
ing method is that the number of live bacteria can be estimated. However, the operation 
is complicated, and it takes a period to culture the microorganisms and gets the results. In 
general, the number of colonies obtained is lower than the actual number of living bacteria 
because when more than two living bacteria cells stick together, the observed number is 
still one colony (Balestra and Misaghi 1997). In the hemocytometry method, the bacteria 
are diluted and dropped on a blood cell counting plate, which is then observed under a 
microscope to calculate the average number of bacteria in each compartment. Finally, the 
total number of bacteria is estimated. However, the hemocytometry method cannot distin-
guish the dead bacteria from the live bacteria and can only estimate the total number of 
bacteria by the average value, which carries out the low accuracy (Sambrook and Russell 
2006). In the turbidimetry method, a spectrophotometer is applied to measure the optical 
density of bacterial suspension at a particular wavelength. The cell concentration in bac-
terial suspension is proportional to the turbidity of bacterial suspension within a specific 
range, that is, the cell concentration is proportional to the optical density. So, the number 
of bacteria can be expressed in terms of optical density. However, the turbidimetry method 
has specific requirements for the wavelength of light in the experimental environment, 
which should be controlled within the line limit range where the bacterial concentration 
is proportional to the optical density. Otherwise, the measurement result will have a large 
error (Dalgaard et al. 1994).

It can be seen that the traditional methods can obtain satisfactory counting results under 
certain conditions, such as when the number of samples is small and the imaging effect is 
good under the microscope. However, when the sample becomes larger, it is often encoun-
tered that the colony is small, the contrast between the colony and the culture medium is 
not clear, and it is not easy to detect and count with naked eyes. The detection results have 
the problems like large errors and poor reliability. The sample image contains many parti-
cles, and the workload is heavy and dull, which is easy to cause misjudgment. Moreover, 
the subjectivity of manual counting is common. Even if the same staff member observes 
the same sample in different periods, different observation results will be obtained (Chien 
et al. 2007). With the development of computer image analysis technology, automatic par-
ticle image analysis systems based on image processing and visual analysis can automati-
cally, quickly and objectively count the number of particles contained in the image and 
extract various characteristic parameters of particles, which significantly reduces the work-
load and improves the analysis accuracy, so it has been widely used. The image analysis 
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system for microorganism counting can improve counting performance if the quantity of 
sample is large (Thiran et al. 1994). An example image of yeast cells is shown in Fig. 1. 
The precise boundaries of microorganisms make it possible to separate and count the num-
ber of colonies by image analysis.

1.2 � Motivation of this review

Digital image processing (DIP), also known as computer image processing, refers to 
converting an image signal into a digital signal and processing it by computer. DIP first 
appeared in the 1950s, when the electronic computer has developed to a certain level. Peo-
ple can use the computer to process images and improve image quality  (Gonzalez et  al. 
2004). The commonly used digital image processing methods include image enhancement, 
denoising, restoration, coding and compression. DIP has been widely used in many fields. 
Agricultural and forestry departments understand the growth of plants through remote 
sensing images, estimate the yield, and monitor the development and management of dis-
eases and insect pests  (Amrita and Kaur 2016). Through remote sensing image analysis, 
the water conservancy department can obtain the change of water disaster  (Sudiana and 
Rizkinia 2012). The meteorological department is used to analyze the meteorological cloud 
chart and improve the accuracy of the forecast (Chatterjee and Chaulya 2019). The depart-
ment of national defense, surveys, and mapping use aerial surveys or satellites to obtain 
regional landform and ground facilities (Feifei et al. 2017). The mechanical department can 
use image processing technology to analyze and identify the metallographic diagram auto-
matically (Privezentsev et al. 2019). Medical departments use various digital image analy-
sis technologies to diagnose various diseases automatically (Salvi et al. 2020; Madabhushi 
and Lee 2016; Li et al. 2020a). Because of the flexibility and universality of DIP, there are 
no complex measurement steps involved, which means it has low learning cost. In the field 
of microorganism analysis, expensive equipment is usually needed to ensure the accuracy 
of the measurement. DIP can save this part of this cost (Ekstrom 2012). Therefore, DIP has 
been widely used in microbial counting in many types of research. Its development trend is 
shown in Fig. 2, which has shown a good development trend so far.

As shown in Fig. 2, the application of digital image processing in the field of micro-
organism counting has been explored. Since the 1980s, DIP has been applied to micro-
organism counting. From 1980 to 1995, the application and development of this field is 
relatively slow, but it is rapidly developed from 1995 to 2010. After 2010, the number of 
research for microorganism counting increases faster. As for machine learning and deep 

Fig. 1   An example of yeast cells image (in (Dietler et al. 2020) proposed dataset)
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learning based microorganism counting methods, machine learning is firstly applied in this 
field in 1987, and then it is slowly developed from 1990 to 1995. Since 1990, microorgan-
ism counting methods based on machine learning and deep learning is increasing steadily, 
and it has a tremendous development since 2015. According to the content of the papers, 
a possible reason is summed up, that is, the development of the deep learning algorithm 
can lead to more accurate image segmentation. For example, the segmentation of adherent 
colonies can lead to more precise microorganism counting.

1.3 � Related reviews

The microorganism counting is an essential topic in microbial research, and the relevant 
works are also relatively abundant. Many researchers have written relevant reviews, which 
are summarized as follows:

Review Gray et  al. (2002) outlines several image analysis methods for algal cell esti-
mating, and several image segmentation methods based on thresholding, edge tracking 
and template matching are compared. There are 32 papers summarized, and only three 
are about the algal counting method. Review Qiu et al. (2004) describes the development 
course of bacteria counting and cell size measurement, which contains the classical meth-
ods and automated flow analysis technology. More than 33 papers are summarized and 7 of 
them are about bacteria counting. Review Gracias and McKillip (2004) describes the use 
of fluorogenic or chromogenic to classify different species of bacteria and impedance tech-
nology for enumeration. There are more than 25 papers are about traditional food bacteria 
counting methods in total 103 papers. Review  Daims and Wagner (2007) indicates that 
the difference between microorganism counting and biovolume measurement is whether or 
not to identify individual objects (cell or cell clusters) in the biomass. There are six papers 
about automatic cell counting in total 92 papers. Review Barbedo (2012a) describes the 
object counting methods using digital image processing. The methods are composed of 
morphological operation, filtering operation, contrast enhancement, transformation, edge 
detection and image segmentation. They summarized over 130 papers, among them, 29 
papers are used for cell counting and 13 papers are about bacteria counting. Review Dazzo 

Fig. 2   The total number of related works on microorganism counting approaches
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and Niccum (2015) describes the use of CMEIAS for both microorganism counting and 
biovolume measurement based on image processing. The hierarchical tree classifier and 
k-Nearest Neighbour classifier are applied for classification. There are 65 papers in total, 
and more than 30 papers are used for cell counting. Review  Li et  al. (2019a) describes 
computer-based microorganism image analysis development and introduces different meth-
ods for different microorganism classification. This review is a comprehensive microor-
ganism classification paper. It uses plenty of works of literature for quoting, but there is 
no significant description for microorganism counting in more than 300 papers in total. 
Review Puchkov (2019) describes the main quantitative analysis methods of single bacte-
rial and yeast cells at the cellular and subcellular levels. More than 150 papers are sum-
marized. This review mainly introduces several techniques for scanning, but there is no 
straightforward application of DIP in microorganism quantification.

Although the reviews above are excellent enough and the descriptions about the cur-
rent situation of microbial research are objective and detailed. However, there is no tar-
geted research about image analysis based microorganism counting, so it is necessary to 
do additional research on this aspect. For a clear overview, a histogram (Fig.  3) is used to 
show each of the related survey papers and their contribution to microorganism counting 
with our proposed studies. Because of the vital role microorganism quantification plays in 
microbial research, this review focuses on the application of microorganism counting and 
summarizes each method’s development and prospects. This review has great reference 
value for microbiological researchers and computer vision researchers. There are more 
than 136 papers are used for microorganism counting.

1.4 � Microorganism counting methods

In order to expound the approach of microorganism counting, the organization chart of this 
review is shown in Fig. 4. The approach contains five steps: microbiological data acqui-
sition, microscopic image, image pre-processing, microorganism counting methods and 
evaluation methods.

Fig. 3   A comparison among recent survey papers. Number of summarized papers in the existing review in 
comparison to their contribution to image analysis based microorganism counting methods
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Firstly, according to the different application domains, microorganisms are composed 
of the following seven categories: agricultural microorganism, environmental microorgan-
ism, food microorganism, industrial microorganism, medical microorganism, water-borne 
microorganism and other microorganisms. Then, the samples are stained and sliced. After 
that, the microscopic images are captured by the imaging equipment, such as a charge-
coupled device (CCD) camera (Gmür et al. 2000).

Next, in the pre-processing part, the images are denoised and enhanced to improve the 
contrast between the object particles and the background. In the process of microorganism 
microscopic image scanning, the loss of information in the process of electronic transmis-
sion and the pretreatment process, such as staining may bring some noise to the micro-
scopic image. In order to improve image quality, image processing can be used to reduce or 
remove these noises. The main methods to remove noise are wire filter (such as Gaussian 
filter and Mean filter), median filter and so on (Li et al. 2020b).

The next step is microorganism counting (Li et al. 2020b). The objects of the micro-
organism counting method are separating the adherent colonies and counting. Image 
segmentation is an essential part of this task, which contains three broad categories: 
threshold segmentation, edge detection and region extraction. The initial image seg-
mentation method is threshold segmentation, whose core algorithm is the selection of 
the threshold. At present, there are two main methods, one is based on the iterative 
method and the other one is Otsu thresholding. For the image with prominent double 
peaks and deep valley bottom, the iterative method can get satisfactory results quickly, 
but for images with significant differences in the ratio of target and background, the 
iterative method cannot segment the target well  (Perez and Gonzalez 1987). Another 
standard method is the maximum inter class variance based Otsu method which can 
achieve good segmentation results for most images (Otsu 1979). The advantages of Otsu 

Fig. 4   The organisation chart of microorganism counting approaches in this paper
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segmentation are fast and straightforward calculation, not affected by brightness and 
contrast of images, and most of the segmentation results are satisfactory. Nevertheless, 
it has limitations such as the sensitivity to noise and cannot support semantic segmenta-
tion functions  (Xu et  al. 2011). Edge detection mainly includes gradient and second-
order differential operator based methods, Laplace of Gaussian function (LoG) edge 
detection method and Canny edge detection method. The gradient detection method is 
the most widely used method among them that usually contains Roberts, Sobel, Prewitt, 
Kirsch and Robinson  (Gonzales and Woods 2002). The Watershed method is one of 
the most popular methods in the region extraction domain, a closed region signature 
method based on region growth (Levner and Zhang 2007). The image segmentation is 
considered according to the composition of the watershed. The calculation process of 
the watershed is an iterative labeling process, which has an excellent response to weak 
edges. However, the watershed algorithm may lead to over-segmentation because of the 
noise or slight gray-level change of object surface (Strahler 1957).

Another critical part of microorganism counting is morphological operations which 
contain erosion, dilation, open and close. The erosion operation uses structural elements 
to erode the input image, eliminating the image’s boundary points. It can reduce the size of 
the object, filter the image interior and eliminate the isolated noise points effectively (Jack-
way and Deriche 1996). Dilation operation is the dual operation of erosion operation. The 
dilation operation can merge all the background points contacted by the target object into 
the object, which can increase the target and the shrink holes (Jackway and Deriche 1996). 
The open operation is using the erosion operation firstly and then use the dilation opera-
tion. The open operation can eliminate the isolated points in the image, eliminate the burr 
and connect the two domains so that the outer boundary of the image can be polished by 
the open operation  (Chudasama et  al. 2015). The close operation is the opposite of the 
open operation, which means the image is dilated first and then eroded. The close operation 
can fill small holes, close small cracks, and polish the inner boundary of the image (Chu-
dasama et al. 2015).

After image segmentation, the microorganisms need to be classified and counted 
respectively. Machine learning is widely applied in image classification, which has been 
developed rapidly. Principle component analysis (PCA) is an unsupervised machine learn-
ing algorithm, which is always applied for exploration and dimension reduction of higher 
dimensional data (Roweis 1998). More comprehensible features can be extracted, and valu-
able information of the sample can be processed faster by using dimension reduction. In 
addition, dimension reduction can also be applied to visualization and denoising. The pri-
mary process of PCA is to map n-dimensional features to k-dimensional features, which 
are new orthogonal features, also known as principal components. Then the k-dimensional 
features are re-constructed based on the original n-dimensional features. PCA can increase 
the sampling density by dropping part of the information, which is helpful for the curse of 
dimensionality. However, PCA retains the primary information, which is only for the train-
ing set, but the primary information is not necessarily meaningful. So the overfitting may 
be exacerbated by using PCA (Karamizadeh et al. 2013). Support vector machine (SVM) 
is one kind of generalized linear classifier for data classification by using supervised learn-
ing (Vishwanathan and Murty 2002). The object of SVM learning is to find the separation 
hyperplane with the most considerable geometric interval, which can divide the training 
data set correctly. The learning strategy of SVM is to maximize the interval, which can be 
formalized into a problem to solve the convex quadratic programming. The selection of 
SVM kernels can make it to be a nonlinear classifier, such as polynomial kernel, RBF ker-
nel, Laplacian kernel and Sigmoid kernel (Han et al. 2012).
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Artificial neural network (ANN) is a mathematical model of distributed and paral-
lel information processing that imitates animal neural networks’ behavior characteristics. 
The most commonly used ANN is Multilayer perceptron (MLP), which is a feedforward 
ANN model (Ghate and Dudul 2010). ANN is composed of input layers, hidden layers and 
output layers, which are fully connected to each other. The structure of ANN is shown in 
Fig. 5. ANN is composed of many simple neurons, and each neuron receives input from 
other neurons. In this way, every neuron restricts and influences each other to achieve non-
linear mapping from input state space to output state space. ANN is a combination of many 
same simple processing units in parallel. Although the function of each unit is simple, the 
parallel activities and the ability of information processing are unique. ANN can realize 
the memory of information through its network structure, and the memory information 
is stored in the weights between neurons. This makes the network has good fault toler-
ance and can handle the pattern information processing such as clustering analysis, feature 
extraction and defect pattern restoration (Zupan 1994).

Back propagation neural network (BPNN) is a supervised learning, which is developed 
from ANN (Karsoliya 2012). The loss function in BPNN is optimized based on back prop-
agation. In forward-propagating, the data is processed from input layers to output layers. 
In back propagation, the loss function is transmitted from output layers to input layers, 
then the weights and biases are optimized based on the gradient descent method. BPNN 
can carry out the nonlinear mapping from input to output, and can still make the correct 
mapping for the new non-sample data, which has a specific generalization ability and fault 
tolerance ability (Dai and MacBeth 1997).

Convolutional neural network (CNN) is one kind of feedforward ANN, that is wildly 
applied in DIP and computer vision (Li et al. 2016). The convolutional kernels are applied 
to scan the whole image and the deep features are then extracted. After pooling, the image 
can be classified through a fully connected layer. The loss function is minimized with back 
propagation  (Chauhan et  al. 2018). CNN is developed rapidly after 2010, and it is not 
only be applied for classification, but segmentation (Unet) and image generation (GAN). 
VGG-16 is one of the most popular CNN, which is composed of five convolution layers, 
three pooling layers and three fully connected layers Simonyan and Zisserman (2014). The 
structure of VGG-16 is shown in Fig. 6. Only 3 × 3 filters are applied in VGG-16 because 
the combination of small filters can simulate a larger filter, reducing the parameters and 
improving the nonlinear ability.

The last step is system evaluation, which can help researchers systematically perceive 
the image processing results. The results of the evaluation can help to prompt the accuracy 

Fig. 5   The structure of ANN
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of the system. Counting accuracy is a standard evaluation method in target counting, which 
is the ratio of the number of detected targets to the ground truth. Generally, the accu-
racy can only be used to evaluate the global accuracy, because it cannot show whether 
the detected target and the ground truth target are one-to-one corresponding (Bloem et al. 
1995). Evaluation of image segmentation and image classification can also reflect the per-
formance of the counting system. True positive (TP), false negative (FN), false positive 
(FP) and true negative (TN) are four basic metrics in image classification  (Zhang et  al. 
2008b). Pixel accuracy (PA) is one of the simplest evaluation methods for image segmen-
tation, which means the ratio of the number of correctly classified pixels and the number 
of whole pixels. The mean pixel accuracy (MPA) is the improved method of PA, which 
indicates the mean PA of all classes  (Zhang et al. 2008b). Mean intersection over union 
(MIoU) is the ratio of intersection and union of ground truth and predicted segmentation 
result. It can be regarded as the mean ratio of TP and the union of TP, FN and FP in the 
process of image segmentation (Rahman and Wang 2016).

1.5 � Structure of this review

In this review, a comprehensive overview of microorganism counting using image analysis 
is presented. The relevant research in the microbial application has been investigated since 
1980, and the applications of microorganism counting in different situations are discussed. 
Furthermore, this paper also summarizes the research motivation and research methods of 
microorganism counting in the microbial field. The review articles related to this research 
are also summarized, and the structures of their references are recorded. More than 144 
papers are selected from the initial paper dataset and the structure of the systematic review 
is shown in Fig.   7. The initial papers are searched from Google Scholar, IEEE, ACM, 
Nature, Science, Cell, Elsevier, Wiley, Hindawi, IOP, PloS, BMC and Springer, and the 
keywords contain “microorganism counting”, “bacteria counting”, “cell counting”, “algae 
counting” and “fungus counting”. Then the duplicate and irrelevant papers are deleted. 
There are 57 papers about microorganism biovolume counting, which do not conform 
to this review. Finally, 144 papers are about microorganism counting methods, contain-
ing 8 review papers, 82 bacteria counting methods, and 54 other microorganism counting 
methods.

Fig. 6   The structure of VGG-16 (in Nash et al. (2018) Fig. 3)
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The review is structured as follows: In Sect. 2, the related works of image analysis based 
bacteria counting are introduced. In Sect.  3, the related works of other microorganisms 
counting based on image analysis are introduced. Then in Sect.  4, the commonly used 
microorganism counting methods are analyzed, and their different application domains are 
summarized. Finally, in Sect. 5 this review is concluded by summarizing the whole paper. 
This review structure can help microbiological workers clearly and quickly understand the 
development status of this field and obtain the relevant content they need.

2 � Bacteria counting methods

Bacteria are one crucial part of the ecosystem because of the cardinal role they play in the 
carbon and nitrogen cycle, which are closely related to human daily life  (Madigan et  al. 
1997). Therefore, bacteria counting has become one of the most important directions in the 
field of microorganism counting, including the study of bacteria number and colony size. 
Thus, the bacteria counting methods are summarized in this chapter. Bacteria counting is 
of great significance in food safety monitoring and industrial safety detection, but manual 
counting is tedious and redundant work, that is very subjective. Therefore, the research of 
computer image analysis based bacteria counting is significant. This chapter is structured 
as follows: the first part summarizes the classic bacteria counting methods. The second 
part is bacteria counting methods based on machine learning and deep learning. The last 
part is third-party tools methods.

2.1 � Classic counting methods

2.1.1 � Bacteria counting method based on image enhancement

In Pettipher and Rodrigues (1982), Niyazi et al. (2007), the gray-level contrast is applied 
for bacteria counting. The contrast is used for counting bacteria and somatic cells of milk 
(Pettipher and Rodrigues (1982)). In Niyazi et al. (2007), the maximum size of one colony 
(defined by the area) and the distribution of the gray color within the colony are further 
measured beside the gray-level contrast, which has the mistake of less than 3%. The colony 
counting result is shown in Fig. 8.

In  Shenglang and Yongguang (2005), histogram equalization is used to enhance the 
contrast of bacteria images as pre-processing. Then a convolutional filter is used to extract 
the curvature feature of bacteria and remove the background features. After that, a median 

Fig. 7   The systematic flow chart of paper selection for our work
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filter is used to remove noises. The basis of judging whether there are bacteria in the image 
is whether the maximum connected number of non-zero gray pixels in the image exceeds a 
certain threshold. Finally, the number of connected domains is calculated as the number of 
bacteria in the image. The result shows that the accuracy is more than 95% while counting 
the number of bacteria.

In Buzalewicz et al. (2010), optical transforms are used for the determination of bac-
teria colony number. Because of the scale invariant of Mellin transform, the combination 
method of Fourier transform and Mellin transform is applied. First, the Fourier transform 
of the input objects is calculated and the high pass frequency filter is applied to eliminate 
the zero-order component of the Fourier spectrum. Then the Mellin transform followed by 
the log-polar transformation is performed. Moreover, the two-dimensional Fourier trans-
form is computed in order to obtain scale and rotation invariance. Finally, the value of the 
Mellin spectrum is used to evaluate the number of the analyzed object. A good agreement 
between calculations and manual counting for twelve samples is achieved (the differences 
range from 1 to 3% and the standard deviation is equal 4.51).

2.1.2 � Bacteria counting method based on thresholding

In Masuko et al. (1991), Trujillo et al. (2001), Chunhachart and Suksawat (2016), Gupta 
et al. (2012), Sethi and Yadav (2012), Kaur and Sethi (2012), Nayak et al. (2010), Pern-
thaler et al. (1997), Sotaquira et al. (2009), Maretić and Lacković (2017), Chunhachart and 
Suksawat (2016), Kaur and Sethi (2012), Payasi and Patidar (2017), global thresholding is 
applied for bacteria enumeration. The RGB image is firstly converted to YCbCr and Lab 
color spaces in Sotaquira et al. (2009). An adaptive median filter (Gupta et al. (2012), Kaur 
and Sethi (2012)), a‘flatten filter’ (Trujillo et al. (2001)) or a top-hat algorithm (Pernthaler 
et  al. (1997)) is applied for denoising. Besides, a combination method of Gaussian low-
pass filter, simple symmetric moving average filter and median filter is applied for noise 
removal in Maretić and Lacković (2017). After thresholding, the morphological operations 
are applied for image enhancement (Chunhachart and Suksawat (2016), Kaur and Sethi 
(2012)), and the detected circles are used for counting the number of colonies that appeared 
on the selected region. The detection result is shown in Fig.  9 and the average percent-
age error of 2.13% is obtained in comparison to the counting by the expert. In Payasi and 
Patidar (2017), the RGB image is converted to HSI color space image and the image is then 
segmented based on thresholding. Then the noises are removed, so the labeling and count-
ing of the bacilli in the image will be possible. Afterward, the boundaries of bacteria are 

Fig. 8   Screenshot of the program. The left panel is the scanned flask and the right panel is the segmented 
result (in Niyazi et al. (2007) Fig. 1)
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detected and stored, and the area and perimeter are calculated. If there is a clump of bacilli, 
the count of bacilli is increased by the integer, which is closed to the ratio of the area of the 
clump to the average area of bacilli. The result is shown in Fig. 10 and accuracy of 90% is 
obtained.

In  Shen et  al. (2010); Austerjost et  al. (2017), the iterative local threshold is applied 
for bacteria colony counting. First, a median filter and contrast enhancement are applied 
to remove noises and enhance images (Shen et al. (2010)). Then the iterative local thresh-
old method is used for image segmentation. After that, the petri dish edge is removed by 
detecting the connected region with the maxima white pixel. Finally, the number of bacte-
ria is counted based on eight neighborhoods in Shen et al. (2010) and the average relative 
error of 2.5% is obtained. In Austerjost et al. (2017), after thresholding, the region of inter-
est is examined for objects which will be divided into single colonies and colony clusters 
by using a classification algorithm based on the previously defined threshold. Afterward, 
a Hough circle transformation is applied for the segregation of colony clusters into sin-
gle colonies. The last part of the algorithm is dedicated to finding colonies that could not 
be detected within the previous steps. For this, the sizes of previously found colonies are 
compared with other objects found on the plate. If these objects fit into the size range of 
previously found colonies and have a suitable roundness, they are recognized as a colony. 
Finally, the detected colonies are all counted with an average accuracy of 86.76 ± 9.76%.

Fig. 9   The detection result (in Chunhachart and Suksawat (2016) Fig. 8)

Fig. 10   The counting result. a Original image. b Image after shape characterization and segmentation 
(in Payasi and Patidar (2017) Fig. 8)
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In Jun (2010), Clarke et al. (2010), Marotz et al. (2001), feng Hu (2013), Boukouvalas 
et al. (2018), Matić et al. (2016), Siqueira and de Carvalho (2017), the adaptive threshold 
is used for bacteria counting. First, a median filter (Jun (2010), Boukouvalas et al. (2018), 
Siqueira and de Carvalho (2017)), a Gamma correction (Matić et al. (2016)) and a Gauss-
ian filter (Clarke et al. (2010)) are used for noise removal. Then the extended minima func-
tion is used to find the center of the colonies (Clarke et al. (2010)). Finally, a saturation 
based adaptive thresholding is applied for image segmentation. The morphological opera-
tions such as opening and closing are used for adherence colonies segmentation and image 
smoothing. The segmentation procedure is shown in Fig.  11. The results correlate well 
with the results obtained from manual counting, with a mean difference of less than 3%. 
Moreover, the distance transform and progressive erosion are applied in feng Hu (2013) to 
separate connected colonies into a single one. The counting result of Matić et al. (2016) is 
shown in Fig. 12. In Boukouvalas et al. (2018), the circular area is detected through Hough 
transform to obtain only the inner area of the dish and a mask is created for the removal 
of the unwanted area. Afterward, Gaussian adaptive thresholding is performed for image 

Fig. 11   Illustration of the colony counting procedure. a The initial image. b The image after thresholding. c 
The extended minima of the original image. d The counted colonies (in Clarke et al. (2010) Fig. 4)

Fig. 12   Test result (in Matić et al. (2016) Fig. 7)
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segmentation because of the different lighting conditions in different areas. Then the histo-
gram of vertical projections of the image is analyzed by varying its rotation angle to align 
the stripe at a 90◦ angle. Finally, cross correlation-based granulometry is applied for the 
determination of the amount of bacteria colonies.

In Zhang et al. (2008a), Alves and Cruvinel (2016), Sánchez-Femat et al. (2016), Bouk-
ouvalas et  al. (2019), Otsu thresholding is applied for bacteria counting. First, a linear 
expansion of the histogram (Sánchez-Femat et  al. (2016)) and a multi-directional Sobel 
operation (Boukouvalas et al. (2019)) is applied for image enhancement and edge detec-
tion. In Zhang et al. (2008a), the RGB and achromatic are processed, respectively. For RGB 
images, the Otsu thresholding method is firstly used for segmentation, then the color simi-
larity in HSV (Hue-Saturation-Value) color space is adopted to assist the colony bounda-
ries detection. For achromatic images, the sizes of all objects detected by the Otsu method 
from the dish/plate region are collected, and the frequency distribution with log base of 
those size values is generated. Colonies of similar size should occupy the high frequency 
segment in this distribution, and the frequencies for those massive artifacts should be very 
low. By this assumption, the large size objects can be removed. Then the hypothesis test-
ing is used to remove minor artifacts which are very similar to the colonies. After Otsu 
thresholding, a Laplacian filter is applied for edge detection and circular Hough transform 
is used to detect circular bacteria colonies in Alves and Cruvinel (2016), Boukouvalas et al. 
(2019). The mean error between the proposed method and the manual counting method is 
less than 10%. In Sánchez-Femat et al. (2016), Euler’s method is applied for colony count-
ing. The accuracy of 98% is obtained by comparing with the proposed method and manual 
counting method.

In Zhang and Chen (2007), Chen and Zhang (2008), the Otsu and watershed are applied 
for automatic detection and enumeration of bacteria colonies. First, the contrast-limited 
adaptive histogram equalization (CLAHE) is used on the converted gray-scale images to 
enhance the dish/plate contour (Zhang and Chen (2007)). Then, the Otsu threshold is used 
to detect the dish/plate region and binarize the images automatically. After the morphologi-
cal operation is used to fill holes, the color similarity values between a pixel and its eight 
neighbors are calculated and the minimum value is used to detect the object boundaries. 
Moreover, the watershed algorithm is used for clustered colony separation and the num-
ber of viable colonies is counted. The proposed counter performs very well on the blue 
medium dish/plate, which has average precision, recall, and F-measure values of 0.97, 0.96, 
and 0.96, respectively in Zhang and Chen (2007). In Chen and Zhang (2008), The preci-
sion, recall, and F-measure values of the proposed counter are 0.61 ± 0.29 , 0.94 ± 0.06 , 
and 0.69 ± 0.20 , while the corresponding values of the Clono-Counter are 0.22 ± 0.25 , 
1.00 ± 0.00 , 0.29 ± 0.31 , respectively. The segmentation method is shown in Fig. 13.

Fig. 13   a The original image. b The plate mask. c The colony mask. d Colonies separated from aggregated 
colony clusters (in Chen and Zhang (2008) Fig. 2)
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2.1.3 � Bacteria counting method based on edge detection

In  Massana et  al. (1997), Ogawa et  al. (2003), Yamaguchi et  al. (2004), Choudhry 
(2016),edge detection is applied for bacteria counting. A Gauss filter (kernel 5 × 5 ), a 
Laplace filter (kernel 5 × 5 ), and a median filter (rank 3) are used for edge detection 
before thresholding (Massana et al. (1997)), which is shown in Fig. 14. On the contrast, 
the Sobel and Laplacine filter are used to detect the edges after thresholding (Yamaguchi 
et  al. (2004)). In Choudhry (2016), the edge detection system has six major steps. First, 
the background is subtracted to enhance contrast and reduce the effects caused by uneven 
illumination. The radius for background subtraction is determined empirically. A starting 
number can be the average radius of colonies. The next step is sharpening and enhancing 
the image, which follows by finding the edges. Sobel filter is used in the macro. Then the 
image is smoothed using Gaussian blur, and converted to black and white. Alternatively, 
the image can be smoothed by sequential dilate and erode steps. This is followed by the 
closing of the edges to form a closed circle. Closed objects are filled black using holes fill-
ing resulting in images containing black colonies on a white background. To ensure that 
all colonies are detected, an additional step of closing and filling holes is performed. Here, 
the size of each pixel is increased, in order to bring the detected edges closer to each other 
that allows the detection of colonies whose entire edge along the perimeter fails to be oth-
erwise detected. After filling, the size of the pixels is reduced to return the colony size to 
their original values. After that, denoising and segmentation are applied to remove small 
particles and separate clustered colonies using thresholding. Finally, the objects are filtered 
based on size, circularity and measured. Then a new pipeline is developed for the detection 
of cells and colonies from images. The background is corrected and then the colonies are 
detected. After that, the parameters are measured and the number of colonies is counted.

In Barbedo (2013), five digital processing methods for automatic colony counting are 
proposed and compared. In the first method, a Gaussian Laplacian filter is applied for edge 
detection and the connected regions are identified and counted after holes filling. In the 
second method, the Gaussian Laplacian filter is replaced by the Canny filter. In the third 
method, three thresholding values are used for image segmentation. In the fourth method, 
thresholding is used for histogram equalization but not for image segmentation. In the fifth 

Fig. 14   Overview of the whole process of image processing (in Massana et al. (1997) Fig. 2)



2891A comprehensive review of image analysis methods for…

1 3

method, the region growing method is applied for segmentation. After that, the concave 
surface between the connected colonies can be detected to separate the colonies into a sin-
gle one. Finally, the number of colonies is counted. The accuracy of the first method per-
forms best that obtains the accuracy of 99%.

2.1.4 � Bacteria counting method based on watershed

In Ates and Gerek (2009), Selinummi et al. (2005), watershed is applied for bacteria count-
ing. In Ates and Gerek (2009), a median filter is applied first for noise removal and the 
petri dish boundary is detected and removed. Then the patterns are separated into two 
groups: colonies and clusters of colonies, based on the classification of circularity ratio. 
After that, the cluster colonies are segmented based on the watershed (Ates and Gerek 
(2009)) and marker-controlled watershed(Selinummi et al. (2005)). The watershed segmen-
tation method is shown in Fig. 15. Finally, the number of actual colonies is estimated as the 
ratio of cluster area to an average colony area.

In Hong et al. (2008), Brugger et al. (2012), Masschelein et al. (2012), Zhu et al. (2018), 
Wong et al. (2016), Minoi et al. (2016), Yujie (2009), Kan (2008), Fang et al. (2008), Mar-
tinez-Espinosa et al. (2016), Mukherjee et al. (1995), the distance transform and watershed 
are applied for bacteria counting. First, a median filter is used to remove noise and determine 
the threshold for every single patch in Kan (2008), Fang et al. (2008). After that, the itera-
tive threshold (in Fang et  al. (2008)), a gray-scale weighted thresholding method (in Hong 
et al. (2008)), a combination method of distance transform and region growing (Mukherjee 
et al. (1995)), and Otsu thresholding (in Brugger et al. (2012), Minoi et al. (2016)) are used 
to obtain the binary image. Then the objects are detected based on eight neighbor regions 
in  Martinez-Espinosa et  al. (2016). Moreover, an adaptive thresholding method is applied 
in Brugger et  al. (2012) for secondary binarization to solve the challenges that come from 
the fact that bacterial strains from the same species may exhibit different colony phenotypes. 
In Zhu et al. (2018), image subtraction is carried out to extract the candidate colonies, which 
are connected to the inner circle of the agar plate and a nonlinear gray transformation is used 
to enhance the gray-scale. Afterward, a distance transformation is performed on the binarized 
image and segmentation is done with a watershed transformation. Furthermore, the sharp cor-
ners produced by the watershed transformation are removed by using the morphological open-
ing method. After the segmentation algorithm is completed, the Bayes classifier distinguishes 

Fig. 15   Watershed segmentation 
for two merged colonies (in Ates 
and Gerek (2009) Fig. 5)



2892	 J. Zhang et al.

1 3

the remaining concatenated groups into classes of one, two, three or four containing colonies, 
and the final colony is counted. Finally, in Masschelein et al. (2012), Yujie (2009), the GLCM 
is extracted and the SVM is applied for classification. The total number of single and clustered 
colonies is counted with an average relative error of 0.2% in Zhu et al. (2018). The counting 
result is shown in Fig.  16. The processing method of Mukherjee et  al. (1995) is shown in 
Fig.  17. 

Fig. 16   Identified colonies dis-
played in different colors (in Zhu 
et al. (2018) Fig. 11). (Color 
figure online)

Fig. 17   a Original image. b 
Image after thresholding at 
gray value 125. c Image after 
distance transform. d Image after 
region growing. e Image after 
component labelling. f Frequency 
distribution (in Mukherjee et al. 
(1995) Fig. 3). (Color figure 
online)
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2.1.5 � Bacteria counting method based on color segmentation

In Ogawa et al. (2005), a distinctive multicolor segmentation algorithm is applied for the 
accurate and simultaneous differentiation of triple-stained bacteria. The result has the 95% 
confidence intervals of the regression.

In Schönholzer et al. (2002), Peitz and van Leeuwen (2010), Mukti et al. (2010), RGB 
images are separated into three channels. The preliminary detection of both bacteria and 
debris is based on the green channel, and the differentiation between bacteria and debris is 
based on the processing of the green and blue channels. Then the debris particles are elimi-
nated by the combination of two output images above. Then a Gaussian filter is applied 
for noise removal and Otsu thresholding is used to roughly separate the data of the rela-
tively dark electrodes from data belonging to the electrode gaps in  Peitz and van Leeu-
wen (2010). Moreover, the numbers of single and dividing cells and cell agglomerates are 
determined by a method based on the number of local grey value maxima in Schönholzer 
et al. (2002). Finally, cell numbers and cell sizes are calculated based on area and perimeter 
measurements for each single or dividing cell.

2.2 � Machine learning and deep learning counting methods

In Ishii et al. (1987), Yoon et al. (2015), Chiang et al. (2015), principal-component analy-
sis (PCA) is used to separate the biological pattern with the surrounding area. The type of 
pattern for selection is identified and the objective biological pattern is counted. Moreo-
ver, the nearest neighbor searching algorithm is applied to separate touching colonies after 
PCA in Yoon et al. (2015), which contains three main steps. First, the local maxima on an 
absorbance image is found, and a mask image is created in which the locations of the local 
maxima are marked with 255 and otherwise with 0. Then the local maximal pixels outside 
the binary segmentation image are masked out by a logical AND operation. Afterward, the 
clumped blobs are split when the number of local maxima is greater than the number of 
blobs. The separation result is shown in Fig. 18. Finally, the image of the bacteria colony is 
segmented and counted. The accuracy of the colony segmentation and counting algorithm 
is over 99%. However, in Chiang et al. (2015), the Otsu thresholding is applied for segmen-
tation after PCA. Then, the distance transform and waster-shed are applied for the divi-
sion of overlapping colonies. Afterward, the bottom-hat transformation is applied to extract 
colonies from the rim image. Comparisons show that the proposed system is an effective 
method with excellent accuracy with a mean value of absolute percentage error of 3.37%.

In Andreini et al. (2015), Andreini et al. (2016), Zhang et al. (2010), Chen and Zhang 
(2009), SVM is applied for bacteria counting and classification. In Andreini et al. (2015, 
2016), the colonies are segregated from the background by a background removal process 

Fig. 18   Local absorbance maxima search and separation of touching colonies (in Yoon et al. (2015) Fig. 14)
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based on chromatic information about the specific chromogenic medium used in the cul-
ture. Then, a supervised training technique is adopted to obtain a chromatic description 
of the background and the uncertainty region is obtained as a union of the intersections 
of some binary masks obtained by imposing a threshold on the probability level of the 
background and of the infected regions. After that, a mean shift segmentation algorithm is 
used to associate each image pixel to the corresponding modal density value and a Sobel 
based edge enhancement is applied to distinguish different classes. Moreover, the consid-
ered uncertainty region is divided into two subregions based on the computed threshold-
ing and the histograms of the two sub regions are calculated and compared to establish if 
a significant separation exists. Finally, SVM is applied for classification and the number 
of colonies is counted with an accuracy of 99.2%. The segmentation result is shown in 
Fig. 19. In Zhang et al. (2010), Chen and Zhang (2009), a subtraction operation is applied 
between the original image and background image to eliminate the background uneven-
ness caused by the light source. Then a median filtering algorithm is applied to smooth 
the image because it reduces the hot-electron noise and the noise caused by environmental 
disturbance during image collection, quantify and transmission, and overcomes the blur of 
the image details created by linear filtering. After that, the gray-level histogram equaliza-
tion is applied for image enhancement. Then the Otsu thresholding (Zhang et al. (2010)) 
and watershed (Chen and Zhang (2009)) are used to obtain the binary image. Finally, the 
shape features are extracted and used for SVM training to identify and count bacteria. It 
can be seen that the counting results of SVM have a small difference from that of human 
eye recognition and its relative error is less than 3%, which means that SVM can be used 
for rod-shaped bacteria counting.The classification results of  Chen and Zhang (2009) is 
shown in Fig. 20.

In Blackburn et al. (1998), the Marr-Hildreth operator is used for edge detection of bac-
teria image and threshold is used for image binarization. Then a rank 3 filter is applied to 

Fig. 19   a The original image. b The identified edges within the background. c Candida colonies found on 
the Petri dish (in Andreini et al. (2015) Fig. 4)

Fig. 20   The classification results for different sizes of the training set (in Chen and Zhang (2009) Fig. 15)
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remove pixels that have intensities equivalent to the intensities of amplified background 
noise. An artificial neural network (ANN) is firstly applied for the classification of bac-
teria. The ANN is composed of 6 input nodes, 5 intermediate nodes, and 3 output nodes, 
and then the ANN is activated by using a sigmoid activation function. After training, the 
images can be analyzed automatically at a rate of 100 images per h. Minimal variation in 
cell counts between filters is observed (5%) with the filtering procedure used. The bacteria 
counting procedure is shown in Fig. 21.

In Shenglang et al. (2008), Hongwei (2012), back propagation (BP) neural network and 
DIP are used for analysis and counting for the microscopic image of bacteria. Median fil-
tering and adaptive filtering are used for denoising and background elimination, and then 
the iterative algorithm is used for image segmentation in Shenglang et al. (2008). In Hong-
wei (2012), the Otsu thresholding method and the combination of square and circle filter 
are used for segmentation and edge detection of other microorganisms. After that, mor-
phological operations are applied to smooth the contour of cells and the binary images are 
obtained. Moreover, the morphology and colorimetry features are extracted and trained in 
BP neural network for identification and counting. The detection error between the pro-
posed method and the manual counting method is no more than 5%. In Shenglang et al. 
(2008), the perimeter, area, shape factor, rectangularity, extension length and gray-scale of 
the object are input to the BP neural network. Then the neural network is activated by using 
Sigmoid function, which contains six hidden layers and one output layer. The counting sys-
tem can analyze the sample in less than 10 minutes, whereas the classical manual counting 
method takes 48 hours.

In  Ferrari et  al. (2015, 2017); Tamiev et  al. (2020), the convolutional neural network 
(CNN) is applied for bacterial colony counting. The example of the dataset is shown in 
Fig. 22. Then a horizontal flip is performed on the images to double the training dataset and 
three different artificial color distortions on RGB color space are applied. After that, another 
transformation is the conversion of the masked dataset in gray-scale color space and seven dif-
ferent values of spatial rescaling before cropping is performed. Then the images are enhanced 
through normalization concerning the segment orientation (Ferrari et  al. (2015)) and con-
trast limited adaptive histogram equalization (Ferrari et al. (2017)). Finally, CNN is applied 
for classification and counting that contains five learned layers, four convolutional and one 
fully connected as shown in Fig. 23. During the training, the testing accuracy flattens after 
15000 iterations. 50,000 iterations have taken approximately 3 hours on an Nvidia Titan Black 
GPU. The accuracy of 92.8% is obtained. After CNN classification, a watershed algorithm 
is applied for colony separation in Ferrari et al. (2017). The testing accuracy increases with 
the number of training iterations and flattens around 30,000 iterations. 50,000 iterations take 
approximately one hour on an Nvidia Titan X GPU. The accuracy of 92.1% is obtained after 

Fig. 21   Edge detection procedure. a The original image. b Image after application of the Marr-Hildreth 
operator with 3 × 3 kernel. c Image after application of a rank 3 filter. d Binary image after thresholding. e 
Image after erosion (in Blackburn et al. (1998) Fig. 1)
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data augmentation. In Tamiev et al. (2020), a classification-type convolutional neural network 
(cCNN) is proposed for automatic bacteria classification and counting, and an efficient method 
for microscope image preprocessing is presented. First, the raw images are segmented with 
an adaptive binary thresholding method and images with individual cells or cell clusters are 
cropped. Then the images are trained using cCNN. The network’s output corresponds to the 
number of cells in given cell clusters and the individual outputs are then added to find the total 
cell count. The counting accuracy of 86% is obtained. The workflow is shown in Fig. 24. The 
result shows a 3.8X increase in processing speed by using an NVIDIA Quadro K620 GPU.

2.3 � Third‑party tools

In Jung and Lee (2016), image analysis is used for real-time bacterial counting. First, the 
time-series high-resolution (HR) images of bacterial microcolonies are reconstructed using 

Fig. 22   Example of dataset images representing a certain number of colonies, from 1 (a) to 6 (f), and two 
example of outliers (g) and (h) (in Ferrari et al. (2015) Fig. 2)

Fig. 23   Convolutional Neural Network topology (in Ferrari et al. (2015) Fig. 3)
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sub-pixel sweeping perspective microscopy (SPSM). Then the images are segmented, and 
the equivalent diameter and number of colonies in each time-lapse image are then calcu-
lated. The processed images are shown in Fig. 25.

In Moller et al. (1995), Cellstat image analysis program is developed to determine the 
biovolume of bacteria. They present a method for simultaneous quantitative staining of 
RNA and DNA using the metachromatic dye AO and quantify the RNA and DNA. The 
automated image analysis is not biased by the operator, and it allows the analysis of a num-
ber of objects, ensuring good statistics. Choosing the right parameters for cell identifica-
tion makes it possible to discriminate between single cells and clumps of cells. By using 
a different set of parameters for object recognition, it is possible to detect and measure 
the intensities of surface-associated microcolonies and single cells on the surface indepen-
dently. The result of automatic identification of bacteria with Cellstat is shown in Fig. 26.

In David and Paul (1989),  ‘Model 2000’ (Image Technology Corporation, Deer Park, 
New York) image analysis system is used for enumeration and sizing of bacteria, which 

Fig. 24   The work flow of image processing. a The image is binarized and annotated manually. b Null 
Bumper. c Blended. d Masked. e Neural network training. f The input of neural network (in Tamiev et al. 
(2020) Fig. 2)

Fig. 25   Image processing. a Time-series high-resolution (HR) images. b Following reconstruction of the 
HR image (in Jung and Lee (2016) Fig. 3)
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can detect and enhance each individual cell at the same time. There is no statistical differ-
ence in cell counts made manually or by the image analysis system.

In Kildesø and Nielsen (1997), ‘Kontron Vidas Plus’ (Kontron Elektronik GmbH, Ger-
many) image analyser system is used for airborne microorganisms counting. Gaussian filter 
is used to remove noises and the edge is derived using Laplace filter. This work has estab-
lished a possibility of improving exposure assessment of airborne microorganisms through 
image processing instead of manual counting.

In Shopov et al. (2000), a program ‘Skidaway Tools’ (Skidaway Institute of Oceanog-
raphy, 10 Ocean Science Circle, Savannah, USA) is developed based on Marr-Hildreth 
Gaussian-smoothed Laplacian edge-detection protocol that is proposed in Viles and Sier-
acki (1992), with added flat-fielding and edge-strength operators. The alpha-channel is 
applied in bacteria image segmentation, masking the background and providing a count of 
the attached bacteria cells.

In Gmür et al. (2000), ‘IBAS 2.0’ (Kontron Inc., Eching, West Germany) is used to pro-
cess the images of dental bacteria. A gradient convolution filter is used to process images 
firstly, then, any white objects below or above an acceptable size range are excluded and 
the remaining spots are counted automatically after image binary. In  Singleton et  al. 
(2001),  ‘IBAS 2.0’ is used for oral microbial quantification. Thresholdiinging is used 
for images binarization, and the edge-effect rule is used to eliminate the objects of the 
wrong size. Then the individual bacteria are segmented, and the white spot of images are 
counted. A close agreement between the automated system and the manual visual counts is 
observed.

In Nunan et al. (2001), ‘Zeiss KS300 Imaging System 3.0’ is used for bacteria image 
processing. The RGB images are decomposed into 3 channels that can be processed 
separately. Sigma smoothing and top-hat transform are used for edge detection and 
segmentation in green channel images that can detect all features in the bacteria size 
range. High pass filter and morphological opening are used to remove autofluorescent 
objects in red channel images. The top hat transform is used to distinguish bacteria from 
other objects by detecting the blue halos in blue channel images. The binary images 
are obtained based on the three-channel images above. The number of cells and other 
parameters such as area is measured. In Stoderegger and Herndl (2005), ‘Zeiss KS300’ 
is used to quantify the natural bacterial community. The binary images are obtained 
by adjusting the threshold level. Then the images are corrected by excluding or adding 

Fig. 26   Automatic identification of bacteria with Cellstat. a The cell between 75 and 700 pixels. b The cell 
between 350 and 700 pixels. c Identification of single cells between 75 and 175 pixels. d Identification of 
micro colonies on the surface (in Moller et al. (1995) Fig. 1)
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cells originally not detected by the channel settings. The individual cell area is deter-
mined, and the total area is calculated. Therefore, the number of cells can be obtained.

In  Peña et  al. (2002),  ‘Image-Pro Plus’ image analysis software (Media Cybernet-
ics, USA) is used for the quantification of bacteria. For aggregates, contour extraction 
is used for automatic image segmentation. The average equivalent diameter (AED) is 
used to characterize the size of aggregates, which is used for the automatic elimina-
tion of individual cells and debris. A High-Gauss filter is used for image enhancement 
for individual cells, and a Gaussian filter is used for noise reduction. The roundness 
value is calculated to select the objects that correspond to individual cells. The binary 
images based on the two methods above are used for bacteria counting and biovolume 
measurement.

In O’cleirigh et al. (2003), ‘Optimas 6.5’ (Media Cybernetics Inc., Silver Spring, MD) 
image processing system is used to quantify bacteria. Firstly, the low-frequency back-
ground noises are isolated and removed, then a combination method of binary erosions to 
point and dilations within image masks is used to separate cells. The parameters such as 
cell count and cell volume are measured by using the ‘Optimas’ image processing system. 
The result shows that the deviation of the experimentally measured density from the known 
density is 3.2%.

In  Putman et  al. (2005),  ‘ProtoCOL’ (Version 4.04 from Synoptics Ltd., Cambridge, 
UK) is used to count the bacteria colonies. When the ‘ProtoCOL’ software is used to pro-
cess the digital camera image, the count result is highly correlated with the true count but 
slightly less than the true count.

In  Thiel and Blaut (2005),  ‘KS400’ (Carl Zeiss Vision, Hallbergmoos, Germany) is 
used for automated enumeration of fluorescently labeled bacteria. First, the DAPI images 
are analyzed to detect single signals at a high spatial resolution. Then, a second analysis 
system is developed to detect signals with a low signal-to-noise ratio. After, the binary 
images are obtained by merging the resulting images above. Finally, the third step pro-
cesses the Cy3 image and thus provides information on the signals that derive from target 
organisms. The logical ‘AND’ operation of the processed DAPI and Cy3 images ensures 
that only those signals are counted in both channels. The calculated correlation coefficient 
of 0.984 indicates that the manual and the automatic counting result are in agreement.

In  Wang et  al. (2007), a micro-colony auto counting system ‘MACS’ (Chuo Electric 
Works, Osaka, Japan) is used for bacteria colony counting. The ‘MACS’ has an automatic 
scanning stage and blue light emitting diode (LED) as a light source. Micro-colonies are 
captured using a CCD camera and analyzed using ‘Micro-colony V’ software (version 
1.504; Chuo Electric Works). SYBR Green II is used to stain the bacteria images, and the 
green fluorescence is detected clearly. The stained images and counting results are shown 
in Fig. 27.

In Hua et al. (2009), ‘Davinci’ technology is used for bacteria counting and area calcu-
lating. Image enhancement and median filter are applied to remove noises and local binary 
fitting (LBF) is used for image segmentation. Finally, the connected region is detected as 
the number of bacteria and the area of the connected region is measured. The average error 
between the proposed method and the manual counting method is no more than 1.6%.

In Freitas et al. (2014), the automated enumeration software ‘SigmaScan Pro 5.0’ (Sys-
tat Software Inc) is used for the quantification of cells in the biofilm. The intensity thresh-
olding is used for image segmentation. There are no significant differences found using the 
software thresholding and the manual counting ( r > 0.05 ), indicating that the Live/Dead 
staining is strongly discriminative between bacteria and background, and there is no sig-
nificant fluorophore bleach effect that could impair the automatic counts.
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In Song et al. (2018), ‘ImageJ’ software version 1.52 (NIH, Bethesda, MD, USA) is 
applied for automatic bacteria counting. First, the threshold is adjusted to enhance the 
contrast of the objects of interest. Second, the image is binarized to remove the noise 
by rendering micro-colony regions with clear boundaries as black and the surrounding 
background as white. After the binarization, filling-holes processing is conducted to 
ensure each closed region represents one intact micro-colony. Finally, micro-colony 
regions above the desired size are outlined, and the number of these regions is auto-
matically counted by ‘ImageJ’ software.

2.4 � Summary of image analysis based counting for bacteria

By reviewing the related work of image analysis for bacteria counting and referring to 
Table 1, we find that:

•	 Development trend The bacteria counting using image analysis approaches began 
in the 1980s and developed quickly in the 2010s. This development trend is due 
to the government and people attach importance to the bacteria problems in recent 
years, which play essential roles in the food industry and social hygiene. With the 
development of computer based image analysis technologies, more explorations 
and higher accuracies will be achieved in the future.

•	  Counting techniques The most frequently used pre-processing methods are the 
median filter and Gaussian filter, image segmentation methods are thresholding, 
distance transform and watershed, classifier algorithms are SVMs and ANNs.

Fig. 27   Fluorescence images of single cells and micro-colonies of bacteria. Bacteria in compost are stained 
with EtBr (a, c and e) and SYBR Green II (b, d and f). Single bacterial cells in compost suspension before 
incubation (a and b) and micro-colonies developed after incubation on LB medium (c and d) observed 
under blue excitation by epifluorescence microscopy. Micro-colonies are also observed using micro-colony 
auto counting system (e and f) (in Wang et al. (2007) Fig. 3). (Color figure online)
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3 � Other microorganism counting methods

3.1 � Classic counting methods

3.1.1 � Counting methods based on image enhancement

In  Zalewski and Buchholz (1996), color filtering and contour enhancement are used to 
separate the yeast cells and compare the automatically detected cell concentration and the 
traditional cell counting using a counting chamber.

In  Barbedo (2012b), the histogram equalization is applied for microorganism count-
ing. First, the images are converted to gray-scale images, and a median smoothing filter 
is applied for noise removal. Then, the histogram equalization is used for image enhance-
ment, and the enhanced images are submitted to top-hat morphological filtering. Finally, 
the images are converted to binary images, and the connected regions are counted. The 
accuracy in correctly identifying the objects is more than 90% and the overall deviation is 
8%.

In  Dazzo and Gross (2013), the center for microbial ecology image analysis system 
(CMEIAS) is developed for understanding microbial ecology at single-cell resolution 
and spatial scales relevant to the individual microbes and their ecological niches in  situ. 
An optimization method of quadrat size is proposed to reduce the complexity of calculat-
ing. Four types of quadrat sizes are proposed, that is 4 × 4 , 6 × 6 , 8 × 8 and 10 × 10 grid. 
After that, the construction of 2-dimensional scatter plots based on Cartesian coordinates 
of object centroids can solve serious edge effects when the best possible grid-lattice on 
the landscape index image still significantly overlaps foreground objects. The index image 
of the dot map representation derived from the original biofilm landscape image with the 
optimized grid raster overlay is shown in Fig. 28.

3.1.2 � Counting methods based on thresholding

In Costello and Monk (1985), Brown et al. (1989), Dias et al. (2003), Shijing et al. (2012), 
Mazzei et al. (2014), Cross and Kenerley (2004), Packer and Thomas (1990), Tucker et al. 
(1992), Zeder et al. (2010), thresholding is applied for fungi (Cross and Kenerley (2004), 
Packer and Thomas (1990)), mycelia (Tucker et  al. (1992)), yeast (Costello and Monk 
(1985)) and protozoan (Brown et al. (1989), Dias et al. (2003)) counting. In Costello and 

Fig. 28   a The original image. b All of the microoragnisms in dot map(in Dazzo and Gross (2013) Fig. 5)
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Monk (1985), the yeast strains are counted by adjusting the gray-level of the images with 
the presence of high cell destinies. In Brown et al. (1989), Dias et al. (2003), the minimum 
size of picoplankton and protozoan are set as the filters to remove the noises. Finally, the 
connected regions are counted as the number of chlorella in Shijing et al. (2012), and the 
flood fill algorithm is applied for labeling and tracking in Mazzei et al. (2014). In Zeder 
et  al. (2010), the gray-level intensities of pixels determine the threshold. ‘Fixels’ are 
defined as the primary component of filaments that are can cover small parts of a filament. 
Once the orientation of the fixel is established, a rectangular field with the same orientation 
is moved along a line perpendicular to the orientation of the fixel, and the precise place-
ment of the fixel is locally optimized by maximizing the sum of the gray-level intensities 
in the rectangle. Finally, the filaments are annotated and the lengths of filaments are meas-
ured. The accuracy of the method is more than 85%. In Hamid et al. (2013), thresholding 
is applied for pus cell counting and feature extraction. The objects that are less than 20 
pixels are eliminated after thresholding. Then, the morphological and shape features are 
extracted for criteria selection. Finally, the single cells and overlap cells are classified and 
counted, respectively. The identified pus cells are marked on the initial image that is shown 
in Fig. 29. It is shown that the reliability of the proposed system is above 80% from the 
validation results.

In Jones et al. (1992), local threshold and morphological transformation are used to cal-
culate spore numbers accurately. Red and blue signals are sampled for pixel segmentation. 
In all cases, the counts are elevated compared with those obtained by the manual method.

In Robinson et al. (1998), Xianjiu et al. (2012), Kim and Cho (2013), Saur et al. (2014), 
Otsu thresholding is applied for the counting of microorganisms. First, the hue, lightness 
and saturation (HLS) model is applied to transform RGB image into the gray image. Then, 
the global smoothing (Robinson et al. (1998)) and wavelet shrinkage method (Xianjiu et al. 
(2012)) are used for noise removal. The wavelet transform is applied in the signal, and the 
wavelet coefficients are shrunk by thresholding. After that, the inverse wavelet transform is 
applied. Then, in Robinson et al. (1998), the binary image consisting of the regional max-
ima is used as the marker image for the watershed algorithm, and the Sobel filter is used to 
detect the edge. Finally, Otsu thresholding is used for the accurate estimation of each cell 
colony area. Total cell number is achieved following identification of cells by application 
of the shape-independent watershed algorithm. In Xianjiu et al. (2012), the image dilation 
is used for image enhancement, and the combination method of Otsu thresholding and the 

Fig. 29   The original image of pus cells (in Hamid et al. (2013) Fig. 8)
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morphological opening is used for image segmentation. Finally, the number of algae is 
counted based on eight neighborhood regions. The mean accuracy of the proposed method 
is more than 94% comparing with the manual counting method. In Kim and Cho (2013), 
the morphological features are extracted after Otsu thresholding for classification and the 
number of the object is used for hatching rate measurement. It is shown that the maximum 
difference is about 19.7%, and the average root-mean squared difference is about 10.9% as 
the difference between the results using automatic counting (this study) and manual count-
ing is compared. The result of object detection is shown in Fig. 30. In Saur et al. (2014), 
Otsu thresholding is used to quantify moving predators in biofilm. The Otsu thresholding 
is applied for image binarization, and the noises are removed by filtering. Then the global 
displacement response and the number of moving objects corresponding to the number of 
detected individual objects on the processed image are calculated. The calculating results 
of the two parameters above are shown in Fig. 31.

In  Song et  al. (2006), the HSI thresholding is used to count the number of algae. A 
median filter is used to remove noises and reduce the fuzzy edges. Hue-Saturation-Inten-
sity (HSI) threshold is used for image segmentation, and the flood fill method is used to 
fill the connected region. Area threshold is used to remove debris, and then the images are 
thinned for central point searching. Finally, the number of algae cells is counted. The accu-
racy of the method for identifying and counting is more than 90%.

In Zhonglei and Peng (2012), the histogram thresholding is applied for automatic fungi 
counting. First, the median filter and linear gray-scale transformation are applied to reduce 

Fig. 30   The shape features and boundary tracks of the detected objects (in Kim and Cho (2013) Fig. 3)

Fig. 31   The counting result. a The correlations between the manual counting result and the automatically 
calculated global displacement response. b The number of objects per cm2 (in Saur et al. (2014) Fig. 3)
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uneven illumination and noise. Then, the image is segmented based on histogram thresh-
olding. After that, an adaptive smooth filter is used for image enhancement, and morpho-
logical operations are applied for smoothing and hole filling. Finally, the connected regions 
are labeled and counted as the number of fungi to be counted. The average relative error 
between the proposed method and the manual counting method is 2.56%.

In Sharma (2015), two methods based on image processing are proposed for microor-
ganisms counting in medical. The first one is based on object recognition, which means 
the microorganisms’ shape is considered to find out the total number of microbes in the 
image sample. The histogram equalization is applied for image enhancement that can help 
to separate the objects from the background. Then the circular hough transformation tech-
nique is used to determine the circular objects in the image. The second one is based on 
thresholding. First, the image is enhanced with histogram equalization and converted to a 
binary image. Then the Moore neighbor tracing algorithm is applied to detect objects that 
have close boundaries. Finally, the combination method of thresholding, object recognition 
and morphological operation is used for counting, and the accuracy of 93% is obtained. 
The segmentation result is shown in Fig. 32.

In  Fang et  al. (2019), a multi-threshold image counting method based on improved 
particle swarm optimization (PSO) is proposed for automatic microbial counting. The 
two-dimensional maximum entropy algorithm is extended to design the objective func-
tion using exponential entropy and an improved PSO algorithm to acquire its maximum 
value and the best image segmentation effect. Furthermore, the breadth-first search (BFS) 
algorithm is applied to complete the microorganism marker and counting in the segmented 
images. Finally, the number of image target segmentation is determined according to the 
histogram peak searching method. The comparisons of target segmentation results are 
shown in Fig. 33.

3.1.3 � Counting methods based on edge detection

In Viles and Sieracki (1992), Sieracki et al. (1995), the Marr-Hildreth method is used for 
edge detection and image segmentation of picoplankton (in Viles and Sieracki (1992)) and 
heterotrophic bacteria (in Sieracki et al. (1995)). Combinations of edge strength and mini-
mum and maximum cell sizes allow the user to count specific cell populations. The images 
are captured using a charge-coupled device (CCD) imaging system, and the result shows an 
accurate performance.

In  Kocak et  al. (1999), the Snake model is used for low-level interaction, which is a 
deformable parametric curve with its corresponding energy function, the closed curve 

Fig. 32   The results after thresholding and morphological operations. a The original image. b Image after 
thresholding and opening operation. c The identified microorganisms (in Sharma (2015) Fig. 8)
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with the minimum energy is the target contour. The edge image is produced by subtract-
ing the eroded image from a dilated image. An extermination algorithm is used to examine 
the image gradient on both sides of the snakelet by computing the directional derivative 
orthogonal to each of its nodes. The Snake model is used for plankton counting in this 
research, and the accuracy of 94.12% is achieved. The example of segmentation is shown 
in Fig. 34.

In  Barber et  al. (2000), the Sobel operator is used to find the edges, and the binary 
images are obtained using thresholding. A compact Hough transform is used to highlight 
the centers of circular objects. The local area can be processed to determine a colony 
boundary, and so the colony area and the colony number can be calculated. An example of 
colony boundary determination is shown in Fig. 35.

In  Pernthaler et  al. (2003), the gradient transformation is applied for microorganism 
edge detection. First, a mean background gray level is determined for remapping the image 
gray values to the total gray value range. Edge detection is performed by using gradient 
transformation, and a neighborhood median filter is applied to smooth the resulting image. 
The stained plankton cells are calculated and counted.

In  Tsechpenakis et  al. (2008), the probabilities are applied for image segmentation. 
First, a nonlinear morphological filter, that is, an alternating sequential filter (ASF) is used 
to preserve the line-type image structures in predefined orientations while filtering random 
noise. Then the region of animals is segmented based on the probabilities. The isolated 
pixels or small groups of pixels with probabilities higher than the threshold are eliminated. 
After that, a nonrigid is used to recover a global transformation that brings the pose of a 
source shape as close as possible to that of a target shape. The shape estimation of animals 
is based on the maximum likelihood (ML) approach, and the animal region is extracted 
based on a probability map. Finally, the number of animals is calculated and compared 
with the manual counting result.

In  Barbedo (2012c), a unified framework for counting agriculture microorganisms 
is proposed. There are five methods listed for object delineating. In the first method, the 
Laplacian of Gaussian method is applied for edge detection, then the inner regions are 

Fig. 33   Comparisons of target segmentation effects (in Fang et al. (2019) Fig. 1)
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filled, and all connected objects are identified. The only difference between the second 
method and the first one is that the Canny method is used to detect the edges. In the third 
method, three different thresholds are applied for image binarization. In the fourth method, 
contrast is modified by the technique of histogram equalization. In the last method, region 
growing is applied for segmentation. After object delineating, a decision tree is used for 
classification. Then the contrast limited adaptive histogram equalization is applied, and the 
image is morphologically opened using as kernel a disk with a radius of 1% of the image 
width. Finally, the estimate for the number of objects is calculated based on the number of 
local maxima.

Fig. 34   Example of steps in segmentation (In Kocak et al. (1999) Fig. 12)

Fig. 35   Example of steps in segmentation (In Barber et al. (2000) Fig. 5)
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3.2 � Machine learning and deep learning counting methods

In Shabtai et al. (1996), Embleton et al. (2003), a neural network is applied for fungus 
(Shabtai et  al. (1996)) and phytoplankton (Embleton et  al. (2003)) counting. In Emb-
leton et al. (2003), the gray-level is used to separate the regions of interest, and then a 
median filter is used to smooth images. A skeletonize operator is used to separating the 
filaments and objects. Then the final binary image is used as a mask to take measure-
ments from the original image. Each region in the binary image is given an identify-
ing number, and the size, shape, color and grey level distribution are measured for that 
region. A neural network is used for the classification and counting of phytoplankton. 
The automated imaging system takes 75 images for each sample in seven minutes, and 
the image processing and classification take thirty to forty minutes.

In  Benyon et  al. (1999), seven basic features and 17 more complex features are 
extracted from fungal spores for image analysis. Linear and quadratic discriminant anal-
ysis are used for image classification, and then the number of every species of spores 
is counted based on the results of classification. Genus comparisons using only seven 
basic features resulted in 98% accuracy.

In Motta et  al. (2001), Akiba and Kakui (1997), PCA is applied for protozoa (Motta 
et al. (2001)) and plankton (Akiba and Kakui (1997)) counting and classification. In Motta 
et al. (2001), the histogram local equalization is used to enhance the contours of protozoa 
images, the opening operation and closing operation are used to remove halo. Euclidian 
Distance Map is used for semi-automated segmentation. A series of erosion and recon-
struction are used to eliminate the flocs of the protozoa silhouette. Finally, PCA is used to 
classify different protozoa, and the number of the various species of protozoa is counted. 
The main steps of segmentation are shown in Fig. 36, (a) shows the initial image of pro-
tozoa, (b) shows the contour enhancement by histogram local equalization, (c) shows the 
background suppression by opening (2 iterations) and closing (55 iterations) to remove the 
halo, (d) shows the semi-automated segmentation based on the Euclidian Distance Map, 
(e) shows part of the flocs is eliminated by a border-killing routine, (f) shows the hole-
filling of the silhouette and semi-automated segmentation based on the Euclidian Distance 
Map, (g) shows the elimination of flocs by a series of erosion and reconstruction of the 
protozoa silhouette, (h) shows the localization of flagella and stalk.

In Grosjean et al. (2004), the random forest and discriminant vector forest are applied 
for zooplankton image processing. A threshold is used to eliminate the background and 
enhance the contrast, then the objects are detected, contoured, and labeled by the image 
analysis system. The combination method of random forest and discriminant vector for-
est is used for classification, and the number of each species is counted. The result of 
object detection is shown in Fig. 37.

In  Rong et  al. (2006), BP neural network and image processing are used for clas-
sification and counting of zooplankton. Otsu thresholding is used for initial image seg-
mentation, and region growing is used to fill holes. The noises of debris are removed 
by detecting the particles that are smaller than the set threshold area. Then the features 
such as gray level co-ocurence matrices (GLCM) and some shape features are measured 
and used for classification and counting by using a back propagation (BP) neural net-
work. There are 5 nodes in the input layer, 20 nodes in the hidden layer, and 1 node in 
the output layer, and the Sigmoid function is applied for activation.

In Albaradei et al. (2020), deep transfer learning is applied for automatic pluripotent 
stem cell colony counting. First, the RGB image is converted to a binary image by using 
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thresholding. Then, some augmentation techniques are applied to expand the training 
dataset. The augmentation techniques include color jitter to randomly alter brightness, 
contrast, saturation, and hue of each image, horizontal/vertical flip, and random rota-
tion. Moreover, the trained SRNetDL model is applied for training. The first 10 layers 
are frozen to remain the pre-trained network. Then the last 6 layers are fine-tuned. The 
stochastic gradient descent is applied for optimization. Finally, the number of cell colo-
nies is counted. The overview of transfer learning is shown in Fig. 38.

3.3 � Third‑party tools

In Ogawa et al. (2012), a time-lapse shadow image analysis system is designed for micro-
bial colony counting. First, an agar plate containing many clusters of microbial colonies 
is trans-illuminated to project their 2-dimensional (2D) shadow images on a color CCD 

Fig. 36   Main steps of segmentation (In Motta et al. (2001) Fig. 1)

Fig. 37   The objects are detected, contoured, and labelled by the image analysis (In Grosjean et al. (2004) 
Fig. 3)
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camera. Then the 2D shadow images of every cluster distributed within a 3-mm thick agar 
layer are captured in focus simultaneously through a multiple focusing system and then 
converted to 3-dimensional (3D) shadow images. It is possible to determine whether each 
cluster comprised single or multiple colonies by time-lapse analysis of the 3D shadow 
images. Finally, the recognized colonies are counted, and the result is compared with the 
manual counting method, and an excellent value of correlation efficiency is obtained (r = 
0.999). The colony detection method is shown in Fig. 39.

In Rolke and Lenz (1984),  ‘Quantimet 720’ image analysis system (Leica Cambridge 
Ltd., Cambridge, United Kingdom) is used to detect the zooplankton, and then the total 
number of objects is measured. The detector automatically selects the mean grey-level 
between image and background within the present range to ensure the optimal detection 
of the image contours. ‘Quantimet 570’ is developed in 1990 that is used in Bloem et al. 
(1995), the images are sharpened with maxima and minimum filter, and then all local max-
ima values are detected to determine the number of particles. A 5 by 5 convolution filter is 
used to remove noises, and a skeleton operation is used to separate the particles precisely. 
The mean differences between the visual and automated method are not significantly differ-
ent from zero. The first method in Grivet et al. (1999) is the usage of the ‘Quantimet 570’ 
image analysis system for scanning and counting the adherent microorganisms. The second 
method shows the use of thresholding and image skeleton for enumeration. The correlation 
between the two enumeration methods is highly significant. The example of the second 
method for counting is shown in Fig. 40.

In Sieracki et al. (1985),  ‘Artek 810’ image analyzer (Artek Systems Corp., Farming-
dale, N.Y.) is used to detect, count and size the picoplankton. The threshold destiny level 
of detection can be set at 1 to 256 gray-level. Comparisons between visual and image ana-
lyzed counts show that none of the mean counts are significantly different at the 95% sig-
nificance level by the paired t test.

In Estep and MacIntyre (1989), the ‘Zeus’ image analysis system (Institute of Marine 
Research, Bergen) is used for algae counting, sizing and identification. Images are 

Fig. 38   Processing of transfer learning for counting (in Albaradei et al. (2020) Fig. 2)
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enhanced, smoothed, shadowed, and then ‘Zeus’ system is used for automated counting. 
Comparison counts show no significant difference between the manual method and auto-
matic identification and counting with the image-analysis system.

In Wright et al. (1991), a constant threshold is used to segment the images instead of an 
adaptive threshold, and then the Sobel operator is applied to detect the edge of micro plants 
and animals. Finally, ‘ImageMeasure 5100’ (Microscience, Div., Phoenix Trade, Inc. Seat-
tle, Washington) is used for counting. The developed script reduces the time required to 
count and measure marine fouling tube worms by at least one order of magnitude over 
manual counts, with an error of five percent or less.

In Corkidi et al. (1998), a commercial program ‘IMAGENIA 2000’ (Biocom, Les Ulis, 
France) is used for image processing and object counting based on the multi-level thresh-
old, and the total number of bright spots over the dark background is counted. The conflu-
ent and various sizes image analysis method (COVASIAM) is proposed, which estimates 
an average of 95.47% ( � = 8.55%) of the manually counted colonies, while an automated 
method based on a single-threshold segmentation procedure estimates an average of 76% 
( � = 16.27%) of the manually counted colonies. Fig. 41h shows the segmentation result of 

Fig. 39   Detection of 2 overlapping colonies of E.coli. a 2D shadow image of agar plate. The arrow points 
to the cluster of overlapping colonies. b Magnified image. c 3D shadow image. d 2 colonies recognized in 
the cluster (in Ogawa et al. (2012) Fig. 6)

Fig. 40   The processing of the actinomyces image. a Original image. b The binary image after a two-step 
thresholding. c The skeleton selection. d The whole skeleton with branches. e The whole pruned skeleton. f 
The triple points and end points on the skeletons (in Grivet et al. (1999) Fig. 3)
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Fig. 41g, and i shows the superimposed images of Fig. 41g and (h). COVASIAM gave 135 
CFU, representing 97.8% of the manual counts.

In Rodenacker et al. (2001), a program ‘IDL’ (Research System Inc., Boulder, USA) is 
used for image analysis. Thresholding is used to segment the images. The opening opera-
tion and closing operation are used to clean the masks and fill holes. A neural network is 
designed to classify the microorganisms based on shape features that can help count each 
microorganism species in water. The ‘IDL’ is also used for identification and quantification 
of phytoplankton in Rodenacker et al. (2002), and the threshold is used for image segmen-
tation. The segmentation result is shown in Fig. 42. The morphological and some intensity 
features are used for identification, and a neural network is designed for classification, then 
the number of each species is counted.

In Sándor et al. (2001),  ‘Quanitmet 570’ computer system (Leica, Cambridge, United 
Kingdom) is used for image processing. The proportion of the clumps is determined as the 
mean value of their projected areas, and the mean total hyphal length and the mean number 
of tips are determined for the freely dispersed mycelia.

In Nishimura et al. (2006), an automatic cell counting system, ‘Bioplorer’ (BP) (Matsu-
shita Ecology Systems Co. Ltd, Kasugai, Aichi-ken, Japan), is used for the enumeration of 

Fig. 41   Detection of colony. a The image is digitized and filtered through a binary mask. b Enhanced 
image. c Resulting image after adding images at T1 and T2 thresholds. d Colony segmentation at a sin-
gle threshold level of data. e Colony segmentation by using COVASIAM. f Overlap of Fig.  41a and e. 
g Digitized image of colony in various size. h Colony segmentation result. i Overlap of Fig. 41g and h. 
(In Corkidi et al. (1998) Fig. 2)
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yeast cells. BP system is used to exclude yeast cells measuring 5 �m in diameter from the 
count when cultured yeast. The intensity is used for image segmentation and bright points 
are counted. In Nishimura et al. (2008), BP is used for the quantification of eukaryotic and 
prokaryotic cells. The cells are stained and captured using a CCD camera that can cap-
ture photons emitted from bacteria or yeast cells. Bright points are visualized on display 
and enumerated automatically. The threshold brightness value is optimized for each set of 
measurements by using BP.

In Eickhorst and Tippkötter (2008), an image analysis software, ‘AnalySIS’ (Soft Imag-
ing) is used for soil microorganisms counting and detection. First, the images are opti-
mized, such as the contrast of enhancement and gradation. Then the threshold value is set 
for the color of fluorescent probes. After that, the parameters are set to detect the microor-
ganism pixels and the cell number is automated counted. The ratio of automated to manual 
counting is 97.7% (± 1.0) for bacteria and 92.2% (± 2.4) for archaea in the investigated 
paddy soils.

In Ghită et al. (2013), ‘ImageJ’ is applied for analysis of cyanobacteria from the marine 
sample. First, the background is separated from the objects based on the intra-class vari-
ance threshold method. Then the mathematical morphology operations are used to remove 
noises produced by specks of staining color in the image. Finally, the clustered objects are 
separated and counted. The same image is then analyzed with the program ‘CellC’ to count 
the cells in the filament of cyanobacteria. The result of the proposed method is shown in 
Fig.  43. In  Stolze et  al. (2019),  ‘ImageJ’ is applied for yeast colony counting based on 
automatic image analysis. First, the RGB image is converted to an 8-bit image, and the 
thresholding value is adjusted for image binarization. After that, the watershed is applied 
for splitting merging colonies, and finally, the number of colonies is counted. The proposed 
method is shown in Fig. 44.

Fig. 42   Segmentation of one image, central field with masks, right field with marked featured objects 
(In Rodenacker et al. (2002) Fig. 2)
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In Bennke et al. (2016), ‘Automated Cell Measuring and Enumeration tool 2.0’ program 
is applied for the enumeration of the microbial cell. First, the sample is stained using DAPI 
and captured using a CCD camera. Then the program is applied for cell determination and 
enumeration. The parameter values like object area, circularity, mean gray value and sig-
nal-to-background ratio are measured. Automated enumeration result is highly correlated 
with manual counts ( r2 > 0.9).

3.4 � Summary of image analysis based counting for other microorganisms

By reviewing the related work of image analysis for other microorganisms counting and 
from Table 2, we find that:

•	 Development trend The counting for other microorganisms using image analysis 
approaches began in the 1980s and developed in the 2000s. By comparing with the 
related research on bacteria, the development speed of research about other microor-
ganisms counting is relatively slow, and the research is relatively limited. There are 
two main reasons to cause this situation, firstly, the structures of bacteria are relatively 
simple, and most of them are circular, which are more visualized and accessible to 
evaluated for segmentation results. By contrast, some other microorganisms, such as 
alga and fungi, are relatively complex in structure and with plenty of hyphae, challeng-
ing to be segmented precisely. Secondly, microorganism counting systems are designed 
but not for one specific type. A dataset is necessary when evaluating systems’ perfor-
mances, but the number of bacteria datasets is relatively abundant, so the researchers 
tend to test their systems with bacteria datasets.

•	  Counting techniques The most frequently used pre-processing methods are the medial 
filter and Gaussian filter, image segmentation methods are thresholding and Otsu 
thresholding, classifier algorithms are PCA and neural networks.

4 � Analysis of image processing based counting methods

The image processing methods based microorganism counting are summarized from 
Sects. 3 to 4. It can be seen that the most effective approaches for microorganism image 
counting are image pre-processing, image segmentation, image classification, connected 
region detection, and feature extraction. In order to find out the reasons why they are 
widely used and reveal the potential future direction, in this section, the properties of these 

Fig. 43   a Digital image of cyanobacteria. b Delimitation A panel edges using Image J software. c The total 
number of cells in A panel using CellC software (In Ghită et al. (2013) Fig. 9)
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methods with their application domains are analyzed and summarized. In order to illus-
trate the correlation between methods and their applications, some representative works are 
selected as examples.

4.1 � Image pre‑processing methods

Because many kinds of microorganisms are colorless, staining methods are necessary to 
apply before image capture. Different staining methods lead to different color images, so 
the color feature is not appropriate for automatic microorganism counting. Moreover, due 
to the illumination and image noise’s inhomogeneity, pre-processing methods should be 
applied to solve the problems and prepare for image segmentation.

Firstly, to reduce the effect of different colors for image segmentation, the RGB 
images are usually converted to gray-scale images by adjusting the proportions of red, 
green, and blue channels. The RGB can also be converted to HSI (Hue-Saturation-Inten-
sity) color space to assist the colony boundaries detection, such as the works in  Song 
et al. (2006), Nayak et al. (2010), Payasi and Patidar (2017). HSI color space can adjust 
the Intensity but does not change the color type of the original image when processing 
colored images. Furthermore, it can ultimately reflect the primary attribute of color percep-
tion and corresponds to the result of color perception, which is helpful for the following 
segmentation.

Secondly, the uneven illumination can result in shading and a nonuniform back-
ground, which can usually be corrected using background subtraction, linear gray-scale 

Fig. 44   ImageJ automated cell analysis of a Petrifilm image. a Petrifilm colony forming area outlined with 
the oval ROI tool. b The area outside the ROI is cleared. c Image is converted to 8-bit. d Threshold is set to 
highlight colonies as black particles. e Merging colonies split by a single pixel line via the Watershed tool. 
f Particles included in the total count, highlighted and numbered in an overlay on the image (In Stolze et al. 
(2019) Fig. 1)
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transformation and low pass filtering, such as the works in Choudhry (2016) and Zhonglei 
and Peng (2012) (see Fig. 45).

Thirdly, noise removal is also one of the most necessary parts of pre-processing. Median 
filter and Gaussian filter are applied for denoising that are easy to approach and perform 
well in this part. The morphological open and close operations can be used to remove halos 
that appear while imaging, such as the work in Motta et al. (2001).

Finally, the contrast of images may not be striking and need to be enhanced for image 
segmentation. The gray-level histogram equalization is the most acclaimed method that is 
easy to operate and can enhance the contrast in a global field, such as the work in Zhang 
et al. (2010) and the image after enhancement is shown in Fig. 46. A contrast limited adap-
tive histogram equalization (CLAHE) is proposed in  Ferrari et  al. (2017) for local con-
trast enhancement, and a linear histogram expansion method is applied in Sánchez-Femat 
et al. (2016) that is based on a transformation of the gray levels, a linear distribution of the 
values that are within the range of 0 to 255 is performed. The performance is shown in 
Fig. 47.

4.2 � Image segmentation methods based on thresholding

Image segmentation is the most significant part of microorganism counting methods. The 
extraction of a region of interest can be regarded as the segmentation of the colony part. 
Segmentation based on thresholding is the basic technique widely applied for microorgan-
ism counting, while many new segmentation methods are proposed to segment the area for 
counting accurately.

Firstly, the segmentation technique based on thresholding is applied in many works for 
microorganism counting. Global thresholding is the easiest method for image segmenta-
tion when it has strong contrast, and an excellent result can be obtained, such as the works 
in Gupta et al. (2012) and Chunhachart and Suksawat (2016). Most of the segmentation 
methods are developed from the thresholding method and can improve performance in 
complex environments.

Secondly, Otsu thresholding is applied in many works such as  Zhang and Chen 
(2007), Zhang et  al. (2008a) and Peitz and van Leeuwen (2010). The Otsu thresholding 
is simple and easy to calculate. It can be used to segment the image effectively when the 
area difference between the target and the background is negligible. Nevertheless, the 
target and background can not be separated accurately when the gray-scale of the target 

Fig. 45   Contrast of the yeast preprocessing image. a Original image. b Filtered image (In  Zhonglei and 
Peng (2012) Fig. 1)



2928	 J. Zhang et al.

1 3

and the background have a large overlap because the gray-scale distribution is used as the 
basis of image segmentation. It is also sensitive to noises, so denoising processing is usu-
ally applied first. The example of Otsu thresholding based image binarization is shown in 
Fig. 48.

Finally, the segmentation result of the single threshold method is not satisfied when the 
gray-level of the image may be unevenly distributed, resulting in the influence of illumina-
tion. An iterative local threshold method is applied in Shen et al. (2010), the point with a 
local maximum threshold is obtained using a Laplacian operator, that is, the initial local 
thresholds. The microorganism images captured by microscope can be affected by light-
ing distribution, so the idea of the algorithm is not to calculate the global image thresh-
old, but to calculate the local threshold according to the brightness distribution of different 
regions of the image, which means different thresholds can be calculated adaptively for 
different regions of the image. Another method to improve the segmentation performance 
when traditional thresholding does not work well is the multi-level threshold that is applied 
in Corkidi et al. (1998). The performance of multi-level thresholding for segmentation is 
shown in Fig. 49. Thresholding based on multi-level method is divided into multi-spatial-
level and multi-threshold-level, it can help segment more detailed pieces of information 
that may be lost using global thresholding.

Fig. 46   Comparison of original image and enhanced image. a Original image. b Image obtained by histo-
gram equalization (In Zhang et al. (2010) Fig. 2, Fig. 3)

Fig. 47   Comparison of original image and enhanced image. a Original image with its gray-level histogram. 
b Resulting image with its gray-level histogram (In Sánchez-Femat et al. (2016) Fig. 7, Fig. 8). (Color fig-
ure online)
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4.3 � Other image segmentation methods

First of all, edge detection is applied in a mass of works that performs well in image 
segmentation. Sobel operator is a classical method that is easy to be applied, such as the 
works in Andreini et al. (2015), Chiang et al. (2015) and Choudhry (2016). Laplacian 
operator is a second order differential operator that is isotropic but sensitive to noises, 
such as the works in  Barbedo (2013), and Laplacian operator can be combined with 
Sobel operator that can obtain a better detection result, such as the work in Ogawa et al. 
(2003). Canny operator is a multi-stage optimization operator with filtering, enhance-
ment and detection that performs best but is relatively complex to use, such as the works 
in Matić et al. (2016) and Barbedo (2012c). Another popular method is Marr-Hildreth 
operator, that is, a Gaussian filter is applied first for smoothing and a Laplacian filter 
is applied for image enhancement, such as the works in Viles and Sieracki (1992) and 
Blackburn et al. (1998), that performs well for images with the low signal-to-noise ratio.

Secondly, the method combined with distance transform and watershed is applied in 
colony segmentation. Distance transform can extract the distance between a non-zero 
pixel and the nearest zero pixel, that is, the gray-scale value of each pixel in the image is 
the distance between the pixel and the nearest background pixel. The distance transform 

Fig. 48   Comparison of gray-
scale image and binary image. 
a Gray-scale image. b Binary 
image based on Otsu threshold-
ing. (In Sánchez-Femat et al. 
(2016) Figs. 8, 9). (Color figure 
online)

Fig. 49   Comparison of gray-scale image and binary image. a Enhanced image. b Multi-level thresholding 
image (In Corkidi et al. (1998) Fig. 2)
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is usually applied for image segmentation with watershed, such as the works in Hong 
et al. (2008), Yujie (2009) and Masschelein et al. (2012). The performance of distance 
transform and watershed is shown in Fig. 50.

Thirdly, watershed segmentation is always applied for the separation of connected 
colonies. The original watershed algorithm performs well in the segmentation process 
for adherent colonies, such as the works in Zhang et al. (2008a), Ates and Gerek (2009) 
and Stolze et al. (2019). The segmentation method is shown in Figs. 51 and 15. How-
ever, the original watershed may get the results of over-segmentation because of the 
noise and local discontinuity of the images, the marker-controlled watershed algorithm 
is applied in Selinummi et al. (2005). The Hough transformation is applied to extract the 
object’s marker, and the background is marked and eliminated separately.

Finally, top-hat transform and bottom-hat transform are morphological operations 
applied for image segmentation when the illumination is uneven. The top-hat transfor-
mation is the difference between the image and the image after the open operation, such 

Fig. 50   Sample step-sequence for an automated colony counting system (In  Masschelein et  al. (2012) 
Fig. 15)

Fig. 51   The concept of water-
shed algorithm (In Zhang et al. 
(2008a) Fig. 5)
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as the works in  Pernthaler et  al. (1997), Brugger et  al. (2012) and Barbedo (2012b), 
while the bottom-hat transform is the difference between the image after the close oper-
ation and the image, such as the work in Chiang et al. (2015). The top hat transforma-
tion is used for light objects on a dark background, while the bottom hat transformation 
is used for the opposite.

4.4 � Image classification methods

Classification is a necessary operation when the microorganisms need to be counted 
respectively. Firstly, a decision tree is a supervisor learning that is widely used based on 
probability analysis. In Barbedo (2012c), a decision tree is applied for the classification of 
agriculture microorganisms. The decision tree is easy to understand and explain, and can 
make possible and practical results for large data sources in a relatively short period, but 
the overfitting problem while classification needs to be solved.

Secondly, support vector machine (SVM) is a kind of linear classifier that classifies data 
in a binary way according to supervised learning, such as the works in Chen and Zhang 
(2009) and Masschelein et  al. (2012). In  Yujie (2009), the shape invariant moment and 
gray level co-ocurence matrices (GLCM) are extracted for SVM training, and the classifi-
cation accuracy of bacteria is 99.67%. SVM performs well with small sample and can be 
trained to solve the problem of high dimensional, but it is sensitive to missing data, and the 
choice of features has enormous implications for classification results.

Thirdly, artificial neural network (ANN) is a network with self-learning, self-organiza-
tion, self-adaptation and strong nonlinear function approximation ability, that has strong 
fault tolerance. In Blackburn et al. (1998), an ANN is trained for classification and quanti-
fication of bacteria, and about 95% of all objects are classified in each image. The classifi-
cation result is shown in Fig. 52. ANN has high classification accuracy and strong robust-
ness to noise nerves, but the learning process is unobservable and the output is hard to 
interpret. Moreover, back propagation (BP) neural network is a multi-layer feedforward 
network trained by error back propagation, that is the most widely used ANN. In  Jun 
(2010), BP neural network is applied for bacteria classification, and in Rong et al. (2006), 
BP neural network is used for zooplankton classification and counting. BP neural network 
has strong nonlinear mapping ability and flexible network structure, but the convergence 
rate is slow. Moreover, it is easy to fall into local minima. Furthermore, the convolutional 
neural network (CNN) is a feedforward neural network with deep structure and convolu-
tion computation representing learning. In Ferrari et al. (2015), CNN is applied for bac-
teria colony counting, and the accuracy of 92.8% is obtained. In Tamiev et al. (2020), a 

Fig. 52   The classification result (In Blackburn et al. (1998) Fig. 4)
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classification-type convolutional neural network (cCNN) is designed for bacteria classifica-
tion and counting.CNN can automatically extract the features of images and process high-
dimensional data quickly, but the pooling layer may lose much valuable information while 
training.

By reviewing all the existing deep learning based microorganism counting methods, 
the classification can be achieved automatically, but the segmentation part still needs to 
be adjusted manually. In order to show the development of deep learning and the time for 
microorganism counting, the training time and counting time of deep learning methods in 
this review are summarized in Table 3.

4.5 � Analysis of potential methods

Through summarizing the work of image analysis based microorganism counting, it can 
be found that the accuracy of microorganism counting is continuously improving with 
the development of computer vision and deep learning technologies, which indicates that 
computer vision based microorganism counting methods will completely replace the tradi-
tional manual counting methods. However, the deep learning methods are mainly applied 
for microorganism classification, while the microorganism segmentation methods are still 
adopted the traditional techniques, such as thresholding or watershed, resulting in a huge 
gap with the state-of-the-art technology. The application of the latest semantic segmenta-
tion technology can classify microorganisms at the same time of segmentation, which will 
be the trend of future development.

According to the existing microorganism counting work, the work of imaging and image 
analysis are often separated. Therefore, it is difficult to obtain real-time microorganism 
counting information, leading to time-consuming and workforce waste. BiSeNet is one of 
the real-time semantic segmentation networks (Yu et al. 2018). However, an extra encod-
ing path is applied for spatial information, which is time-consuming. In Fan et al. (2021), 
a novel architecture is designed as a Short-Term Dense Concatenate network (STDC net-
work), which is shown in Fig. 53. Multiple contiguous layers of response maps are con-
nected, and each layer encodes the input image at different scales and in its own field to 
achieve multi-scale feature representation. Then the Detail Guidance is applied for decod-
ing, which can guide the low-level layers to learn spatial details. Finally, the spatial infor-
mation and segmentation of deep layers are combined to show the final results. The 71.9% 
of mIoU is obtained, and the computing speed is 45.2% faster than the original method.

The work of deep learning based counting methods also provides a new direction for 
the field. In Yang et al. (2020), the scale variations of images are solved based on a reverse 
perspective network, which is shown in Fig.  54. The reverse perspective networks can 
reduce the scale variances of images before regression, reducing the complexity of the net-
work. The original is sampled firstly, and then the number of objects can be evaluated by 
a regression network. The reverse perspective networks can evaluate perspective distortion 
precisely, which can be correct by uniformly distorting the image. Finally, the images with 
similar scales are transmitted to the regressor, and 61.2 of mean average error (MAE) is 
obtained.

In  Bai et  al. (2020), an adaptive dilated convolution and a novel supervised learning 
framework is proposed for self-correlation counting works, which is shown in Fig. 55. In 
classical counting methods, the models are optimized by comparing the ground truth and 
predicted image, and the density map is not precise because of the labeling deviation. First, 
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the image is input into the model for feature extraction, and then the density map is output 
by using six adaptive convolutions. After that, the sample locations are calculated by dila-
tion rates. The result can adapt the scale variation of the images, and the MAE of 66.5 is 
obtained.

Deep learning frameworks have quickly become the primary method for analyzing 
microscopic images. We can infer and predict machine and deep learning based meth-
ods will be applied in microorganism counting as well as in other researches such as 
digital pathology, which is summarized in  Salvi et  al. (2020), Madabhushi and Lee 
(2016). However, there are two main limitations during the surveying. First, the number 
of research based on deep learning is limited, proving the vast development potential 
in this field. Second, most of the deep learning methods are applied for classification 
but not for segmentation, and the deep learning based segmentation can carry out more 
precise segmentation results by comparing with classic methods. These two limitations 

Fig. 53   a The original architecture of STDC network. b The proposed architecture of STDC network 
(In Fan et al. (2021) Fig. 3)

Fig. 54   The architecture of the reverse perspective network(In Yang et al. (2020) Fig. 4)
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also show the development directions and opportunities in the future. First, traditional 
manual counting methods will be replaced by deep learning based microorganism 
counting methods, which cannot only be used for classification, but also for precise seg-
mentation. Second, in the future, the microorganism counting systems will be integrated 
with sampling, imaging and analyzing systems using deep learning, helping researchers 
monitor the microorganism timely.

5 � Conclusion and future work

In this paper, a comprehensive review of image analysis methods for microorganism count-
ing is proposed. The counting methods are summarized and grouped based on the types of 
microorganisms, including bacteria counting and other microorganisms counting. Then the 
methods are separated based on segmentation approaches, such as thresholding methods, 
edge detection methods, third-party tools and deep learning based methods. By review-
ing all the related works, we can find that the classic methods in Sects. 2.1 and 3.1 are 
developed from the 1980s to 2000s, such as the Otsu thresholding method, watershed 
algorithm and edge detection methods, which shows a blooming development of digital 
image processing for microorganism analysis. Since the 2010s, the development of deep 
learning carries out the microorganism counting results with high accuracy. Furthermore, 
the development of professional microorganism counting systems is summarized in Sects. 
2.3 and 3.3, such as ‘ImageJ’ and ‘CellC’ show people pay more and more attention to 
microorganism counting. In summary, the successful development of image analysis based 
microorganism counting methods shows vast research potential in this field. Moreover, the 
most frequently used microorganism counting approaches of image preprocessing, image 
segmentation and image classification are analyzed in Sect. 4.

The image analysis based microorganism counting methods discussed in this paper 
can be referred to  in other digital image analysis fields. For example, microorganism 
classification is a significant application field of the microorganism analysis, referring to 
environmental microorganism classification  (Kosov et  al. 2018), cervical cell classifica-
tion (Mamunur Rahaman et al. 2021), blood cell classification (Su et al. 2014), classifica-
tion for different types of microorganisms (Li et al. 2019a). Furthermore, the segmentation 
methods for microorganisms can be referred to by digital image processing workers, such 

Fig. 55   The overview of the adaptive dilated convolution network (In Bai et al. (2020) Fig. 2)
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as stem cell segmentation (Huang et al. 2016), cancer cell segmentation (Chen et al. 2006), 
environmental microorganism segmentation  (Zhang et  al. 2021). Moreover, microscopic 
image processing performs an essential role in industrial analysis, such as the monitoring 
for waste water  (Amaral and Ferreira 2005), beef carcass evaluation  (Cross et  al. 1983), 
monitoring of bacteria in milk  (Pettipher and Rodrigues 1982), monitoring flames in an 
industrial boiler (Yu and MacGregor 2004), softwood lumber grading (Bharati et al. 2003) 
and so on. Finally, the summarized counting methods can also be applied in small object 
detection, such as sperm counting (Peng et al. 2015), crowd counting (Zhang et al. 2015) 
and vehicle counting (Li et al. 2019b).

In the future, deep learning based microorganism counting methods are promising. 
Since the COVID-19 broke out in 2019, people pay increasing attention to microorgan-
ism analysis. There is still a considerable limitation and opportunity in microorganism 
research. This review can contribute a lot to the research of microorganism counting for 
future researchers.
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