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1Research Group on Data Science for the Digital Society La Salle - Universitat
Ramon Llull Carrer de Sant Joan de La Salle, 42 08022 Barcelona (Spain) ∗

2Lighthouse Disruptive Innovation Group, LLC 7 Broadway Terrace,
Apt 1 Cambridge MA 02139 Middlesex County, Massachusetts (USA)

(Dated: March 2021)

Case-Based Reasoning (CBR) is an artificial intelligence approach to problem-solving with a
good record of success. This article proposes using Quantum Computing to improve some of the
key processes of CBR, such that a Quantum Case-Based Reasoning (qCBR) paradigm can be
defined. The focus is set on designing and implementing a qCBR based on the variational principle
that improves its classical counterpart in terms of average accuracy, scalability and tolerance to
overlapping. A comparative study of the proposed qCBR with a classic CBR is performed for the
case of the Social Workers’ Problem as a sample of a combinatorial optimization problem with
overlapping. The algorithm’s quantum feasibility is modelled with docplex and tested on IBMQ
computers, and experimented on the Qibo framework.
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I. INTRODUCTION

The social workers’ problem (SWP) stands for solving
the schedules of social workers visiting patients’ homes
while fitting both distance and time restrictions [1] and
represents a class of combinatorial optimization prob-
lems, which lie in the NP complexity class. The standard
way to solve this class of problems begins by establishing
the cost function. Then, depending on its form, existing
linear or quadratic programming methods such as Sim-
plex [2] or Cplex [3] can be applied. More complex cost
functions require more sophisticated numerical methods.
Depending on the problem’s complexity class, the algo-
rithm can be improved by introducing some heuristics or
restrictions in the objective function to reduce its com-
putational cost for an approximate solution. When the
size of the problem grows, the computational cost may
soon become intractable for the current computational
paradigms. In addition to the above, solving these prob-
lems is more challenging when the input data presents
some overlapping issues or when outstanding accuracy is
required.

In this paper, an approach combining adapting Case-
Based Reasoning[4] to a quantum computing is proposed
to solve this class of problems. This paradigm, denoted
Quantum Case-Based Reasoning (qCBR), will address
both the overlap in the input data and the accuracy prob-
lem. Furthermore, by directly constructing the frame-
work, questions like the actual efficiency of a qCBR im-
plementation at the present level of quantum technol-
ogy, the tolerance concerning input overlap, the scala-
bility and the applicability to other combinatorial opti-
mization problems will be discussed. The paper is orga-
nized as follows. Section II, shows previous work on both
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ensemble techniques and quantum machine learning ap-
proaches. In Section III, the Case-Based Reasoning will
be explored by focusing on its features. Section IV intro-
duces the necessary quantum fundamentals for this era
to solve this problem. Implementing the proposed strat-
egy and creating the quantum CBR (qCBR) is done in
Section V. In Section VI, we present our experimental
analysis results. In Section VII, we summarise, bench-
mark and present some open problems. Finally, Section
VIII concludes previous results and outlines future work.

II. RELATED WORK

CBR is a problem solving approach widely considered
in the literature with a large record of success. Applica-
tion examples are a medical reasoning program that im-
proves with experience [5], an individual prognosis of dia-
betes long-term risks[6], Case-Based Sequential ordering
of songs for playlist recommendation [7], ranking order
in financial distress prediction [8], monitoring the elderly
at home [5], software control [4], in the medical field[4],
sequencing problems [9] etc. In one of our previous works
[1, 10], we observed part of the benefits of using the CBR
instead of the Top-Down method. And the needs of em-
powering this problem-solving method based on human
learning were seen.

Quantum computing stands as a new computing
paradigm based on exploiting the principles of quantum
mechanics and establishing the quantum bit (qubit) as
the elementary unit of information. It emerged in the
early 1990’s from algorithms that were able to take ad-
vantage of quantum characteristics to show advantages
over their classical counterparts, being Shor’s algorithm
[11] for integer factorization and Grover’s algorithm [12]
for searching in an unordered data sequence, the most
famous. However, current quantum computing devices

ar
X

iv
:2

10
4.

00
40

9v
2 

 [
cs

.A
I]

  1
1 

Ja
n 

20
22

mailto:parfait.atchade@salle.url.edu


2

suffer from technological limitations, such as the num-
ber of qubits available and the noise and decoherence
problems, such that they are still no match for their clas-
sical counterparts. This situation is known as the Noisy
Intermediate-Scale Quantum (NISQ) era [13]. These lim-
itations have forced the scientific community to develop
handy tools for hybrid computing, mixing classical and
quantum. Taking advantage of the variational principle,
it is possible to solve combinatorial optimization prob-
lems and enhance one of this era’s most promising fields;
quantum machine learning (QML) [14, 15]. In this new
approach, several techniques and methods already ex-
plored in Machine Learning (ML) are being worked on.

In the last two years, the number of algorithms based
on QML have increased considerably since the first defini-
tion in 2014 [14]. This progress relies on the advances in
decoherence control [16, 17] and error correction systems
[18] combined with the availability of several quantum
server providers in the cloud. Most of these new algo-
rithms take after the variational principle, being the Vari-
ational Quantum EigenSolver (VQE) [19] and the Quan-
tum Approximate Optimization Algorithm (QAOA) [20–
22] the most famous. Other promising developments are
the Quantum Neural Network (QNN) [23–25], the Quan-
tum Support Vector Machine (QSVM)[26–28] and the
data loading system [29, 30]. On the one hand, the fol-
lowing references [31, 32] highlight works done in the Top-
Down philosophy. On the other hand, references [33–38]
highlight the many contributions in quantum machine
learning, from using the properties of quantum comput-
ing to finding new drugs as new ways to calculate the
expected value, among others.

The literature shows examples of exploiting the possi-
bilities of hybrid (classical-quantum) computing connect-
ing it to CBR. For instance, in reference [39] a cogni-
tive engine that uses CBR-QGA to adjust and optimize
the radio parameters is presented. An initial quantum
bit made up of the matching case parameters is used
to avoid blindness of the initial population search and
speed up optimization of the quantum genetic algorithm.
References [40, 41] propose a new framework that can
be adopted in many applications that require Compu-
tational Intelligence (CI) solutions. The framework is
built under the concepts of Soft Computing (SC), where
Fuzzy Logic (FL), Artificial Neural Network (ANN) and
Genetic Algorithm (GA) are exploited to perform reason-
ing tasks based on soft cases. Also studies [42] focused on
some vital blocks of the CBR were reviewed. It has fo-
cused on the quantum version of the k-NN algorithm that
allows us to understand the fundamentals when tran-
scribing classic machine learning algorithms into their
quantum versions.

Reviewing state of the art, we have seen an interest-
ing field known as Quantum Information Retrieval (QIR)
[43–45] that uses the Gleason theorem [46] on the Mea-
sures on the Closed Subspaces of a Hilbert Space for in-
formation retrieval geometry [47]. It calculates the prob-
ability algebraically through the density matrix trace and

acts on a quantum projector. The projector can be any
concept to recover. However, for the quantum CBR, we
are not only interested in a great recovery system, but we
also need to provide the qCBR with a synthesiser whose
function will be to fine-tune the recovered data in the
case of not being the optimal result since the qCBR has
the process of ”generate” a new outcome based on the
retrieved information.

However, no quantum Case-Based Reasoning was
found that can satisfy the requirements presented above.
Such is the purpose of this paper.

III. CASE-BASED REASONING

CBR [4] is a machine learning technique based on solv-
ing new problems using experience, as humans do. The
experience is represented as a case memory containing
previously solved cases. The CBR cycle can be sum-
marised in four steps: (1) Retrieval of the most similar
cases, (2) Adaptation to those cases to propose a new
solution to the new environment, (3) Validity check of
the proposed solution and finally, (4) Storage following a
learning policy. In the present work, the proposed qCBR
modifies these phases as follows (see Fig.(1) and (3)).

The CBR technique could be summarized in two large
blocks according to their functionality: a classifier and a
synthesizer. One of the classical CBR advantages is its
classifier’s simplicity, being a k-nearest neighbors algo-
rithm (K-NN)[50, 51] classifier a common option. This
apparent advantage can lead to collateral problems [52]
at the memory level, at the level of slowness when the
volume of data grows considerably and at data synthe-
sis. The synthesis block is in charge of adapting the ex-
perience and saving the new problem. Such adaptation

FIG. 1. Case-Based Reasoning block diagram. In this work,
for the standard CBR, two essential blocks are distinguished:
The classifier and the synthesizer. The classifier is made up of
the retrieve and retain blocks and the re-use and revise blocks
to make up the synthesis system.



3

Methods Brute force k-d tree method[48] Ball tree method[49]

Training time complexity O(1) O(dNlog(N)) O(dNlog(N))

Training space complexity O(1) O(dN) O(dN)

Prediction time complexity O(KNd) O(Klog(N)) O(Klog(N))

Prediction space complexity O(1) O(1) O(1)

TABLE I. Table of the NN brute force’s, k-d tree’s, and Ball tree’s complexity method. Where d, is the data dimensionality,
N is the number of points in the training dataset and K is the algorithm’s neighbours’ number.

and classification can be costly (Table I) for considerably
high data volumes [53]. From this follows that a different
approach would be required to further empowering this
technique.

The proposal of this note is to achieve such empower-
ing in two steps. First by making a CBR with a quan-
tum classifier [54] instead of a classical neural network,
KNN[50, 51] or a Support Vector Machine (SVM) [55]
since quantum classifiers offer outstanding accuracy and
tolerate overlapping problems [56]. The second would be
changing the classical synthesis technique for the Vari-
ational Quantum Eigensolver (VQE) [57–59] with Ini-
tial point [60].

IV. QUANTUM CIRCUITS IN THE NISQ ERA

Quantum circuits are mathematically defined as oper-
ations on an initial quantum state. Quantum computing
generally makes use of quantum states built from qubits,
that is, binary states represented as |ψ〉 = α |0〉 + β |1〉.
Their number of qubits n commonly defines the states
of a quantum circuit and, in general, the circuit’s initial
state |ψ〉0 is the zero state |0〉. In general, a quantum
circuit implements an internal unit operation U to the
initial state |ψ〉0 to transform it into the final output
state |ψ〉f . This gate U is wholly fixed and known for
some algorithms or problems. In contrast, others define
its internal functioning through a fixed structure, called
Ansatz[61] (Parametrized Quantum Circuit (PQC)), and
adjustable parameters θ [54]. Parameterized circuits are
beneficial and have interesting properties in this quan-
tum age since they broadly define the definition of ML
and provide flexibility and feasibility of unit operations
with arbitrary precision [14, 15, 62].

Figure (2) depicts the concept of hybrid computing
(quantum + classical), which defines the NISQ. This
takes advantage of quantum computing’s capacity to
solve complex problems, and the experience of classi-
cal optimization algorithms (COBYLA [63], SPSA [64],
BFGS [65], etc.) to train variational circuits. Classical
algorithms are generally an iterative scheme that searches
for better candidates for the parameters θ at each step.

The value of the hybrid computing idea in the NISQ

era is necessary because it allows the scientific commu-
nity to exploit the powers of both and reap the benefits
of the constant acceleration of the oncoming quantum-
computer development. With a good optimization sys-
tem and a closed-loop system, the non-systematic noises
could be automatically corrected during the optimization
process.

Furthermore, with the insertion of information (data)
into the variational circuit through the quantum gate U ,
learning techniques can be improved.

The Variational Quantum Circuit (VQC) [66, 67], con-
sists of a quantum circuit that defines the base structure
similar to neural network architecture (Ansatz) while,
the variational procedure can optimize the types of gates
(one or two-qubit parametric gates) and their free param-
eters. All this is summarized in a few very identifiable
steps. First, the Ansatz must be designed, using a set
of one- and two-qubit parametric gates. The Ansatz of
this circuit can follow a particular path by exploiting the
problem’s characteristics. A critical block is measuring
the quantum state resulting from the given Ansatz. Since
the VQC is a feedback system, these measurements eval-
uate a cost function CF (θ)(see in the Appendix A 1) that
encodes the problem. The classical optimizer has the role
of optimizing the cost function to find the value of the
parameters that minimize it.

V. IMPLEMENTATION

The work proposed in this article is the implementa-
tion of a quantum Case-Based Reasoning (qCBR) based
on figure (1). The strategy to follow is to replace the clas-
sical classification: an Artificial Neural Network (ANN)
or a Support Vector Machine (SVM) or the KNN with
a quantum variational classifier that guarantees the re-
quired accuracy. And for the quantum synthesis sys-
tem, use the VQE with and without Initial point together
with a probabilistic decision tree. Figure (3) shows the
changes that will be introduced to obtain the qCBR, and
figure (10) shows the detail of the functional blocks imple-
mented with the specific problem of social workers. The
two VQE blocks and the Variational Quantum Classifier
are presented before detailing them.
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FIG. 2. VQE working principle based on the quantum varia-
tional circuit. Given an objective function that characterises
the problem, with the help of the Ising Model block, we pass
the objective function from the classical to the quantum do-
main. The ansatz is initialised with random values. Then,
starting from these initial values (initial position) and depend-
ing on the measured value, a classical and external optimiser
is used to feedback the new values of the ansatz parameters.
So, until reaching the minimum energy value, equivalent to
the ground state of our Hamiltonian, defined by the varia-
tional principle.

FIG. 3. Quantum Case-Based system block diagram. In this
scheme, to convert the classic CBR into the quantum one,
it is proposed to change the retrieve and retain blocks for a
quantum variational classifier and the re-use and revise blocks
for a synthesis system based on VQE with initial point.

1. Variational Quantum Eigensolver

VQE (figure (4)) is a classical hybrid quantum algo-
rithm that combines aspects of quantum mechanics with
the classical algorithm, and its objective is to find approx-
imate solutions to combinatorial problems. One of the
fundamental approaches is to map combinatorial prob-
lems into a physics problem. That is, about a problem

that can be formulated in terms of a Hamiltonian Ising
model. Therefore, the identification of the solution to
the combinatorial problem is linked to finding the ground
state of this physics problem. As a result, the goal is to
find the ground state of this Hamiltonian. The unknown
eigenvectors are prepared by varying the experimental
parameters and calculating the Rayleigh-Ritz ratio [68]
in a classical minimization, figure (4). At the end of the
algorithm, the reconstruction of the eigenvector that is
stored in the final set of experimental parameters that
define the state would be performed.

FIG. 4. We start from an initial position of the initial val-
ues of the Ansatz parameters. Normally we start from initial
equiprobable values between all qubits. Then, depending on
the measured value, a classical and external optimizer is used
to feedback the new values of the ansatz parameters. So on
until reaching the value of the minimum energy equivalent to
the ground state of our Hamiltonian as defined by the varia-
tional principle. If we want to start the optimization from a
point other than the initial state, we can load some positions
(Initial point) equivalent to some energy values on the ansatz.
In the case of qCBR, the key is that having saved the initial
point values of each schedule already calculated will save op-
timization time since it will be possible to start from a fairly
optimal point.

From the variational principle, the following equation
〈H〉

ψ
(−→
θ
) ≥ λi can be reached, with λi as eigenvector

and 〈H〉
ψ
(−→
θ
) as the expected value. This way, the VQE

finds (1) as an optimal choice of parameters
−→
θ , that the

expected value is minimized and that a lower eigenvalue
is located.

〈H〉 = 〈ψ (θ) |H|ψ (θ)〉 (1)

The VQE is used here with and without Initial point [60]
for the synthesis task. In the detailed explanation of
the work, more detail will be given. The Initial point is
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the starting point (initial parameter values) for the opti-
mizer. Without this starting point, the VQE will search
the ansatz for a preferred point, and if not, it will just cal-
culate a random one. This possibility is essentially useful,
such as when there are reasons to believe that the out-
come position is close to a particular spot. Furthermore,
in the qCBR, this Initial point will be tremendously use-
ful for reshaping the retrieved solution if the latter is not
the most optimal.

2. Quantum classifiers

The variational quantum classifier belongs to the vari-
ational algorithms like VQE, where classically tunable
parameters of a unit circuit are used to minimize the ex-
pected value of an observable. The great novelty resides
in loading the data in the variational system.

We have designed a classifier that emulates neural net-
works solving the function Wx + b, with W and b the
parameters and x, the sample data to be classified. The
non-linearity of the quantum gates is used to implement
the activation function f(Wx + b) given Wx + b. The
figure (5) provides us with the block diagram of the clas-
sifier. The optimization and parameters’ (W, b) actual-
ization are done in the first step, MSE between (ȳ and
y), where y is the label associated with x and k of the
labels.

The detailed operations of the classifier are given by
the figure (6) where the quantum gates, Ry, Rx and CRZ
are used to define the block. In our, the optimization and
parameters’ (W , b) actualization are done through the

fidelity cost between αc,qFc,q

(−→
θ ,−→ω,−→x µ

)
and Yc (−→x µ),

where −→x µ are the training points and −→α = (α1, . . . , αC)
are introduced as class weights to be optimized together

with
−→
θ , −→ω, are the parameters and Q the numbers of

the qubits. Counting on Yc (−→x µ) as the fidelity vec-

tor for a perfect classification and Fc,q

(−→
θ ,−→ω,−→x µ

)
=

〈ψc|ρq
(−→
θ ,−→ω,−→x

)
|ψc〉.

Since a universal quantum classifier of n qubits is
needed for the purpose of this paper, see figure (5), a
sub-base in the Hilbert vector space of equitably divid-
ing the hyperplane Z is described as follows. Let B =
({i, j, k, l,m, n, o, p}) be a sub-base within the Hilbert
vector space, for the space of the classes C2q , the co-
ordinates of the target classes are defined by expression
(2) with q as the number of the qubits.

{i (1,0,0,0,0,0,0,0) ; j (0,1,0,0,0,0,0,0) ; k (0,0,1,0,0,0,0,0) ;

l (0,0,0,1,0,0,0,0) ;m (0,0,0,0,1,0,0,0) ;n (0,0,0,0,0,1,0,0) ;

o (0,0,0,0,0,0,1,0) ; p (0,0,0,0,0,0,0,1)}
(2)

The Ansatz design and data loading (variables xi simi-
lar to neural networks)[29] are given by equation (3), and
its analysis is detailed in A 1.

U = (θ, x) = Rx (θ1x+ θ2)Rz (θ3) (3)

FIG. 5. This is the variational classifier’s diagram block used
in the qCBR, we use the data re-uploading technique to cre-
ate an n-dimensional classifier as if it were a neural network
where the non-linearity of the quantum gates will act as an
activation function, and we will use the model y = Wx+ b.

3. Memory Structure

Next, some test benches based on the memory struc-
ture described in figures (7) and (8) are defined to train
the parameterized quantum circuit, and its performance
is analyzed in terms of the circuit architecture. The
results, discussions and annexe sessions will emphasize
the classifier with or without entanglement and a
comparative study with different ansatzes.

The memory structure of the qCBR’ retention system
is given in figure (7). The solution class (target) corre-
sponds to the paths each Social Worker will take between
the different patients for a specific schedule, representing
these paths as an adjacency matrix, such as:

SOLSWP =

 0 x0,1 x0,2
x1,0 0 x1,2
x2,0 x2,1 0

 (4)

where xi,j is a binary variable, the rows of the matrix
represent the origin node and the column the destination
node of the path.

Each solution class is represented as a label (e.g., ’A’)
and is related to the different initial points associated
with each of the samples that make up the training
dataset can be seen. This solution class is also associ-
ated with the result of the VQE.

A. The qCBR solving the Social Workers’ Problem

A real problem already developed in these references
[1][70] is used to correctly test the proposed and im-
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FIG. 6. This is the design of the classifier implemented in qCBR. Considering that x is the input data of dimension l, Yc is the
label class of x, k is the number of labels, and we use the fidelity cost (A5). It is worth mentioning that the class of the tags
Yc and, in this case, coincides with the computational base; thus, we save the target class. In this figure, we got m layers.

FIG. 7. qCBR’s Memory structure, based on classical RAM.
The use the cross-validation technique helps to improve the
quality of the classifier training [67].

plemented qCBR. The social workers’ schedule problem
(SWP) is defined by generating an optimal visiting sched-
ule for the social workers, who visit their patients at
home, to provide them with personalized attention and
assistance depending on the patient’s pathology. More
details about the SWP can be found at [1]. However,
and for the better understanding of this article, let us

FIG. 8. Memory structure used for the Training System,
based on classical RAM. A label identifies each class, and
in this case, A is one of the labels. For more detail, refer to
the code [69].

recall the simplified objective function subjected to the
restrictions in Hamiltonian form for the SWP as follows:

H =
∑
ij∈E

(
dij + ε

(τi−τj)
2

dmax − dmin

)
xi,j

+A

n∑
i=1

1−
N∑

j∈δ(i)+
xi,j

2

+A

n∑
i=1

1−
N∑

j∈δ(i)−
xji

2

+A

k − N∑
i∈δ(0)+

x0,i

2

+A

k − N∑
j∈δ(0)+

xj,0

2

(5)
Where A is the Lagrange multiplier which is a free pa-

rameter such that A > max
(
dij + ε

(τi−τj)
2

dmax−dmin

)
, where

xij are the decision and binary variables of the paths
between two patients, dij is the distance between the pa-

tient i and the next j and gij =
(
dij + ε

(τi−τj)
2

dmax−dmin

)
is the non-negative time window’s function and it is
mapped on a quadratic function to weigh extremal dis-
tances (shortest concerning the greatest ones). Let us
consider that the initial weight function wij = dij is a
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distance function because one wants to make gij behave
like dij , and thus be able to take full advantage of the
initial objective function’s behaviour.

Let ε be positive and represent a weighted degree pa-
rameter of the time window function; τi is the starting
worker time of a slot of time for patient i and τj for the
patient j. With dmax as the maximum distance between
all patients and dmin the minimum one. Hence, let us
define the non-negative time windows Tij = (τi−τj) > 0.

To fill out the data structure created in the classifier
to train and test its predictions, the parameters of the
Initial point obtained by VQE are abstracted from the
result. Furthermore, it is composed of each class’s coor-
dinates with the following parameters: start time sT and
end time eT of patient 1 to n, where n is the maximum
number of patients in the app. Finally, figure (9) summa-
rizes the data’s representation and description that make
up the training dataset.

FIG. 9. The SWP represented in vector form to take ad-
vantage of the Hilbert vector space’s characteristics within
quantum computing. It is seen that each patient represents a
dimension and the points that make up the dataset a dimen-
sion of 2n coordinates, n being the total number of patients.
In this figure, to simplify the understanding, we use two pa-
tients, therefore, two dimensions.

Each coordinate’s class corresponds to the VQE solu-
tion following the memory structure in figure (7). Where
the class number of the classifier is given by equation (6)
taking into account the conditions that every worker has
a patient and that the workers are indistinguishable (that
is, it doesn’t matter whether the social worker m1 takes
care of the patient n1 and m2 takes care of n2 or vice
versa).

NSOLSWP
=

1

m!

m−1∑
k=0

(−1)k
(

m

m− k

)
(m− k)n (6)

With n the number of patients, m the number of social
workers and, knowing that the appearance of patients is

ordered in the schedule (from oldest to most recent), n1
will be the patient with the first schedule and nk the
patient with the last one.

In this article all the tests done are for
n = 4 with the data structure equal to
(sT1, eT1, sT2, eT2, sT3, eT3, sT4, eT4); an 8-dimensional
vector for each social worker visit the patient. In
this case, the number of qubits will be defined by
q = log2(NSOLSWP

) = 3. These qubits are used to
instance the quantum classifier, and it is worth to
mention that the classifier must have NSOLSWP

classes.
The detail of the qCBR’s implementation and analysis

is in the Appendix B.

VI. RESULTS

When testing the classifier, a section of the sample
database, schedules previously solved by the VQE algo-
rithm to obtain its corresponding true solution (ground
truth), was used as test samples (applying “Leave-one-
out” cross-validation). Then, the total accuracy of the
classifier predictions was obtained based on the ratio be-
tween the number of labels predicted correctly and the
total number of labels.

Figures (11) to (12) show the implementation out-
comes performed in qibo[73] and qiskit [60, 74] to iden-
tify the best model architecture and represent functions
similar to qCBR.

Tables (II) to (IV) show the global results of qCBR
solving the SWP. In table (II), the outcome of the differ-
ent tested scenarios can be observed. Varying the num-
ber of patients, social workers, and the quantum circuit’s
depth to see the global hit number of the qCBR. In table
(III), we can observe the resolution of the SWP, consider-
ing five patients, four social workers and setting the depth
of the quantum circuit to eight. Through this scenario,
the behaviour of the qCBR can be observed considering
the number of cases carried out. It can be seen how the
system begins to give more than satisfactory results after
exceeding the threshold of the 240 results stored in the
case memory. Table (IV) repeats the steps of table (III)
with the only change of the input data; the number of
patients and social workers. Tables (V) to (VIII) show
the result of the implementation of the classical CBR
leveraged on ANN and KNN to solve the SWP.

Tables (III) and (IV) represent the outcomes of the
qCBR and show better results than the ones obtained
with the classical CBR (tables (V) and (VI)). Tables
(VIII), (VII) and (II) show the degree of scalability of
the qCBR as a function of the variation in the number
of patients and social workers. It has also been seen
that qCBR is much better shared with overlapping as
we wanted to demonstrate.

Also, we experimented by skipping the Principal Com-
ponent Analysis (PCA) module [72][75], Independent
Component Analysis (ICA) [71] and creating a classi-
fier of the same dimension as the data (8 dimensions).
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FIG. 10. Block diagram proposed for the resolution of qCBR, considering a real dataset with an overlap problem between the
data components. This block diagram contemplates the treatment of the input data and the use of ICA[71] and PCA[72] before
training and classifying the data. In this version, a classifier based on the re-uploader has been designed to be in charge of
the classification tasks. And for the synthesis tasks, a decision tree passed in the classifier predictions have been used together
with the VQE plus the Initial point.

The results obtained have been very satisfactory at the
Ansatz’s accuracy and depth level. Still, the need to
change the BFGS [65] optimizer to the SPSA [64] has
become visible due to its slow convergence for the num-
ber of data and high parameters. Figure (11) describes
the behaviour and compare the two scenarios.

Later the Re-use module was analyzed using VQE with
Initial point to synthesize the predicted results. In the
graph shown in figure (12), it is observed how the al-
gorithm, without initial parameters, tends to use a high
energy constant of variation to quickly reach an approx-
imation of the fundamental state. Which makes it have
to progressively, after several iterations, n , reduce said
constant to find the local minimum. On the other hand,
when using an Initial point, the algorithm does not need
to start with a high variation to reach energy bands close
to the ground state since it is much closer to said energy,

reducing the number of iterations necessary reach to the
local minimum. We can then see how qCBR can afford
to run VQE with Initial point to refine the accuracy of
its results since it requires fewer iterations to find the so-
lution closest to the minimum, not assuming such a high
computational cost as it would be running VQE without
initial parameters.

The qCBR complexity (Table (IX)) is provided below
where it can be seen that the Retain is the highest cost
operation and has an exponential improvement compared
to a Retain of a classic CBR that is usually of the order
of O(M2(M +N)) [26]
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FIG. 11. Comparative graphs between different ansatzes, taking into account the classifier’s accuracy as a function of depth.
Represents the evolution of the ansatzes of dimension two and eight.

qCBR solving the Social Workers’ Problem

#Patients #SW #Qubits #Layers #Cases Accuracy

3 2 6 2 580 82.5

4 3 12 3 580 82

5 2 20 4 580 82.5

5 3 20 5 580 87

5 4 20 8 580 92.8

5 4 20 10 580 100

TABLE II. The result of the qCBR with a variational classifier
and using the VQE and the Initial point with some decision
trees as a synthesizer (10). This table shows the different
studies made as a function of the quantum circuit’s depth
(layer). number of the patients and the social workers. The
accuracy of the classifier is the maximum with the number of
layers equal to 10. SW denotes Social Workers.

VII. DISCUSSIONS

Firstly, the proposed qCBR works very well and meets
the objectives set using quantum computing to create ef-
ficient quantum Case-Based Reasoning. One of the issues
to comment on is the improvement observed in figure (11)
with respect to the 2 and 8-dimensional classifiers. Due
to the small number of depths, but with many more pa-
rameters, the 8-dimensional classifiers have an average of
about 25% of improvements over the 2-dimensional ones.
With this result, in the case of not wanting an accuracy
of around 95%, shallow depth could be used, and compu-
tation time saved, depending on the problems. Despite
all these improvements, it is essential to highlight some

qCBR solving the Social Workers’ Problem

For 5 patients and 4 socials workers

Layers #Cases Accuracy

20 -

50 12.5

100 72.5

8 240 92.1

340 95.5

480 97.2

500 98.7

580 99.1

TABLE III. The result of the qCBR for a number of patients
and social workers fixed at 5 and 4, respectively. The better
behaviour of qCBR can be observed for some cases greater
than 240. To have a good functioning of the qCBR, it must
be iterated with the social workers’ dataset one 239 times.
And at the case number of 240, we will have an accuracy of
92%. The ”accuracy” value is the percentage of the number
of correct solutions found by the qCBR. A hyphen (-) denotes
that no solution was found within the 20 cases. All these tests
were done for the quantum circuit depth (layers) equal to 8.

aspects to refine. In the intelligent system that allows
deciding the proposed solution, now, the average of the
Initial point of each solution class samples’ Initial point
is used. It could still be seen based on the predicted
solution, which Initial point is the most suitable for the
solution to propose. Thus, the cases to be re-used could
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qCBR solving the Social Workers’ Problem

For 4 patients and 3 socials workers

Layers #Cases Accuracy

20 -

50 11.5

100 73.1

8 240 91.1

340 91.9

480 96.6

500 98.1

580 99.0

TABLE IV. The result of the qCBR for a number of patients
and social workers fixed at 4 and 3, respectively. The better
behaviour of qCBR can be observed for some cases greater
than 240. To have a good functioning of the qCBR, it must
be iterated with the social workers’ dataset one 239 times.
And at the case number of 240, we will have an accuracy of
91%. The ”accuracy” value is the percentage of the number
of correct solutions found by the qCBR. A hyphen (-) denotes
that no solution was found within the 20 cases. All these tests
were done for the quantum circuit depth (layers) equal to 8.

FIG. 12. Energy comparison between VQE algorithm without
using or using the initial point. It is noticeable how the first
one tends to stabilize after multiple iterations (approximately
400), starting the search for a minimum from a random start-
ing point (depending on the seed provided). Meanwhile, the
second one is capable of stabilizing and reach a solution close
to the absolute minimum with much less iterations, starting
from energy point evaluation close to the real energy solution

be better classified.
Also, one of the improvements is to train the classifier

with noisy data further so that the qCBR can adapt to

CBR with KNN solving the Social Workers’ Problem

For 5 patients and 4 socials workers

Layers #Cases Accuracy

20 -

50 42.9

100 46.5

1 240 52.6

340 55.3

480 56.8

500 60.7

580 63.1

TABLE V. The classical CBR result on KNN classifier for a
number of patients and social workers fixed at 5 and 4, respec-
tively. The better behaviour of this CBR can be observed for
some cases greater than 240. To have a good functioning of
the CBR, it must be iterated with the social workers’ dataset
one 239 times. And at the case number of 240, we will have
an accuracy of 52.6%. The ”accuracy” value is the percentage
of the number of correct solutions found by the CBR lever-
aged on KNN, applying a 10-KFold cross-validation process.
A hyphen (-) denotes that no solution was found within the
20 cases. All these tests were done for the layer equal to 1.

real past situations that adjust to the new situation. Be-
cause, in practice, there is usually no past case strictly
the same as a new one.

The last improvement is to generalize the qCBR to
serve various types of problems (betting problem, finan-
cial, software maintenance, human reasoning, etc.). To
get it, we must focus on designing the memory of the
cases so that different data sizes can be indexed and train
the classifier with several other data models.

Secondly, both QIR [44] and qCBR work with a data
representation model based on a multidimensional vector
in Hilbert space.

This offers the possibility for quantum algorithms to
perform a clustering or discrimination of the data within
this vector space.

The QIR analyses whether a certain entry is related
to other types of documents previously studied and how
the classic NLP techniques are performed [76, 77]. To do
this, it projects the input vector introduced concerning
the bases of the clusters built corresponding to each class
with similar patterns.

At the same time, qCBR follows a similar process for
predicting whether an input vector corresponds to a pre-
viously analysed class and calculates the probability that
each type corresponds to the new vector from the prox-
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CBR with KNN solving the Social Workers’Problem

For 4 patients and 3 socials workers

Layers #Cases Accuracy

20 -

50 55.1

100 58.5

1 240 70.3

340 71.1

480 73.6

500 74.8

580 76.8

TABLE VI. The classical CBR result on KNN classifier for a
number of patients and social workers fixed at 4 and 3, respec-
tively. The better behaviour of this CBR can be observed for
some cases greater than 100. To have a good functioning of
the CBR, it must be iterated with the social workers’ dataset
one 239 times. And at the case number of 240, we will have
an accuracy of 70.3%. The ”accuracy” value is the percentage
of the number of correct solutions found by the CBR lever-
aged on KNN, applying a 10-KFold cross-validation process.
A hyphen (-) denotes that no solution was found within the
20 cases. All these tests were done for the layer equal to 1.

CBR leveraged by CNN solving the Social Workers’ Problem

#Patients #SW #Layers #Cases Accuracy

3 2 2 580 65.4

4 3 2 580 43.3

5 2 2 580 37.3

5 3 2 580 26.3

5 4 2 580 45.2

TABLE VII. CBR with a neural network classifier and a back-
tracking algorithm as a synthesizer. SW denotes Social Work-
ers.

imity of each vector subspaces generated from each cat-
egory.

The text representation is transformed to a numeric
vector from a process called word2vec [78–80] and
doc2vec [81, 82], and once the vector is obtained, the pro-
cess to follow is identical to the one to follow by qCBR.
In many cases, seeing references [83–86], QIR and NLP
already predefine the classes to be analysed, either Pop,

CBR with KNN solving the Social Workers’ Problem

#Patients #SW #Layers #Cases Accuracy

3 2 1 580 95.6

4 3 1 580 77.8

5 2 1 580 47.8

5 3 1 580 44.7

5 4 1 580 63.1

TABLE VIII. CBR with a KNN classifier and a backtracking
algorithm as a synthesizer. SW denotes Social Workers.

Methods Complexity

Retrieve O(logNM)

Re-use O(Klog(N) + logNM)

Revise O(log(N)) + ICA)

Retain O(logNM) + PCA

TABLE IX. Table of the complexity of qCBR counting the
PCA cases and the ICA complexity. In this case, K, the
number of shots of the VQE, is fixed to 50.

Rock, etc. By predefining that each axis of the Hilbert
space corresponds to a type, this process is similar to the
qCBR but without the synthesiser’s ability.

The clustering process allows the algorithm to create
classes and related documents without specifying the cat-
egories; therefore, in the case of QIR, it does not move
away from an abstraction of the classical problem of
”bag-of-words” parsers of spam.

The creation of the SWP vector subspace over the
Hilbert vector space is similar in the references [87, 88]
where the authors focus on filters, request and document
retrieval.

It is worth noting that the qCBR does not present a
barren plateau problem due to the low numbers of qubits,
shallow quantum circuit and because we have used local
cost functions as advocated by the barren plateau theo-
rem [36].

VIII. CONCLUSIONS AND FURTHER WORK

We observed the outstanding performance of qCBR
compared to its classical counterpart on the average accu-
racy, scalability and tolerance to an overlapping dataset.
Some of the problems of standard and classical CBR have
been mitigated in this work. With the design that has
been proposed in this work, it has been possible to mea-
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sure situations of difficult similarity between cases. De-
spite the non-linear and overlapping attributes, the clas-
sifier has been endowed with characteristics that serve to
arrive at two similar topics that may seem quite differ-
ent by having different values in features, but not very
important. In the VQE with Initial point, we can have
different Initial point associated with each training class
sample with the same class. With the technique of the
average of the ”Initial point”, it is possible to solve this
problem by providing the qCBR to distinguish the sim-
ilarity between cases. Another issue that qCBR mostly
solves is the time required to classify a new topic.

With the results of the two implementations (classi-
cal and quantum CBR), it is observed that the classical
CBR designed with the KNN behaves better for some
determined cases (table (VIII)). It is seen that the sys-
tem has not finished learning thoroughly (table (V) and
(VI)) contrary to the qCBR (table(III) and (IV)). This
is due to its classifier’s accuracy, without forgetting the
significant contribution of its synthesis system.

Another improvement that qCBR introduces is when
retaining cases, implementing a retention system that
maintains model cases and that, together, synthesize the
real and most important information. One of the im-
provements to consider is the implementation of quantum
ICA. In this way, the classical ICA analysis’s complex-
ity cost will be significantly reduced. Also counting that
the PCA is saved since we have an 8-dimensional clas-
sifier, the complexity of the qCBR would be that of the
classifier plus some setup constants.

The other exciting line of the future is to design the
memory of cases using the quantum technique of random-
access memory (qRAM) [89] to improve the memory of
stored cases.
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Appendix A: Variational Quantum Classifier

To date, two dominant categories allow to design quan-
tum classifiers. Although almost all are inspired by the
classical classifiers (kernel or neural networks) [53], there
is a new category of classifiers that respond to the cur-

rent era of quantum computing (NISQ); hybrid and vari-
ational classifiers.

1. The Ansatz

The Ansatz design inherited from previous works [1,
10] [54]. The way to load the data into the Ansatz is
inspired by [29] where the data (variable x) is entered
using the weights and biases scheme. In this case, the
single-qubit gate that serves as the building block for all
Ansatz is given by (A1) similar to neural networks.

U = (θ, x) = Rx (θ1x+ θ2)Rz (θ3) (A1)

Being θ the vector of the parameters and Rx and Ry
the unit gates of qubits used to create the Ansatz. To
complement the experimentation scenario, it would be
necessary to add the CNOT gate and the CRZ, which
are the gates that help to achieve entanglement as seen
in figure (13), (14) and (15).

FIG. 13. Ry and Rz Ansatzes without entanglament used in
qCBR experimentation.

FIG. 14. Ry and Rz Ansatzes with CRZ entanglement used
in qCBR experimentation.

The variational quantum classifier structure (figure
(16) and (17)) is based on layers of trainable circuit
blocks L (i) =

∏
i,j U (i, j) and data coding, as shown in

(3) for 8 dimensional or in (A1) for 2 dimensional data
size. Additionally, the entanglement can be achieved us-
ing the CRZ or CNOT gates. The number of parameters
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FIG. 15. Ry and Rz Ansatzes with CNOT entanglement used
in qCBR.

FIG. 16. Three-qubit quantum classifier circuit without en-
tanglement.

FIG. 17. Three-qubit quantum classifier circuit with entan-
glement by using CZ or CNOT gates.

to optimize the classifier is given by (A2).

NumParam = (nL ∗ 2d ∗ L) (A2)

In this case, with n the number of qubits, n = 3 , L the
number of layers (blocks), in the experiment, it is a vari-
able data and d which is the dimension of the problem.
In other words, d varies with the choice of Ansatz and
whether or not entanglement is applied. In the case of
the entanglements in figure (14), the d would be summed
1 (CRZ gate has one parameter), which equates to equa-
tion (A3).

NumParam = (nL ∗ 2(d+ 1) ∗ L) (A3)

2. Fidelity cost function

The similarity function follows the same strategy as the
re-uploading and path; nevertheless, the Ansatz is differ-
ent. It uses the definition of quantum fidelity associated
with several qubits and maximizes said average fidelity
between the test state and the final state corresponding
to its class. Equation (A4) [15] defines the cost function
used.

CF
(−→α ,−→θ ,−→ω ) =

=
1

2

M∑
µ=1

C∑
c=1

(
Q∑
q=1

(
αc,qFc,q

(−→
θ ,−→ω,−→x µ

)
− Yc (−→x µ)

)2)
(A4)

with

Fc,q

(−→
θ ,−→ω,−→x µ

)
= 〈ψc|ρq

(−→
θ ,−→ω,−→x

)
|ψc〉 (A5)

Where ρq is the reduced density matrix of the qubit
to be measured, M is the total number of training point,
C is the total number of the classes, −→x µ are the train-
ing points and −→α = (α1, . . . , αC) are introduced as class

weights to be optimized together with
−→
θ , −→ω, are the pa-

rameters and Q the numbers of the qubits. Counting on
Yc (−→x µ) as the fidelity vector for a perfect classification.
This cost function (A4) is weighted and averaged over all
the qubit that form this classifier. In order to complete
the hybrid system, it is used for the classical part, the
following minimization methods above cited: L-BFGS-B
[90], COBYLA [63] and SPSA [64].

Appendix B: The qCBR’s details

The operation of the retrieve (prediction) block is
given by a new case (schedule). In this experimenta-
tion, the schedule that best adapts to the latest case to
be solved is recovered with the predict method, which is
executed at a time O(log(MN)). It worth saying that,
due to the SWP descriptions, a possible schedule change,
a stage of understanding or interpretation is necessary,
since an adequate resolution of the new schedule cannot
be carried out if it is not understood with some complete-
ness. This stage of understanding is a simple decision
algorithm with minimal intelligence.

Once having the predicted solution, the synthesis block
creates a new solution (proposed solution) by combining
recovered solutions. To do this, the algorithm is divided
into two main lines (figure (10)). A line that determines
an acceptable degree of error (after a probabilistic study)
that the predicted solution can be considered the pro-
posed solution. The second branch is in charge of im-
proving the expected solution towards a better-proposed
solution. To do this, the Initial point associated with
the retrieved schedule is retrieved from the case mem-
ory, and the Variational Quantum Eigensolver is exe-
cuted with very few shots, (k shots). The idea here is
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to refine the new schedule’s similarity with the recov-
ered one. Operating the VQE with Initial point provides
the algorithm with parameter values through the initial
point as a starting point for searching for the minimum
eigenvalue (similarity between the two times) when the
new time’s solution point is believed to be close to a
matter of the recovered schedule. This is how the Re-
use block works. These operations have a complexity
of O(klog(N) + log(NM)). Where N is the number of
social workers, M is the number of patients and k is the
number of shots.

The algorithm’s processes to review the proposed so-
lution are seen below the Re-use block in figure (10). It
is essential to classify the best possible solution for the
proposed prototype. The best possible solution is calcu-
lated with the VQE with the maximum resolution and
depth (for the variational part). Once the solution is ob-
tained, it is compared with the proposed solution and
said solution with its characteristics is added to the new
schedule before storing it (see figure (7) and (8)). The
computational complexity of the Revise is determined by
O(log(N) + ICA)). In this work, access to data (states)
is determined by O(log(MN)) due to the characteristics
of the inner products and superpositions.

One of the most critical blocks in this work is to Re-
tain. This block is the heart of the CBR because it is
the classifier and because it is the block that allows us to
conclude that it has been learned from the previous cases.
Not all instances (schedules) are saved in this job, lead-
ing to the excessively slow classifier. Therefore, in this
part of the algorithm, the best cases (timetables) that
summarize all the essential information are retained.

FIG. 18. Representation of the generation of the n weekly
schedules of the SWP. The last plane, the one to the right of
everything, represents all the SWP classes. The overlapping
effect generated by the social workers’ problem’s character-
istics and experimentation scenarios can be observed. This
experimentation leads us to use the ICA technique to have a
resulting dataset regardless of the schedules.

The Retain process begins with the treatment of
schedules, searching for the algorithm’s best efficiency,
which is a challenge to solve in this block. In the case of
SWP, the patient visits hours have a margin range of 30
min. Therefore, if one schedule starts at 9:00, the next

FIG. 19. Fundamental processes to apply ICA to SWP
dataset. The first thing that is done is to centre the data
x by subtracting the mean, balancing the data x removing its
variance, and calculating the unmixing matrix of W. is cal-
culated. Then the new value of w is calculated, and then w
is normalized before checking if with the said value the al-
gorithm converges or not. If it does not converge, a new w
must be recalculated, and if it converges, calculate the scalar
product of 〈x, y〉 to obtain the independent weekly schedules.

could begin at 9:30, leading to a dataset with overlap
between schedules if many schedules have similar time
ranges spread over different days of the week. In the
case of non-linearity of the data, an almost perfect clas-
sifier with an average accuracy more significant than 80%
would be needed to be combined with a data processing
system and a decision tree.

In this work, we contemplate both scenarios. First,
get an excellent classifier and apply data processing tech-
niques to help a poor classifier. Using the standard clas-
sifier, ICA [71] is applied to the original data to reduce
the effects of the degree of overlap (figure (18)) without
losing the fundamental characteristics of the data. Fig-
ure (19) summarizes the processes and operations applied
to reduce the overlapping effect observed in the genera-
tion of SWP schedules. The complexity of this operation
is noted as O(ICA). The PCA is then used to reduce
the data dimension from 8 to 2 and apply it to the de-
signed variational classifier with the complexity equal to
O(PCA). Once the best time is determined, we retain
the knowledge acquired at the time of the case’s resolu-
tion.
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