Skip to main content
Log in

A mathematical framework for the semantics of symbolic languages representing periodic time

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

In several areas, including Temporal DataBases (TDB), Presburger arithmetic has been chosen as a standard reference for the semantics of languages representing periodic time, and to study their expressiveness. On the other hand, the proposal of most symbolic languages in the AI literature has not been paired with an adequate semantic counterpart, making the task of studying the expressiveness of such languages and of comparing them a very complex one. In this paper, we first define a representation language which enables us to handle each temporal point as a complex object enriched with all the structure it is immersed in, and then we use it in order to provide a Presburger semantics for classes of symbolic languages coping with periodicity. Finally, we use the semantics to compare a few AI and TDB symbolic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.F. Allen, Maintaining knowledge about temporal intervals, in: Readings in Knowledge Representation, eds. R.J. Brachman and H.J. Levesque (Kaufmann, Los Altos, CA, 1985) pp. 509–521.

    Google Scholar 

  2. M. Baudinet, J. Chomicki and P. Wolper, Temporal databases: Beyond finite extensions, in: Proc. Int'l Workshop on an Infrastructure for Temporal Databases (1993).

  3. L. Berman, The complexity of logical theories, Theoretical Computer Science 11 (1980) 71–77.

    Article  MATH  MathSciNet  Google Scholar 

  4. E. Bertino, C. Bettini, E. Ferrari and P. Samarati, An access contro model supporting periodicity constraints and temporal reasoning, ACM Transactions on Database Systems 23(3) (1998) 231–285.

    Article  Google Scholar 

  5. C. Bettini, C. Dyreson, W. Evans, R. Snodgrass and X. Wang, A glossary of time granularity concepts, in: Temporal Databases: Research And Practice, eds. O. Etzions, S. Jajodia and S. Sripada, Vol. 1399 of LNCS (Springer, 1998).

  6. C. Bettini, S. Jajodia and X. Wang, Solving multi-granularity constraint networks, Artificial Intelligence 140(1–2) (2002) 107–152.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Bettini and R. De Sibi, Symbolic representation of user-defined time granularities, Annals of Mathematics and Artificial Intelligence 30(1–4) (2000) 53–92.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Chandra, A. Segev and M. Stonebraker, Implementing calendars and temporal rules in next generation databases, in: Proc. Int'l Conf. on Data Engineering (1994) pp. 264–273. See also LBL Tech. Report 34229, University of California, Berkeley (1993).

  9. J. Chomicki and T. Imielinski, Finite representation of infinite query answers, ACM ToDS 18(2) (1993) 181–223.

    Article  Google Scholar 

  10. C. Combi, M. Franceschet and A. Peron, Representing and reasoning about temporal granularities, Journal of Logic and Computation 14(1) (2004) 1–77.

    Article  MathSciNet  Google Scholar 

  11. D. Cukierman and J. Delgrande, Expressing time intervals and repetition within a formalization of calendars, Computational Intelligence 14(4) (1998) 563–597.

    Article  MathSciNet  Google Scholar 

  12. L. Egidi and P. Terenziani, A lattice of classes of user-defined symbolic periodicities, in: IEEE Procs. of TIME'04 (2004) pp. 13–20.

  13. L. Egidi and P. Terenziani, A mathematical framework for the semantics of symbolic languages representing periodic time, in: IEEE Procs. of TIME'04 (2004) pp. 21–27.

  14. L. Egidi and P. Terenziani, Orthogonal operators for user-defined symbolic periodicities, in: Procs. of AIMSA'04, Vol. 3192 of LNAI (Springer, 2004) pp. 137–147.

  15. L. Egidi and P. Terenziani, A modular approach to user-defined symbolic periodicities, manuscript, 2005.

  16. H.B. Enderton, A Mathematical Introduction to Logic, Vol. 1, 16th edition (Academic, New York, 1972).

    Google Scholar 

  17. F. Kabanza, J.-M. Stevenne and P. Wolper, Handling infinite temporal data, Journal of Computer and System Sciences 51 (1995) 3–17.

    Article  MATH  MathSciNet  Google Scholar 

  18. N. Koblitz, A Course in Number Theory and Cryptography, GTM 114 (Springer, 1994).

  19. A. Kurt and M. Ozsoyoglu, Modelling and querying periodic temporal databases, in: Procs. of DEXA'95 (1995) pp. 124–133.

  20. P. Ladkin, Primitive and units for time specification, in: Proc. fifth National Conf. on Artificial Intelligence (1986) pp. 354–359.

  21. P. Ladkin, Time representation: A taxonomy of interval relations, in: Proc. fifth National Conf. on Artificial Intelligence (1986) pp. 360–366.

  22. B. Leban, D.D. McDonald and D.R. Forster, A representation for collections of temporal intervals, in: Procs. of AAAI'86 (1986) pp. 367–371.

  23. G. Ligozat, On generalized interval calculi, in: Proc. Proc. ninth National Conf. on Artificial Intelligence (1991) pp 234–240.

  24. M. Abadi and Z. Manna, Temporal logic programming, Journal of Symbolic Computation 8(3) (1989) 277–295.

    Article  MATH  MathSciNet  Google Scholar 

  25. Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems (Springer, 1992).

  26. A. Montanari, Metric and Layered Temporal Logic for Time Granularity, volume 1996-02 of ILLC Dissertation Series, Institute for Logic, Language and Computation, University of Amsterdam (1996).

  27. R.A. Morris, W.D. Shoaff and L. Khatib, Domain independent temporal reasoning with recurring events, Computational Intelligence 12(3) (1996) 450–477.

    Article  MathSciNet  Google Scholar 

  28. M. Niezette and J.-M. Stevenne, An efficient symbolic representation of periodic time, in: Procs. of CIKM (1992).

  29. P. Ning, X.S. Wang and S. Jajodi, An algebraic representation of calendars, Annals of Mathematics and Artificial Intelligence 36(1-2) (2002) 5–38.

    Article  MATH  MathSciNet  Google Scholar 

  30. H.J. Ohlbach, The role of labeled partitionings for modeling periodic temporal notions, in: Proc. TIME 2004 (2004) pp. 60–63.

  31. M. Presburger, Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, in: Comptes Rendus du Premier Congrès des Mathématiciens des Pays Slaves (1929) pp. 92–101.

  32. M. Soo and R. Snodgrass, Multiple calendar support for conventional database management systems, in: Proc. Int'l Workshop on an Infrastructure for Temporal Databases (1993).

  33. M.R. Stonebraker, Extendability, in: Readings in Database Systems, Chapter 7, ed. M.R. Stonebraker, (Morgan Kaufmann, 1990).

  34. P. Terenziani, Integrating calendar-dates and qualitative temporal constraints in the treatment of periodic events, IEEE Transactions on Knowledge and Data Engineering 9(5) (1997) 763–783.

    Article  Google Scholar 

  35. P. Terenziani, Integrated temporal reasoning with periodic events, Computational Intelligence 16(2) (2000) 210–256.

    Article  MathSciNet  Google Scholar 

  36. P. Terenziani, Symbolic user-defined periodicity in temporal relational databases, IEEE TKDE 15(2) (2003) 489–509.

    Google Scholar 

  37. A. Tuzhilin and J. Clifford, On periodicity in temporal databases, Information Systems 20(8) (1995) 619–639.

    Article  Google Scholar 

  38. M. Y. Vardi, A temporal fixpoint calculus, in: Proc. Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (1988) pp. 250–259.

  39. P. Wolper, Temporal logic can be more expressive, Information and Control 56 (1983) 72–99.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavinia Egidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egidi, L., Terenziani, P. A mathematical framework for the semantics of symbolic languages representing periodic time. Ann Math Artif Intell 46, 317–347 (2006). https://doi.org/10.1007/s10472-006-9021-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-006-9021-6

Keywords

AMS subject classification

Navigation