Skip to main content

Advertisement

Log in

Intuitionistic principal value Z-linguistic hybrid geometric operator and their applications for multi-attribute group decision-making

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Problems often encountered in the modeling of uncertain linguistic multi-attribute group decision-making in targeted poverty alleviation are how to describe and aggregate uncertain and imprecise information more effectively. In this paper, in order to effectively describe the fuzziness and reliability of linguistic evaluation information, and emphasize the role of linguistic evaluation value, we firstly propose this concept of the intuitionistic principal value Z-linguistic set. Then, we propose intuitionistic principal value Z-linguistic hybrid geometric operator regarding the position and ordered weight to aggregate linguistic evaluation information more effectively. Finally, an example of targeted poverty alleviation is given to illustrate effectiveness and superiority based on the operator with different position weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    Article  Google Scholar 

  • Atanassov KT, Gargov G (1989) Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31(3):343–349

    Article  MathSciNet  Google Scholar 

  • Bashir Z, Rashid T (2018) Hesitant probabilistic multiplicative preference relations in group decision making. Appl Sci 8(3):398

    Article  Google Scholar 

  • Faizi S, Salabun W, Rashid T, Watrobski J, Zafar S (2017) Group decision-making for hesitant fuzzy sets based on characteristic objects method. Symmetry 9(8):136

    Article  MathSciNet  Google Scholar 

  • Faizi S, Salabun W, Rashid T, Zafar S, Watrobski J (2020) Intuitionistic fuzzy sets in multi-criteria group decision making problems using the characteristic objects method. Symmetry 12(9):1382

    Article  Google Scholar 

  • Gardashova LA (2014) Application of operational approaches to solving decision making problem using Z-numbers. Appl Math 5(9):1323–1334

    Article  Google Scholar 

  • Herrera F, Herrera-Viedma E, Chiclana F (2001) Multiperson decision-making based on multiplicative preference relations. Eur J Oper Res 129(2):372–385

    Article  MathSciNet  Google Scholar 

  • Ju DW, Ju YB, Wang AH (2019) Multi-attribute group decision making based on power generalized Heronian mean operator under hesitant fuzzy linguistic environment. Soft Computing - A Fusion of Foundations. Methodol Appl 23(11):3823–3842

    MATH  Google Scholar 

  • Kong MM, Ren FL, Park DS, Hao F (2018) An induced hesitant linguistic aggregation operator and its application for creating fuzzy ontology. KSII Trans Internet Inf Syst 12(10):4952–4975

    Google Scholar 

  • Liu PD, Jin F (2012) Methods for aggregating intuitionistic uncertain linguistic variables and their application to group decision making. Inf Sci 205(1):58–71

    Article  MathSciNet  Google Scholar 

  • Liu PD, Wang YM (2014) Multiple attribute group decision making methods based on intuitionistic linguistic power generalized aggregation operators. Appl Soft Comput 17(5):90–104

    Article  MathSciNet  Google Scholar 

  • Pang Q, Wang H, Xu ZS (2016) Probabilistic linguistic term sets in multi-attribute group decision making. Inf Sci 369:128–143

    Article  Google Scholar 

  • Rodriguez RM, Martinez L, Herrera F (2012) Hesitant fuzzy linguistic term sets for decision making. IEEE Trans Fuzzy Syst 20(1):109–119

    Article  Google Scholar 

  • Shi MH, Xiao QX (2017) Hesitant fuzzy linguistic aggregation operators based on global vision. J Intell Fuzzy Syst 33(1):193–206

    Article  MathSciNet  Google Scholar 

  • Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529–539

    MATH  Google Scholar 

  • Wang JQ, Li HB (2010) Multi-criteria decision making method based on aggregation operators for intuitionistic linguistic fuzzy numbers. Control Decis 25(10):1571–1574

    MathSciNet  Google Scholar 

  • Wang Y, Xu ZS (2008) A new method of giving OWA weights. Math Pract Theory 3(3):51–61

    MATH  Google Scholar 

  • Wang JQ, Cao YX, Zhang HY (2017) Multi-criteria decision-making method based on distance measure and choquet integral for linguistic z-numbers. Cogn Comput 9(6):827–842

    Article  Google Scholar 

  • Wei GW (2019) 2-tuple intuitionistic fuzzy linguistic aggregation operators in multiple attribute decision making. Iran J Fuzzy Syst 16(4):159–174

    MathSciNet  MATH  Google Scholar 

  • Wojciech S, Karol U (2020) A new coefficient of rankings similarity in decision-making problems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 121386:632–645

  • Xian SD, Jing N, Xue WT, Chai JH (2017) A new intuitionistic fuzzy linguistic hybrid aggregation operator and its application for linguistic group decision making. Int J Intell Syst 32(12):1332–1352

    Article  Google Scholar 

  • Xian SD, Chai JH, Guo HL (2019) Z linguistic-induced ordered weighted averaging operator for multiple attribute group decision-making. Int J Intell Syst 34(2):271–296

    Article  Google Scholar 

  • Xu ZS (2006a) A practical procedure for group decision making under incomplete multiplicative linguistic preference relations. Group Decis Negot 15(6):581–591

    Article  Google Scholar 

  • Xu ZS (2006b) A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision making with linguistic information. Group Decis Negot 15(6):593–604

    Article  Google Scholar 

  • Xu ZS (2006c) Induced uncertain linguistic OWA operators applied to group decision making. Inf Fusion 7(2):231–238

    Article  Google Scholar 

  • Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans Syst Man Cybern 18:183–190

    Article  Google Scholar 

  • Yager RR, Filev DP (1999) Induced ordered weighted averaging operators. IEEE Trans Syst Man Cybern Part B (Cybernetics) 29(2):141–150

    Article  Google Scholar 

  • Yuan RP, Tang J, Meng FY (2019) Linguistic intuitionistic fuzzy group decision making based on aggregation operators. Int J Fuzzy Syst 21(2):407–420

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–356

    Article  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci 8(3):199–249

    Article  MathSciNet  Google Scholar 

  • Zadeh LA (2011) A note on a Z-number. Inf Sci 181(14):2923–2932

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Graduate Teaching Reform Research Program of Chongqing Municipal Education Commission (Nos. YJG212022, YJG183074), Chongqing Social Science Planning Project (No. 2018YBSH085) and Chongqing Research and Innovation Project of Graduate Students (Nos. CYS21326, CYS18252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidong Xian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this part, we mainly give the proof of some theorems in this paper.

1.1 The proof of Theorem 2

Proof

  1. (1)

    According to Definition 12, rule (1) and (2) are clearly correct.

  2. (2)

    For rule (3):

\(\begin{array}{l} \because \lambda {(}{A_1} \oplus {A_2}{)}= \lambda \left\langle \begin{array}{l} [{s_{\theta ({x_1}) + \theta ({x_2})}},{s_{\tau ({x_1}) + \tau ({x_2})}}],(1 - (1 - \mu ({x_1})(1 - \mu ({x_2}))),\nu ({x_1})\nu ({x_2})); \frac{{{p^2}({x_1}) + {p^2}({x_2})}}{{p({x_1}) + p({x_2})}} \end{array} \right\rangle \\ =\left\langle \begin{array}{l} [{s_{\lambda {(} \theta ({x_1}) + \theta ({x_2}))}},{s_{\lambda (\tau ({x_1}) + \tau ({x_2}))}}],(1 - {(1 - \mu ({x_1}))^\lambda }{(1 - \mu ({x_2}))^\lambda },{(\nu ({x_1}))^\lambda }{(\nu ({x_2}))^\lambda }); \frac{{{p^2}({x_1}) + {p^2}({x_2})}}{{p({x_1}) + p({x_2})}} \end{array} \right\rangle , \end{array}\) and

\(\begin{array}{l} \lambda {(}{A_1}{)} \oplus \lambda {(}{A_2}{)}=\left\langle {[{s_{\lambda \theta ({x_1})}},{s_{\lambda \tau ({x_1})}}], (1 - {{(1 - \mu ({x_1}))}^\lambda },{{(\nu ({x_1}))}^\lambda });p({x_1})} \right\rangle \oplus \\ \left\langle {[{s_{\lambda \theta ({x_2})}},{s_{\lambda \tau ({x_2})}}], (1 - {{(1 - \mu ({x_2}))}^\lambda },{{(\nu ({x_2}))}^\lambda });p({x_2})} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{\lambda {(}\theta ({x_1}) + \theta ({x_2}))}},{s_{\lambda (\tau ({x_1}) + \tau ({x_2}))}}],(1 - {(1 - \mu ({x_1}))^\lambda }{(1 - \mu ({x_2}))^\lambda },{(\nu ({x_1}))^\lambda }{(\nu ({x_2}))^\lambda }); \frac{{{p^2}({x_1}) + {p^2}({x_2})}}{{p({x_1}) + p({x_2})}} \end{array} \right\rangle , \end{array}\)

\(\therefore \lambda {(}{A_1} \oplus {A_2}{)}=\lambda {A_2} \oplus \lambda {A_1}\).

The proof of rule (3) is complete.

(3) For rule (4)

\(\begin{array}{l} \because {\lambda _1}{A_1} \oplus {\lambda _2}{A_1}={\lambda _1}\left\langle \begin{array}{l} [{s_{\theta ({x_1})}},{s_{\tau ({x_1})}}],(\mu ({x_1}),\nu ({x_1})); p({x_1}) \end{array} \right\rangle \oplus {\lambda _2}\left\langle \begin{array}{l} [{s_{\theta ({x_1})}},{s_{\tau ({x_1})}}],(\mu ({x_1}),\nu ({x_1})); p({x_1}) \end{array} \right\rangle \\ =\left\langle \begin{array}{l} [{s_{{\lambda _1}\theta ({x_1})}},{s_{{\lambda _1}\tau ({x_1})}}],(1 - {(1 - \mu ({x_1}))^{{\lambda _1}}},{(\nu ({x_1}))^{{\lambda _1}}}); p({x_1}) \end{array} \right\rangle \oplus \\ \left\langle \begin{array}{l} [{s_{{\lambda _2}\theta ({x_1})}},{s_{{\lambda _2}\tau ({x_1})}}],(1 - {(1 - \mu ({x_1}))^{{\lambda _2}}},{(\nu ({x_1}))^{{\lambda _2}}}); p({x_1}) \end{array} \right\rangle \\ =\left\langle \begin{array}{l} [{s_{{\lambda _1}\theta ({x_1}) + {\lambda _2}\theta ({x_1}))}},{s_{{\lambda _1}\tau ({x_1}) + {\lambda _2}\tau ({x_1}))}}],(1 - {(1 - \mu ({x_1}))^{{\lambda _1}}}{(1 - \mu ({x_1}))^{{\lambda _2}}},{(\nu ({x_1}))^{{\lambda _1}}}{(\nu ({x_1}))^{{\lambda _2}}}); \frac{{{p^2}({x_1}) + {p^2}({x_1})}}{{p({x_1}) + p({x_1})}} \end{array} \right\rangle , \end{array}\) and

\(\begin{array}{l} ({\lambda _1}+{\lambda _2}) \otimes {A_1} = \left\langle {[{s_{({\lambda _1}+{\lambda _2})\theta ({x_1})}}, {s_{({\lambda _1}+{\lambda _2})\tau ({x_1})}}],(1 - {{(1 - \mu ({x_1}))}^{{\lambda _1}+{\lambda _2}}}, {{(\nu ({x_1}))}^{{\lambda _1}+{\lambda _2}}});p({x_1})} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{{\lambda _1}\theta ({x_1}) + {\lambda _2}\theta ({x_1}))}},{s_{{\lambda _1}\tau ({x_1}) + {\lambda _2}\tau ({x_1}))}}],(1 - {(1 - \mu ({x_1}))^{{\lambda _1}}}{(1 - \mu ({x_1}))^{{\lambda _2}}},{(\nu ({x_1}))^{{\lambda _1}}}{(\nu ({x_1}))^{{\lambda _2}}}); \frac{{{p^2}({x_1}) + {p^2}({x_1})}}{{p({x_1}) + p({x_1})}} \end{array} \right\rangle , \end{array}\)

\(\therefore {\lambda _1}{A_1} \oplus {\lambda _2}{A_1} = ({\lambda _1} + {\lambda _2}) \otimes {A_1}\).

The proof of rule (4) is complete.

(4) For rule (5)

\(\begin{array}{l} \because {A_1}^{{\lambda _1}} \otimes {A_1}^{{\lambda _2}}= \left\langle {[{s_{{{(\theta ({x_1}))}^{{\lambda _1}}}}}, {s_{{{(\tau ({x_1}))}^{{\lambda _1}}}}}],({{(\mu ({x_1}))}^{{\lambda _1}}}), (1 - {{(1 - \nu ({x_1}))}^{{\lambda _1}}});{p^{{\lambda _1}}}({x_1})} \right\rangle \\ \otimes \left\langle {[{s_{{{(\theta ({x_1}))}^{{\lambda _2}}}}}, {s_{{{(\tau ({x_1}))}^{{\lambda _2}}}}}],({{(\mu ({x_1}))}^{{\lambda _2}}}), (1 - {{(1 - \nu ({x_1}))}^{{\lambda _2}}});{p^{{\lambda _2}}}({x_1})} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{{{(\theta ({x_1}))}^{{\lambda _1}}} \times {{(\theta ({x_1}))}^{{\lambda _2}}}}},{s_{{{(\tau ({x_1}))}^{{\lambda _1}}} \times {{(\tau ({x_1}))}^{{\lambda _2}}}}}],({(\mu ({x_1}))^{{\lambda _1}}}{(\mu ({x_1}))^{{\lambda _2}}},((1 - {(1 - \nu ({x_1}))^{{\lambda _1}}}) + \\ {(1 - {(1 - \nu ({x_1}))^{{\lambda _2}}}) - (1 - {(1 - \nu ({x_1}))^{{\lambda _1}}})(1 - {(1 - \nu ({x_1}))^{{\lambda _2}}})}{)}; {p^{{\lambda _1}}}({x_1}) \times {p^{{\lambda _2}}}({x_1}) \end{array} \right\rangle , \end{array}\) and

\(\begin{array}{l} {A_1}{^{{\lambda _1} + {\lambda _2}}}=\left\langle {[{s_{{{(\theta ({x_1}))}^{{\lambda _1} + {\lambda _2}}}}}, {s_{{{(\tau ({x_1}))}^{{\lambda _1} + {\lambda _2}}}}}], ({{(\mu ({x_1}))}^{{\lambda _1} + {\lambda _2}}}),(1 - {{(1 - \nu ({x_1}))}^{{\lambda _1} + {\lambda _2}}});{p^{{\lambda _1} + {\lambda _2}}}({x_1})} \right\rangle \\ =\left\langle \begin{array}{l} [{s_{{{(\theta ({x_1}))}^{{\lambda _1}}} \times {{(\theta ({x_1}))}^{{\lambda _2}}}}},{s_{{{(\tau ({x_1}))}^{{\lambda _1}}} \times {{(\tau ({x_1}))}^{{\lambda _2}}}}}],({(\mu ({x_1}))^{{\lambda _1}}} {(\mu ({x_1}))^{{\lambda _2}}},((1 - {(1 - \nu ({x_1}))^{{\lambda _1}}}) + (1 - {(1 - \nu ({x_1}))^{{\lambda _2}}})\\ - (1 - {(1 - \nu ({x_1}))^{{\lambda _1}}})(1 - {(1 - \nu ({x_1}))^{{\lambda _2}}});{p^{{\lambda _1}}}({x_1}) \times {p^{{\lambda _2}}}({x_1}) \end{array} \right\rangle , \end{array}\)

\(\therefore {(}{A_1}{)}^{{\lambda _1}} \otimes {(}{A_1}{)}^{{\lambda _2}}={(}{A_1}{)}{^{{\lambda _1} + {\lambda _2}}}\).

The proof of rule (5) is complete.

(5) For rule (6)

\(\begin{array}{l} \because {A_1}^\lambda \otimes {A_2}^\lambda =\left\langle {[{s_{{{(\theta ({x_1}))}^\lambda }}}, {s_{{{(\tau ({x_1}))}^\lambda }}}],({{(\mu ({x_1}))}^\lambda }), (1 - {{(1 - \nu ({x_1}))}^\lambda });{p^\lambda }({x_1})} \right\rangle \\ \otimes \left\langle {[{s_{{{(\theta ({x_2}))}^\lambda }}}, {s_{{{(\tau ({x_2}))}^\lambda }}}],({{(\mu ({x_2}))}^\lambda }), (1 - {{(1 - \nu ({x_2}))}^\lambda });{p^\lambda }({x_2})} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{{{(\theta ({x_1}))}^\lambda } \times {{(\theta ({x_2}))}^\lambda }}}, {s_{{{(\tau ({x_1}))}^\lambda } \times {{(\tau ({x_2}))}^\lambda }}}], {(\mu ({x_1}))^\lambda }{(\mu ({x_2}))^\lambda },((1 - {(1 - \nu ({x_1}))^\lambda }) + (1 - {(1 - \nu ({x_2}))^\lambda })\\ - (1 - {(1 - \nu ({x_1}))^\lambda })(1 - {(1 - \nu ({x_2}))^\lambda }));{p^\lambda }({x_1}) \times {p^\lambda }({x_2}) \end{array} \right\rangle , \end{array}\) and

\(\begin{array}{l} {A_1} \otimes {A_2}{^\lambda }= \left\langle \begin{array}{l} [{s_{{{(\theta ({x_1}) \times \theta ({x_2}))}^\lambda }}}, {s_{{{(\tau ({x_1}) \times \tau ({x_2}))}^\lambda }}}],({(\mu ({x_1}) \mu ({x_2}))^\lambda },1 - (1 - {((\nu ({x_1}) + \nu ({x_2}) - \nu ({x_1})\nu ({x_2})))^\lambda }));\\ {(p({x_1}) \times p({x_2}))^\lambda } \end{array} \right\rangle \\ =\left\langle \begin{array}{l} [{s_{{{(\theta ({x_1}))}^\lambda } \times {{(\theta ({x_2}))}^\lambda }}}, {s_{{{(\tau ({x_1}))}^\lambda } \times {{(\tau ({x_2}))}^\lambda }}}], {(\mu ({x_1}))^\lambda }{(\mu ({x_2}))^\lambda },((1 - {(1 - \nu ({x_1}))^\lambda }) + (1 - {(1 - \nu ({x_2}))^\lambda })\\ - (1 - {(1 - \nu ({x_1}))^\lambda })(1 - {(1 - \nu ({x_2}))^\lambda }));{p^\lambda }({x_1}) \times {p^\lambda }({x_2}) \end{array} \right\rangle , \end{array}\)

\(\therefore {(}{A_1}{)}^\lambda \otimes {(}{A_2}{)}^\lambda = {(}{A_1} \otimes {A_2}{)}{^\lambda }\).

The proof of rule (6) is complete.□

1.2 The proofs of Theorems 4 to 7

The proof of Theorem 4:

Let \(IPVZLWG{A_\omega }({A_1},{A_2},\ldots ,{A_n}) = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_j}))}^{{\omega _j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_j}))}^{{\omega _j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_j}))}^{{\omega _j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_j}))}^{{\omega _j}}}} ); \prod \nolimits _{j - 1}^n {{{(p({x_j}))}^{{\omega _j}}}} \end{array} \right\rangle,\)

\(IPVZLWG{A_\omega }(A_1^{'},A_2^{'},\ldots ,A_n^{'}) = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta (x_j^{'}))}^{{\omega _j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau (x_j^{'}))}^{{\omega _j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu (x_j^{'}))}^{{\omega _j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu (x_j^{'}))}^{{\omega _j}}}} ); \prod \nolimits _{j - 1}^n {{{(p(x_j^{'}))}^{{\omega _j}}}} \end{array} \right\rangle\),

Since \(A_j^{'} \le {A_j}\) for all \((j = 1,2,\ldots ,n)\), we have \(IPVZLWG{A_\omega }(A_1^{'},A_2^{'},\ldots ,A_n^{'}) \le IPVZLWG{A_\omega }({A_1},{A_2},\ldots ,{A_n})\).

The proof of Theorem 5:

Since \({A_j} = A (j = 1,2,\ldots ,n)\), \(\sum \nolimits _{j = 1}^n {{\omega _j}} = 1\),

\(\begin{array}{l} IPVZLWG{A_\omega }({A_1},{A_2},\ldots ,{A_n}) = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_j}))}^{{\omega _j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_j}))}^{{\omega _j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_j}))}^{{\omega _j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_j}))}^{{\omega _j}}}} ); \prod \nolimits _{j - 1}^n {{{(p({x_j}))}^{{\omega _j}}}} \end{array} \right\rangle \\ =\left\langle \begin{array}{l} [{s_{{{(\theta ({x_j}))}^{\sum \limits _{j = 1}^n {{\omega _j}} }}}},{s_{{{(\tau ({x_j}))}^{\sum \limits _{j = 1}^n {{\omega _j}} }}}}],({(\mu ({x_j}))^{\sum \limits _{j = 1}^n {{\omega _j}} }},1 - {(1 - \nu ({x_j}))^{\sum \limits _{j = 1}^n {{\omega _j}} }}); {(p({x_j}))^{\sum \limits _{j = 1}^n {{\omega _j}} }} \end{array} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{\theta ({x_j})}},{s_{\tau ({x_j})}}],(\mu ({x_j}),1 - (1 - \nu ({x_j})); p({x_j}) \end{array} \right\rangle =A, \end{array}\)

Then, we have \(IPVZLOW{G_\omega }({A_1},{A_2},\ldots ,{A_n}) = A\).

The proof of Theorem 6:

Since \({x_{\min }} \le {x_j} \le {x_{\max }}\) for all \(j(j = 1,2,\ldots ,n)\), and \({\omega _j} \in [0,1]\), \(\sum \nolimits _{j = 1}^n {{\omega _j}} = 1\), according to Theorems 5 and 6, then,

\(\begin{array}{l} IPVZLWG{A_\omega }({A_1},{A_2},\ldots ,{A_n})\\ = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_j}))}^{{\omega _j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_j}))}^{{\omega _j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_j}))}^{{\omega _j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_j}))}^{{\omega _j}}}} ); \prod \nolimits _{j - 1}^n {{{(p({x_j}))}^{{\omega _j}}}} \end{array} \right\rangle \\ \ge \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_{{\mathrm{min}}}}))}^{{\omega _j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_{{\mathrm{min}}}}))}^{{\omega _j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_{{\mathrm{min}}}}))}^{{\omega _j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_{{\mathrm{min}}}}))}^{{\omega _j}}}} ); \prod \nolimits _{j - 1}^n {{{(p({x_{min}}))}^{{\omega _j}}}} \end{array} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{{{(\theta ({x_{{\mathrm{min}}}}))}^{\sum \limits _{j = 1}^n {{\omega _j}} }}}},{s_{{{(\tau ({x_{{\mathrm{min}}}}))}^{\sum \limits _{j = 1}^n {{\omega _j}} }}}}],({(\mu ({x_{{\mathrm{min}}}}))^{\sum \limits _{j = 1}^n {{\omega _j}} }},1 - {(1 - \nu ({x_{{\mathrm{min}}}}))^{\sum \limits _{j = 1}^n {{\omega _j}} }}); {(p({x_{min}}))^{\sum \limits _{j = 1}^n {{\omega _j}} }} \end{array} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{\theta ({x_{{\mathrm{min}}}})}},{s_{\tau ({x_{{\mathrm{min}}}})}}],(\mu ({x_{{\mathrm{min}}}}),1 - (1 - \nu ({x_{{\mathrm{min}}}}))); p({x_{{\mathrm{min}}}}) \end{array} \right\rangle ={A_{\min }}, \end{array}\)

\(\begin{array}{l} IPVZLWG{A_\omega }({A_1},{A_2},\ldots ,{A_n}) \\ = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_j}))}^{{\omega _j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_j}))}^{{\omega _j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_j}))}^{{\omega _j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_j}))}^{{\omega _j}}}} ); \prod \nolimits _{j - 1}^n {{{(p({x_{max}}))}^{{\omega _j}}}} \end{array} \right\rangle \\ \le \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_{{\mathrm{max}}}}))}^{{\omega _j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_{{\mathrm{max}}}}))}^{{\omega _j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_{{\mathrm{max}}}}))}^{{\omega _j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_{{\mathrm{max}}}}))}^{{\omega _j}}}} ); \prod \nolimits _{j - 1}^n {{{(p({x_{max}}))}^{{\omega _j}}}} \end{array} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{{{(\theta ({x_{{\mathrm{max}}}}))}^{\sum \limits _{j = 1}^n {{\omega _j}} }}}},{s_{{{(\tau ({x_{{\mathrm{max}}}}))}^{\sum \limits _{j = 1}^n {{\omega _j}} }}}}],({(\mu ({x_{{\mathrm{max}}}}))^{\sum \limits _{j = 1}^n {{\omega _j}} }},1 - {(1 - \nu ({x_{{\mathrm{max}}}}))^{\sum \limits _{j = 1}^n {{\omega _j}} }}); {(p({x_{max}}))^{\sum \limits _{j = 1}^n {{\omega _j}} }} \end{array} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{\theta ({x_{{\mathrm{max}}}})}},{s_{\tau ({x_{{\mathrm{max}}}})}}],(\mu ({x_{{\mathrm{max}}}}),1 - (1 - \nu ({x_{{\mathrm{max}}}}))); p({x_{{\mathrm{max}}}}) \end{array} \right\rangle ={A_{\max }}, \end{array}\)

Therefore, we have \({A_{\min }}=\min ({A_1},{A_2},\ldots ,{A_n}) \le IPVZLOW{G_\omega }({A_1},{A_2},\ldots ,{A_n}) \le \max ({A_1},{A_2},\ldots ,{A_n}) = {A_{\max }}\).

The proof of Theorem 7:

Let

\(IPVZLWG{A_\omega }({A_1},{A_2},\ldots ,{A_n}) = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_j}))}^{{\omega _j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_j}))}^{{\omega _j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_j}))}^{{\omega _j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_j}))}^{{\omega _j}}}} ); \prod \nolimits _{j - 1}^n {{{(p(x_j))}^{{\omega _j}}}} \end{array} \right\rangle\),

\(IPVZLWG{A_\omega }(A_1^{'},A_2^{'},\ldots ,A_n^{'}) = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta (x_j^{'}))}^{{\omega _j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau (x_j^{'}))}^{{\omega _j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu (x_j^{'}))}^{{\omega _j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu (x_j^{'}))}^{{\omega _j}}}} ); \prod \nolimits _{j - 1}^n {{{(p(x_j^{'}))}^{{\omega _j}}}} \end{array} \right\rangle\),

Since \((A_1^{'},A_2^{'},\ldots ,A_n^{'})\) be any permutation of \(({A_1},{A_2},\ldots ,{A_n})\) and \({A_i} \otimes {A_j}={A_j} \otimes {A_i}\), so

\(IPVZLWG{A_\omega }(A_1^{'},A_2^{'},\ldots ,A_n^{'}) = IPVZLWG{A_\omega }({A_1},{A_2},\ldots ,{A_n}).\)

1.3 The proofs of Theorems 9 to 12

The proof of Theorem 9:

Let \(IPVZLOW{G_w}(A_1^{'},A_2^{'},\ldots ,A_n^{'}) = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta (x_{{\sigma _j}}^{'}))}^{{w_j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau (x_{{\sigma _j}}^{'}))}^{{w_j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu (x_{{\sigma _j}}^{'}))}^{{w_j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu (x_{{\sigma _j}}^{'}))}^{{w_j}}}} ); \prod \nolimits _{j - 1}^n {({{(p({x_{{\sigma _j}}^{'}}))}^{{w_j}}}} \end{array} \right\rangle\),

Since \(A_j^{'} \le {A_j}\) for all \((j = 1,2,\ldots ,n)\), it follows that \({({A_j})^{n{w_j}}} \le {(A_j^{'})^{n{w_j}}}\). Hence, \({A_{{\sigma _j}}} \le A_{{\sigma _j}}^{'}\) for all \(j (j = 1,2,\ldots ,n)\) . Then, we have \(IPVZLOW{G_w}(A_1^{'},A_2^{'},\ldots ,A_n^{'}) \le IPVZLOW{G_w}({A_1},{A_2},\ldots ,{A_n})\).

The proof of Theorem 10:

According to \({({A_j})^{n{w_j}}}=A\) for all \(j (j = 1,2,\ldots ,n)\), since \({A_j} = A (j = 1,2,\ldots ,n)\), \(\sum \nolimits _{j = 1}^n {{w_j}} = 1\) and Theorem 8, we have

\(\begin{array}{l} IPVZLOW{G_w}({A_1},{A_2},\ldots ,{A_n}) \\ = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_{{\sigma _j}}}))}^{{w_j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_{{\sigma _j}}}))}^{{w_j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_{{\sigma _j}}}))}^{{w_j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_{{\sigma _j}}}))}^{{w_j}}}} ); \prod \nolimits _{j - 1}^n {({{(p({x_{{\sigma _j}}}))}^{{w_j}}}} \end{array} \right\rangle \\ =\left\langle \begin{array}{l} [{s_{{{(\theta ({x_{{\sigma _j}}}))}^{\sum \limits _{j = 1}^n {{w_j}} }}}},{s_{{{(\tau ({x_{{\sigma _j}}}))}^{\sum \limits _{j = 1}^n {{w_j}} }}}}],({(\mu ({x_{{\sigma _j}}}))^{\sum \limits _{j = 1}^n {{w_j}} }},1 - {(1 - \nu ({x_{{\sigma _j}}}))^{\sum \limits _{j = 1}^n {{w_j}} }}); {(p({x_{{\sigma _j}}}))^{\sum \limits _{j = 1}^n {{w_j}} }} \end{array} \right\rangle \\ =\left\langle \begin{array}{l} [{s_{\theta ({x_{{\sigma _j}}})}},{s_{\tau ({x_{{\sigma _j}}})}}],(\mu ({x_{{\sigma _j}}}),1 - (1 - \nu ({x_{{\sigma _j}}}))); p({x_{{\sigma _j}}}) \end{array} \right\rangle =A, \end{array}\)

Then, we have \(IPVZLOW{G_w}({A_1},{A_2},\ldots ,{A_n}) = A\).

The proof of Theorem 11:

Since \({x_{\min }} \le {x_{{\sigma _j}}} \le {x_{\max }}\), \({A_{\min }} \le A_j^{n{w_j}} \le {A_{\max }}\) for all \(j (j = 1,2,\ldots ,n)\) and \({w_j} \in [0,1]\), \(\sum \nolimits _{j = 1}^n {{w_j}} = 1\), according to Theorems 5 and 6, then,

\(\begin{array}{l} IPVZLOW{G_w}({A_1},{A_2},\ldots ,{A_n})\\ = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_{{\sigma _j}}}))}^{{w_j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_{{\sigma _j}}}))}^{{w_j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_{{\sigma _j}}}))}^{{w_j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_{{\sigma _j}}}))}^{{w_j}}}} ); \prod \nolimits _{j - 1}^n {({{(p({x_{{\sigma _j}}}))}^{{w_j}}}} \end{array} \right\rangle \\ \ge \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_{\min }}))}^{{w_j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_{\min }}))}^{{w_j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_{\min }}))}^{{w_j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_{\min }}))}^{{w_j}}}} ); \prod \nolimits _{j - 1}^n {({{(p({x_{\min }}))}^{{w_j}}}} \end{array} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{{{(\theta ({x_{\min }}))}^{\sum \limits _{j = 1}^n {{w_j}} }}}},{s_{{{(\tau ({x_{\min }}))}^{\sum \limits _{j = 1}^n {{w_j}} }}}}],({(\mu ({x_{\min }}))^{\sum \limits _{j = 1}^n {{w_j}} }},1 - {(1 - \nu ({x_{\min }}))^{\sum \limits _{j = 1}^n {{w_j}} }}); {(p({x_{min}}))^{\sum \limits _{j = 1}^n {{w_j}} }} \end{array} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{\theta ({x_{\min }})}},{s_{\tau ({x_{\min }})}}],(\mu ({x_{\min }}),1 - (1 - \nu ({x_{\min }}))); p({x_{\min }}) \end{array} \right\rangle ={A_{\min }}, \end{array}\)

\(\begin{array}{l} IPVZLOW{G_w}({A_1},{A_2},\ldots ,{A_n}) \\ = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_{{\sigma _j}}}))}^{{w_j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_{{\sigma _j}}}))}^{{w_j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_{{\sigma _j}}}))}^{{w_j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_{{\sigma _j}}}))}^{{w_j}}}} ); \prod \nolimits _{j - 1}^n {({{(p({x_{{\sigma _j}}}))}^{{w_j}}}} \end{array} \right\rangle \\ \le \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_{\max }}))}^{{w_j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_{\max }}))}^{{w_j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_{\max }}))}^{{w_j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_{\max }}))}^{{w_j}}}} ); \prod \nolimits _{j - 1}^n {({{(p({x_{\max }}))}^{{w_j}}}} \end{array} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{{{(\theta ({x_{\max }}))}^{\sum \limits _{j = 1}^n {{w_j}} }}}},{s_{{{(\tau ({x_{\max }}))}^{\sum \limits _{j = 1}^n {{w_j}} }}}}],({(\mu ({x_{\max }}))^{\sum \limits _{j = 1}^n {{w_j}} }},1 - {(1 - \nu ({x_{\max }}))^{\sum \limits _{j = 1}^n {{w_j}} }}); {(p({x_{max}}))^{\sum \limits _{j = 1}^n {{w_j}} }} \end{array} \right\rangle \\ = \left\langle \begin{array}{l} [{s_{\theta ({x_{\max }})}},{s_{\tau ({x_{\max }})}}],(\mu ({x_{\max }}),1 - (1 - \nu ({x_{\max }}))); p({x_{\max }}) \end{array} \right\rangle ={A_{\max }}, \end{array}\)

Therefore, we have \({A_{\min }}=\min ({A_1},{A_2},\ldots ,{A_n}) \le IPVZLOW{G_w}({A_1},{A_2},\ldots ,{A_n}) \le \max ({A_1},{A_2},\ldots ,{A_n})={A_{\max }}\).

The proof of Theorem 12:

Let \(IPVZLOW{G_w}({A_1},{A_2},\ldots ,{A_n}) = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j - 1}^n {({{(\theta ({x_{{\sigma _j}}}))}^{{w_j}}})} }},{s_{\prod \nolimits _{j - 1}^n {({{(\tau ({x_{{\sigma _j}}}))}^{{w_j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu ({x_{{\sigma _j}}}))}^{{w_j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu ({x_{{\sigma _j}}}))}^{{w_j}}}} ); \prod \nolimits _{j - 1}^n {({{(p({x_{{\sigma _j}}}))}^{{w_j}}}} \end{array} \right\rangle\),

\(IPVZLOW{G_w}(A_1^{'},A_2^{'},\ldots ,A_n^{'}) = \left\langle \begin{array}{l} [{s_{\prod \nolimits _{j = 1}^n {({{(\theta (x_{{\sigma _j}}^{'}))}^{{w_j}}})} }},{s_{\prod \nolimits _{j = 1}^n {({{(\tau (x_{{\sigma _j}}^{'}))}^{{w_j}}})} }}],\prod \limits _{j = 1}^n {{{(\mu (x_{{\sigma _j}}^{'}))}^{{w_j}}}} ,(1 - \prod \limits _{j = 1}^n {{{(1 - \nu (x_{{\sigma _j}}^{'}))}^{{w_j}}}} ); \prod \nolimits _{j - 1}^n {({{(p({x_{{\sigma _j}}{'}}))}^{{w_j}}}} \end{array} \right\rangle\),

Since \((A_1^{'},A_2^{'},\ldots ,A_n^{'})\) be any permutation of \(({A_1},{A_2},\ldots ,{A_n})\) and \({A_i} \otimes {A_j}={A_j} \otimes {A_i}\), so

\(IPVZLOW{G_w}(A_1^{'},A_2^{'},\ldots ,A_n^{'}) = IPVZLOW{G_w}({A_1},{A_2},\ldots ,{A_n}).\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, S., Liu, R., Yang, Z. et al. Intuitionistic principal value Z-linguistic hybrid geometric operator and their applications for multi-attribute group decision-making. Artif Intell Rev 55, 3863–3896 (2022). https://doi.org/10.1007/s10462-021-10096-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-021-10096-y

Keywords

Navigation