Skip to main content
Log in

Belief models: An order-theoretic investigation

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

I show that there is a common order-theoretic structure underlying many of the models for representing beliefs in the literature. After identifying this structure, and studying it in some detail, I argue that it is useful. On the one hand, it can be used to study the relationships between several models for representing beliefs, and I show in particular that the model based on classical propositional logic can be embedded in that based on the theory of coherent lower previsions. On the other hand, it can be used to generalise the coherentist study of belief dynamics (belief expansion and revision) by using an abstract order-theoretic definition of the belief spaces where the dynamics of expansion and revision take place. Interestingly, many of the existing results for expansion and revision in the context of classical propositional logic can still be proven in this much more abstract setting, and therefore remain valid for many other belief models, such as those based on imprecise probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Aumann, Utility theory without the completeness axiom, Econometrica 30 (1962) 445–462.

    Article  MATH  Google Scholar 

  2. R.J. Aumann, Utility theory without the completeness axiom: A correction, Econometrica 32 (1964) 210–212.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Benferhat, D. Dubois and H. Prade, Possibilistic and standard probabilistic semantics of conditional knowledge bases, Journal of Logic and Computation 9 (1999) 873–895.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Boyen, G. de Cooman and E.E. Kerre, On the extension of P-consistent mappings, in: Foundations and Applications of Possibility Theory – Proceedings of FAPT '95, eds. G. de Cooman, D. Ruan and E.E. Kerre (World Scientific, Singapore, 1995) pp. 88–98.

    Google Scholar 

  5. A. Darwiche and J. Pearl, On the logic of iterated belief revision, Artificial Intelligence 89 (1997) 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  6. B.A. Davey and H.A. Priestley, Introduction to Lattices and Order (Cambridge University Press, Cambridge, 1990).

    MATH  Google Scholar 

  7. G. de Cooman, Confidence relations and ordinal information, Information Sciences 104 (1997) 241–278.

    Article  Google Scholar 

  8. G. de Cooman, Possibility theory I–III, International Journal of General Systems 25 (1997) 291–371.

    Article  MATH  Google Scholar 

  9. G. de Cooman, Precision–imprecision equivalence in a broad class of imprecise hierarchical uncertainty models, Journal of Statistical Planning and Inference 105 (2002) 175–198.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. de Cooman and P. Walley, A possibilistic hierarchical model for behaviour under uncertainty, Theory and Decision 52 (2002) 327–374.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. de Finetti, Teoria delle Probabilità (Einaudi, Turin, 1970).

    Google Scholar 

  12. B. de Finetti, Theory of Probability, Vol. 1 (Wiley, Chichester, 1974). English Translation of [11].

    Google Scholar 

  13. D. Dubois and H. Prade, A survey of belief revision and updating rules in various uncertainty models, International Journal of Intelligent Systems 9 (1994) 61–100.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Dubois and H. Prade, Possibility theory: qualitative and quantitative aspects, in: Handbook on Defeasible Reasoning and Uncertainty Management Systems, Vol. 1: Quantified Representation of Uncertainty and Imprecision, ed. Ph. Smets (Kluwer, Dordrecht, 1998) pp. 169–226.

    Google Scholar 

  15. P. Gärdenfors, Knowledge in Flux – Modeling the Dynamics of Epistemic States (MIT, Cambridge, MA, 1988).

    Google Scholar 

  16. R. Giles, Foundations for a theory of possibility, in: Fuzzy Information and Decision Processes, eds. M.M. Gupta and E. Sanchez (North-Holland, Amsterdam, 1982) pp. 183–195.

    Google Scholar 

  17. F.J. Giron and S. Rios, Quasi-Bayesian behaviour: A more realistic approach to decision making? in: Bayesian Statistics, eds. J.M. Bernardo, M.H. DeGroot, D.V. Lindley and A.F.M. Smith (Valencia University Press, Valencia, 1980) pp. 17–38.

    Google Scholar 

  18. A.J. Grove, Two modellings for theory change, Journal of Philosophical Logic (1988) 157–170.

  19. G. Kern-Isberner, The principle of conditional preservation in belief revision, in: Proceedings of the Second International Symposium on Foundations of Information and Knowledge Systems (FoIKS 2002), Lecture Notes in Computer Science 2284 (Springer, 2002), pp. 105–129.

  20. I. Levi, The Enterprise of Knowledge (MIT, London, 1980).

    Google Scholar 

  21. D.K. Lewis, Counterfactuals (Harvard University Press, Cambridge, MA, 1973).

    Google Scholar 

  22. D.K. Lewis, Counterfactuals and comparative possibility, Journal of Philosophical Logic (1973) 2.

  23. D. Makinson, General patterns in non-monotonic reasoning, in: Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 3, eds. D.M. Gabbay, C.H. Hogger and J.A. Robinson (Oxford University Press, Oxford, 1994) pp. 35–110.

    Google Scholar 

  24. S. Moral and N. Wilson, Revision rules for convex sets of probabilities, in: Mathematical Models for Handling Partial Knowledge in Artificial Intelligence, eds. G. Coletti, D. Dubois and R. Scozzafava (Plenum, New York, 1995) pp. 113–128.

    Google Scholar 

  25. R. Nau, The shape of incomplete preferences, in: ISIPTA '03 – Proceedings of the Third International Symposium on Imprecise Probabilities and Their Applications, eds. J.-M. Bernard, T. Seidenfeld and M. Zaffalon (Carleton Scientific, 2003) pp. 408–422.

  26. R. Nau, The shape of incomplete preferences, Technical report, Decision Analysis Working Paper WP030009, September 2003. Extended version of [25].

  27. D. Nute, Topics in Conditional Logic (Reidel Company, Dordrecht, Holland, 1980).

    MATH  Google Scholar 

  28. E. Schechter, Handbook of Analysis and Its Foundations (Academic Press, San Diego, California, 1997).

    MATH  Google Scholar 

  29. T. Seidenfeld, M.J. Schervish and J.B. Kadane, A representation of partially ordered preferences, The Annals of Statistics 23 (1995) 2168–2217. Reprinted in [30] pp. 69–129.

    Article  MATH  MathSciNet  Google Scholar 

  30. T. Seidenfeld, M.J. Schervish and J.B. Kadane, Rethinking the Foundations of Statistics (Cambridge University Press, Cambridge, 1999).

    MATH  Google Scholar 

  31. W. Spohn, Ordinal conditional functions: A dynamic theory of epistemic states, in: Causation in Decision, Belief Change and Statistics, Vol 2, eds. W.L. Harper and B. Skyrms (Reidel, Dordrecht, 1987) pp. 105–134.

    Google Scholar 

  32. P. Walley, Statistical Reasoning with Imprecise Probabilities (Chapman and Hall, London, 1991).

    Google Scholar 

  33. M.A. Williams, Transmutation of knowledge systems, in: Proceedings of the Fourth International Conference on Principles of Knowledge Representation and Reasoning (Morgan Kaufmann, 1994) pp. 619–629.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert de Cooman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Cooman, G. Belief models: An order-theoretic investigation. Ann Math Artif Intell 45, 5–34 (2005). https://doi.org/10.1007/s10472-005-9006-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-005-9006-x

Keywords

AMS subject classification

Navigation