

University of Westminster Eprints
http://eprints.wmin.ac.uk

A clausal resolution method for branching-time logic ECTL.

Alexander Bolotov
Artie Basukoski

Harrow School of Computer Science

Copyright © [2004] IEEE. Reprinted 11th International Symposium on Temporal
Representation and Reasoning: (TIME 2004), Tatihou, Normandie, France, 1-3 July
2004, pp. 140-147.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

A Clausal Resolution Method for Branching-Time Logic ECTL�

Alexander Bolotov and Artie Basukoski
Harrow School of Computer Science,

University of Westminster, HA1 3TP, UK
�A.Bolotov,A.Basukoski@wmin.ac.uk�

Abstract

We expand the applicability of the clausal resolution
technique to the branching-time temporal logic ECTL�.
ECTL� is strictly more expressive than the basic compu-
tation tree logic CTL and its extension, ECTL, as it allows
Boolean combinations of fairness and single temporal oper-
ators. We show that any ECTL� formula can be translated
to a normal form the structure of which was initially defined
for CTL and then applied to ECTL. This enables us to ap-
ply to ECTL� a resolution technique defined over the set of
clauses. Our correctness argument also bridges the gap in
the correctness proof for ECTL: we show that the transfor-
mation procedure for ECTL preserves unsatisfiability.

1. Introduction

CTL type branching-time temporal logics play a signifi-
cant role in potential applications such as specification and
verification of concurrent and distributed systems [7]. Two
combinations of future time temporal operators � (‘some-
time’) and (‘always’), are useful in expressing fairness
[6]: � � (� is true along the path of the computation ex-
cept possibly some finite initial interval of it) and ��
(� is true along the computation path at infinitely many
moments of time). The logic ECTL (Extended CTL [9])
was defined to enable the use of these simple fairness con-
straints. The logic ECTL� further extends the expressive-
ness of ECTL by allowing Boolean combinations of ele-
mentary temporal operators and ECTL fairness constraints
(but not permitting nesting of temporal operators or fair-
ness constraints). In [2] a clausal resolution method has
been developed for the logic ECTL. The introduction of the
corresponding technique to cope with fairness constraints
enabled the translation of an ECTL formula into the nor-
mal form, to which we apply a clausal resolution tech-
nique initially defined for the logic CTL. In this paper we
present the translation to the normal form for any ECTL�

formula. Similarly to ECTL, as a normal form we utilise

the Separated Normal Form developed for CTL formulae,
called SNF���. This enables us to apply the resolution
technique defined over SNF��� as the refutation technique
for ECTL� formulae.

The main contribution of this paper is the formulation of
the technique to translate ECTL� formulae into SNF���
and a proof of its correctness. The latter also bridges the
gap in the correctness proof for ECTL: we show that the
transformation procedure for ECTL preserves unsatisfiabil-
ity.

The structure of the paper is as follows. In �2 we out-
line the syntax and semantics of ECTL� and those prop-
erties that are important for our analysis. In �3 we review
SNF���. Next, in �4, we describe the main stages of the al-
gorithm to translate an ECTL� formula into SNF���, give
details of rules invoked in this algorithm and provide the ex-
ample transformation. The core of this paper, the proof of
the correctness of this transformation technique, is given in
�5. Further, in �6 we outline the temporal resolution method
defined over SNF��� and apply it to a set of SNF���
clauses (previously obtained in �4.3). Finally, in �7, we
draw conclusions and discuss future work.

2. Syntax and Semantics of ECTL�

In the language of ECTL� we extend the language of
linear-time temporal logic, which uses future time (al-
ways), � (sometime), � (next time), � (until) and �
(unless), by path quantifiers A (on all future paths) and E
(on some future path). In the syntax of ECTL�, similar to
CTL and ECTL, we distinguish state (�) and path (�) for-
mulae, such that well formed formulae are state formulae.
These are inductively defined below (where � is a formula
of classical propositional logic)

� ��� ��� � ��� � ��� � �����A� �E�
� ��� � � � �� � � �� � � ��� �

����� ���� � ���� �� ���� �

Examples of ECTL� formulae that are not expressible in
a weaker logic ECTL, are A�� � � ���, E�� � �
����. These formulae express the Boolean combination

Proceedings of the 11th International Symposium on Temporal Representation and Reasoning (TIME’04)

1530-1311/04 $20.00 © 2004 IEEE

of fairness properties or temporal operators in the scope of
a path quantifier.

We interpret a well-formed ECTL� formula in a tree-
like model structure � � �������, where � is a set of
states, � � � � � is a binary relation over �, and � is an
interpretation function mapping atomic propositional sym-
bols to truth values at each state. A path, ��� , over �, is a
sequence of states ��� ����� ���� � � � such that for all � � �,
��� � ����� � �. A path ��� is called a fullpath. Given a path
��� and a state �� � ��� � �� 	 �� we term a finite subse-
quence ���� �� � � ��� ����� � � � � �� of ��� a prefix of a path
��� and an infinite sub-sequence �� � ����� ����� � � � of ��� a
suffix of a path ��� abbreviated �
����� � ���.

We assume that an ECTL� model � satisfies the fol-
lowing conditions: (i) There is a designated state, �� � �,
a root of a structure (i.e. for all �� ��� � ��� �� �); (ii) Ev-
ery state belongs to some fullpath and should have a suc-
cessor state; (iii) Tree structures are of at most countable
branching; (iv) Every path is isomorphic to �.

When trees are considered as models for distributed sys-
tems, paths through a tree are viewed as computations. The
requirements for ECTL� models we are interested in would
be suffix, fusion and limit closures [6].

Below, we define a relation ‘��’, which evaluates well-
formed ECTL� formulae at a state �� in a model � omit-
ting standard cases for Booleans.

��� ��� ��
 iff
 � ������ ��� ������
�

��� ��� �� A� iff ��� ���	 ��� � ��� ���� �� ��

��� ��� �� E� iff ���
��� ��� � ��� ���� �� ��

��� ���� �� � iff ��� ��� �� �� ���
���� ������� ��

��� ���� �� � iff ��� ���	 �� � ��� � �� � 	 �

�	�
 ��� �
����� � ���� �� ��

��� ���� ���� iff ���
��� �� � ��� � �� 	 ��
��� �
����� � ���� �� ��

��� ���� ��
�� iff ��� �
����� � ������ �� ��

��� ���� �� �
 � iff ���
��� �� � ����� 	 ��
��� �
����� � ���� �� � �
� ��� ���	 �� � ��� �

�� � 	 � 	 � �	�
 ��� �
����� � ���� �� ��

��� ���� �� �� � iff ��� ���� �� � ��

��� ���� �� �
 ��

Definition 1 An ECTL� formula � is satisfiable if, and
only if, there exists a model � such that ��� ��� �� �.
Formula � is valid if, and only if, every model satisfies it.

As an example let us consider an ECTL� formula

A� �
 ��

� (1)

which will be served in our example of the transformation
towards SNF��� in �4.3. It is straightforward from the se-
mantics, that this formula is unsatisfiable: take an arbitrary
fullpath, say �, and show that �
 ��

 can not be
satisfied along � as in the linear-time logic.

2.1. Some useful features of ECTL�

Here we summarize those features of ECTL� that are
important in our analysis and, thus, will affect both the
translation of ECTL� formulae to the normal form and the
clausal resolution method.

In the rest of the paper, let T abbreviate any unary and T �

any binary temporal operator and P either of path quanti-
fiers. Any formula of the type PT or PT� is called a basic
CTL modality.

Proposition 1 [Negation Normal Form correctness]
Given an ECTL� formula � and its Negation Normal
Form �����������, ��� ��� �� � iff ��� ��� ��
����������� [6].

Given a CTL formula � , we will abbreviate the expres-
sion ‘a state subformula �� with a path quantifier as its
main operator’ by P-embedded subformula of � . Now for
an ECTL�formula � , we define a notion of the degree of
nesting of its path quantifiers, denoted ��� �, as follows.

Definition 2 (Degree of path quantifier nesting)

if � � ���T�����T���, and ��, �� are purely classical
formulae then ����� � ��T��� � ����T���� � �;
if � �
����� � ����� � ����� � ���T�����T���� and
����� � �, ����� � � then ��
��� � ��T��� � �

and ���� � ��� � ���� � ��� � ���� � ��� �
����T���� � ���������� ������;
if � � P�� and ����� � � then ��P��� � �� 	.

Emerson and Sistla [10] showed that for any CTL�

(hence ECTL�) formula � with ��� � �
, � can be
transformed into � � by a continuous renaming of the P-
embedded state subformulae such that ��� �� �
. For ex-
ample, given � � A��E� �

 � ��� � E�E
�
we can obtain ������ � A ��� � E
� � A ��� �
E���� � A ��� � E� �

 � ���� � A���� � ���

Proposition 2 (Correctness of the procedure Red) For
any ECTL� formula �, ��� ��� �� � if, and only if, there
exists a model ���� such that ���� ��� �� ������, where
��� is introduced in Definition 2 [10].

Recall that the logic CTL� extends CTL by allow-
ing Boolean combinations of temporal operators (but
not any nesting of them). Yet, it is still as expres-
sive as CTL [8]. Hence we can transform any ECTL�

formula which is also a formula of CTL� into an equiva-
lent CTL formula. Here we give some of the equivalences
used for such reduction, referring the reader to the men-
tioned paper for other cases which involve the
 and �
operation. (In the formulae below � and � are purely clas-
sical expressions.)

Proceedings of the 11th International Symposium on Temporal Representation and Reasoning (TIME’04)

1530-1311/04 $20.00 © 2004 IEEE

��� P� �� � ��� � P ��� � ��
��� P� �� � ��� � P ��� � ��
��� P� � � �� � P �� � ��
��� P��� ���� � P��� � ��
��� E�� � �� � E� � E�
��� A�� � �� � A� � A�

(2)

Like ECTL, ECTL� allows limited nesting of temporal op-
erators to express fairness constraints. For some of them,
namely, for A � and E� cases, the validity of the fol-
lowing equivalences which we will use in our transforma-
tion procedure can be easily shown:

��� A �� � A A��

��� E� � � E�E �
(3)

Applying procedure NNF����� and standard classi-
cal logic transformations, we can obtain for any ECTL�

formula � (that has the degree of path quantifiers nest-
ing 1) its ‘special’ Disjunctive or Conjunctive Normal
Form, abbreviated as 	
�E�� � and �
�A�� �.

Definition 3 (DNFE and CNFA for ECTL� formulae)
Let us call formulae of the type T����, ��T���, � ��,
��� (where �� and �� are purely classical) as elemen-

tary formulae. Now, a formula in 	
�E is of the type
E��� � � � � � ��� and a formula in �
�A is of the type
A��� � � � � � ���, where each �� �� �
 � �� is an ele-
mentary formula.

For example, the following formula (which we used in
�2 as an unsatisfiability example) A� �� �� ��� is
in �
�A. The proof of the following proposition can be
established immediately from the semantics of ECTL�.

Proposition 3 (Correctness of the DNFE and CNFA)
For any ECTL� formula� that has the degree of path quan-
tifiers nesting 1, there exist its 	
�E�� � and �
�A�� �
such that � is satisfiable if, and only if, 	
�E�� � and
�
�A�� � are satisfiable respectively.

Similar to ECTL, a class of basic ECTL�modalities
consists of basic CTL modalities, enriched by the fairness
constraints, P � and P� . Our translation to SNF���
and temporal resolution rules are essentially based upon the
fixpoint characterizations of basic CTL modalities (see [5]).

Next we observe some results on interpreting ECTL�

over canonical models, noting that these results cover all
CTL-type logics, including CTL�.

Definition 4 (Branching degree and branching factor)
The number of immediate successors of a state � in a

tree structure is called a branching degree of �. Given a set
� � ���� ��� � � ��, of the branching degrees of the states of
a tree structure, the maximal �� �� �
� is called a branch-
ing factor of this tree structure.

As we have already mentioned, we assume that under-
lying ECTL� tree models are of at most countable branch-
ing. However, following ([6]), trees with arbitrary, even un-
countable, branching, “as far as our branching temporal log-
ics are concerned, are indistinguishable from trees with fi-
nite, even bounded, branching”.

Definition 5 (Labelled tree) Given a tree 	 � �
���,
where
 is a set of nodes and � is a set of edges, and a fi-
nite alphabet, �, a �
 �������� tree is a structure �	 ���
where � is a mapping

��, which assigns for each
state, element of
 , some label, element of �.

In �2 we introduced the notion of satisfiability and va-
lidity of ECTL� formulae in relation to
�� ���. Now, fol-
lowing [12], we call such a structure a tree interpretation.

Next we recall a notion of a �-ary tree canonical model
which plays a fundamental role in our correctness argument.
For these purposes, again following [12], we will look at
tree interpretations as tree generators: the root of the tree
is understood as an empty string, �, and the whole tree is
seen as a result of unwinding of the root applying the suc-
cessor function ���� ����� � ���

�
�
 � ��, where ���

�
�

and �� �
 � �� is a set of successors of a state �.

Definition 6 (Tree canonical interpretation) Let
	 � �
��� be a �-ary infinite tree such that ��� de-
notes the set ��� � � � ��, of branching degrees of the states
in 	 and � � ���� ����� � ���

�
�
 � ��. Now, given an al-

phabet � � �����, a �-ary tree canonical interpreta-
tion for an ECTL� formula � is of the form
�� ��, where
� � ����

�
� ���� such that � � ���

�

������.

In a canonical interpretation
����
�
� ����� �� the set of

states, the initial state and the successor relation are all
fixed, hence, “...they reduce to a function ����
������,
that is to a labelled tree over the alphabet �����...” ([12]).
We will refer to this tree as a canonical model. Proposition 4
given below collects the results given in [12] (Lemma 3.5).

Proposition 4 (Existence of a canonical model) If an
ECTL� formula � with � E-quantifiers has a model, then it
has an ��	 ��-ary canonical model.

These results were essentially used in the formulation
of the transformation rule for the ECTL fairness constraint
A� [2]. In this paper we will further extend their appli-
cability in the transformation procedure for ECTL�.

3. Normal Form for ECTL�

As a normal form for ECTL�, similarly to ECTL, we
utilise a clausal normal form, defined for the logic CTL,
SNF���, which was developed in [1, 4]. All formulae
of SNF��� of the type � � E �� or � � E��

(see below), where � is a purely classical expression, are
labelled with some index. Indices are used to preserve

Proceedings of the 11th International Symposium on Temporal Representation and Reasoning (TIME’04)

1530-1311/04 $20.00 © 2004 IEEE

a specific path context during the translation. The lan-
guage for indices is based on the set of terms ����� �
����� ���� ���� �������� �������� ������� � � �� where
�� �� � � � � denote constants. A designated type of indices in
SNF��� are indices of the type �����	
�� which represents
a limit closure of ��	
�. Thus, E���� means that � holds on
some path labelled as ���, for some � .

The alphabet for SNF��� language is obtained from
ECTL� by omitting the � and � operators, adding clas-
sically defined constants ���� and ����� and a new op-
erator, ����� (‘at the initial moment of time’) defined as
��� ��� �� ����� iff � � �.

Definition 7 (Separated Normal Form SNF�	
)
SNF��� is a set of formulae A �

�
���� � 	��� where

each of the clauses �� � 	� is further restricted as be-
low, each
� �
��
��
�, ��� ��� �� or � is a literal, ����
or ����� and ��	
� 	 ��� is some index.

����� �
��

��� �� an initial clause
��

���
� � A ��
�	

��� ��� an A step clause
�

���
� � E ��
��

��� �������� a E step clause
��

���
� � A�� an A sometime clause
�

���
� � E����������� a E sometime clause

We obtain the SNF��� semantics from the semantics of
ECTL� (
2) by preserving only items for state formulae.

4. Transformation of ECTL� formulae into
SNF���

In this section we will first describe the algorithm to
transform ECTL� formulae into SNF���, some of its rules,
and, finally, give an example transformation.

4.1. Algorithm to transform ECTL� formu-
lae into SNF���

As SNF��� is a part of the resolution technique, to check
validity of an ECTL� formula
, we first negate the latter
and translate �
 into its Negation Normal Form, deriving
� �NNF������
�. We introduce the transformation pro-
cedure � � ��	�������� applied to �, where �� and �	 are
described respectively by the steps 1-2 and 3-10 below.

(1) Anchor � to ����� and apply the initial renaming
rule obtaining A ������ � �
��A ��
 � ��, where
�
 is a new proposition.

(2) Apply equations (3) and procedure ���

(see Definition 2) to �. Thus, we derive a
set of constraints of the following structure

A
�
������ � �
� �

���

��
��� � ���
��

where ��

is a proposition, �� is either a purely classical for-
mula or if �� contains a path quantifier then the degree of
nesting of path quantifiers in �� is 1.

Let us call a formula
 in pre-clause form
if ���
� �
 i.e. it is of the form �� � ��

where �� is a literal, conjunction of literals, or
����� , �� is a purely classical formula or any of
PT�� �P� �� �P ��� �P����T	�����P�T��� � � � ��
T�����P�T���
 � � �
 T��� � (for some ��� � �) and
�� � ��� � � � � are purely classical formulae.

(3) For every pre-clause �� � �� :
(3.1) If �� is an ECTL� formula but not a CTL� for-

mula then do the following:
(3.1.1) obtain its ��	E���� or ��	A���� and apply

equivalences 2-(e) or 2-(f) respectively.
(3.1.2) apply equivalences (3).
(3.1.3) apply procedure���.
(3.2) If �� contains Boolean combinations of temporal

operators but does not contain any fairness constraint then
(as it is a CTL� formula) apply the procedure to transform
CTL� into CTL (see section 2.1).

(4) At this stage, renaming state subformulae (which are
expressed by basic CTL modalities) on the right hand-sides
of the constraints derived at step 3 we obtain the structure
required for a pre-clause.

(5) For every pre-clause �� � �� , by continuous re-
naming of the embedded classical subformulae by auxiliary
propositions together with some classical transformations
we obtain the following conditions.

- If �� contains a basic CTL modality then
- If �� � PT�� and PT is not P �then �� is a literal,
else �� is a purely classical formula.
- If �� � E ��� or �� � A� �� then �� is a lit-

eral,
- If �� � P����T	���� then ��� and ��� are literals.
- If �� � E�
� � � � � �
	� or �� � A���
 � � �
 ���,

where each
� �� � � � �� and �� �� � � � �� is a tempo-
ral operator or a fairness constraint applied to classical for-
mulae (but not literals) we obtain the structure where they
apply to literals.

(6) Label each pre-clause containing the E �modality
by an unique index ��	
 �� 	 ��� and any other pre-clause
containing the E quantifier by an unique index �����	
 ��� 	
���. Let LIST IND be a list of all indices introduced during
this labelling.

(7) Transform pre-clauses with E � and A� .
(8) Transform pre-clauses containing E�
� � � � � �
	�

or A���
 � � �
 ��� (of the structure obtained at step 5).
(9) Remove all unwanted basic CTL modalities.
(10) Derive the desired form of SNF��� clauses. At this

final stage we transform pre-clauses �� � �� , where ��

is either P ��� or a purely classical formula: for every pre-
clause �� � P ��� , we obtain the structure where P �ap-

Proceedings of the 11th International Symposium on Temporal Representation and Reasoning (TIME’04)

1530-1311/04 $20.00 © 2004 IEEE

plies either to a literal or to disjunction of literals. This can
be achieved, again, by renaming of the embedded classical
subformulae, applying rules used to obtain conjunctive nor-
mal form (CNF), and distributing P �over conjunction, to-
gether with some classical transformations. Further, for ev-
ery remaining purely classical pre-clause �� � �� , we ap-
ply a number of procedures including those that are used in
classical logic in transforming formulae to CNF, some sim-
plifications and the introduction of a temporal context.

4.2. Transformation rules towards SNF���
The first stage of the transformation procedure � out-

lined above, the procedure ��, is taken from the translation
of ECTL formulae to SNF��� [2]. Here we describe novel
techniques to cope with Boolean combinations of tempo-
ral operators defined in addition to the rules of the proce-
dure ��, introduced for ECTL [2]. We also recall some of
those rules that will be used in our example given in �4.3.
For the full set of rules preserved from the CTL the reader
is referred to [1, 4].
In the presentation below we omit the outer ‘A ’ connec-
tive that surrounds the conjunction of pre-clauses and, for
convenience, consider a set of pre-clauses rather than the
conjunction. Expressions � and � will abbreviate purely
classical formulae.

Indices. Recall that at step 6 of the transformation pro-
cedure, we introduce labelling of the SNF��� pre-clauses
containing the E quantifier. The justification of this la-
belling is based upon fixpoint characterization of basic CTL
modalities and was explained in [1, 2] except for the new
specific ECTL� formulae in ���E form. The latter can
be explained simply based upon the SNF��� semantics.

Rules to remove basic CTL modalities. Here we give
those removal rules that will be used in our examples of
the transformation to SNF��� (�4.3) and refutation (�6). In
the formulation of the rules given below � is a new propo-
sition:

Removal of E Removal of E�

� � E ����������

� � � � �
�� E ��� � �������

� � E��� 	����������
� � 	 � �� � ��
�� E ��	 � �� � ��������

Managing embedded path subformulae in ECTL�.
We incorporate rules to rename purely path formulae em-
bedded in ECTL� fairness constraints from [2]. Let
the number of indices in LIST IND be
 �
 � �� and
let ������� � � � ������ �
�� be the constants occur-
ring in these indices. If for some index ����� � LIST IND
we do not have ��������� � LIST IND then we up-
grade LIST IND by ��������� (in the formulation below

is the number of indices in LIST IND and �� ��� � � � � �� are
new propositions).

Renaming: the E � case.

� � E �����������

� � E ����������

�� E�����������

Renaming: the A� case.

��
 � � ��
 � �

� � A� �

� � E�����������

�� E ����������

� � A� �

� � E�������������
�� � E �����������

� � �

� � E�������������

�� � E �����������

Managing embedded boolean combinations of path sub-
formulae in ECTL�. Recall that on step 8 of the transfor-
mation procedure we must further reduce formulae of the
form E��� � � � � � ��� and A��� � � � � � ���. The corre-
sponding rules are given below where ���

� is ������� if the
�� are not �, and ��� otherwise and
 is the number of in-
dices in LIST IND.

E��� � � � � � ������ case.

� � E��� � � � � � ������
�� � E��������

� � �

�� � E��������

A��� � � � � � ��� case.

��
 � � ��
 � �
� � A��� � � � � � ���

� � E ��� � � � � � ���

� � A ��� � � � � � ���

� � E��� � � � � � �������
� � �

� � E��� � � � � � �������

Finally, from the rest of the rules previously defined for
CTL/ECTL, we use the following.

Temporising Distributivity of E �

� � �

����� � 	� ��
���� � A ��	� � 	��

� � E ��� ������������
� � E �����������

� � E �����������

In the rule for E �, given that the premise of the rule is la-
belled by ���������, we preserve this label for both con-
clusions, thus, assuring that they refer to the same path.

4.3. Example Transformation

As an example we translate into SNF��� the formula:

E�� 	� � ��� (4)

Proceedings of the 11th International Symposium on Temporal Representation and Reasoning (TIME’04)

1530-1311/04 $20.00 © 2004 IEEE

To check if (4) is valid negate it and apply pro-
cedure NNF��������E�� �� � ����� �
A� �� � � ��� which was considered as an ex-
ample of an unsatisfiable formula in �2. From the trans-
lation algorithm, we derive steps 0–2, where � is a new
proposition.

�� ����� � A� �� �� ��� ��������� �� �����

�� ����� � � �� 	�����
 ����
���

�� �� A� �� �� ��� �� 	�����
 ����
���

We proceed with formula 2, where the right hand side of the
implication is already in ���A�� �. Thus, we apply equa-
tion (2)-(f) to distribute the A over conjunction in 2, obtain-
ing 3, and then simplify the latter deriving 4 and 5. Next,
we simplify formula 4 applying (3-(a)) to get 6. The struc-
ture of the latter enables us to apply procedure ��	 deduc-
ing 7 and 8 and introducing a new variable
.

�� � � A �� � A� �� �� �������� ��
�� � � A �� �� �	��

�� � � A� �� �� �	��

	� � � A A�� �� �������� ����

� � � A
 	� ��������� ���
��
 � A�� 	� ��������� ���

Applying the renaming rule (A� case) to 5 we de-
rive formula 9 and label it with a new index ������� (since
LIST IND is empty). Applying equation (3-(b)) to 9 we get
� � E�E ��������� which is further reduced by pro-
cedure ��	 to 10 and 11, where � is a new variable. Ap-
ply A removal rule to 7 and E removal rule 11, where
�� and �� are new variables.

�� � � E� ��������� �� ����
���

��� � � E��������� �� ���
��� � � E ��������� �� ���
��� � �
 � ��
� ��
���
 �� A
��� �� � A ��
 � ���
� ��
���
 �� A
��� � � �� � �� ��� ��
���
 �� E
��� �� � E ���� � ������ ��� ��
���
 �� E

Next simplifying and temporising formulae 12 and 14 we
obtain 16-19 and 20-23 respectively. Finally, we distribute
A and E over �in 13 and 15.

�	� ����� � �� �
 ��� ��
�� ��
�

�
� ����� � �� � �� ��� ��
�� ��
�

��� ���� � A ���� �
� ��� ��
�� � �
�

��� ���� � A ���� � ��� ��� ��
�� � �
�

��� ����� � �� � �� ��� ��
�� � �
�

��� ����� � �� � �� ��� ��
�� � �
�

��� ���� � A ���� � ��� ��� ��
�� � �
�

��� ���� � A ���� � ���� ��� ��
�� � �
�

��� � � A �
 ��� �������� ��
��� � � A ��� ��� �������� ��
�	� �� � E ������ �������� E ����� �
�
� �� � E ������ �������� E ����� �

The normal form of the given ECTL� formula A� �� �
� ��� is represented by clauses 1, 8, 10, 16–27.

5. Correctness of the Transformation of
ECTL� formulae into SNF���

Here we provide the correctness argument for our trans-
formation procedure. A significant part of this argument is
either similar to the corresponding proofs given in [1, 2]
for CTL and ECTL or extend these proofs for new cases of
ECTL� formulae. Therefore, we will only state such claims
referring the reader to [1, 2] while we sketch here proofs
for new techniques used for ECTL� transformations. Note
also that in our previous paper ([2]) we have not estab-
lished the proof for the claim analogous to Lemma 3 (see
below). Therefore, providing our argument in this paper, we
not only show the desired correctness of the transformation
procedure for ECTL� but also bridge this gap for ECTL.

Theorem 1 An ECTL� formula,
, is satisfiable if, and
only if, ��
� is satisfiable.

To establish the correctness of this theorem we first show
that an ECTL� formula
 is satisfiable, if and only if
���
� is satisfiable (Lemma 1). At the next stage we prove
that the transformation procedure �� preserves satisfiabil-
ity (Lemma 2). Finally, (Lemma 3), we show that given
an ECTL� formula
 and its normal form, SNF���(
),
if SNF���(
) is satisfiable then
 is satisfiable.

Lemma 1 An ECTL� formula,
, is satisfiable if, and only
if, ���
� is satisfiable.

Since �� is taken from the translation of ECTL formu-
lae to SNF���, the proof of Lemma 1 follows from the cor-
rectness argument for ECTL ([2]).

Lemma 2 Given an SNF��� formula
, if ���
� is satis-
fiable then so is ������
��.

Here we must show that the new techniques used in
our transformation procedure preserve satisfiability. This
includes the correctness argument for ���E and ���A
and also for the cases of Boolean combinations of tempo-
ral operators, E��� � � � � � ������ case and A��� � � � � �
��� case. Corresponding proofs are established straightfor-
wardly from the SNF��� semantics, taking into account the
meaning of indices and Proposition 4 ([12]).

Lemma 3 Given an ECTL� formula
, if SNF����
� is
satisfiable then so is
.

PROOF: From Lemma 1 it follows that given an ECTL� for-
mula
,
 is satisfiable if, and only if, ���
� is satisfiable.
Thus, for the proof of Lemma 3 we must show that the fol-
lowing proposition takes place:

Proposition 5 Given an ECTL� formula
, if ������
�� is
satisfiable then so is ���
�.

Proceedings of the 11th International Symposium on Temporal Representation and Reasoning (TIME’04)

1530-1311/04 $20.00 © 2004 IEEE

Here we sketch the proof for the new core technique in-
troduced in our transformation procedure. We will show
that given ��� A �� � A��� � � � � � ���� and hav-
ing generated
���� A �� � E��� � � � � � �������������

� � �

���� A �� � E��� � � � � � �������������

���

(where at least one of �� �� � � � �� has a form of� �

or ��), if ��� is satisfiable then ��� is satisfiable.

PROOF: Consider a model � which satisfies ���. We have
��� ��� �� ���� 	 � � � 	 ����. Following [12], we know
that if a formula with 	 path quantifiers has a model, then
it has an �	 � ��’ary canonical model. We will now con-
struct this canonical model �� and show that every state
in the model also satisfies �. The construction proceeds by
first selecting a path, say
, from ��� which satisfies one
of the �� �� � � � 	� clauses. This will be a basis path
to construct a canonical model, which is also referred to as
the ”leftmost” path of the canonical model in [12]. Due to
the labelling of the states of this path, each of them satis-
fies � � E��� � � � ���������������. Then inductively con-
struct each of the 	 additional paths (corresponding to 	

����
��� quantifiers) from each state along
.
Again, we label the states of these paths based on the

original interpretations from M such that each of them also
satisfies � � E��� � � � � � ������������� (for some �). We
then proceed in the same way to take each state of the newly
constructed paths and generate the 	 additional paths from
each of them to derive the completed canonical model.

������� ���

��

� � � � �

��� ���

� � � � � � � � � �

� � � � �

�

���Figure 1. �	� ��’ary Canonical Model for �.

Our ultimate task is to show that for any state in the
canonical model �� which satisfies � , every path emanat-
ing from it satisfies �� � � � � � ��. This will ensure that
� � A���� � � ����� is satisfied at every state of��, and,
therefore, it is satisfied in the root of ��. Consider an arbi-
trarily chosen path �� of�� and a state ��
 ��, see Figure
1. By the construction of��, every one of the 	 paths ema-
nating from �� satisfies ���� � ����. What is left is to show
that ������� ��� (which corresponds to the 	� � path em-
anating from ��) also satisfies �� � � � �� ��. The latter fol-
lows from the labelling of the states of the path � � which is
taken from one of the paths of � that satisfies one of the
����� � � � � ����.

6. The Temporal Resolution Method

In order to achieve a refutation, we apply two types of
resolution rules already defined in [1, 4]: step resolution
(SRES) and temporal resolution (TRES). The SRES rules
are used between formulae which refer to the same initial
moment of time or same next moment along some or all
paths. The basic idea of invoking temporal resolution is to
resolve a set of formulae characterizing a loop in �, i.e. a
set of SNF��� clauses indicating a situation when � occurs
at all future moments along every (an A-loop in �) or some
path (a E-loop in �) from a particular point in an ECTL�

model, together with the clause containing ��� [3]. Here
we present those step (SRES 1 and SRES 2) and tempo-
ral resolution (TRES 2 and TRES 4) rules which are used
in the example refutation. (For a detailed description of the
resolution technique defined over SNF��� see [1, 4].)

SRES 1 SRES 2

����� � � � �

����� � � � ��
����� � � ��

� � A ��� � ��
�� A ��� � ���

�� 	��� A ��� ���

TRES 2 TRES 4

� � A �A �

�� E������������
�� E��� � ������������

� � E �E ����������
�� E������������
�� E��� � ������������

In the rules above � is a literal and the first premises in the
TRES rules abbreviate the A and E loops in � respectively
(given that � is satisfied).

Correctness of the transformation of ECTL� formulae
into SNF��� (
5) together with the termination and correct-
ness of the resolution method defined over SNF��� (shown
in [1, 4]) enables us to apply the latter as the refutation
method for ECTL�.

Example Refutation. We apply the resolution method to
the set of SNF��� clauses obtained in section
4.3 for
the ECTL� formula A� �
 	� �
�. We commence
the resolution proof presenting at steps 1 – 13 only those
clauses that are involved in the resolution refutation in the
following order: initial clauses, step clauses and, finally, any
sometime clauses.
�� ����� � �

�� ����� � �� � �

�� ����� � �� � ��
�� ����� � �� � �

�� ����� � �� � ��
	� ���� � A ���� � �
�

� ���� � A ���� � ���

�� �� � A ��

�� �� � A ���
�
� �� � E ��
���

��� �� � E ������
��� � � A�

��� �� E���������

We apply step resolution rules between 1 and 2, and 1 and 3.
No more SRES rules are applicable. Formula 12 is an even-
tuality clause, and therefore, we are looking for a loop in

Proceedings of the 11th International Symposium on Temporal Representation and Reasoning (TIME’04)

1530-1311/04 $20.00 © 2004 IEEE

�� (see [3] for the formulation of the loop searching proce-
dure). The desired loop, E E ���������� (given that con-
dition �� is satisfied) can be found considering clauses 10
and 11. Thus, we apply the TRES 4 rule to resolve this loop
and clause 12, obtaining 16. Next we remove E� from 16
deriving a purely classical formula 17 (� is a new variable).
Simplify the latter, apply temporising, obtaining, in partic-
ular, 19 and 20, and then a series of SRES rules to newly
generated clauses.

��� ����� � � �� �� ����
��� ����� � �� �� �� ����
��� � � E����� ��������� ��� ��� �� TRES 4
�	� � � � � ��� � 	 ��� E� �������

�
� 	 � E ��� � ��� � 	���� ��� E� �������

��� ����� � �� � � � ��� �	� ��	
���	

��� ���� � A ���� � � � ���� �	� ��	
���	

��� ����� � � � ��� ��� ��� ���� �
��� ����� � � � �� �� ��� ���� �
��� ����� � �� �� ��� ���� �
��� �� � A ��� � ����
� ��� ���� �
��� �� � A ��� � ��� 	� ��� ���� �
��� �� � A ��� �� ��� ���� �

Now, as no more SRES rules are applicable, we are look-
ing for a loop in �� which can be found considering formu-
lae 9 and 26: A �A �� given that condition �� is satis-
fied. Thus, we can apply TRES 2 to resolve this loop and 13
deriving 27. Then we remove E� from the latter (on step
28, where
 is a new variable, we use only one of its con-
clusions). Applying simplification and temporising to 28 we
obtain 29. The desired terminating clause ����� � �����

is deduced by applying SRES 1 to steps 1, 15 and 23.

�	� � � E����� ��������� �� ��� �� ���� �
�
� � � � � ��� �
 �	 E� �������

��� ����� � �� � � � ��� �
 ��	
���	

��� ����� � ����� �� ��� �� ���� �

7. Conclusions and Future Work

We have described the extension of the clausal resolution
method to the useful branching-time logic ECTL�. Here
we have followed our general idea to expand the applica-
bility of the clausal resolution technique originally devel-
oped for linear-time temporal logic [11], and further ex-
tended to branching-time temporal logics CTL and ECTL
[4, 1, 2]. This extension enables us to invoke a variety of
well-developed methods and refinements used in the resolu-
tion framework for classical logic. The algorithm to search
for loops needed for temporal resolution has been intro-
duced in [3]. With the proof that SNF��� can be served as
the normal form for ECTL�, the algorithm becomes fully
functional for the latter. Another contribution of this pa-
per is completing the proof of the correctness of the trans-
formation procedure in ECTL formulated in [2]: we have

now shown that if the set of clauses generated for an ECTL
formula is satisfiable then the original formula is satisfi-
able. Our results have brought us one step closer to the fi-
nal stage of our long-term project - to define a clausal res-
olution method for CTL�. Among other obvious tasks are
to refine the presented method and to analyse its complex-
ity which would enable the development of the correspond-
ing prototype systems.

References

[1] A. Bolotov. Clausal Resolution for Branching-Time Tempo-
ral Logic. PhD thesis, Department of Computing and Math-
ematics, The Manchester Metropolitan University, 2000.

[2] A. Bolotov. Clausal resolution for extended computation tree
logic ECTL. In Proceedings of the Time-2003/International
Conference on Temporal Logic 2003, pages 107–117, Cairns,
July 2003. IEEE.

[3] A. Bolotov and C. Dixon. Resolution for Branching Time
Temporal Logics: Applying the Temporal Resolution Rule.
In Proceedings of the 7th International Conference on Tem-
poral Representation and Reasoning (TIME2000), pages
163–172, Cape Breton, Nova Scotia, Canada, 2000. IEEE
Computer Society.

[4] A. Bolotov and M. Fisher. A Clausal Resolution Method
for CTL Branching Time Temporal Logic. Journal of Ex-
perimental and Theoretical Artificial Intelligence., 11:77–
93, 1999.

[5] J. Bradfield. and C. Stirling. Modal logics and mu-calculi. In
J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of
Process Algebra, pages 293–330. Elsevier, North-Holland,
2001.

[6] E. A. Emerson. Temporal and Modal Logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence: Volume B, Formal Models and Semantics., pages 996–
1072. Elsevier, 1990.

[7] E. A. Emerson. Automated reasoning about reactive sys-
tems. In Logics for Concurrency: Structures Versus Au-
tomata, Proc. of International Workshop, volume 1043 of
Lecture Notes in Computer Science, pages 41–101. Springer,
1996.

[8] E. A. Emerson and J. Y. Halpern. Decision procedures and
expressiveness in the temporal logic of branching time. In
JCSS 30(1), pages 1–24, 1985.

[9] E. A. Emerson and J. Y. Halpern. “Sometimes” and “Not
never” revisited: On branching versus linear time temporal
logic. JACM, 33(1):151–178, 1986.

[10] E. A. Emerson and A. P. Sistla. Deciding full branching time
logic. In Proceedings of STOC 1984, pages 14–24, 1984.

[11] M. Fisher. A Resolution Method for Temporal Logic. In
Proc. of the XII International Joint Conference on Artificial
Intelligence (IJCAI), pages 99–104, 1991.

[12] P. Wolper. On the relation of programs and computations to
models of temporal logic. In L. Bolc and A. Szałas, editors,
Time and Logic, a computational approach, chapter 3, pages
131–178. UCL Press Limited, 1995.

Proceedings of the 11th International Symposium on Temporal Representation and Reasoning (TIME’04)

1530-1311/04 $20.00 © 2004 IEEE

	footer1:

